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Abstract 

This paper focuses on nominal exchange rates, specifically the US dollar rate vis-à-vis 
the Euro and the Japanese Yen at a daily frequency. We model both absolute values of 
returns and squared returns using long-memory techniques, being particularly interested 
in volatility modelling and forecasting given their importance for FOREX dealers. 
Compared with previous studies using a standard fractional integration framework such 
as Granger and Ding (1996), we estimate a more general model which allows for 
dependence not only at the zero but also at other frequencies. The results show 
differences in the behaviour of the two series: a long-memory cyclical model and a 
standard I(d) model seem to be the most appropriate for the US dollar rate vis-à-vis the 
Euro and the Japanese Yen respectively. 
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1. Introduction  

 

The empirical literature analysing the statistical properties of exchange rates is 

vast. Most studies focus on the behaviour of real exchange rates in order to establish 

whether it is consistent with the theory of Purchasing Power Parity (PPP), which is one 

of the central tenets of the theory of exchange rate determination. In particular, they test 

the null hypothesis that the real exchange rate follows a random walk, the alternative 

being that PPP holds in the long run. However, such unit root tests are now well known 

to have very low power, and to be unable to distinguish between random-walk 

behaviour and very slow mean-reversion in the PPP-consistent level of the real 

exchange rate (see, e.g., Frankel, 1986, and Lothian and Taylor, 1997), unless very long 

spans of data are used (see, e.g., Lothian and Taylor, 1996, and Cheung and Lai, 1994). 

Moreover, whilst in a flexible-price monetary model PPP is assumed to hold 

continuously, in a sticky-price model it holds only in the long run. Therefore the 

relevant issue to investigate is whether deviations from PPP are transitory or permanent.  

 

As a result of the increasing awareness of the limitations of standard unit root 

tests as well as of possible frictions in foreign exchange markets, long-memory and 

fractional integration methods have been used much more frequently. For instance, 

applying R/S techniques to daily rates for the British pound, French franc and Deutsche 

mark, Booth, Kaen and Koveos (1982) found positive memory during the flexible 

exchange rate period (1973-1979) but negative one (i.e., anti-persistence) during the 

fixed exchange rate period (1965-1971). Cheung (1993) also found evidence of long-

memory behaviour in foreign exchange markets during the managed floating regime. 

On the other hand, the results obtained by Baum, Barkoulas and Caglayan (1999) 
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estimating an ARFIMA model for real exchange rates in the post-Bretton Woods era do 

not support long-run PPP. 

 

Other studies focus on the behaviour of nominal exchange rates. In this case, the 

main motivation is often building a model with better forecasting properties, rather than 

test theories of exchange rate determination, and in particular the financial modelling 

and forecasting of exchange rate volatility. This is because, from a dealer’s perspective, 

what is of interest is not so much the ability to predict fluctuations in the exchange rate 

level, but rather in its volatility. The reason is that generally dealers (and also fund 

managers) when managing FOREX books (or diversified portfolios) can easily hedge 

their cash positions by using the derivatives market.1 However, because of the hedging 

positions, they may incur substantial losses if volatility remains flat. Forecasting 

FOREX volatility adequately has acquired additional importance for market participants 

as a result of Basel II, which has introduced a Revised Framework for International 

Convergence of Capital Measurement and Capital Standards. The reason is that the new 

framework relies to a greater extent on the assessment of market risk provided by banks 

and market participants themselves for capital calculations, and gives them the option to 

choose between various approaches to determining the (minimum) capital requirements. 

Within the new regulatory framework the more accurately a company can identify and 

measure its risk exposure in the market, the lower the cost of raising funds it faces.  

 

Some examples of recent studies analysing nominal exchange rate dynamics 

using fractional integration (looking at futures in particular) are those by Fang, Lai and 

                                                 
1 With the current amount of liquidity in most FOREX markets, the cost of hedging a cash position has 
become relatively low. 
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Lai (1994), Crato and Ray (2000) and Wang (2004). Volatility dynamics in foreign 

exchange rates (mainly the Deutsche mark vis-à-vis US dollar rate) have also been 

examined with the FIGARCH-model, introduced by Baillie, Bollerslev and Mikkelsen 

(1996), and subsequent papers using this approach are Andersen and Bollerslev (1997, 

1998), Tse (1998 – examining the Japanese Yen-US dollar rate), Baillie, Cecen and Han 

(2000), Kihc (2004) and Morana and Beltratti (2004 – analysing volatility). 

 

The present study also focuses on nominal exchange rates, specifically the US 

dollar rate vis-à-vis the Euro and the Japanese Yen at a daily frequency. We model both 

absolute values of returns and squared returns using long-memory techniques, being 

particularly interested in volatility modelling and forecasting given their importance for 

FOREX dealers. Compared with previous studies using a standard fractional integration 

framework such as Granger and Ding (1996), we estimate a more general model which 

allows for dependence not only at the zero but also at other frequencies. 

 

The layout of the paper is the following. Section 2 describes the methodology. 

Section 3 presents the empirical results. Section 4 examines the stability of the 

relationships over time. Section 5 examines the forecasting properties of the estimated 

models, while Section 6 offers some concluding remarks. 

 

2. Methodology 

 

Given a covariance stationary process {xt, t = 0, ±1, … }, with autocovariance 

function E[(xt –Ext)(xt-j-Ext)] = γj, according to McLeod and Hipel (1978), xt displays 

the property of long memory if 
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is infinite. An alternative definition, based on the frequency domain is as follows. 

Suppose that xt has an absolutely continuous spectral distribution, and therefore a 

spectral density function, denoted by f(λ), and defined as 
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Then, xt displays long memory if this function has a pole at some frequency λ in the 

interval [0, π]. Most of the empirical literature has focused on the case when the 

singularity or pole in the spectrum occurs at the zero frequency. This is true of standard 

fractionally integrated or I(d) models of the form: 

 

,...,1,0,)1( ±==− tuxL tt
d     (1) 

 

with xt = 0, t ≤  0, and where L is the lag operator (Lxt = xt-1), d is a positive real value, 

and ut is an I(0) process defined as a covariance stationary process with a spectral 

density function that is positive and bounded at all frequencies.2 As previously 

mentioned these processes are characterised by a spectral density function which is 

unbounded at the zero frequency. They were first analysed in the 1960s when Granger 

(1966) and Adelman (1965) pointed out that most aggregate economic time series have 
                                                 
2 The I(0) class of models includes the classical white noise process but also other structures allowing a 
weak dependence structure, such as the stationary autoregressive moving average (ARMA) models. 
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a typical shape where the spectral density increases dramatically as the frequency 

approaches zero. However, differencing the data frequently leads to over-differencing at 

the zero frequency. 

 

 However, a process may also display a pole or singularity in the spectrum at a 

frequency away from zero. In this case, the process may still display the property of 

long memory but the autocorrelations exhibit a cyclical structure that is decaying very 

slowly. This is the case of the Gegenbauer processes defined as: 

 

,...,2,1,)cos21( 2 ==+− tuxLLw tt
d

r   (2)  

 

where wr and d are real values, and ut is I(0). For practical purposes we define wr = 

2πr/T, with r = T/s, and thus s will indicate the number of time periods per cycle, while r 

refers to the frequency that has a pole or singularity in the spectrum of xt. Note that if r 

= 0 (or s = 1), the fractional polynomial in (2) becomes (1 – L)2d, which is the 

polynomial associated with the common case of fractional integration at the long-run or 

zero frequency. This type of process was introduced by Andel (1986) and subsequently 

analysed by Gray, Zhang and Woodward (1989, 1994), Chung (1996a,b) and Dalla and 

Hidalgo (2005) among many others. 

 

 Gray et al. (1989, 1994) showed that the polynomial in (2) can be expressed in 

terms of the Gegenbauer polynomial, such that, denoting μ = cos wr, for all d ≠  0, 
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where )(, μdjC  are orthogonal Gegenbauer polynomial coefficients recursively defined 

as:  
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(see, for instance, Magnus et al., 1966, Rainville, 1960, etc. for further details on 

Gegenbauer polynomials). Gray et al. (1989) showed that xt in (2) is (covariance) 

stationary if d < 0.5 for │μ = cos wr│< 1 and if d < 0.25 for│μ│= 1.3 The model just 

presented can be generalised to the case of more than one cyclical structure to consider 

processes of the form: 

 

∏
=

==+−
k

j
tt

dj
r tuxLLw j

1

2)( ,...,2,1,)cos21(   (4) 

 

where k is a finite integer indicating the maximum number of cyclical structures, and 

)( j
rw )(/2 jsπ=  where s(j) indicates the number of time periods per cycle corresponding 

to the jth cyclical structure. Empirical studies based on multiple cyclical structures of 

this type (also named k -factor Gegenbauer processes) are Ferrara and Guegan (2001), 

Sadek and Khotanzad (2004) and Gil-Alana (2007). 

 

                                                 
3 Note that if │μ│< 1 and d in (2) increases beyond 0.5, the process becomes “more nonstationary” in the 
sense, for example, that the variance of the partial sums increases in magnitude. 
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 In this paper we also adopt a flexible specification that allows us to analyse 

long-memory models of the form (1) and (2) in a single framework. Specifically, we 

consider processes of the form: 

 

...,2,1,)cos21()1( 21 2 ==+−− tuxLLwL tt
d

r
d ,  (5)  

 

where ut is again I(0), d1 indicates the order of integration at the long-run or zero 

frequency, and d2 refers to the cyclical long-run dependence component. 

 

 We employ a parametric approach developed by Robinson (1994) that is very 

general in the sense that it allows to consider all the above specifications in a single 

framework. This method, based on the Whittle function in the frequency domain, is 

briefly described in the Appendix. One advantage of Robinson’s (1994) approach is that 

it is valid for any real value d (or d1 and d2 in (5)),  thus encompassing stationary (d < 

0.5) and nonstationary (d ≥ 0.5) hypotheses. Moreover, the limiting distribution is 

standard (normal, in the cases of equations (1) and (2)) and chi-square in the case of 

(5)), and this limit behaviour holds independently of the inclusion or exclusion of 

deterministic terms in the model and the modelling approach for the I(0) disturbances. 

Moreover, Gaussianity is not a requirement, a moment condition of only 2 being 

necessary. 

 

3. Empirical results 

 

The time series data we examine are the US foreign exchange rates with respect 

to the Euro and the Japanese Yen, daily, for the time period January 4rd, 1999 – October 
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2nd, 2009. These data were obtained from the Federal Reserve Bank of St. Louis 

database (DEXUSEU and DEXJPUS for the US-Euro and US-Yen rates respectively).   

 

[Insert Figure 1 about here] 

 

Plots of the two series are displayed in the upper half of Figure 1, while their 

corresponding returns, obtained as the first differences of the logged values, are shown 

in the bottom half. First, the order of integration of the log-series is estimated to 

determine if they contain unit roots. For this purpose, initially we carried out standard 

unit root tests (Dickey and Fuller, ADF, 1979; Phillips and Perron, PP, 1988; Elliot et 

al., 1996; and Ng and Perron, NP, 2001), finding evidence of unit roots (the results are 

not reported for brevity’s sake) in the two series. However, it is well known that these 

procedures may have very low power if the true data generating processes are 

fractionally integrated. Therefore, we also performed tests that, unlike the above, are not 

based on autoregressive alternatives but on fractional ones. In particular, we considered 

a regression model of the form: 

 

,...,2,1; =++= txty tt βα    (6) 

 

where xt is assumed to be fractionally integrated as in equation (1). Thus, if d = 1, the 

series displays a unit root process. 

 
[Insert Table 1 about here] 

 
 
 Table 1 reports the estimates of d in (6) and (1) for the three standard cases of no 

regressors (i.e., α = β = 0 a priori in equation (6)), an intercept (α unknown, and β = 0 a 
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priori), and an intercept with a linear time trend (α and β unknown), under the 

assumption that the error term (ut in (1)) follows a white noise process, an AR(1), and 

the exponential spectral model of Bloomfield (1973) in turn. The latter is a non-

parametric specification that produces autocorrelations decaying exponentially as in the 

AR case and allows to approximate ARMA structures with a small number of 

parameters.4 

 

 We display in Table 1 the 95% confidence intervals formed by the non-rejection 

values of d, using Robinson’s (1994) parametric approach in the frequency domain. We 

also present (in parentheses inside the square brackets) the Whittle estimates of d 

(Dahlhaus, 1989) in each case. It can be seen that the intervals almost always include 

the unit root, the only exceptions being the US dollar-Yen rate with an intercept and 

with a linear trend, where the estimated value of d is slightly below 1. In all other cases, 

the estimated d is around 1, hence supporting the unit root model and justifying the use 

of returns in the remainder of the paper. 

 

[Insert Figure 2 about here] 

 

 In what follows we focus on the variance of the return series and examine the 

squared and absolute returns, which are used as proxies for volatility. These two 

measures have been widely employed in the financial literature to measure volatility.5 

Plots of these series are displayed in Figure 2. 

                                                 
4 See Gil-Alana (2004) for the use of fractional integration with Bloomfield disturbances in the context of 
Robinson’s (1994) tests. 
5 Absolute returns were employed among others by Ding et al. (1993), Granger and Ding (1996), 
Bollerslev and Wright (2000), Gil-Alana (2005), Cavalcante and Assaf (2004), Sibbertsen (2004) and 
Cotter (2005), whereas squared returns were used in Lobato and Savin (1998), Gil-Alana (2003), 
Cavalcante and Assaf (2004) and Cotter (2005). 
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[Insert Figures 3 and 4 about here] 
 
 
 Figure 3 shows the first 1,000 sample autocorrelation values for the absolute and 

squared returns of the two series. It can be seen that the four series display some degree 

of dependence with these values decaying very slowly, which may be consistent with 

fractionally integrated processes of the form given by equation (1). Moreover, there is 

some type of cyclical structure (especially for the Euro returns) which may imply that 

models of the form given by (2) or even (5) may also be plausible for these series. The 

periodograms, displayed in Figure 4, have the highest values at the smallest frequencies, 

which is again an indication of possible I(d) behaviour with d > 0,  though this may be 

obscuring other peaks at non-zero frequencies. 

 

 We start by presenting the results based on model 1, which is the one that 

displays long memory exclusively at the long-run or zero frequency, that is, 

 
,...,2,1,)1(; ==−++= tuxLxty tt

d
tt βα   (M1) 

 
 
and, similarly to the results presented in Table 1, we consider the three cases of no 

regressors, an intercept, and an intercept with a linear trend, assuming that the 

disturbances follow a white noise, an AR(1) and a Bloomfield-type process in turn.6 The 

results are displayed in Tables 2 and 3 for the absolute and squared returns respectively. 

 

[Insert Tables 2 and 3 about here] 

 

                                                 
6 When using higher AR orders very similar results were obtained. 
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 Starting with the absolute returns (in Table 2), the estimated values of d are in all 

cases strictly positive and smaller than 0.5, i.e. inside the stationary region, though with 

some degree of long-memory behaviour. When not allowing for autocorrelation the 

estimated value of d is around 0.10 for the US dollar-Euro rate, and is slightly higher for 

the US dollar-Yen one. If autocorrelation is allowed, in the form of either an AR 

process or of the Bloomfield model, the values of d are higher and close to 0.2 in the 

two series. Very similar results are obtained in Table 3 for the squared returns, with 

values close to 0.1 with uncorrelated errors and close to 0.2 with weak autocorrelation. 

Finally, regarding the deterministic terms (not reported), the time trend coefficients 

were found to be insignificant in all cases, while the intercept was statistically 

significant at the 5% level, implying that the model including an intercept is the one that 

should be selected in all cases. 

  

 Because of the differences in the results depending on how we specify the error 

term, we also applied a semi-parametric method (Robinson, 1995) where the 

disturbances ut are simply assumed to be I(0) with no functional form required for them. 

This method is based on a “local” Whittle estimate in the frequency domain; it 

considers a band of frequencies that degenerates to zero, and the estimate of d is 

implicitly defined by: 

,log12)(logminargˆ
1

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
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where m is a bandwidth parameter.7 

 

 

[Insert Figure 5 about here] 

 

 Figure 5 displays for each series the estimates of d based on the above procedure 

using the whole range of parameters for the bandwidth (displayed on the horizontal 

axis)8, including the 95% confidence interval corresponding to the I(0) case. It is clear 

that the four series exhibit long-memory (d > 0) behaviour, consistently with the results 

based on the parametric approach outlined above and with other studies such as Granger 

and Ding (1996). 

 

[Insert Figure 6 about here] 

 

 Next we consider a cyclical long-memory model of the form given by equation 

(2). This is motivated by the periodograms of the series.9 Figure 6 displays the first 100 

values of the periodogram for the Fourier frequencies λr = 2πr/T, (r =T/s), for r = 1, …, 

100. It is noteworthy that for the US Dollar-Euro case the highest value of the 

periodogram does not occur at the smallest frequency (r = 1) but instead at r = 4, which 

should correspond to cycles with a periodicity of T/4  ≈  677 periods (days). By 

contrast, for the US Dollar-Yen case the highest value is found at the smallest frequency 

r = 1, followed by r = 19 (T/19  ≈  142 periods). Therefore, model 2 is specified as: 

                                                 
7 Further refinements of this approach can be found in Velasco (1999), Phillips and Shimotsu (2004, 
2005); etc. Applying some of these methods we obtain almost identical results to those reported here. 
8 The choice of the bandwidth is crucial since it affects the trade-off between bias and variance; 
specifically, the asymptotic variance and the bias of this estimator are decreasing and increasing with m 
respectively. 
9 Note that the periodogram is an asymptotic unbiased (though not consistent) estimate of the spectral 
density function. 
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,...,2,1,)cos21(; 2 ==+−+= tuxLLwxy tt
d

rtt α   (M2) 

 
with wr = 2π/677 in case of the US Dollar-Euro absolute and squared return series and 

wr = 2π/142 for the US Dollar-Yen values. The results using the above model are 

displayed in Tables 4 and 5. 

 

[Insert Tables 4 and 5 about here] 

 

 Two models, without regressors (α = 0 in (M2)) and with an intercept, are 

considered. We employ here another version of Robinson’s (1994) parametric tests, 

testing the null hypothesis Ho: d = do, in (M2) for a range of values of do from 0 to 1 

with 0.001 increments, and s in wr equal to 600, …, 700 for the US Dollar-Euro case, 

and s = 100, …, 200 for the US Dollar-Yen one. We select the model that produces the 

lowest statistic in Robinson (1994) for different values for s and d. It is noteworthy that 

the estimated values of s are equal to 677 and 142 respectively for the two series, which 

correspond to some of the highest peaks in the periodograms displayed in Figure 6 

(specifically, the highest peak for the US dollar-Euro rate, and the second highest for the 

US dollar- Yen rate).  

 

Starting with the absolute values of the returns (see Table 4), we find that the 

differencing parameter is strictly positive and significant, though very close to 0 in all 

cases: the estimated values of d are 0.035 (US Dollar-Euro) and 0.049 (US Dollar-Yen) 

for the cases of white noise and Bloomfield disturbances, and 0.075 (US Dollar-Euro) 

and 0.080 (US Dollar-Yen) with AR(1) errors. For the squared returns (Table 5) the 

values are again significant though slightly higher: 0.042 (US Dollar-Euro) and 0.050 
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(US Dollar-Yen) with uncorrelated and Bloomfield errors, and 0.092 (US Dollar-Euro) 

and 0.083 (US Dollar-Yen) with AR(1) disturbances. Once more, the intercepts are 

statistically significant in all cases. 

 

 Finally we examine the case of a long-memory model that simultaneously takes 

into account the long-run and the cyclical structures. Therefore, model 3 is specified as: 

 

,...,2,1,)cos21()1(; 21 2 ==+−−+= tuxLLwLxy tt
d

r
d

tt α   (M3) 

 
once more focusing on the cases of no regressors (α = 0 in (M3)) and an intercept, for 

uncorrelated and correlated (AR and Bloomfield) errors. 

 

[Insert Tables 6 and 7 about here] 

 

 The results based on (M3) are displayed in Tables 6 and 7. Interestingly, the 

selected models are once more those for the frequency r that corresponds to s = 677 for 

the US Dollar-Euro series case and to s = 142 for the US Dollar-Yen one. Concerning 

the estimates of the fractional differencing parameters, for the US Dollar-Euro d1 is not 

significantly different from zero, and the same holds for d2 in the case of the US Dollar-

Yen. Therefore, model 2 and model 1 appear to be the most adequate ones for the US 

Dollar-Euro and the US Dollar-Yen cases respectively. We also perform LR tests to 

choose between models 1 and 3 for the US Dollar-Yen, and between models 2 and 3 for 

the US Dollar-Euro; these provide further evidence that model 2 (long-run cyclical 

dependence) is more appropriate for the US Dollar-Euro (absolute and squared) returns, 

and model 1 (standard I(d)) for the US Dollar-Yen values.  
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 On the basis of this evidence as well as the t-values for the deterministic terms 

we choose the models below. For the US dollar-Euro series: 

 

,...,2,1,)cos21(;00479.0 036.02
4 ==+−+= tuxLLwxy tttt   (7) 

      

in the case of the absolute returns, and 

 

,...,2,1,)cos21(;000042.0 042.02
4 ==+−+= tuxLLwxy tttt  (8) 

 

for the squared returns.  

 

However, for the US dollar-Yen values, a model with long memory only at the 

zero frequency seems to be more adequate, namely  

 

,...,2,1,144.0;)1(;00526.0 1
185.0 =+−==−+= − tuuuxLxy ttttttt ε  (9) 

  

for the absolute returns, and 

 

,...,2,1,139.0;)1(;000051.0 1
186.0 =+−==−+= − tuuuxLxy ttttttt ε  (10)  

 

for the squared values. 
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 Clearly, both volatility series are characterised by long memory, but in case of 

the US dollar – Yen rate this affects the long run structure of the process, while in case 

of the US dollar – Euro there is an underlying cyclical structure. 

 

4. Stability tests and structural breaks 

 

In this section we examine whether the results reported in Section 3 are stable 

over the sample period or instead subject to structural change. For this purpose we 

performed once more the versions of Robinson’s (1994) tests employed in Section 3, 

using the specifications described above, starting with a sample of 1,500 observations 

and then adding recursively five observations each time till the end of the sample (with 

2,710 observations). We report in Figure 7 the estimated values of d for the absolute 

return series, for the Euro case (the upper plot) and for the Japanese Yen (in the lower 

part of the figure) respectively. In the former case, we employ a model of a similar form 

to the one given by equation (8), i.e., using cyclical fractional integration, 

 

,...,2,1,)cos21(; 2 ==+−+= tuxLLwxy tt
d

rtt μ  

 

while in the latter case (Japanese yen absolute returns) we use a model similar to 

equation (10), i.e., based on a standard I(d) model, 

 

....,2,1,;)1(; 1 =+==−+= − tuuuxLxy ttttt
d

tt ερμ   

 

 

[Insert Figure 7 about here] 
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 As can be seen, for the US dollar-Euro absolute returns the estimated value of 

the (cyclical) fractional differencing parameter remains close to 0 (and statistically 

insignificant) for each subsample until the one ending at the observation 2035, which 

corresponds to February 5, 2007. If observations after that date are included, the 

estimate is above 0.010, becoming significantly different from 0 for each subsample till 

the end of the sample period, with another increase at observation 2460 (October 6, 

2008). Focusing now on the US dollar-Yen case, the estimate of the fractional 

differencing parameter, d, is relatively stable till observation 2320 (March 20, 2008), 

with values around 0.12; there is then an increase (with values close to 0.15) till 

observation 2460 (October 6, 2008), and another one (d about 0.20) until the end of the 

sample. Similar results (not reported for reasons of space) were obtained for the squared 

returns. 

 

 Because of the instability in the estimated fractional differencing parameter (see 

Figure 7) in what follows we consider three different subsamples for each series. These 

are: for the US dollar-Euro, [January 4, 1999 – February 5, 2007]; [February 6, 2007 – 

October 6, 2008] and [October 7, 2008 – October 2, 2009], and for the US dollar-Yen 

[January 4, 1999 – March 20, 2008], [March 21, 2008 – October 6, 2008] and [October 

7, 2008 – October 2, 2009]. 

 

[Insert Table 8 about here] 

 

 Table 8 displays the estimates of the long-run and the cyclical fractional 

differencing parameters using model 1 and model 2 for each subsample and each series. 
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The upper and lower half of the table concern the absolute and squared returns 

respectively. Considering the subsamples separately it can be seen that some of the 

estimates are statistically significant, especially in the case of model 1 (with long 

memory at the long-run or zero frequency). Also, the estimated value of d for model 1 is 

higher in the second subsample and lower in the third subsample for the US dollar-Euro 

rate (for both absolute and squared returns), whilst for the US dollar-Yen rate there is a 

decrease in the second subsample and an increase in the third one (see Table 8). 

 
 
5. Forecasting performance 

 

In this section we examine the forecasting accuracy of the models presented in 

previous sections. For this purpose, we consider for each of the four series (i.e. the 

absolute and squared returns of the US dollar exchange rates against the Euro and the 

Japanese Yen) the three models that have been presented in Section 3, i.e., model 1 

(M1): fractional integration at the zero frequency; model 2 (M2): fractional cyclical 

integration; and model 3 (M3): fractional integration at both the zero and the cyclical 

frequencies. 

 

We perform an in-sample forecasting experiment to establish which of the three 

models (M1, M2 or M3) performs best for each series. First, we computed the root 

mean squared errors for the last 100 observations in the sample. Then, we computed the 

modified Diebold and Mariano (M-DM, 1995) statistic as suggested by Harvey, 

Leybourne and Newbold (1997).10 

                                                 
10 Harvey et al. (1997) and Clark and McCracken (2001) show that this modified test statistic performs 
better than the DM test statistic in finite samples, and also that the power of the test is improved when p-
values are computed with a Student t-distribution. 
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Using the M-DM test statistic, we evaluate the relative forecast performance of 

the different models by making pairwise comparisons. We use the root mean squared 

errors in the computations. The results are displayed in Tables 9, 10 and 11 respectively 

for 50, 75 and 100-period ahead predictions.  

 

[Tables 9 - 11 near here] 

  

For each prediction-horizon we indicate in the tables in bold the rejections of the 

null hypothesis that the forecast performance of model (Mi) and model (Mj) is equal in 

favour of the one-sided alternative that model (Mi)’s performance is superior at the 5% 

significance level. The results for the three time horizons are consistent with the 

conclusions based on the estimation results of Section 3: model 2 (M2), i.e., the cyclical 

fractionally integrated one, seems to be the most adequate specification for the US 

dollar- Euro absolute and squared returns, while model 1 (M1), the standard I(d) model, 

is the preferred one for the two US dollar/ Yen returns series.  

 

6. Conclusions 
 

This paper has applied long-memory methods to analyse the US dollar rate vis-

à-vis the Euro and the Japanese Yen at a daily frequency, with particular attention being 

paid to volatility modelling and forecasting given its importance for FOREX dealers. 

Specifically, we have estimated a more general fractional integration model compared 

with previous studies, allowing for dependence not only at the zero but also at other 

frequencies. The results show differences in the behaviour of the two series: a long–

memory (Gegenbauer) process capturing the underlying cyclical structure and a 
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standard I(d) model seem to be the most appropriate for the US dollar rate vis-à-vis the 

Euro and the Japanese Yen respectively. Consequently, mean reversion with 

hyperbolical decay occurs in both cases in response to exogenous shocks to the 

volatility process, but in the former cyclicality is present. The in-sample forecasting 

analysis also indicates that the cyclical fractional model outperforms other models in 

case of the Euro return series, while a standard I(d) model outperforms other long 

memory models in the case of the Yen returns. 

  

 The analysis carried out in this paper can be extended to allow for non-linear 

structures and possible structural breaks (whose presence is suggested by some of the 

evidence presented here); for detecting the latter the method suggested by Gil-Alana 

(2008) for breaks in fractionally integrated models or the Markov-Switching approach 

proposed by Tsay and Hardle (2009) could be applied. 
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Table 1: Estimates of d in the log exchange rates series 
i) White noise disturbances 

 No regressors An intercept A time trend 

Log of US-Euro [0.973  (0.996)  1.022] [0.985  (1.007)  1.032] [0.985  (1.007)  1.032] 

Log of US-Yen [0.974  (0.997)  1.023] [0.946  (0.969)  0.994] [0.946  (0.969)  0.994] 

ii) AR(1) disturbances 

 No regressors An intercept A time trend 

Log of US-Euro [0.927  (0.970)  1.017] [0.971  (1.005)  1.043] [0.971  (1.005)  1.043] 

Log of US-Yen [0.980  (0.999)  1.018] [0.940  (0.976)  1.018] [0.940  (0.976)  1.018] 

iii) Bloomfield disturbances 

 No regressors An intercept A time trend 

Log of US-Euro [0.949  (0.992)  1.032] [0.971  (1.008)  1.041] [0.971  (1.008)  1.041] 

Log of US-Yen [0.953  (0.991)  1.032] [0.943  (0.980)  1.022] [0.943  (0.980)  1.022] 
In brackets the 95% confidence interval for the values of d. In parentheses, the Whittle estimates. We 
report in bold the cases where the unit root hypothesis cannot be rejected. 
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Table 2: Estimates of d in model (M1) using the absolute returns 
i) White noise disturbances 

 No regressors An intercept A time trend 

US-Euro [0.090  (0.103)  0.118] [0.086  (0.098)  0.112] [0.086  (0.098)  0.112] 

US-Yen [0.113  (0.130)  0.148] [0.101  (0.116)  0.133] [0.100  (0.115)  0.132] 

ii) AR(1) disturbances 

 No regressors An intercept A time trend 

US-Euro [0181  (0.201)  0.224] [0.170  (0.188)  0.209] [0.170  (0.188)  0.209] 

US-Yen [0.186  (0.212)  0.241] [0.162  (0.185)  0.212] [0.160  (0.184)  0.212] 

iii) Bloomfield disturbances 

 No regressors An intercept A time trend 

Log of US-Euro [0.204  (0.230)  0.259] [0.189  (0.209)  0.236] [0.189  (0.209)  0.236] 

Log of US-Yen [0.198  (0.228)  0.259] [0.169  (0.196)  0.226] [0.168  (0.196)  0.226] 

 
 
 
 
Table 3: Estimates of d in model (M1) using the squared returns 

i) White noise disturbances 

 No regressors An intercept A time trend 

US-Euro [0.092  (0.105)  0.118] [0.093  (0.106)  0.120] [0.091  (0.104)  0.120] 

US-Yen [0.010  (0.116)  0.135] [0.097  (0.114)  0.132] [0.095  (0.112)  0.131] 

ii) AR(1) disturbances 

 No regressors An intercept A time trend 

US-Euro [0.190  (0.210)  0.236] [0.190  (0.212)  0.237] [0.188  (0.211)  0.235] 

US-Yen [0.163  (0.191)  0.224] [0.158  (0.186)  0.218] [0.156  (0.184)  0.217] 

iii) Bloomfield disturbances 

 No regressors An intercept A time trend 

US-Euro [0.201  (0.228)  0.351] [0.201  (0.228)  0.352] [0.200  (0.227)  0.356] 

US-Yen [0.163  (0.193)  0.235] [0.160  (0.189)  0.221] [0.159  (0.188)  0.221] 
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Table 4: Estimates of model (M2) using the absolute returns 

 i) White noise disturbances 

Series No regressors With an intercept 

 j d j d μ  

US-Euro 677 [0.029  (0.035)  0.043] 677 [0.029  (0.036)  0.043] 0.00479   (41.358) 

US-Yen 142 [0.040  (0.049)  0.059] 142 [0.040  (0.049)  0.059] 0.00504   (42.230) 

 ii) AR(1) disturbances 

Series No regressors With an intercept 

 j d j d μ  

US-Euro 677 [0.064  (0.075)  0.087] 677 [0.065  (0.076)  0.088] 0.00478   (28.773) 

US-Yen 142 [0.064  (0.080)  0.097] 142 [0.067  (0.082)  0.099] 0.00503   (34.515) 

 iii) Bloomfield disturbances 

Series No regressors With an intercept 

 j d j d μ 

US-Euro 677 [0.032  (0.035)  0.040] 677 [0.032  (0.036)  0.040] 0.00479   (41.358) 

US-Yen 142 [0.043  (0.049)  0.054] 142 [0.044  (0.049)  0.055] 0.00503   (42.230) 

 
 
 
Table 5: Estimates of model (M2) using the squared returns 

 i) White noise disturbances 

Series No regressors With an intercept 

 j d j d μ 

US-Euro 677 [0.035  (0.042)  0.049] 677 [0.036  (0.042)  0.049] 0.000042  (16.661) 

US-Yen 142 [0.040  (0.050)  0.060] 142 [0.040  (0.050)  0.060] 0.000047  (15.897) 

 ii) AR(1) disturbances 

Series No regressors With an intercept 

 j d j d μ 

US-Euro 677 [0.080  (0.092)  0.104] 677 [0.080  (0.092)  0.105] 0.000041  (10.528) 

US-Yen 142 [0.066  (0.083)  0.103] 142 [0.066  (0.084)  0.103] 0.000047  (12.908) 

 iii) Bloomfield disturbances 

Series No regressors With an intercept 

 j d J d μ 

US-Euro 677 [0.038  (0.042)  0.046] 677 [0.038  (0.042)  0.046] 0.000042  (16.661) 

US-Yen 142 [0.044  (0.050)  0.056] 142 [0.044  (0.050)  0.056] 0.000047  (15.897) 
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Table 6: : Estimates of model (M3) using the absolute returns 
 i) White noise disturbances 

Series No regressors With an intercept 
 d1 (long run) d2 (cyclical) d1 (long run) d2 (cyclical) 

US-Euro (j = 677) 0.011 
[-0.066,  0.098] 

0.087 
[0.048,   0.101] 

0.007 
[-0.059,  0.093] 

0.078 
[0.051,  0.093] 

US-Yen (j = 142) 0.136 
[0.108,   0.153] 

0.009 
[-0.017,   0.039] 

0.131 
[0.101,   0.148] 

0.012 
[-0.013,   0.027] 

 ii) AR(1) disturbances 
Series No regressors With an intercept 

 d1 (long run) d2 (cyclical) d1 (long run) d2 (cyclical) 
US-Euro (j = 677) 0.004 

[-0.032,  0.066] 
0.093 

[0.050,   0.107] 
0.006 

[-0.036,  0.077] 
0.088 

[0.045,  0.099] 
US-Yen (j = 142) 0.127 

[0.101,   0.151] 
0.004 

[-0.032,   0.051] 
0.127 

[0.103,   0.155] 
0.003 

[-0.033,   0.057] 
 iii) Bloomfield disturbances 

Series No regressors With an intercept 
 d1 (long run) d2 (cyclical) d1 (long run) d2 (cyclical) 

US-Euro (j = 677) 0.014 
[-0.061,  0.111] 

0.092 
[0.032,   0.104] 

0.006 
[-0.064,  0.097] 

0.081 
[0.049,  0.096] 

US-Yen (j = 142) 0.142 
[0.109,   0.166] 

0.007 
[-0.022,   0.051] 

0.139 
[0.097,   0.159] 

0.014 
[-0.016,   0.030] 

 
 
 

Table 7: : Estimates of model (M3) using the squared returns 
 i) White noise disturbances 

Series No regressors With an intercept 
 d1 (long run) d2 (cyclical) d1 (long run) d2 (cyclical) 

US-Euro (j = 677) 0.007 
[-0.036,   0.088] 

0.071 
[0.033,   0.094] 

0.008 
[-0.045,   0.043] 

0.073 
[0.035,   0.098] 

US-Yen (j = 142) 0.117 
[0.098,   0.136] 

0.004 
[-0.011,   0.024] 

0.116 
[0.095,   0.138] 

0.003 
[-0.017,   0.027] 

 ii) AR(1) disturbances 
Series No regressors With an intercept 

 d1 (long run) d2 (cyclical) d1 (long run) d2 (cyclical) 
US-Euro (j = 677) 0.010 

[-0.054,  0.103] 
0.091 

[0.038,   0.116] 
0.009 

[-0.055,  0.089] 
0.086 

[0.046,  0.111] 
US-Yen (j = 142) 0.129 

[0.114,   0.161] 
0.005 

[-0.028,   0.044] 
0.129 

[0.113,   0.155] 
0.004 

[-0.041,   0.036] 
 iii) Bloomfield disturbances 

Series No regressors With an intercept 
 d1 (long run) d2 (cyclical) d1 (long run) d2 (cyclical) 

US-Euro (j = 677) 0.011 
[-0.049,   0.091] 

0.074 
[0.031,   0.110] 

0.008 
[-0.045,   0.043] 

0.075 
[0.033,   0.096] 

US-Yen (j = 142) 0.121 
[0.100,   0.144] 

0.006 
[-0.015,   0.025] 

0.120 
[0.099,   0.142] 

0.005 
[-0.014,   0.025] 



 29

 
Table 8: : Estimates of models(M1) and (M2) for each subsample 

 i) Absolute returns 
Series US – Euro  US – Yen 

 Model 1 Model 2 Model 1 Model 2 

1st sub-sample d = 0.109 
(0.084,  0.137) 

d= -0.001 (j=1017) 
(-0.007,  0.009) 

d = 0.155 
(0.127,  0.186) 

d= 0.034 (j=1160) 
(0.027,  0.042) 

2nd sub-sample d = 0.189 
(0.135,  0.258) 

d= -0.057 (j = 17) 
(-0.088,  -0.024) 

d = 0.097 
(-0.087,  0.341) 

d= -0.017 (j = 4) 
(-0.097,  0.078) 

3rd sub-sample d = -0.174 
(-.281, -.035) 

d =  -0.064 (j = 7) 
(-0.103,  0.011) 

d = 0.129 
(0.035,  0.247) 

d= 0.043 (j=19) 
(0.004,  0.086) 

 ii) Squared returns 
Series US – Euro  US – Yen 

 Model 1 Model 2 Model 1 Model 2 
1st sub-sample d = 0.090 

(0.065,  0.119) 
d= -0.001 (j=1017) 

(-0.013,  0.009) 
d = 0.159 

(0.127,  0.194) 
d= 0.042 (j=1160) 

(0.034,  0.053) 
2nd sub-sample d = 0.239 

(0.179,  0.311) 
d= -0.045 (j = 17) 
(-0.073,  -0.014) 

d = -0.116 
(-0.284,  0.351) 

d= -0.001 (j = 4) 
(-0.094,  0.108) 

3rd sub-sample d = 0.198 
(0.112, 0.325) 

d =  -0.040 (j = 7) 
(-0.083,  0.007) 

d = 0.106 
(-0.022, 0.269) 

d= 0.022 (j=124) 
(-0.004,  0.053) 
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 Table 9. Pairwise comparison using the modified DM statistic (RMSE, h = 50)  
Absolute returns 

$/Euro (M1) (M2) (M3)  $ / Yen (M1) (M2) (M3) 

(M1) XXXX XXXX XXXX  (M1) XXXX XXXX XXXX 

(M2) 2.45 (M2) XXXX XXXX  (M2) -2.9 (M1) XXXX XXXX 

(M3) 1.156 -2.0 (M2) XXXX  (M3) -2.3 (M1) 0.133 XXXX 

Series 3  Series 4 

$/Euro (M1) (M2) (M3)  $ / Yen (M1) (M2) (M3) 

(M1) XXXX XXXX XXXX  (M1) XXXX XXXX XXXX 

(M2) 2.71 (M2) XXXX XXXX  (M2) -2.8 (M1) XXXX XXXX 

(M3) 1.177 -2.2 (M2) XXXX  (M3) -2.1 (M1) 0.987 XXXX 
 
 

Table 10. Pairwise comparison using the modified DM statistic (RMSE, h = 75)  
Absolute returns 

$/Euro (M1) (M2) (M3)  $ / Yen (M1) (M2) (M3) 

(M1) XXXX XXXX XXXX  (M1) XXXX XXXX XXXX 

(M2) 3.55 (M2) XXXX XXXX  (M2) -3.1 (M1) XXXX XXXX 

(M3) 1.77 -2.4 (M2) XXXX  (M3) -2.7 (M1) 1.437 XXXX 

Series 3  Series 4 

$/Euro (M1) (M2) (M3)  $ / Yen (M1) (M2) (M3) 

(M1) XXXX XXXX XXXX  (M1) XXXX XXXX XXXX 

(M2) 3.69 (M2) XXXX XXXX  (M2) -3.1 (M1) XXXX XXXX 

(M3) 1.68 -2.8 (M2) XXXX  (M3) -2.9 (M1) 1.606 XXXX 
 
 
Table 11. Pairwise comparison using the modified DM statistic (h = 100)  

Absolute returns 

$/Euro (M1) (M2) (M3)  $ / Yen (M1) (M2) (M3) 

(M1) XXXX XXXX XXXX  (M1) XXXX XXXX XXXX 

(M2) 3.87 (M2) XXXX XXXX  (M2) -3.5 (M1) XXXX XXXX 

(M3) 2.08 (M3) -3.4 (M2) XXXX  (M3) -3.2 (M1) 1.454 XXXX 

Series 3  Series 4 

$/Euro (M1) (M2) (M3)  $ / Yen (M1) (M2) (M3) 

(M1) XXXX XXXX XXXX  (M1) XXXX XXXX XXXX 

(M2) 3.94 (M2) XXXX XXXX  (M2) -3.4 (M1) XXXX XXXX 

(M3) 2.11 (M3) -3.6 (M2) XXXX  (M3) -3.0 (M1) 1.239 XXXX 
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Figure 1: Foreign exchange rate time series and their corresponding returns 
US – Euro US – Yen 
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Figure 2: Absolute and squared returns series 
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Figure 3: Correlogram of the absolute and squared returns series 
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Figure 4: Periodograms of the absolute and squared returns series 

Absolute returns (US – Euro) Absolute returns (US – Yen) 

0

0,00002

0,00004

0,00006

0,00008

0,0001

0,00012

1 T/2
0

0,00002

0,00004

0,00006

0,00008

0,0001

0,00012

0,00014

1 T/2

Squared returns (US – Euro returns) Squared returns (US – Yen returns) 

0

0,00000001

0,00000002

0,00000003

0,00000004

0,00000005

1 T/2
0

0,00000001

0,00000002

0,00000003

0,00000004

0,00000005

0,00000006

0,00000007

1 T/2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 35

 
Figure 5: Estimates of d based on the Whittle semiparametric method (Robinson, 
1995) 
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Figure 6: First 100 values in the periodograms of the absolute and squared returns  
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Figure 7: Recursive estimates of the fractional differencing parameter 
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