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Abstract 

This paper analyses the implicit dynamics underlying the interest rate structure in 

Kenya. For this purpose we use data on four commercial banks’ interest rates (Deposits, 

Savings, Lending and Overdraft) together with the 91-Day Treasury Bill rate, for the 

time period July 1991 – August 2010, and apply various techniques based on long-range 

dependence and, in particular, on fractional integration. The results indicate that all 

series examined are nonstationary with orders of integration equal to or higher than 1. 

The analysis of various spreads suggests that they also are nonstationary I(1) variables, 

the only evidence of mean reversion being obtained in the case of the Deposits – 

Treasury Bill rate spread with autocorrelated errors. 
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1. Introduction 

This paper examines the interest rate structure in Kenya. Analysing its stochastic 

properties can provide useful information about the effects of shocks and appropriate 

policy responses. Specifically, if the series of interest is stationary I(0) shocks affecting 

it will have transitory effects, disappearing in the long run. On the contrary, if the series 

is nonstationary I(1) the effects of shocks will be permanent and policy intervention will 

become necessary for mean reversion to occur. Therefore, to determine the order of 

integration of the series is crucial. However, in the case of interest rates the literature is 

very inconclusive with respect to this matter, finding empirical evidence supporting 

both stationarity I(0) and nonstationarity I(1). 

Interest rates play a key role in two very important relationships in 

macroeconomics, i.e., the Fisher hypothesis (FH) and uncovered interest rate parity 

(UIP). The former links nominal rates to expected inflation, requiring full adjustment of 

these two variables in the long run and implying stationary I(0) of ex-ante interest rates 

(a crucial variable for understanding investment and saving decisions as well as asset 

price determination). In the absence of a one-to-one adjustment, permanent shocks to 

either inflation or nominal rates would have permanent effects on real rates as well, 

which would be inconsistent with standard models of intertemporal asset pricing. If 

interest rates and inflation are found to be nonstationary I(1) processes, a long-run 

version of the FH can be tested within a cointegration framework (Mishkin, 1992). As 

for UIP, I(0) stationarity of nominal short-run interest rates is required for its empirical 

validity. Since nominal bilateral exchange rates are difference-stationary, for the UIP 

relation to hold nominal short-run interest rates must be mean-reverting. Previous 

empirical studies conclude that short-run interest rates are in fact mean-reverting in 

Europe and in the US (e.g. Rose, 1988; Stock and Watson, 1988; Wu and Chen, 2001), 
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providing support for the UIP relationship but not for the long-run FH. The implication 

for monetary policy is that central banks are constrained in their ability to set interest 

rates by international capital flows. In the case of the African countries such issues are 

even more important since their financial markets are characterised by a high level of 

information asymmetry and their central banks are not perceived by markets as having 

credibility.  

The present study analyses the implicit dynamics underlying the interest rate 

structure in Kenya. For this purpose we use data on four commercial banks’ interest 

rates (Deposits, Savings, Lending and Overdraft) together with the 91-Day Treasury 

Bill rate, for the time period July 1991 – August 2010. However, instead of carrying out 

standard tests based on the dichotomy between stationarity I(0) or nonstationarity I(1), 

we use techniques based on long-range dependence and, in particular, on fractional 

integration that allow for non-integer degrees of differentiation. 

The outline of the paper is as follows. Section 2 briefly reviews the literature on 

interest rate models with I(d) variables, including some studies on African countries. 

Section 3 outlines the econometric approach employed for the analysis. Section 4 

describes the data and presents the univariate results, whilst Section 5 focuses on the 

spreads. Section 6 offers some concluding remarks. 

 

2. Literature review 

 A variety of interest rate models have been suggested in the literature. The crucial issue 

is to determine the order of integration of the series, namely whether interest rates are 

stationary I(0) (and thus mean-reverting) or nonstationary I(1). Some studies have 

investigated the mean reversion property of interest rates in the context of fixed income 
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modelling – see, for example, the papers by Chapman and Pearson (2000), Jones 

(2003), Bali and Wu (2006), and Koutmos and Philappatos (2007) among others.  

In the last two decades more attention has been paid to the possibility of long 

memory in interest rates. For instance, Shea (1991) investigated this issue in the context 

of the expectations hypothesis of the term structure. He found that allowing for the 

possibility of long memory significantly improves the performance of the model, even 

though the expectations hypothesis cannot be fully resurrected. In related work, Backus 

and Zin (1993) observed that the volatility of bond yields does not decline exponentially 

when the maturity of the bond increases; in fact, they noticed that the decline was 

hyperbolic, consistently with the fractionally integrated specification. Lai (1997) and 

Phillips (1998) provided evidence based on semiparametric methods that ex-ante and 

ex-post US real interest rates are fractionally integrated. Tsay (2000) employed an 

ARFIMA model and concluded that the US real interest rate can be described as an I(d) 

process. Further evidence can be found in Barkoulas and Baum (1997), Meade and 

Maier (2003) and Gil-Alana (2004a, b). Couchman, Gounder and Su (2006) estimated 

ARFIMA models for ex-post and ex-ante interest rates in sixteen countries. Their results 

suggest that, for the majority of countries, the fractional differencing parameter lies 

between 0 and 1, and is considerably smaller for the ex-post than for the ex-ante rates. 

 Only a few studies on African countries exist. Nandwa (2006) examined whether 

nominal interest rates in a sample of Sub-Saharan countries follow stochastic trends (or 

unit root processes) and whether the Fisher hypothesis holds in the area. More recently, 

Aboagye et al. (2008) investigated the question of the optimal spread between bank 

lending rates and rates that banks pay on deposits in Ghana. They found that increases 

in bank market power, bank size, staff costs among other factors significantly increase 

net interest margins, while increases in bank excess cash reserves and central bank 
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lending rate decrease them. More evidence is available in the case of Kenya. Elliott, 

Kwack and Tavlas (1986) estimated an econometric model for this country including 

interest rates. Musila (2002) applied cointegration methods to develop a macro model 

for forecasting purposes. Ndung’u (2000) examined the relationship between exchange 

rates and interest rate differentials in Kenya using a time-varying parameters approach. 

Finally, in a more recent paper, Odhiambo (2009) investigated the impact of interest 

rate reforms on financial deepening and economic growth in Kenya. He found a positive 

relationship in both cases using standard (I(0)/I(1)) cointegration techniques.  

 

3. Econometric Methodology 

As already mentioned we employ methods based on long-range dependence. In 

particular we focus our attention on fractionally integrated or I(d) models. A time series 

{xt, t = 1, 2, …} is said to be fractionally integrated of order d, and denoted by xt ~ I(d) 

if it can be represented as 

...,,2,1,)1( ==− tuxL tt
d     (1) 

where L  is the lag-operator ( 1−= tt xLx ): d can be any real value, and ut is an I(0) 

process, being defined as a covariance stationary process with a spectral density 

function that is positive and finite at any frequency. This includes a wide range of 

model specifications such as the white noise, the stationary autoregression (AR), 

moving average (MA), stationary ARMA etc. 

 The polynomial appearing on the left hand side in equation (1) can be defined in 

terms of its Binomial expansion 

,
)()1(
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where Γ(x) is the Gamma function. It is also well known that the autocovariance 

function of this process (γu) satisfies: 

,12
1

−≈ d
u ucγ  as j→ ∞,    for │c1│ < ∞,   (2) 

and, assuming that xt has an absolute continuous spectral distribution function, so that it 

has a spectral density function f(λ), defined as 

,)(cos2
2
1)(
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it can also be proved that 

          ,)( 2
2

dcf −≈ λλ     as  λ → 0+,    for 0  <  c2  < ∞,  (3) 

where the symbol “ ≈ “ indicates that the ratio of the left-hand side and the right-hand 

side tends to 1, as j → ∞ in (2) and as λ → 0+ in (3)1 (see Granger and Joyeux, 1980; 

Hosking (1981), Brockwell and Davis, 1993; Baillie, 1996; etc.).  

When d = 0 in (1), xt = ut, and therefore xt is I(0), and possibly “weakly 

autocorrelated” (also known as “weakly dependent”), with the autocorrelations 

decaying exponentially if the underlying disturbances are autoregressive. If 0 < d < 0.5, 

xt is still stationary, but its lag-u autocovariance γu decreases very slowly, in fact 

hyperbolically, according to equation (2), and therefore the γu are absolutely non-

summable. In that case xt is said to exhibit long memory given that its spectral density 

f(λ) is unbounded at the origin (see equation (3)). Finally, it is important to note that as 

d in (1) increases beyond 0.5 and towards 1 (the unit root case), xt can be viewed as 

becoming “more nonstationary” in the sense, for example, that the variance of the 

                                                 
1 Conditions (2) and (3) are not always equivalent but Zygmund (1995) and, in a more general case, Yong 
(1974) both give conditions under which both expressions are equivalent. 



 6

partial sums increases in magnitude. This is also true for d > 1, so a large class of 

nonstationary processes may be described by (1) with d ≥  0.5.2 

 The method employed in this paper to estimate the fractional differencing 

parameter d is based on the Whittle function in the frequency domain (Dahlhaus, 1989) 

along with a testing Lagrange Multiplier (LM) procedure developed by Robinson 

(1994) that allows to test the null hypothesis Ho: d = do in equation (1) for any real value 

do, where xt can be the errors in a regression model of the form: 

,...,2,1, =+= txzy tt
T

t β    (4) 

where yt is the observed time series, β is a (kx1) vector of unknown coefficients and zt is 

a set of deterministic terms that might include an intercept (i.e., zt = 1), an intercept with 

a linear time trend (zt = (1, t)T), or any other type of deterministic processes. Although 

there exists more recent procedures to estimate parametrically d either in the time or in 

the frequency domain (Lobato and Velasco, 2007; Demetrescu, Kuzin and Hassler, 

2008), they generally require an efficient estimate of d, and therefore the LM test of 

Robinson (1994) seems computationally more attractive. A semiparametric approach 

devised by Robinson (1995) will also be applied here; although other versions of this 

method have been suggested (Velasco, 1999; Velasco and Robinson, 2000; Phillips and 

Shimotsu, 2004; Shimotsu and Phillips, 2005; Abadir et al., 2007), they require 

additional user-chosen parameters, with the estimates of d possibly being very sensitive 

to the choice of these parameters. In this respect, the method of Robinson (1995), which 

is computationally simpler, seems preferable.3 

 

 
                                                 
2 See Diebold and Rudebusch (1989), Sowell (1992a) and Gil-Alana and Robinson (1997) for 
applications involving I(d) processes in macroeconomic time series. 
3 In additionally to the methods discussed in the text, we also employed other conventional parametric 
approaches such as Sowell’s (1992b) and Beran’s (1995) maximum likelihood methods and the results 
were completely in line with those reported in the paper. 
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4. Data and empirical results 

The series used are from the Central Bank of Kenya database and can be downloaded 

from: http://www2.centralbank.go.ke/downloads/index.htm. Their frequency is 

monthly, and the sample goes from July 1991 to March 2009. The series are the 

commercial banks’ weighted average interest rates for Deposit, Savings, Lending and 

Overdraft, and the 91-day Treasury bill rate. 

 

[Insert Figure 1 about here] 

 

 

We start by considering a model of the form given by equations (1) and (4) with 

zt = (1,t )T, i.e., 

,...,2,1,)1(; ==−++= tuxLxty tt
d

tt βα       (5) 

assuming first that the error term ut is white noise and then that it is autocorrelated. In 

the latter case, we assume that ut follows the exponential spectral model of Bloomfield 

(1973). This is a non-parametric approach that produces autocorrelations decaying 

exponentially as in the AR(MA) case. Its main advantage is that it mimics the behaviour 

of ARMA structures with a small number of parameters. Moreover, it is stationary 

independently of the values of its coefficients unlike in the AR case.4 

For each series, we consider the three standard cases examined in the literature, 

i.e., no regressors (i.e., α = β = 0 a priori in (5)), an intercept (α unknown and β = 0 a 

priori), and an intercept with a linear time trend (i.e., α and β unknown). Table 1 reports 

the (Whittle) estimates of d under the assumption of white noise errors. Table 2 refers to 

the exponential model of Bloomfield (1973). In both cases we display along with the 

                                                 
4 See Gil-Alana (2004c) for the advantages of the model of Bloomfield (1973) in the context of 
Robinson’s (1994) tests. 
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estimates the 95% confidence interval of the non-rejection values of d using Robinson’s 

(1994) parametric approach. 

 

[Insert Tables 1 and 2 about here] 

 

Starting with the results based on white noise disturbances, it can be seen that 

the estimates of d are above 1 in all cases, and the unit root null hypothesis is practically 

always rejected; the only exceptions are “Savings” and “Overdraft” when deterministic 

terms are not included in the model. Concerning the specification with an intercept 

(which is the most data congruent in view of the t-values of the time trend coefficients, 

not reported), the estimated values of d range between 1.147 (for “Savings”) and 1.881 

(for the “91-day Treasury Bill rate”). As for the case of autocorrelated (Bloomfield) 

errors (in Table 2), the results are fairly similar to those displayed in Table 1 with the 

exception of the “Treasury Bill rate”. For this series, the estimated value of d is found 

to be below 1, although the unit root null cannot be rejected. For the remaining four 

series, d is strictly above 1 in practically all cases. 

To corroborate the above results, we also implement a semiparametric approach 

to estimate d that is due to Robinson (1995). This  is a “local estimator” in the 

frequency domain, based on a band of frequencies that degenerates to zero. It is 

implicitly defined by: 

     ,log12)(logminargˆ
1 ⎟

⎟
⎠

⎞
⎜
⎜
⎝
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where m is the bandwidth parameter, and I(λj) is the periodogram of the time series, xt, 

given by: 

.ex
T2

1)(I
2T

1t

ti
tj

j∑
=

λ

π
=λ  

Under finiteness of the fourth moment and other mild conditions, Robinson (1995) 

proved that: 

,Tas)4/1,0(N)dd̂(m do ∞→→−  

where do is the true value of d and with the only additional requirement that m → ∞ 

slower than T. 

 

[Insert Figure 2 about here] 

 

 The results based on the above approach are displayed in Figure 2. Given the 

nonstationary nature of the series examined, the values are estimated using first- 

differenced data, then adding 1 to obtain the proper orders of integration of the series. It 

can be seen that the values are similar for the four series. Along with the estimates we 

also present the 95% confidence band corresponding to the I(1) hypothesis. We display 

the estimates for the whole range of values of the bandwidth parameter m (= 1, 2, 

...T/2). Most of them are above the I(1) interval,  and there is evidence of I(1) behaviour 

only for small values of m.5 

 

[Insert Table 3 about here] 

 

                                                 
5 When choosing the bandwidth there is a trade-off between bias and variance: the asymptotic variance is 
decreasing whilst the bias is increasing with m. 
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 Table 3 displays the estimate of d for specific bandwidth parameters, in 

particular for m = 5, 10, 15 ( = T0.5), 25, 50 and 100. The unit root null is rejected in the 

majority of cases in favour of higher orders of integration and there is no single case 

with evidence of mean reversion. Thus, the results presented so far strongly support the 

view that the interest rates and T-bill series examined are not mean-reverting, with 

orders of integration equal to or higher than 1. Therefore, in the event of exogenous 

shocks policy intervention will be necessary to bring interest rates back to their original 

levels since the series will not return by themselves to their mean values. 

 

5. Analysing the spreads 

In this section we focus on the spreads, and in particular we examine the following 

differences: Lending – 91 Day Treasury Bill rate; Lending – Saving rate; Deposit – 91 

Day Treasury Bill rate, Saving – 91 Day Treasury Bill rate, and Deposits - Lending (see 

Figure 3). As Treasury bills are generally considered risk-free, T-bill spreads can be 

seen as an indication of the perceived risk of default, whilst the spread between deposit 

and lending rates provides some information about banks’ profit margins. On the other 

hand, the spread Lending – Saving may be considered as an approximate measure for 

the bank’s interest margins. Finally, Deposits – Lending rate spreads are clearly related 

to the banking sector’s ability to channel savings into productive uses. 

  

[Insert Figure 3 and Tables 4 and 5 about here] 

 

Tables 4 and 5 report the estimates for the two cases of white noise and 

autocorrelated (with Bloomfield) errors respectively. Starting with the case of 

uncorrelated errors (Table 4), it can be seen that the estimates of d are extremely large 
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(around 1.8) for three of the spreads (Lending - Treasury Bill; Deposit - Treasury Bill; 

and Saving - Treasury Bill), and around 1 (with the unit root not being rejected) for the 

Lending – Saving, and Deposits – Lending spreads. However, in the more realistic case 

of autocorrelated errors, the values are much smaller; the unit root cannot be rejected for 

Lending – Treasury Bill, Lending – Saving, Saving – Treasury Bill and Deposits - 

Lending, and evidence of mean reversion (i.e., orders of integration strictly smaller than 

1) is only found in the case of the Deposits – Treasury Bill rate spread.  

The results for the spreads based on the semiparametric estimation method of 

Robinson (1995) are displayed in Figure 4. It can be clearly seen that mean reversion 

does not occur, the estimated values of d being strictly above 1 for most series, 

especially if the bandwidth parameter is large. Table 6 shows the estimates for specific 

bandwidth parameters confirming that there is no evidence of mean reversion in any 

single case. Overall, the structure of interest rates in Kenya is found to display a high 

degree of persistence, implying the need for policy actions to make markets more 

flexible and competitive. 

 

[Insert Figure 4 and Table 6 about here] 

 

6. Conclusions 

This paper has investigated the interest rate structure in Kenya using procedures based 

on long-range dependence. In particular, it has examined the orders of integrations of 

four commercial banks’ interest rates (Deposits, Savings, Lending and Overdraft) along 

with the 91-Day Treasury Bill rate for the period July, 1991 – August, 2010. The results 

strongly reject the hypothesis of mean reversion in the individual series, their orders of 

integration being estimated to be equal to or higher than 1 in all cases. The evidence for 
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the spreads is similar, mean reversion being found only in the case of the Deposits – 

Treasury Bill rate spread under the assumption of autocorrelated errors. The implication 

of these results is that policies will need to be implemented to achieve mean reversion 

of interest rates.  
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Figure 1: Time series plots of the commercial bank’s weighted average interest 
rates and the 91-day Treasury Bill rate 
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Figure 2: Estimates of d based on the semiparametric method of Robinson (1995) 
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The horizontal axis refers to the bandwidth parameter, while the vertical one reports the estimated  value of 
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Figure 3: Time series plots of the spreads 
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Figure 4: Estimates of d for the spreads based on Robinson (1995) 
Lending  -  91-day Treasury Bill rate Lending  -  Savings 
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Table 1: Estimates of d based on Robinson (1994) using white noise disturbances 
 No regressors An intercept A linear time trend 

Deposits 1.082 
(1.007,   1.180) 

1.311 
(1.224,   1.416) 

1.311 
(1.224,   1.416) 

Savings 1.039 
(0.967,   1.135) 

1.147 
(1.069,   1.245) 

1.147 
(1.069,   1.245) 

Lending  1.090 
(1.019,   1.184) 

1.292 
(1.207,   1.399) 

1.291 
(1.206,   1.398) 

Overdraft  1.049 
(0.988,   1.128) 

1.158 
(1.084, 1.252) 

1.158 
(1.084,   1.251) 

91-day Treasury 
Bill 

1.651 
(1.482,   1.851) 

1.881 
(1.679,   2.121) 

1.881 
(1.679,   2.121) 

The reported values are Whittle estimates of d in the frequency domain. Those in parentheses are the 95% 
confidence intervals of non-rejection values of d using Robinson’s (1994) tests. 
 
 
 
 
Table 2: Estimates of d based on Robinson (1994) using Bloomfield disturbances 
 No regressors An intercept A linear time trend 

Deposits 1.110 
(0.967,   1.308) 

1.429 
(1.179,   1.750) 

1.429 
(1.179,   1.751) 

Savings 1.039 
(0.923,   1.231) 

1.228 
(1.038,   1.501) 

1.228 
(1.038,   1.501) 

Lending  1.138 
(1.004,   1.337) 

1.308 
(1.112,   1.588) 

1.322 
(1.112,   1.587) 

Overdraft  1.260 
(1.102,   1.530) 

1.308 
(1.114,   1.570) 

1.308 
(1.114,   1.568) 

90-day Treasury 
Bill 

0.909 
(0.710,   1.242) 

0.759 
(0.563,   1.101) 

0.751 
(0.525,   1.101) 

The reported values are Whittle estimates of d in the frequency domain. Those in parentheses are the 95% 
confidence intervals of non-rejection values of d using Robinson’s (1994) tests. 
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Table 3: Estimates of d based on Robinson (1995) for various bandwidth 
parameter values 
 5 10 15 = T0.5 25 50 100 

Deposits 1.152* 1.402 1.434 1.314 1.160* 1.183 

Savings 1.338* 1.500 1.435 1.358 1.119 1.143 

Lending  1.424 1.500 1.295 1.253 1.140* 1.123 

Overdraft  1.500 1.373 1.219 1.262 1.261 1.203 

91-day Treasury 
Bill 

1.108* 1.243 1.403 1.325 1.241 1.500 

95% Confidence 
Interval 

(0.739, 
1.367) 

(0.739,  
1.260) 

(0.787,  
1.212) 

(0.835,   
1.164) 

(0.883,  
1.116) 

(0.917,   
1.082) 

“ * “ indicates that the null hypothesis of a unit root cannot be rejected at the 5% level.
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Table 4: Estimates of d based on Robinson (1994) using white noise disturbances 
 No regressors An intercept A linear time trend 

Lending – 91 T Bill 1.815 
(1.628,   2.032) 

1.815 
(1.629,   2.032) 

1.815 
(1.629,   2.032) 

Lending – Saving 1.006 
(0.943,   1.089) 

1.006 
(0.941,   1.093) 

1.006 
(0.943,   1.091) 

Deposit – 91 T Bill 1.815 
(1.605,   2.066) 

1.833 
(1.619,   2.088) 

1.833 
(1.619,   2.088) 

Saving – 91 T  Bill 1.832 
(1.636,   2.063) 

1.855 
(1.656,   2.092) 

1.856 
(1.656,   2.092) 

Deposits - Lending 0.937 
(0.875,   1.020) 

0.917 
(0.853,   1.002) 

0.920 
(0.859,   1.002) 

The reported values are Whittle estimates of d in the frequency domain. Those in parentheses refer to the 
95% confidence intervals of the non-rejection values of d using Robinson’s (1994) tests. 
 
 
 
 
Table 5: Estimates of d based on Robinson (1994) using Bloomfield disturbances 
 No regressors An intercept A linear time trend 

Lending – 91 T Bill 0.793 
(0.519,   1.175) 

0.794 
(0.525,   1.176) 

0.786 
(0.523,   1.176) 

Lending – Saving 1.113 
(0.993,   1.324) 

1.108 
(0.978,   1.308) 

1.098 
(0.979,   1.297) 

Deposit – 91 T Bill 0.793 
(0.519,   1.175) 

0.599 
(0.371,   0.930) 

0.579 
(0.327,   0.931) 

Saving – 91 T  Bill 0.728 
(0.511,   1.086) 

0.711 
(0.456,   1.039) 

0.711 
(0.452,   1.039) 

Deposits - Lending 1.027 
(0.911,   1.182) 

0.994 
(0.872,   1.157) 

0.994 
(0.884,   1.146) 

The reported values are Whittle estimates of d in the frequency domain. Those in parentheses refer to the 
95% confidence intervals of the non-rejection values of d using Robinson’s (1994) tests. 
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Table 6: Estimates of d in the spreads based on Robinson (1995) for various 
bandwidth parameter values  
 5 10 15 = T0.5 25 50 100 

Lending – 91 T Bill 1.129* 1.277 1.500 1.419 1.290 1.500 

Lending – Saving 1.500 1.296 1.184* 1.202 1.092* 1.047* 

Deposit – 91 T Bill 1.110* 1.246* 1.408 1.380 1.278 1.500 

Saving – 91 T  Bill 1.109* 1.248* 1.432 1.355 1.245 1.500 

Deposits - Lending 1.500 1.127* 0.975* 1.070* 0.947* 0.945* 

95% Confidence 
Interval 

(0.739, 
1.367) 

(0.739,  
1.260) 

(0.787,  
1.212) 

(0.835,   
1.164) 

(0.883,  
1.116) 

(0.917,   
1.082) 

“ * “ indicates that the null hypothesis of a unit root cannot be rejected at the 5% level. 
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