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Abstract 

This paper examines the time trends in infant mortality rates in a number of countries in 

the 20th century. Rather than imposing that the error term is a stationary I(0) process, 

we allow for the possibility of fractional integration and hence for a much greater 

degree of flexibility in the dynamic specification of the series. Indeed, once the linear 

trend is removed, all series appear to be I(d) with d > 0 rather than I(0), implying long-

range dependence. As expected, the time trend coefficients are significantly negative, 

although of a different magnitude from to those obtained assuming I(0) disturbances. 
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1. Introduction 

The issue of modelling trends in infant mortality rates (IMR) is still a controversial one. 

Obviously the IMR cannot keep declining linearly forever, since at some point it would 

reach the value 0 and it can never be negative. For this reason the logarithm 

transformation has been widely used implying an exponential decay (as in the seminal 

paper by Preston, 1975). The implication is a much faster decline than would be implied 

by a linear process. Whether or not IMRs have declined exponentially, and the 

statistical adequacy of a log transformation, have been examined in a recent study by 

Bishai and Opuni (2009). Using maximum likelihood methods, they show that only in 

the case of the US is the decline exponential, whilst in the other 17 countries included in 

their sample the best fit is obtained when IMR is linear in time. Moreover, imposing a 

log transform can lead to biased estimates of the relationship between IMR and GDP 

per capita. More recently, some papers have taken a growth regression approach to 

modelling IMR, finding that only primary school enrolment and vaccination rates for 

infants are significant factors driving it (see Younger, 2001). 

 However, even when imposing a log-transformation of the data the regression 

errors in a model with a linear trend are usually assumed to be I(0), a rather strong 

assumption rarely verified in empirical studies. For the purpose of the present paper, an 

I(0) process is defined as a covariance stationary process with a spectral density 

function that is positive and finite at the zero frequency. This includes standard models 

in time series analysis such as white noises, stationary ARs, MAs, stationary ARMAs, 

etc. If there is strong evidence that the series is not stationary I(0) the standard approach 

is then to take first differences based on the assumption that the series is I(1). However, 

in recent years, fractional integration or I(d) models have become plausible alternatives 

to the two standard (I(0) and I(1)) specifications. 
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In this paper we consider linear trends in the log-IMR series; however, we argue 

that a crucial issue in this context is the specification of the error term. In particular, 

instead of imposing that the error is stationary I(0) (or nonstationary I(1) in some cases) 

we allow for the possibility that the detrended series is I(d), where d can be any real 

value. This is a more general model which includes the above two as particular cases of 

interest.  

The outline of the paper is as follows. Section 2 briefly presents the statistical 

model including time trends and fractional integration. Section 3 describes the data and 

the main empirical results, while Section 4 offers some concluding remarks. 

 

2. Time trends and fractional integration 

The standard statistical way of modelling time trends is to assume a linear function of 

time as in the following equation: 

 ,...,2,1, =++= txty tt βα    (1) 

where yt is the observed time series (in our case, IMR), and xt is the deviation term that 

is assumed to be relatively stable across time. The parameter β measures the average 

change in yt per time period. In the case of the IMR series, we should expect a 

significantly negative value for β, which measures the average yearly reduction in the 

mortality rate. However, as mentioned in the introduction, in order to make valid 

statistical inference about β it is crucial to determine correctly the structure of the 

deviation term. For example, if xt is a random variable independently drawn from a 

Gaussian distribution with zero mean and constant variance, the OLS estimates can be 

efficiently calculated, and inference is possible based on the F and t statistics (see, e.g. 

Hamilton, 1994, Chapter 16, and Draper and Smith, 1998). On the other hand, the 
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detrended data may display some degree of dependence. Such behaviour can be 

captured by different models. One of the most widely used is the AutoRegressive 

process of order 1, AR(1), defined as 

,...,2,1,1 =+= − txx ttt ερ    (2) 

with | ρ | < 1 and white noise εt. This model has been widely employed in the literature 

because of its relation with the stochastic first-order differential equation. One can use 

the Prais-Wisten (1954) transformation in order to obtain a t-statistic, which converges 

in distribution to a N(0, 1) random variable. However, as noted by authors such as Park 

and Mitchell (1980) and Woodward and Gray (1993), significant size distortions appear 

in the test statistic when the AR coefficient in (2) is close to 1. On the other hand, if one 

believes that the detrended series is nonstationary, one can set ρ in (2) equal to 1, and 

the process is then said to be integrated of order 1 (and denoted as xt ~ I(1)). Then, xt is 

nonstationary, and the statistical inference should be based on its first differences, xt – 

xt-1, which are stationary. Combining now (1) and (2) (with ρ = 1) the model becomes: 

,...,2,1,)1( =+=− tyL tt εβ   (3) 

and one can construct another t-statistic for β. 

 From the comments above it is clear that it is important to determine if the 

detrended process xt is stationary I(0) (even allowing for weak (ARMA)-

autocorrelation) or nonstationary I(1). However, it may also be I(d) where d is a number 

between 0 and 1 or even above 1. This is the hypothesis examined in this study, noting 

that different estimates for the time trend may be obtained depending on the 

assumptions made about the order of integration in the detrended series. 

 A time series {xt, t = 1, 2, ..., } is said to be I(d) if it can be represented as: 

...,,2,1,)1( ==− tuxL tt
d    (4) 
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and ut is I(0). These processes (with d > 0) were introduced by Granger (1980, 1981), 

Granger and Joyeux (1980) and Hosking (1981) and since then have been widely 

employed to describe the behaviour of many economic time series (Diebold and 

Rudebusch, 1989; Sowell, 1992; Gil-Alana and Robinson, 1997; etc.).1 

 It can be showed that the polynomial on the left hand side in (1) can be 

expressed in terms of its Binomial expansion such that, for all real d, 

    ,...
2

)1(1)1()1( 2

0
−

−
+−=−∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=−

∞

=
LddLdL

j
d

L jj

j

d    

implying that the higher is the value of d, the higher is the degree of association 

between observations distant in time. Thus, the parameter d plays a crucial role in 

determining the degree of persistence of the series. If d = 0 in (4), clearly xt = ut, the 

process is short memory, and it may be weakly (ARMA) autocorrelated with the 

autocorrelations decaying at an exponential rate. If d belongs to the interval (0, 0.5), xt 

is still covariance stationary although the autocorrelations will take a longer time to 

disappear than in the previous case of I(0) behaviour; if d belongs to [0.5, 1) the process 

is no longer covariance stationary but it is still mean reverting in the sense that shocks 

will tend to disappear in the long run. Finally, if d ≥ 1, xt is nonstationary and not mean 

reverting. 

 Throughout this paper we estimate d in (1) and (4) using the Whittle function  in 

the frequency domain (Dahlhaus, 1989) along with a testing Lagrange Multiplier (LM) 

procedure developed by Robinson (1994) that basically consists in testing the null 

hypothesis: 

,: oo ddH =     (5)  

                                                 
1 See Robinson (2003), Doukham et al. (2003) and Gil-Alana and Hualde (2009) for recent reviews of 
I(d) models. 
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in (1) and (4) for any real value do. This method has several advantages compared with 

other approaches: it tests any real value d, thus encompassing stationary (d < 0.5) and 

nonstationary (d ≥ 0.5) hypotheses, unlike other procedures that require first 

differencing prior to the estimation of d. Moreover, the limit distribution is standard 

normal unlike most unit root methods which are based on non-standard critical values. 

Finally, this method is the most efficient one in the Pitman sense against local 

departures from the null. As in other standard large-sample testing situations, Wald and 

LR test statistics against fractional alternatives have the same null and limit theory as 

the LM test of Robinson (1994). Lobato and Velasco (2007) essentially employed such 

a Wald testing procedure, and, although this and other recent methods such as the one 

developed by Demetrescu, Kuzin and Hassler (2008) have been shown to be robust with 

respect to even unconditional heteroscedasticity (Kew and Harris, 2009), they require an 

efficient estimate of d, and therefore the LM test of Robinson (1994) seems 

computationally more attractive.2 

In the following section we show that the detrended series of the log-IMR data 

are in fact I(d) with d statistically significantly different from zero. That means that the 

standard approach of estimating a linear trend using the log-transformed data and the 

OLS-GLS methods may lead to incorrect inferences about the time trends in the 

mortality rates. 

 

3. Data and empirical results 

We use data obtained from the Human Mortality Database, at the University of 

California, Berkeley. They are mortality rates for infants less than 1 year old, in the 

following countries: Australia, Austria, Belgium, Bulgaria, Canada, Czeck Republic, 

                                                 
2 Other parametric estimation approaches (Sowell, 1992; Beran, 1995) were also employed for the 
empirical analysis producing very similar results to those obtained using the method of Robinson (1994). 
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Denmark, Finland, France, Hungary, Iceland, Ireland, Italy, Japan, The Netherlands, 

New Zeeland, Norway, Portugal, Slovakia, Spain, Sweden, Switzerland, U.K., and 

U.S.A.. 

[Insert Table 1 about here] 

We report in Table 1 the sample period for each country, along with the 

mortality rates in two years that are far apart, namely 1950 and 2006, in order to analyse 

the reduction in the rates over time. It can be seen that the biggest fall occurs in the case 

of countries such as Slovakia, Portugal and Bulgaria that were relatively 

underdeveloped at the beginning of the sample and have undertaken significant reforms 

in the following period and experienced relatively high economic growth. 

In all cases we estimate the time trends in the log-transformed data, assuming 

that the detrended series are I(d) where d can be any real number, thus including also 

integer degrees of differentiation. In other words, the specified model is: 

,...,2,1,)1(,)(log ==−++= tuxLxty tt
d

tt βα  (6) 

with white noise ut. Although autocorrelation in ut could also be allowed for, given the 

fact that the number of observations is less than 100 in most cases), autocorrelation is 

likely to be well described by the fractional polynomial in (6). 

[Insert Table 2 about here] 

 Table 2 displays the estimates of d in (6) along with the 95% confidence interval 

of the non-rejection values of d using Robinson’s (1994) approach. We disaggregate the 

results in male, female and total infant (<1) mortality rates. All the orders of integration 

are significantly greater than 0 and in many cases significantly different from 1. 

Therefore, the use of standard methods based on integer degrees of differentiation may 

produce invalid estimates of the time trend coefficients. 
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 As for the aggregate series, there is a single country (Iceland) with a value of d 

below 0.5 implying stationary behaviour. In another eleven countries (New Zealand, 

Australia, Hungary, Switzerland, The Netherlands, Denmark, Finland, Portugal, 

Sweden, France and Norway) the estimated value of d is significantly below 1, implying 

that the unit root null hypothesis is rejected and therefore mean reversion occurs. 

Finally, there is another group of eleven countries (Ireland, Austria, UK, Canada, Spain, 

Japan, Slovakia, Bulgaria, Belgium, Italy and the US) where the unit root null 

hypothesis (i.e. d = 1) cannot be rejected at the 5% level, and one country, the Czech 

Republic, with an estimated value of d strictly above 1 (d = 1.213), the unit root null 

being rejected in this case in favour of d > 1. 

 When disaggregating the data by sex no significant differences are found, at 

least with respect to the degree of persistence. Specifically, for females, evidence of 

mean reversion (i.e., d < 1) is observed in sixteen countries (New Zealand, Iceland, 

Ireland, Australia, Hungar, Switzerland, Austria, Portugal, The Netherlands, Denmark, 

Norway, Belgium, Finland, Sweden, UK and France), and the same is found for males 

with the exceptions of Belgium and the UK where the unit root null cannot be rejected. 

It is also noteworthy that the explosive behaviour in the Czech Republic is mainly due 

to females since the unit root null cannot be rejected in this country for males. 

[Insert Table 3 about here] 

 Table 3 reports for each series the estimated time trend coefficients. All of them 

are significantly negative. Focusing first on the aggregate series, we notice that the 

biggest coefficients (in absolute value) of the time trends are estimated for the Czech 

Republic (-0.06337) followed by Japan (-0.05855), Portugal (-0.05515), Austria (-

0.05306) and Slovakia (-0.05066), while the lowest values occur for the US (-0.02922), 
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the Netherlands (-0.02621), Norway (-0.02308), Denmark (-0.02296) and Sweden (-

0.01717). 

Given the different sample sizes and in order to make more meaningful 

comparisons between countries, in what follows we use the same sample period (1950 – 

2006) for all countries. The results for the estimated values of d are presented in Table 

4, while the time trends coefficients are displayed in Table 5. 

[Insert Table 4 about here] 

 In the case of the aggregate series, the results vary substantially from one series 

to another. In Iceland the series may be I(0); there are nine countries with evidence of 

mean-reverting behaviour (d < 1): the Netherlands, New Zealand, Finland, Sweden, 

Denmark, Hungary, Austria, Australia and Portugal; the unit root null (d = 1) cannot be 

rejected in Belgium, Ireland, Switzerland, Bulgaria, Slovakia, the UK and Canada; and 

evidence of d > 1 is obtained for the Czech Republic and the US. Once more we do not 

find significant differences between results for males and females. 

[Insert Table 5 about here] 

 The estimated time trend coefficients for the time period 1950 - 2006 are 

displayed in Table 5. For the aggregate series, the highest values (in absolute values) are 

those for Portugal (-0.06230), the Czech Republic (-0.06074), Spain (-0.05521), Japan 

(-0.05476), Italy (-0.05312) and Austria (-0.05201), while the lowest values are those 

for Norway (-0.02308), the US (-0.02389) and Iceland (-0.03031). Similarly, for 

females and males, the highest values are those for Portugal, the Czech Republic, Japan 

and Spain and the lowest ones those for the US and Norway. 

[Insert Table 6 about here] 

 In Table 6 we compare the estimates of the time trends under the assumption 

that the detrended series are I(d) and I(0) for the aggregate data. There are substantial 
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differences in some cases. In sixteen countries (Iceland, Japan, Sweden, Norway, 

Portugal, Italy, Austria, Spain, Ireland, Denmark, Switzerland, Australia, Canada, the 

UK, New Zealand and the US) the time trend coefficient is over-estimated when 

wrongly imposing the I(0) specification for the error term. On the other hand in eight 

countries ((Finland, Czech Republic, France, Belgium, The Netherlands, Hungary and 

Slovakia) the values of the time trend are under-estimated with I(0) errors. The biggest 

differences are found in the cases of the Czech Republic (-0.06074 with I(d) errors and -

0.04120 with I(0) errors), Iceland (-0.03031 with I(d) errors and -0.04410 with I(0) 

ones) and Norway (-0.02308 with I(d) errors and -0.03693 with I(0) errors). 

 

4. Conclusions 

In this paper we have estimated the time trend coefficients for Infant Mortality Rates 

(IMR, infants less than 1 year) in 24 countries, based on the log-transformed data and 

using I(d) specifications of the error term. This is a general model that includes the 

standard cases of I(0) stationarity and I(1) nonstationarity as special cases of interest. 

The fact that the order of integration may be fractional allows for a greater degree of 

flexibility in the dynamic specification of the series. The results indicate that in all the 

countries examined the order of integration in the detrended series are I(d) with d 

strictly positive, and significantly different from zero, implying that the series display 

long memory behaviour. This suggests that the estimation of the time trend coefficients 

based on standard I(0) errors may produce invalid results because of the 

misspecification of the order of differentiation.  

As for the orders of integration, we find that there is one country (Iceland) with 

an estimated value of d in the interval (0, 0.5) implying stationary behaviour. For a 

group of eleven countries ((New Zealand, Australia, Hungary, Switzerland, The 
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Netherlands, Denmark, Finland, Portugal, Sweden, France and Norway) the values of d 

are in the interval [0.5, 1), implying nonstationarity but mean reverting behaviour. For 

the remaining countries the differencing parameter is equal to or higher than 1. In 

general we do not observe significant differences between males and females in terms 

of the degree of dependence. With respect to the time trend coefficients, the most 

significant ones are those corresponding to the Czech Republic, Japan, Portugal, Austria 

and Slovakia, while the lowest values are those for the US, the Netherlands, Norway, 

Denmark and Sweden, more developed countries to start with and therefore with lower 

reductions in the mortality rates.  
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Figure 1: Time series plots 
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Figure 1: Time series plots (cont.) 
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Figure 1: Time series plots (cont.) 
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Table 1: Sample period and reduction in IMR by country 
Country Time period 1950 2006 Reduction  

ICELAND 1838  -  2008 0.022790   (2) 0.001372   (1) 0.021418  (21) 

JAPAN 1947  -  2008 0.058245  (15) 0.002693   (2) 0.055552  (9) 

SWEDEN 1751  -  2007 0.020851   (1) 0.002857   (3) 0.017994  (24) 

FINLAND 1878  -  2008 0.043277  (12) 0.002874   (4) 0.040403  (13) 

NORWAY 1846  -  2008 0.025948   (5) 0.003196   (5) 0.022752  (20) 

PORTUGAL 1940  -  2009 0.104441  (21) 0.003260   (6) 0.101181  (2) 

CZECH REP. 1950  -  2008 0.067921  (17) 0.003380   (7) 0.064541  (6) 

ITALY 1872  -  2006 0.066113  (16) 0.003468   (8) 0.062645  (8) 

AUSTRIA 1947  -  2008 0.068012  (18) 0.003604   (9) 0.064408  (7) 

SPAIN 1908  -  2006 0.077807  (18) 0.003681  (10) 0.074126  (5) 

FRANCE 1816  -  2007 0.053602  (13) 0.003716  (11) 0.049886  (11) 

IRELAND 1950  -  2006 0.045980  (13) 0.003800  (12) 0.042180  (12) 

DENMARK 1835  -  2008 0.031315   (8) 0.003853  (13) 0.027462  (16) 

BELGIUM 1919  -  2007 0.055066  (14) 0.004072  (14) 0.050994  (10) 

NETHERLANDS 1850  -  2008 0.025320   (3) 0.004411  (15) 0.020909  (22) 

SWITZERLAND 1876  -  2007 0.032827  (10) 0.004462  (16) 0.028365  (15) 

AUSTRALIA 1921  –  2007 0.025426   (4) 0.004696  (17) 0.020730  (23) 

CANADA 1921  -  2007 0.042973  (11) 0.005058  (18) 0.037915  (14) 

UK 1922  -  2009 0.030922   (7) 0.005090  (19) 0.025832  (17) 

NEW ZEALAND 1948  -  2008 0.028433   (6) 0.005172  (20) 0.023261  (19) 

HUNGARY 1950  -  2006 0.091480  (19) 0.005841  (20) 0.085639  (4) 

SLOVAKIA 1950  -  2008 0.118871  (22) 0.006585  (21) 0.112286  (1) 

US 1933  -  2007  0.032468   (9) 0.006813  (22) 0.025655  (18) 

BULGARIA 1947  -  2009 0.103598  (20) 0.010355  (23) 0.093243  (3) 
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Table 2: Estimates of d for each series and 95% confidence bands 
Country Female Male Total 

ICELAND 0.410  (0.342,  0.504) 0.370  (0.314,  0.446) 0.431  (0.367,  0.519) 

JAPAN 0.946  (0.854,  1.074) 0.921  (0.812,  1.075) 0.953  (0.851,  1.096) 

SWEDEN 0.828  (0.791,  0.875) 0.870  (0.833,  0.918) 0.863  (0.826,  0.910) 

FINLAND 0.813  (0.751,  0.901) 0.811  (0.752,  0.893) 0.850  (0.789,  0.937) 

NORWAY 0.801  (0.746,  0.875) 0.866  (0.809,  0.944) 0.903  (0.842,  0.987) 

PORTUGAL 0.739  (0.658,  0.848) 0.846  (0.754,  0.979) 0.862  (0.772,  0.988) 

CZECH REP. 1.134  (1.004,  1.309) 1.106  (0.973,  1.282) 1.213  (1.079,  1.389) 

ITALY 0.967  (0.914,  1.038) 0.964  (0.913,  1.032) 0.977  (0.922,  1.044) 

AUSTRIA 0.727  (0.504,  0.998) 0.738  (0.565,  0.961) 0.816  (0.647,  1.027) 

SPAIN 0.938  (0.859,  1.047) 0.932  (0.854,   1.041) 0.945  (0.866,  1.055) 

FRANCE 0.853  (0.813,  0.904) 0.878  (0.837,  0.932)  0.868  (0.827,  0.920) 

IRELAND 0.418  (0.284,  0.610) 0.552  (0.353,  0.833) 0.761  (0.558,  1.039) 

DENMARK 0.798  (0.751,  0.861) 0.834  (0.786,  0.898) 0.847  (0.798,  0.913) 

BELGIUM 0.813  (0.704,  0.971) 0.959  (0.819,  1.178) 0.972  (0.838,  1.181) 

NETHERLANDS 0.788  (0.725,  0.872) 0.801  (0.738,  0.883) 0.807  (0.744,  0.891) 

SWITZERLAND 0.681  (0.606,  0.781) 0.744  (0.669,  0.847) 0.768  (0.692,  0.869) 

AUSTRALIA 0.578  (0.474,  0.722) 0.724  (0.613,  0.885) 0.695  (0.585,  0.852) 

CANADA 0.929  (0.819,  1.084) 0.886  (0.777,  1.032) 0.929  (0.819,  1.079) 

UK 0.830  (0.716,  0.978) 0.881  (0.755,  1.049) 0.881  (0.760,  1.042) 

NEW ZEALAND 0.281  (0.145,  0.481) 0.627  (0.486,  0.824) 0.548  (0.412,  0.743) 

HUNGARY 0.657  (0.463,  0.920) 0.727  (0.561,  0.977) 0.741  (0.560,  0.999) 

SLOVAKIA 0.845  (0.703,  1.013) 0.964  (0.829,  1.136) 0.956  (0.829,  1.126) 

US 1.031  (0.896,  1.214) 1.061  (0.927,  1.239) 1.059  (0.925,  1.241) 

BULGARIA 0.884  (0.790,  1.012) 0.937  (0.837,  1.079) 0.956  (0.859,  1.094) 
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Table 3: Estimates of the time trend along with the t-values 
Country Female Male Total 

ICELAND -0.03125   (-16.71) -0.03006   (-19.34) -0.03031   (-17.44) 

JAPAN -0.05812   (-9.09) -0.05880   (-10.58) -0.05855   (-9.57) 

SWEDEN -0.01697   (-6.96) -0.01711   (-6.27) -0.01717   (-6.47) 

FINLAND -0.03391   (-8.66) -0.03282   (-8.59) -0.03333   (-8.07) 

NORWAY -0.02321   (-7.75) -0.02251   (-6.68) -0.02308   (-6.13) 

PORTUGAL -0.05673   (-12.69) -0.05450   (-8.97) -0.05515   (-9.30) 

CZECH REP. -0.05992   (-3.37) -0.05696   (-3.44) -0.06337   (-3.04) 

ITALY -0.03314   (-6.24) -0.03220   (-6.21) -0.03265   (-6.06) 

AUSTRIA -0.05372   (-17.03) -0.05283   (-13.68) -0.05306   (-13.46) 

SPAIN -0.04036   (-6.16) -0.03963   (-6.13) -0.03988   (-6.01) 

FRANCE -0.02114   (-5.51) -0.02064   (-5.08) -0.02086  (-5.27) 

IRELAND -0.04283   (-24.34) -0.04470   (-18.81) -0.04398  (-12.80) 

DENMARK -0.02293   (-7.68) -0.02295   (-7.08) -0.02296   (-6.91) 

BELGIUM -0.04061   (-10.33) -0.03958   (-6.33) -0.03976   (-6.41) 

NETHERLANDS -0.02633   (-8.12) -0.02617   (-7.90) -0.02621   (-7.78) 

SWITZERLAND -0.03181   (-19.83) -003220   (-17.11) -0.03194   (-16.46) 

AUSTRALIA -0.03105   (-21.84) -0.03192   (-15.07) -0.03152   (-16.59) 

CANADA -0.03669   (-9.08) -0.03821   (-11.49) -0.03735   (-9.79) 

UK -0.03319   (-10.77) -0.03372   (-9.37) -0.03341   (-9.39) 

NEW ZEALAND -0.03142   (-24.17) -0.03088   (-13.75) -0.03095   (-17.64) 

HUNGARY -0.04704   (-16.14) -0.04767   (-14.44) -0.04761   (-13.94) 

SLOVAKIA -0.05013   (-5.45) -0.05009   (-4.29) -00.0566   (-4.45) 

US -0.02920   (-7.13) -0.02944   (-6.52) -0.02922   (-6.60) 

BULGARIA -0.04423   (-5.60) -0.04265   (-4.96) -0.04350   (-4.91) 
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Table 4: Estimates of d and the 95% confidence interval for the time period 1950-2006 
Country Female Male Total 

ICELAND 0.072  (-0.093,  0.311) 0.008  (-0.133, 0.201) 0.093  (-0.064, 0.352) 

JAPAN 1.023  (0.939,  1.135) 0.981  (0.888,  1.108) 1.041  (0.952,  1.163) 

SWEDEN 0.386  (0.215,  0.623) 0.622  (0.431,  0.905) 0.602  (0.422,  0.857) 

FINLAND 0.447  (0.319,  0.636) 0.477  (0.356,  0.653) 0.580  (0.457,  0.762) 

NORWAY 0.560  (0.401,  0.762) 0.749  (0.573,  0.983) 0.897  (0.723,  1.117) 

PORTUGAL 0.737  (0.643,  0.859) 0.808  (0.713,  0.933) 0.843  (0.751,  0.963) 

CZECH REP. 1.133  (1.003,  1.304) 1.087  (0.959,  1.255) 1.195  (1.066,  1.366) 

ITALY 0.779  (0.637,  0.982) 0.808  (0.678,  0.994) 0.887  (0.745,  1.102) 

AUSTRIA 0.618  (0.409,  1.020) 0.675  (0.503,  0.913) 0.745  (0.568,  0.998) 

SPAIN 0.799  (0.679,  0.963) 0.807  (0.689,   0.963) 0.845  (0.728,  1.002) 

FRANCE 0.849  (0.708,  1.046) 0.857  (0.676,  1.137)  0.906  (0.732,  1.161) 

IRELAND 0.418  (0.284,  0.610) 0.552  (0.353,  0.833) 0.761  (0.558,  1.039) 

DENMARK 0.524  (0.399,  0.8702) 0.562  (0.415,  0.765) 0.709  (0.557,  0.930) 

BELGIUM 0.303  (0.044,  0.641) 0.623  (0.396,  0.958) 0.680  (0.405,  1.084) 

NETHERLANDS 0.435  (0.313,  0.604) 0.413  (0.289,  0.576) 0.510  (0.387,  0.678) 

SWITZERLAND 0.596  (0.460,  0.793) 0.684  (0.530,  0.901) 0.821  (0.664,  1.046) 

AUSTRALIA 0.651  (0.539,  0.795) 0.759  (0.644,  0.910) 0.756  (0.644,  0.903) 

CANADA 1.027  (0.909,  1.205) 1.070  (0.946,  1.260) 1.121  (0.997,  1.322) 

UK 0.891  (0.751,  1.083) 1.058  (0.891,  1.301) 1.107  (0.942,  1.344) 

NEW ZEALAND 0.281  (0.142,  0.484) 0.626  (0.467,  0.858) 0.538  (0.398,  0.745) 

HUNGARY 0.657  (0.463,  0.920) 0.727  (0.561,  0.977) 0.741  (0.560,  0.999) 

SLOVAKIA 0.842  (0.697,  1.016) 0.964  (0.827,  1.142) 0.959  (0.824,  1.131) 

US 1.279  (1.107,  1.558) 1.327  (1.178,  1.555) 1.356  (1.192,  1.629) 

BULGARIA 0.870  (0.769,  1.019) 0.959  (0.838,  1.134) 0.952  (0.843,  1.111) 
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Table 5: Estimates of the time trend along with the t-values for the time period 1950-2006 
Country Female Male Total 

ICELAND -0.03125   (-16.71) -0.03006   (-19.34) -0.03031   (-17.44) 

JAPAN -0.05480   (-8.60) -0.05499   (-10.07) -0.05476   (-8.83) 

SWEDEN -0.03609   (-22.77) -0.03722   (-15.84) -0.03655   (-17.75) 

FINLAND -0.04718   (-29.72) -0.04774   (-22.11) -0.04784   (-20.79) 

NORWAY -0.02321   (-7.75) -0.02251   (-6.68) -0.02308   (-6.13) 

PORTUGAL -0.06336   (-12.68) -0.06142   (-10.47) -0.06230   (-10.44) 

CZECH REP. -0.05969   (-3.27) -0.05457   (-3.46) -0.06074   (-3.05) 

ITALY -0.05391   (-21.10) -0.05289   (-16.89) -0.05312   (-15.28) 

AUSTRIA -0.05140   (-22.21) -0.05242   (-16.02) -0.05201   (-16.33) 

SPAIN -0.05542   (-18.28) -0.05479   (-15.50) -0.05521   (-15.54) 

FRANCE -0.04777   (-6.73) -0.04811   (-14.40) -0.04784  (-13.64) 

IRELAND -0.04283   (-24.34) -0.04470   (-18.81) -0.04398  (-12.80) 

DENMARK -0.03641   (-14.54) -0.03816   (-16.28) -0.03633   (-8.11) 

BELGIUM -0.04672   (-47.53) -0.04760   (-24.19) -0.04718   (-23.11) 

NETHERLANDS -0.03097   (-24.04) -0.03171   (-33.10) -0.03145   (-26.80) 

SWITZERLAND -0.03682   (-14.40) -0.03757   (-13.01) -0.03630   (-9.49) 

AUSTRALIA -0.03122   (-13.40) -0.03114   (-9.74) -0.03106   (-10.39) 

CANADA -0.03719   (-6.04) -0.03853   (-6.19) -0.03765   (-5.35) 

UK -0.03199   (-9.50) -0.03255   (-6.13) -0.03149   (-5.42) 

NEW ZEALAND -0.03191   (-22.86) -0.03125   (-12.91) -0.03160   (-17.39) 

HUNGARY -0.04704   (-16.14) -0.04767   (-14.44) -0.04761   (-13.94) 

SLOVAKIA -0.05019   (-5.29) -0.05044   (-4.17) -0.05094   (-4.28) 

US -0.02451   (-3.14) -0.02483   (-2.88) -0.02389   (-2.62) 

BULGARIA -0.03971   (-4.93) -0.04221   (-4.35) -0.04090   (-4.43) 
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Table 6: Comparisons of the time trends with I(d) and I(0) errors 

Country I(d) errors I(0) errors 

ICELAND -0.03031   (-17.44) -0.04410   (-35.671) 

JAPAN -0.05476   (-8.83) -0.05665   (-45.453) 

SWEDEN -0.03655   (-17.75) -0.03734   (-61.240) 

FINLAND -0.04784   (-20.79) -0.04683   (-58.562) 

NORWAY -0.02308   (-6.13) -0.03693   (-41.299) 

PORTUGAL -0.06230   (-10.44) -0.06674   (-46.333) 

CZECH REP. -0.06074   (-3.05) -0.04120   (-22.958) 

ITALY -0.05312   (-15.28) -0.05579   (-87.880) 

AUSTRIA -0.05201   (-16.33) -0.05246   (-74.349) 

SPAIN -0.05521   (-15.54) -0.05842    (-78.515) 

FRANCE -0.04784  (-13.64) -0.04781   (-92.968) 

IRELAND -0.04398  (-12.80) -0.04417   (-63.834) 

DENMARK -0.03633   (-8.11) -0.03764   (-47.218) 

BELGIUM -0.04718   (-23.11) -0.04671   (-103.571) 

NETHERLANDS -0.03145   (-26.80) -0.03102   (-69.381) 

SWITZERLAND -0.03630   (-9.49) -0.03906   (-53.003) 

AUSTRALIA -0.03106   (-10.39) -0.03383   (-42.943) 

CANADA -0.03765   (-5.35) -0.04313   (-49.501) 

UK -0.03149   (-5.42) -0.03557   (-59.553) 

NEW ZEALAND -0.03160   (-17.39) -0.03261   (-48.550) 

HUNGARY -0.04761   (-13.94) -0.04509   (-59.855) 

SLOVAKIA -0.05094   (-4.28) -0.03983   (-25.694) 

US -0.02389   (-2.62) -0.03215   (-57.956) 

BULGARIA -0.04090   (-4.43) -0.03666   (-20.385) 
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