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Gustaf Hällströmin katu 2, on May 27th, 2016, at 10 o’clock in the morning.

Helsinki 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/33741214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Author’s Address: Department of Physics

P.O. Box 64, FI-00014 University of Helsinki

e-mail: oona.kupiainen@alumni.helsinki.fi

Supervisors: Professor Hanna Vehkamäki, Ph.D.
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Oona Katariina Kupiainen-Määttä (née Kupiainen)
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Abstract

A large fraction of atmospheric aerosol particles are formed from condensable vapors in

the air. This particle formation process has been observed to correlate in many locations

with the sulfuric acid concentration, but the very first steps of cluster formation have

remained beyond the reach of experimental investigation until recently. Charged clusters

can now be detected and characterized starting from the smallest sizes and even neutral

clusters consisting of only a few molecules can be detected, although their composition

cannot be fully characterized. However, measuring the concentrations of different cluster

types does not tell the full story of how the clusters were formed, and detailed simulations

are needed in order to get a full understanding of the cluster formation pathways.

Cluster formation is described by a set of nonlinear differential equations that cannot be

solved analytically in any realistic situation. The best way to understand the complex

behavior of cluster populations is by cluster kinetics simulations. The focus of this Thesis

is on developing tools for simulating cluster formation, and using the simulation results

to improve the detailed understanding of atmospheric aerosol particle formation.

As sulfuric acid has been identified as the main driving force of cluster formation in

many locations, it is also the main compound in the simulations of this Thesis. It can-

not explain the observed atmospheric particle formation rates alone, and other possible

participating species considered in this Thesis are ammonia, dimethylamine and water.

In the first two papers of the Thesis, theoretical values are used for the collision and evap-

oration rates, and simulated cluster concentrations and formation rates are compared

to experimental observations. The simulation results agree well with experimental find-

ings from two very different studies. The third and fourth paper asses existing methods

for interpreting cluster measurements and point out details that should be taken into

account: the effect of dipole moments on chemical ionization of neutral molecules and

clusters, and the conditions for the widely used nucleation theorem to be valid. The last

paper introduces a new method for extracting cluster evaporation rates from measured

cluster distributions.

Keywords: atmospheric aerosols, molecular clusters, kinetic modeling, quantum chem-

istry, nucleation, sulfuric acid
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Riccobono, I. Riipinen, M. Rissanen, L. Rondo, T. Ruuskanen, F. D. San-

tos, N. Sarnela, S. Schallhart, R. Schnitzhofer, J. H. Seinfeld, M. Simon,
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1 Molecular clusters in the atmosphere

When thinking about the composition of the atmosphere, a good first approxi-

mation is to say that air is a 4:1 mixture of nitrogen and oxygen molecules. The

biosphere also both needs and produces carbon dioxide and water vapor. This is,

however, still not the whole picture, but instead around 1% of the air is made up

of other nonreactive gases such as argon, and there are also trace amounts of re-

active compounds such as sulfuric acid, ammonia and amines. Furthermore, air is

not simply a homogeneous mixture of various gases. Practically everywhere in the

atmosphere, tiny aerosol particles are suspended in the gas-phase. While notably

bigger than individual nitrogen and oxygen molecules, these particles ranging up

to a size of about 0.1 mm are nevertheless small enough not to fall immediately

to the ground. Finally, in addition to electrically neutral molecules, clusters and

particles, there are also positively and negatively charged ions in the air.

Atmospheric aerosol particles can be divided into two categories based on how they

have entered the atmosphere. Primary particles such as pollen, desert dust and

soot from biomass burning have first become particles and then been suspended

in the air. Secondary particles, on the other hand, are formed in the atmosphere

from gas-phase molecules. When two nitrogen or oxygen molecules collide with

each other, they bounce off immediately. Some of the trace gas molecules present

in very small quantities may instead stick together to form a cluster when they

collide. These clusters may stay together simply due to intermolecular interactions,

or a proton can transfer from one molecule to the other leading to the formation of

a more strongly bound ion pair. If the cluster survives long enough before breaking

back into the constituent molecules, a third suitable molecule might collide and

stick to the cluster. Step by step, the cluster can then grow to a size comparable

to the primary particles.

Although aerosol particles constitute only a very small fraction of the atmosphere,

they have a significant effect on the climate (IPCC, 2013). They cool the planet

both directly by scattering radiation and indirectly through changes in cloud prop-

erties, but the magnitude of these effects is rather poorly known. Some particles

also heat the atmosphere by absorbing radiation, but the net effect is cooling.

While the sources of primary particles can be inferred based on the composition

of the particles and by following wind trajectories, the formation mechanisms of

secondary particles have remained beyond the reach of direct experimental inves-
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tigation until very recently.

Sulfuric acid was suggested as a likely key compound for particle formation in many

locations (Doyle, 1961; Kiang et al., 1973; Cox, 1973; Mirabel and Katz, 1974)

already before the Chemical Ionization Mass Spectrometer (CIMS) introduced by

Munson and Field (1966) enabled field measurements of vapor-phase sulfuric acid

concentrations (Arnold et al., 1981; Viggiano and Arnold, 1981; Eisele and Tanner,

1993). Correlations between the sulfuric acid concentration and the concentration

of small particles consisting of some hundreds or thousands of molecules supported

the idea of sulfuric acid–induced particle formation (Weber et al., 1995; Sihto et al.,

2006), but the first steps of the process could still not be observed directly.

In the past few years, this gap has finally been bridged by the development of

several new instruments. High-resolution, high-sensitivity mass spectrometers can

detect and characterize individual charged clusters at ambient concentrations (Jun-

ninen et al., 2010). Using chemical ionization, also electrically neutral clusters con-

sisting of only a few molecules can be detected (Zhao et al., 2010; Jokinen et al.,

2012). However, although the smallest clusters can now be detected, the processes

leading to their formation cannot be understood based on experiments alone.

The focus of this Thesis has been on developing theoretical and computational

tools for studying the first steps of cluster formation. Initially, the main aims were

to

• develop a procedure for simulating cluster formation based on theoretical

estimates for collision and evaporation rate constants (Papers I and II)

• validate the methodology by comparing simulation results with experiments

related to sulfuric acid–driven cluster formation (Papers I and II) and

• provide predictions for processes that cannot be or have not been measured

directly (Papers I and II).

In order to understand the discrepancies between the simulations and measure-

ments in Paper II, the objectives in the subsequent papers were to

• improve the understanding of instruments used in field measurements and

particle formation experiments (Papers III and V)

2



• improve the understanding of data analysis methods applied to measurement

data (Paper IV) and

• develop methods for determining cluster energies (Paper III) and rate con-

stants (Paper V) directly from measurements.
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2 From microscopic properties of clusters to ob-

servable quantities

The first part of this Introduction presents tools for modeling cluster populations.

The aim is to start from the properties of individual clusters, find rate constants

for collision and evaporation processes between the clusters, and finally solve the

time-evolution of the cluster concentrations at some given conditions.

The first task is to decide which clusters are considered, and then find all the

processes in which each of these clusters can be formed or lost. These formation

and loss processes can be written down as birth-death equations

dCk
dt

=
∑

i,j|i+j→k

(βi+j→kCiCj − γk→i+jCk)

+
∑

i,l|i+k→l

(−βi+k→lCiCk + γl→i+kCl) (1)

+Sk − LkCk ,

where Ck is the concentration of cluster type k, t is time, βi+j→k is the collision

rate of clusters i and j to form k, γk→i+j is the evaporation rate of cluster k to form

i and j, Sk is an external source rate for feeding cluster k into the system and Lk

is an external loss term removing cluster k from the system. The first summation

goes over all pairs of clusters that can collide to form the cluster type k, while the

second summation goes through all pairs of clusters i and l where i can collide

with cluster k to form l. In a one-component system, the cluster labels can be

set to correspond to the number of molecules in each cluster, and the birth-death

equations get a simpler form by noting that j = k − i and l = k + i. Also in a

multicomponent case, indices j and l are uniquely defined by indices k and i, and

therefore from here on the collision rate between clusters i and j is denoted simply

as βi,j, and the notation for the evaporation rates is shortened from γk→i+j to γi,j.

Knowing the form of the birth-death equations is not enough – the next task is

to find estimates for the rate constants. This is discussed in detail in Sections 2.2

and 2.3 after a short introduction to the main compounds of interest in Section 2.1.

Finally, the differential equations need to be solved. In very simple cases this can

be done analytically, but most often the only possibility is to integrate the equa-

tions numerically. Some details related to the cluster population simulations are
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presented in Section 2.4, and the simulation results are compared to experiments

in Papers I and II.

2.1 The studied compounds

While the discussion in Sections 2.2–2.4 is mostly presented on a general level,

the main focus of the Thesis is on sulfuric acid–driven cluster formation in atmo-

spherically relevant conditions. Sulfuric acid (H2SO4) is a strong acid formed in

the atmosphere from sulfur dioxide. In polluted cities, its concentration in the air

can be as high as 108 cm−3, but it has also been observed in boreal forests and

other remote locations at concentrations around 105 or 106 cm−3 (see Paper II

and references therein).

Sulfuric acid is not the only compound involved in the formation of secondary

aerosol particles in the atmosphere. Water vapor is always present in the air and

participates in sulfuric acid cluster formation, but even sulfuric acid and water

together do not form particles at a high enough rate to explain the observed

concentrations of secondary aerosol particles in the boundary layer. Instead, some

additional compound is needed to stabilize the clusters. This Thesis focuses on

base molecules and ions as stabilizing compounds, and clusters containing sulfuric

acid (Papers I–V), ammonia (Papers I–V), dimethylamine (Papers I–IV),

ions (Papers I–V) and water (Papers II and III) are considered.

Ammonia (NH3) and dimethylamine ((CH3)2NH, often referred to as DMA) are

base molecules encountered in many locations in the atmosphere. Some of their

main sources are animal husbandry, fish processing and industry, but there are

also natural sources such as vegetation and oceans (Ge et al., 2011). Ammonia

and DMA are often present in the atmosphere at ppt levels, but close to some

anthropogenic sources their concentrations can be much higher.

Clusters can form through processes involving only electrically neutral molecules

(Papers II–IV), but in some cases ionic clusters may provide a more favor-

able formation pathway (Papers II, IV and V). Atmospheric ions are formed

when high-energy particles either from cosmic rays (Mohnen, 1970) or radon decay

(Wilkening, 1985) collide with nitrogen and oxygen molecules. At sea level, the

ion production rate is approximately 10 cm−3s−1 (Wilkening, 1985). The ions are

lost by recombination when they collide with ions of opposite polarity, but before

5



that they can participate in cluster formation if cluster-forming compounds such

as sulfuric acid are available at high enough concentrations. However, the rate of

ion-induced cluster formation cannot exceed the ion production rate.

In small sulfuric acid–ammonia or sulfuric acid–DMA clusters, the base molecules

act as a Lewis bases donating a free electron pair of the nitrogen atom to form

a bond with an acid molecule. In larger acid-base clusters or hydrated clusters,

sulfuric acid molecules can also act as a Brønsted-Lowry acids and donate a proton

to an ammonia, DMA or water molecule.

2.2 Collision rates

The simplest way to get an estimate for collision rates is to use kinetic gas theory

and assume that the molecules and clusters are hard spheres moving at velocities

following the Maxwell-Boltzmann distribution

F (vi) = f(vi) =

(
mi

2πkBT

)3/2

exp

(
−miv

2
i

2kBT

)
, (2)

where vi and vi are the velocity and speed of the molecule or cluster i, respectively,

mi is its mass, kB is the Boltzmann constant and T is the temperature. A collision

occurs when the distance between the centers of two particles is equal to the sum

of their radii.

Let us first consider a case where particle 1 with radius r1 is moving at a speed u

and all particles of kind 2 are stationary and have a radius r2. If the particles of

type 2 have a number concentration C2, the mean free path l that particle 1 can

on average move before colliding with one of them is

l = ut =
u

β0
1,2C2

, (3)

where t is the average time between collisions and β0
1,2 is the collision frequency

between particles of types 1 and 2 in this setup. On the other hand, if particle

1 can on average travel a distance l without colliding, there must on average be

exactly one particle of kind 2 in the volume of the cylinder shown in Figure 1, and

the concentration C2 can be solved in terms of the mean free path as

C2 =
[
π (r1 + r2)2 l

]−1
. (4)

6



Figure 1: Schematic of a particle moving at speed u before colliding with a sta-

tionary particle. The radii of the particles are r1 and r2 and the time before the

collision happens is t.

Combining Eqs. (3) and (4) gives the collision frequency

β0
1,2(u) = π (r1 + r2)2 u (5)

as a function of speed u.

The above discussion can be generalized to a case where both colliding particles

are moving. For each pair of particles 1 and 2 moving at velocities v1 and v2, only

the relative velocity u = v1− v2 is needed for determining whether and how soon

the particles collide. The collision frequency can be calculated similarly as above

for all pairs of velocities v1 and v2, and the overall collision frequency is obtained

as an average over the velocity distributions,

β1,2 = 〈β0
1,2(u)〉 = π (r1 + r2)2 〈u〉 . (6)

The magnitude of the relative velocity for given v1 and v2 is

u =
(
v2

1 + v2
2 − 2v1v2 cos θ

)1/2
,

where θ is the angle between velocities v1 and v2. By choosing suitable spherical

coordinate systems for the velocities and using the speed distributions from Eq. (2),

the mean relative speed can be calculated as

〈u〉 = 8π2

∫ ∞
0

dv1v
2
1f(v1)

∫ ∞
0

dv2v
2
2f(v2)

∫ π

0

dθ sin θ
(
v2

1 + v2
2 − 2v1v2 cos θ

)1/2

=

(
8kBT

πmred

)1/2

,

where mred = m1m2/(m1 + m2) is the reduced mass of the pair of particles. The

collision frequency is thus

β1,2 = (8πkBT )1/2 (r1 + r2)2

(
1

m1

+
1

m2

)1/2
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for two noninteracting spherical particles. This approach has been used in Pa-

pers I–IV for all collisions between two neutral species, and the radii have been

calculated based on bulk liquid densities.

2.2.1 Collision rates for interacting particles

In reality, particles may interact with each other already before they collide. Taking

such interactions into account is crucial especially when one or both of the particles

are electrically charged.

Let us first consider the case where one of the particles is an ion and the other

is electrically neutral. The interaction potential can be approximated as (Moran

and Hamill, 1963; Dugan and Magee, 1967)

V (r, ψ) = − αq2

8πε0r4
− µDq cosψ

4πε0r2
, (7)

where the two terms on the right-hand side correspond to the ion–induced dipole

and ion–permanent dipole interactions, µD and α are the dipole moment and

polarizability of the neutral particle, respectively, ψ is the angle between the dipole

and the vector r separating the particles, q is the charge of the ion, ε0 is the vacuum

permittivity, and all higher order terms such as dipole-dipole interactions are left

out. The full equations of motion of the system containing both the relative motion

of the particles and the rotation of the dipole in the electric field of the ion cannot

be solved analytically, but two limiting cases are more simple (Moran and Hamill,

1963; Dugan and Magee, 1967). At one extreme, if the neutral molecule does

not have a permanent dipole moment, only the ion–induced dipole term is left in

Eq. (7) (Langevin, 1905). This simplified equation can also be used to approximate

a situation where the rotation of the dipole is not affected at all by the electric field

and this rotation is fast compared to the relative movement of the particles, so that

the ion-dipole interaction averages out (〈cosψ〉 = 0). At the other extreme, the

rotation of the dipole is suppressed completely and it remains in its lowest-energy

orientation locked towards the ion (cosψ = 1). In both cases, what remains is a

two-body central-force problem where the interaction potential depends only on

the distance between the particles. A standard Lagrangian mechanics treatment

yields for the locked-dipole case the effective radial potential

Veff(r) =
L2

2mredr2
− αq2

8πε0r4
− µDq

4πε0r2
, (8)
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where L = mredu0b is the angular momentum, mred is the reduced mass, u0 is

the relative speed at infinite separation and b is the impact parameter giving the

distance at which the particles would pass each other if their velocities did not

change. The angular momentum term in the effective potential is the so-called

centrifugal potential related to the acceleration required for changing the directions

of the particles when they interact with each other. The case of the freely rotating

dipole can be obtained from Eq. (8) by leaving out the last term or setting the

dipole moment to zero, but let us first consider the more complicated locked-dipole

case.

For a given value of the impact parameter b and the initial relative speed u0,

the effective potential Veff(r) has one maximum at some inter-particle separation

r∗(b, u0). Depending on the parameters b and u0, two outcomes are possible.

If the initial relative kinetic energy is higher than the maximum of Veff(r), the

particles overcome the barrier in the effective potential at separation r∗ and spiral

towards each other until they collide. This is called a capture collision. A lower

energy, on the other hand, leads only to a scattering where the direction of the

particles changes before they reach the separation r∗. The cross-section for capture

collisions is determined from the limiting value b∗ of the impact parameter where

the maximum of the effective potential is equal to the initial relative kinetic energy.

The cross-section depends on the initial relative kinetic energy, or equivalently the

initial relative velocity, as

σ(u0) = πb∗2 = 2π

[(
αq2

4πε0mred

)1/2
1

u0

+
µDq

4πε0mred

1

u2
0

]
. (9)

Similarly as in Eqs. (5) and (6), the mean collision frequency is calculated by av-

eraging the velocity-dependent frequency u0σ(u0) over all initial relative velocities

(Gupta et al., 1967),

βlocked-dipole = 〈u0σ(u0)〉 =
e

2ε0mred

[
(4πε0α)1/2 + µD

(
2

πkBT

)1/2
]
, (10)

where the average 〈1/u0〉 in the permanent dipole term is calculated assuming a

Maxwell-Boltzmann velocity distribution for both the ion and the neutral parti-

cle. The collision rate for the case of a freely rotating dipole (Gioumousis and

Stevenson, 1958) is obtained from Eq. (10) by leaving out the second term.

Collision rates are typically measured by studying reactions that can be assumed

to occur at every collision. This is not quite straightforward, however, as there is
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no way to confirm that a reaction is perfectly collision-limited, and on the other

hand some reactions can happen through tunneling even if the reactants do not

collide. Su and Bowers (1973) studied experimentally the reaction rates of ions

with different isomers of difluorobenzene and difluoroethylene. As the studied iso-

mers were essentially identical except for their dipole moment, the dipole moment

dependence could be extracted from the results. The effect of the ion–permanent

dipole interaction was observed to be between the two extremes discussed above,

and the authors introduced the average-dipole-orientation (ADO) collision rate

parameterization

βADO = 〈u0σ(u0)〉ADO =
e

2ε0mred

[
(4πε0α)1/2 + cµD

(
2

πkBT

)1/2
]
, (11)

where the permanent dipole term of Eq. (10) is multiplied by the parameter c that

they fitted to experimental data. They also postulated that the parameter could be

interpreted as c = cos〈ψ〉 where 〈ψ〉 is the average angle between the orientation of

the dipole and the vector r separating the particles. However, as noted by Barker

and Ridge (1976), this interpretation does not seem sensible since the quantity

to be averaged should be cosψ and not ψ, and the result should depend on the

separation r. Furthermore, it is not clear that the coupling between the rotation of

the dipole and the relative translational motion of the two particles can be ignored.

Despite these problems with the original interpretation of the parameterization,

it was used in Papers I–III due to its good agreement with measured collision

rates. The underlying assumption of point-like particles in the ADO theory may,

however, cause problems for some collisions. When the colliding clusters are large

and the electrically neutral collision partner has a very low dipole moment and

polarizability, the ADO collision rate may be lower than the hard sphere collision

rate computed from the cluster sizes. In Papers I–III, this problem was solved

simply by using the hard sphere collision rate whenever it was higher than the

ADO collision rate, but also more sophisticated solutions have been suggested

(Kummerlöwe and Beyer, 2005).

Another approach for obtaining collision cross-sections is to simulate colliding and

non-colliding trajectories by solving numerically the classical equations of motion

of the particles (Dugan and Magee, 1967; Chesnavich et al., 1980; Su and Ches-

navich, 1982). Extensive statistics for different values of initial velocities, rota-

tional frequencies and impact parameters are required for calculating the average

cross-section. Chesnavich et al. (1980) and Su and Chesnavich (1982) studied
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the dependence of the cross-section on the dipole moments, polarizabilities and

masses of the collision partners, and formulated a parameterization based on their

trajectory simulations. This parameterization was used in Papers III–V.

For most of the collisions used in Papers I–V, the parameterizations of Su and

Bowers (1973) and Su and Chesnavich (1982) both predict enhancement factors

between one and ten compared to the kinetic gas theory value. The ion-neutral

collision rates vary strongly between clusters with a similar size but different com-

position (Paper III). Especially acid-base clusters with an ion pair structure have

a high dipole moment, leading to a high collision rate with ions.

An extreme case of collisions between interacting particles are those between ions

of opposite polarity. These have received much less attention than ion-neutral col-

lisions until very recently (López-Yglesias and Flagan, 2013; Franchin et al., 2015).

In all Papers II, IV and V where recombination reactions are included, a fixed

size-independent recombination rate constant (Israël, 1970) was used, correspond-

ing to an enhancement factor of 2000–5000 compared to hard-sphere collisions.

At the other extreme are dipole-dipole interactions and other attractive forces

between two neutral molecules or clusters. Based on their relatively short range,

these interactions have been assumed, in the work presented in this Thesis, to

have a negligible effect on collision rates. However, both experimental observations

(Fuchs and Sutugin, 1965) and theoretical estimates (Marlow, 1980) suggest that

the collision rate enhancement factor for two neutral nanometer-scale particles

may, in fact, be as high as two or three – that is, quite comparable to ion-neutral

enhancement factors. On the other hand, the derivation of Marlow (1980) is very

different from that presented in Eqs. (7–10) for ion-neutral collisions, and it is not

clear whether the estimates given by the two methods should be compared directly.

2.2.2 Sticking factors

The collision rates discussed above describe simply the frequency at which

molecules and clusters get in contact with each other. It may then be asked,

whether all such events lead to the formation of a cluster, even for a short time. It

seems, for instance, plausible that clusters containing molecules with bulky hydro-

carbon chains might not stick together if the collision geometry is such that only

these nonreactive parts come in contact. However, there is at present no evidence
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either way whether such collisions would stick or not. Loukonen et al. (2014a)

used first-principles molecular dynamics to study head-on collisions of a pure or

singly hydrated sulfuric acid molecule and a dimethylamine molecule, and found

that irrespective of the initial collision geometry, the molecules always reoriented

themselves into a configuration suitable for cluster formation. On the other hand,

this might not necessarily be the case for collisions with larger impact parameters,

higher initial kinetic energies or more inert groups on both collision partners. The

effect of less-than-unity sticking factors was assessed in Paper II for simulations

involving DMA. The relative change in particle formation rates and dimer con-

centrations was mostly larger than or equal to the relative change in the sticking

factor, but depended on precursor concentrations.

Another possible cause for non-sticking collisions might be energy barriers in clus-

ter formation processes. The product cluster would then only be formed if the

collision partners had sufficient initial kinetic energy. Such kinetic barriers have

been suggested some years ago by Bzdek et al. (2013) based on their experiments

with positively charged sulfuric acid–ammonia clusters. A later quantum chem-

istry study on the same clusters (DePalma et al., 2014, 2015) confirmed that there

might be energy barriers related to the reorganization of molecules to find the

minimum energy configuration, but on the other hand the clusters were, in some

cases, almost equally stable before rearrangement as in their optimal configura-

tion. It seems, therefore, that sticking should not be seen strictly as an either-or

question, but rather as a stepwise process where a collision results first in a mod-

erately stable cluster that can then either stay together for some time, evaporate,

or rearrange to a more favorable geometry. This more complex framework remains

yet to be implemented in cluster formation simulations.

A third reason for some collisions not leading to cluster formation is related to

excess energy. When two molecules or clusters collide and stick, the conservation

of energy and momentum leads to some of the kinetic energy being dissipated as

heat. More importantly, if cluster formation is energetically favorable, also some

energy related to intermolecular interactions is released. This excess energy is

taken up by the bonds in the formed cluster as vibrational energy, but if a vibra-

tional degree of freedom related to cluster dissociation receives more energy than

it can accommodate, the cluster may break up. Collisions with inert gas molecules

that do not otherwise participate in cluster formation, including for instance ni-

trogen and oxygen, gradually cool the cluster to the ambient temperature, and as
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the amount of excess energy diminishes, the probability of the cluster not surviv-

ing also decreases. In most of the collisions appearing in Papers I–IV, energy

non-accommodation is expected not to be important due to the large number of

vibrational modes (Kurtén et al., 2010). However, when the number of vibrational

modes is small, like in the collision of two molecules, or if the amount of excess

energy is very large, as is the case in collisions between positive and negative ions,

energy non-accommodation may have a larger role.

2.3 Evaporation rates

There are, in principle, two approaches for obtaining theoretical estimates for

evaporation rates. The direct way is to perform molecular dynamics (MD) sim-

ulations on the cluster of interest, and follow how long it takes for a molecule to

evaporate from it. Román and Garzón (1991) and Weerasinghe and Amar (1991)

have used this method for argon clusters, and determined the evaporation rates

at different initial kinetic energies based on statistics gathered from a large num-

ber of simulation runs starting from different configurations. For argon clusters,

the potential energy can be calculated very efficiently and quite accurately using

pairwise Lennard-Jones interaction potentials, enabling the use of long simulation

times. Román and Garzón (1991) used a simulation time of 0.2 µs, which was in

this case long enough for all or almost all cluster configurations to evaporate at

each value of the initial kinetic energy.

Atmospherically relevant clusters consist of multi-atomic molecules, not single rare-

gas atoms, and simple classical interaction potentials cannot be used for calculating

the potential energy. The most accurate method for directly simulating the fate

of these clusters is to use first-principles MD and perform a quantum-chemical

calculation at each time step. Loukonen et al. (2014b) used this approach to study

sulfuric acid–ammonia and sulfuric acid–dimethylamine clusters. First-principles

MD requires significantly more computer power than standard MD with classi-

cal interaction potentials, and the simulation runs of Loukonen et al. (2014b) were

limited to 35 ps. None of the clusters evaporated during this timespan, and length-

ening the simulation time by at least several orders of magnitude in order for the

clusters to have time to evaporate is not, in practice, feasible. The simulations

can be sped up by constructing classical interaction potentials based on quantum-

chemical calculations, as has been done, for instance, by Stinson et al. (2016)
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for sulfuric acid and water. However, these potentials need to be constructed

separately for each pair of interacting molecule types, and as the procedure is

complicated and time-consuming, this approach has not been widely used.

An alternative approach for calculating evaporation rates is to use the principle of

detailed balance and the assumption that the evaporation rate is a fundamental

property of each cluster and does not depend on the pressure or composition of

the surrounding vapor, although it can vary with temperature. Furthermore, each

cluster is assumed to be well represented by a single configuration and to have a

well-defined constant energy. Based on these assumptions, each evaporation rate

can be calculated in some equilibrium state and then generalized to be valid also

in all other conditions at the same temperature.

If a reaction is in equilibrium, the flux from reactants to products must be equal

to the reverse flux from products to reactants. More specifically, in the case of a

cluster formation reaction A + B −−⇀↽−− A · B, the collision flux

Icoll. = βeff
A,BC

eq
A C

eq
B (12)

from species A and B to form the cluster A · B must be equal to the evaporation

flux

Ievap. = γA,BC
eq
A·B (13)

from A ·B into A and B. In Eqs. (12) and (13), Ceq
A , Ceq

B and Ceq
A·B are equilibrium

concentrations of the colliding molecules or clusters and the collision product,

respectively, βeff
A,B is the effective forward rate constant, and γA,B is the evaporation

rate constant of the cluster A · B, corresponding to the frequency at which this

cluster breaks up into species A and B. Assuming that each collision leads to the

formation of the product cluster, the effective rate constant βeff
A,B in Eq. (12) is

simply the collision rate constant discussed in Section 2.2. If, on the other hand,

the colliding species stick together only when the collision occurs in a specific

orientation, or if there is an energy barrier that needs to be overcome during the

collision and evaporation processes, the forward flux (12) is lower than would be

expected based on the collision rate constant as discussed in Section 2.2.2. The

effective forward rate constant can then be written as βeff
A,B = kstickβA,B, where the

so-called sticking factor kstick is a number between zero and one. In order for the

detailed balance condition to hold, the evaporation rate constant is also lowered

by the sticking factor.
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The equilibrium concentrations of each species are determined by the equilibrium

constant KA,B through the law of mass action

KA,B =
(f eq

A·B/p
	)

(f eq
A /p

	) (f eq
B /p

	)
,

where f eq
i is the fugacity of compound i in an equilibrium mixture and p	 is the

reference pressure. This expression can be simplified to

KA,B ≈
p	

kBT

Ceq
A·B

Ceq
A C

eq
B

(14)

by making the ideal gas assumption, which equates the fugacities to partial pres-

sures and approximates the partial pressures in terms of concentrations Ci as

pi = kBTCi. The equilibrium constant is related to the standard Gibbs free en-

ergy change for the reaction as

KA,B = exp

(
−G

	
A·B −G

	
A −G

	
B

kBT

)
, (15)

where G	i is the Gibbs free energy of a single molecule or cluster i when its partial

pressure is p	.

Setting the forward and backward fluxes (12) and (13) to be equal and using

Eqs. (14) and (15), the evaporation rate can be solved as

γA,B =
p	

kBT
βeff

A,B exp

(
G	A·B −G

	
A −G

	
B

kBT

)
, (16)

where βeff
A,B is typically taken to be the collision rate βA,B, as there is no practical

way for determining the sticking coefficients. The only remaining unknowns needed

for computing the evaporation rate are then the Gibbs free energies of the molecules

and clusters. As the pressure dependence of the Gibbs free energies is, within the

ideal gas approximation, of the form G(p) = G(p0)+kBT log p
p0

, the value obtained

for the evaporation rate is independent of the choice of reference pressure. It should

be noted that the energies are in the exponent in Eq. (16), meaning that even small

inaccuracies in their values will lead to large errors in the evaporation rates. If

some evaporation rates are close to the rates of other competing processes, small

uncertainties in the corresponding energies can also lead to great uncertainties in

cluster distributions as discussed in Paper I. Therefore, it is essential to obtain

as accurate values as possible for the cluster formation energies.
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A few different methods are available for assessing cluster energies. In principle, the

most desirable approach would be to determine the energies experimentally, but

such measurements are not straightforward and the most widely used methods have

some caveats that are discussed in detail in Section 3.1. The simplest theoretical

framework for calculating cluster energies is the classical liquid drop model (Volmer

and Weber, 1926; Farkas, 1927; Becker and Döring, 1935). The classical liquid

drop model is based on treating the clusters as spherical droplets of the bulk-

phase liquid, and requires as input only the liquid density, molecular mass, surface

tension and saturation vapor pressure of the compound. The drawback of this

simple theory is that, while it may describe macroscopic droplets reasonably well,

it is very inaccurate for the smallest clusters. It fails even for small argon clusters

(Merikanto et al., 2007), and can be expected to perform even worse for substances

with more complicated interactions. As liquid droplet energies are very quick to

calculate and still have some physical foundation, they are convenient for studying

general principles of cluster formation and growth (Olenius et al., 2014). However,

they should not be used to draw any quantitative conclusions. Instead, cluster

energies can be calculated more accurately using quantum chemical methods.

2.3.1 Cluster energies from quantum chemistry

Quantum chemistry refers to finding approximate solutions for the Schrödinger

equation (Schrödinger, 1926)

ĤΨ = EΨ , (17)

where Ψ is the wave function of the electrons and nuclei, Ĥ = K̂+ V̂ is the Hamil-

tonian consisting of a kinetic energy part K̂ and a potential energy part V̂ , and E

is the energy eigenvalue corresponding to the state Ψ. Exact solutions can only be

found for problems with one particle and a simple enough potential, but various

schemes have been developed over the years for tackling more complicated prob-

lems with many nuclei and even more electrons. The first simplification to be made

is the Born-Oppenheimer approximation, stating that due to the large difference

in the masses of electrons and nuclei, the time scale related to electron motion is

much shorter than the time scale of nuclear motion, and the wave function can be

separated into a part corresponding to the electrons and a part corresponding to

the atomic nuclei with negligible loss of accuracy. It is usually also assumed that

the wave function of the nuclei is much less widely spread than that of the electrons,

and that the nuclei are either located at their minimum energy configuration or
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oscillate close to those positions. With these assumptions, the remaining task is to

solve the electronic wave function and corresponding lowest energy eigenvalue with

different configurations of the nuclei, add to this energy the contribution from the

repulsion between the nuclei, and move the nuclei around to minimize the overall

energy of the system.

Methods for solving the electronic part of the Schrödinger equation can be divided

into two categories: wave function methods and density functional methods. The

simplest wave function method is the Hartree-Fock (HF) method (or self-consistent

field method), and it is also the basis for the more advanced wave function methods.

Each electron is treated as moving alone in a potential determined by the electric

fields of the stationary nuclei and the average field created by the other electrons.

As the potential experienced by each electron depends on the wave function of

all other electrons, and the wave functions, on the other hand, depend on these

potentials, the equations need to be solved iteratively. The basic idea is to start

from some set of wave functions for the electrons, compute the electron-electron

interaction potentials, solve a new wave function for each electron, and continue

the procedure until the potentials and wave functions no longer change. At each

iteration, the eigenfunctions with lowest energies are selected, and at the end

of the iteration process they are combined into a many-electron wave function

corresponding approximately to the ground state of the system. The many-electron

wave function is formed from the one-electron orbitals as a Slater determinant, in

order to ensure antisymmetry with respect to the exchange of two electrons. In

practice, the one-electron wave functions are constructed as linear combinations

of a finite set of basis functions, and increasing the size of the basis set improves

the accuracy of the results. The variational principle ensures that the ground-

state energy obtained from a Hartree-Fock calculation is always an upper limit

to the true ground-state electronic energy. However, even disregarding the error

resulting from a finite basis set, the Hartree-Fock method does not give the true

solution to the full many-electron problem because of the simplifications made in

the description of electron-electron interactions. While the exchange interaction

related to the antisymmetry of many-electron wave functions is taken properly into

account by using a Slater determinant, the Coulomb interaction between electrons

is only treated in an averaged way.

So-called post-Hartree-Fock methods build upon the results obtained from a

Hartree-Fock calculation but attempt to overcome this deficiency. Some of the
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commonly used methods include Møller-Plesset second order perturbation theory

(MP2), configuration interaction methods (CI) and coupled cluster methods (CC).

They all start by using the Hartree-Fock one-electron orbitals, both those appear-

ing in the HF ground state many-electron wave function (occupied orbitals) as

well as higher-energy one-electron wave functions corresponding to excited states

(virtual orbitals), to construct a basis set of several many-electron wave functions.

These many-electron wave functions can be classified according to how many elec-

trons are excited from the Hartree-Fock ground state solution to some higher

energy orbitals. Singly excited states refer to many-electron wave functions where

one electron is in a virtual orbital, doubly excited states have two electrons in

virtual orbitals and so on. In the MP2 method, these excited states together with

the ground state are used as a basis set for calculating an energy correction using

second order perturbation theory, while in the two other methods a many-electron

wave function is constructed as a linear combination of these basis functions and

is then inserted into the Schrödinger equation. The CI and CC methods differ in

which excitations are included in this linear combination and how their coefficients

are determined.

In density functional theory (DFT), the whole problem of solving the Schrödinger

equation is reformulated so that the quantity to be solved is no longer the many-

electron wave function but the total electron density. Electron-electron interac-

tions are, in principle, inherently taken fully into account, but in practice the exact

form of the functional describing them is not known. Instead, some approximation

must be used, and different density functional methods employ different exchange-

correlation functionals for computing the approximate electron-electron interaction

energy based on the electron density. The exchange-correlation functional may de-

pend either only on the electron density (local density approximation, LDA) or also

on the gradient of the electron density (generalized gradient approximation, GGA),

and hybrid functionals combine an LDA or GGA functional with the Hartree-Fock

exact exchange energy. The electron density is expressed as the square sum of

so-called Kohn-Sham orbital wave functions, and the equation for the energy as a

functional of the electron density is transformed into Hartree-Fock-type equations

for the Kohn-Sham functions. These Kohn-Sham equations are solved iteratively

like in the Hartree-Fock self-consistent-field method. Once again, the one-electron

functions are constructed as linear combinations of some set of basis functions,

and solving the Kohn-Sham equations is equivalent to finding the best coefficients

for the basis functions. In accordance with the variational principle, the DFT
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energy is always higher or equal to the exact energy corresponding to the specific

functional used. However, this energy can, in turn, be either lower or higher than

the true electronic energy of the system. Therefore, the arguments showing that

the HF energy is always an upper bound to the exact ground-state energy do not

apply to DFT methods, despite the similarity between the Kohn-Sham equations

and the Hartree-Fock equations.

The basis functions used in Hartree-Fock and DFT calculations are most often

functions roughly corresponding to the atomic orbitals of each atom. The smallest

possible basis set includes one spatial basis function for every two electrons, in

practice those corresponding to the occupied orbitals in the free atoms, and for

most atoms a few additional orbitals to ensure proper symmetry. In practice,

instead of using only one basis function per orbital, additional basis functions with

the same angular symmetry and same number of nodes in the radial direction but

slightly different shape are typically used at least for the orbitals of the valence

electrons of each atom. Also additional higher energy p- and d-type orbitals can be

included to account for polarization of the valence orbitals when forming bonds.

Once the minimum energy geometry of the atomic nuclei has been found, their

motion still needs to be examined. Also the movement of the nuclei needs to be

treated using quantum mechanics, but doing this explicitly even for a few bonds

gets very complicated (Partanen et al., 2012). Therefore, all vibrational degrees

of freedom are usually approximated as uncoupled harmonic oscillators and the

whole molecule or cluster is treated as a rigid rotor. After determining the cur-

vature of the potential energy surface close to the minimum energy configuration,

energy levels of the harmonic oscillators can be calculated analytically. Solving

the energy levels of the rigid rotor only requires the moments of inertia calculated

from the masses and coordinates of the nuclei. These energy levels can be used

for computing the thermal energy related to rotations and vibrations at a given

temperature. For small molecules, this rigid-rotor-harmonic-oscillator (RRHO) ap-

proach may be a reasonable approximation, although even then anharmonicities of

the vibrations and couplings between different vibrations and between vibrations

and rotations may be non-negligible. For clusters with stronger bonds within the

molecules and weaker bonds between them, the approximation is less justified. In

fact, a first-principles molecular dynamics study by Loukonen et al. (2014b) inves-

tigating some of the clusters used in this Thesis showed that the molecules rotated

inside the clusters breaking inter-molecular bonds and forming new ones. How-
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ever, if the aim is, as in this Thesis, to calculate reasonably reliable energies for a

comprehensive set of clusters instead of calculating an extremely accurate energy

for a single small cluster, the only feasible way for treating the nuclear motion is

to use the RRHO approximation. While this approach is far from perfect, it is

much better than neglecting the motion of the nuclei altogether.

Hartree-Fock is the most simple and, apart from semiempirical methods, compu-

tationally least demanding electronic structure method. On the other hand, it is

also not very accurate, and is therefore most often used only as a starting point

for more advanced wave function methods. The CI and CC methods approach the

exact solution of the many-electron Schrödinger equation when all possible exci-

tations are included, and they also give good results when only single, double and

possibly triple excitations are used, which is in practice often done. The drawback

of these methods is that they are computationally demanding and only applicable

for small systems, especially when using more than doubly excited states. Further-

more, as the first task is to find the minimum energy configuration of the nuclei,

a large number of electronic structure calculations needs to be performed with

different positions of the nuclei before the optimal geometry is found. More opti-

mization steps and also more optimization processes starting from different initial

guesses will typically be required for larger systems, unfortunately making these

best methods inapplicable for the clusters studied in this Thesis. DFT methods

are far from being as accurate as the best post-Hartree-Fock wave function meth-

ods, but they still account for most of the electron correlation energy while being

computationally much less demanding.

The cluster formation energies used in Papers I–V of this Thesis were mostly com-

puted with a combination of lower- and higher-level quantum chemistry methods

as described by Ortega et al. (2012). The cluster geometries were first optimized

with DFT, using the B3LYP hybrid functional (Becke, 1993) and a CBSB7 basis

set (Montgomery et al., 1999). The same method was also used for computing

the harmonic frequencies for the vibrational motion of the nuclei around their

minimum energy positions. An RI-CC2 calculation (Hättig and Weigend, 2000)

with an aug-cc-pV(T+d)Z basis set (Dunning et al., 2001) was then performed

for the configuration corresponding to the lowest energy at the B3LYP/CBSB7

level. The RI-CC2 method is an approximate version of CCSD, the coupled clus-

ter method including single and double excitations, and its accuracy is typically

between MP2 and CCSD. The RI-CC2 electronic energy was combined with the
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lower-level RRHO thermal corrections to get an approximate Gibbs free energy for

each molecule and cluster. The advantage of such combination methods is that the

electronic energy is calculated with a higher level method than would be possible

if the same method was used for the geometry optimization. As a drawback, the

geometry used in the electronic energy calculation does not correspond to the op-

timal configuration at that level of theory. The error caused by this discrepancy is

expected to cancel out when calculating stepwise energy changes between clusters

of different sizes, but there is no guarantee for this to be the case.

In Paper III, three quantum chemical methods are used for computing clus-

ter energies and evaporation rates: the combination method described above, a

pure DFT method, and a higher level composite method combining different post-

Hartree-Fock methods for calculating the electronic energy and using HF for the

vibrational frequencies. These three sets of evaporation rates were used in clus-

ter formation simulations, and the differences in the cluster distributions were

found to be quite dramatic. Noting that different quantum chemical methods

yield different cluster formation energies is not, in itself, a new finding, and more

extensive method comparisons have been presented by Leverentz et al. (2013) and

Elm et al. (2013). However, Paper III is the first study illustrating how these

differences propagate to simulated cluster distributions. For some of the smaller

electrically neutral clusters considered in the paper, the three quantum chemistry

methods yielded Gibbs free energies of formation that were within 1.5 kcal/mol

of each other, but already for the stepwise energy difference between the clusters

containing two sulfuric acid molecules and one or two DMA molecules, the pure

DFT method differed from the two other methods by 10 kcal/mol. This translates

into a difference of seven orders of magnitude in the cluster lifetime (half a mil-

lisecond for the DFT method vs. more than an hour for the composite methods)

and qualitative differences in predicted steady-state cluster distributions in some

atmospherically relevant conditions. In the light of the findings of Paper III,

it should be kept in mind that while quantum chemistry is the best theoretical

approach for computing cluster energetics, it must not be expected to provide the

absolute truth. In some situations, quantum chemical calculations may not even

give a correct qualitative prediction for cluster concentrations. Furthermore, the

reliability of different quantum chemistry methods has mostly been tested only for

single molecules or crystal structures, and there is no way to asses conclusively

their performance on loosely bound molecular clusters. On the other hand, in

some special cases such as that discussed in Paper I, the predicted concentrations
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may agree even quantitatively with measurements if the evaporation time scales

of all clusters are either much shorter or much longer than the time scale of the

experiment.

2.4 Cluster kinetics simulations

Performing cluster kinetics simulations is, at least in principle, very straight-

forward once the rate constants have been determined. The birth-death equations

(Eq. 1) give the time derivative of each cluster concentration, and integrating the

equations numerically with respect to time yields the time evolution of the cluster

concentrations. One minor difficulty is that the system of differential equations

is often stiff, but at least the ode15s solver (Shampine and Reichelt, 1997) for

Matlab used in Papers I–IV and the VODE routine (Brown et al., 1989) for

Fortran used in Paper V are suitable tools for integrating the equations.

The most difficult task may, in fact, not be solving the equations but writing them

out. Even a moderate number of clusters results in a large number of equations

if all pairs of clusters can collide with each other, and writing the birth-death

equations manually is time-consuming and error-prone. Ideally, the equations

could be written using sums over all clusters, but the necessity of using a limited

set of clusters complicates matters. The Atmospheric Cluster Dynamics Code

(ACDC) used in Papers II–V has been devised to automate the generation of

the differential equations taking these finite-size effects into account.

2.4.1 Consequences of a finite system size

In principle, the birth-death equations describe all possible collision and evapora-

tion processes between all possible clusters up to arbitrarily large sizes. In practice,

however, the equations can only be integrated for a finite set of clusters, and using

quantum chemistry for evaluating the evaporation rates limits the studied cluster

sizes further. Some collisions between species included in the system will then nec-

essarily lead to the formation of clusters outside the studied set of clusters. If an

evaporation rate is not available for the formed cluster, it is not clear what its fate

will be. However, trends of the evaporation rates of clusters inside the system with

respect to their composition may give a good indication. For instance, in sulfuric
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acid–base cluster formation, the most stable clusters have a similar number of acid

and base molecules, while pure base clusters and pure acid clusters are unstable

(Olenius et al., 2013a).

If a collision leads to a cluster growing out of the system in an unfavorable direction,

the produced cluster is more likely to evaporate back into the studied system than

to grow further. For instance, if the collision of clusters A and B produces cluster

C that is outside the studied system and expected to be unstable, if C is expected

to be most likely to evaporate molecule D to form cluster E that is still beyond the

limits of the system, and if E will most probably evaporate another molecule D

and produce cluster F, which is one of the studied clusters, the simplified reaction

A + B −−→ F + 2 D can be used in the birth-death equations.

On the other hand, when collisions produce clusters that are outside the limits of

the system but that are expected to have low evaporation rates, these should not

be forcefully brought back to smaller sizes by removing molecules. Instead, such

collisions contribute to the formation rate of stable big clusters, often referred to as

the nucleation rate. In Paper II, the simulated particle formation rate defined in

this way is compared to the experimental formation rate determined from measured

particle concentrations. It should, however, be noted that these two definitions for

the formation rate are not quite equivalent, and the good agreement in Paper II

is partly coincidental.

2.4.2 Averaging over hydrate distributions

Including water vapor and hydrated clusters in cluster kinetics simulations of sul-

furic acid–base cluster formation at atmospheric conditions increases the stiffness

of the birth-death equations, and makes them in practice unsolvable even with

the Matlab ode15s solver designed specifically for stiff systems. The problems

stem from the concentration of water vapor being around ten orders of magnitude

higher than the concentrations of the other vapors, and on the other hand water

molecules being very loosely bound to the clusters and having high evaporation

rates. As a result, the time scale of all processes involving the addition and re-

moval of water molecules is orders of magnitude shorter than the time scale of

other growth, evaporation or loss processes. This division into two separate time

scales can, however, be turned into an advantage by using a similar reasoning as

in the Born-Oppenheimer approximation. All other processes happen so slowly
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from the point-of-view of hydration processes that the hydrate distributions of all

molecules and clusters can be assumed to relax to the equilibrium distribution im-

mediately after any longer-time-scale process. Therefore, the individual hydrates

do not need to be considered separately, but can instead be averaged over. Such

an approach was first introduced for sulfuric acid–water nucleation by Shugard

et al. (1974) using classical liquid droplet energies, but they only allowed colli-

sions and evaporations of individual sulfuric acid and water molecules. Yu (2005)

developed a different quasi-unary sulfuric acid–water model, where one hydration

number corresponding to the lowest Gibbs free energy of formation is chosen for

each number of sulfuric acid molecules, and only growth and evaporation pro-

cesses along the sulfuric acid coordinate are considered. Later, the method was

also extended to describe sulfuric acid–ammonia–water nucleation in a quasi-unary

fashion (Yu, 2006). The original method of Shugard et al. (1974) does not allow

the hydrates of sulfuric acid monomers to contribute to cluster growth, although

they were found to dominate over dry sulfuric acid molecules in the studied con-

ditions. The method of Yu (2005) fixes this problem, but still only considers the

evaporation of bare sulfuric acid monomers. A third approach is to calculate col-

lision and evaporation rates for all combinations of different hydration states for

all participating clusters, and then average these over the hydrate distributions

of the evaporating cluster or the two collision partners. This procedure was first

introduced by Paasonen et al. (2012) and is used in Paper II to study the effect

of relative humidity on sulfuric acid–dimethylamine particle formation rates.

24



3 From observations to microscopic properties

of the clusters?

As has been discussed in the first part of this Introduction, theoretical predictions

for rate constants can be validated by using them in cluster formation simulations

and comparing the results with experimental findings. However, if the simulations

and measurements do not agree, as is likely to happen, it is unclear what conclu-

sions should be drawn. Is the problem in the simulations or in the measurements?

If the error is in the simulations, could it be that only one cluster energy is slightly

inaccurate, but the error propagates and, due to the highly nonlinear nature of the

problem, has drastic effects on the simulation results? Or is it more likely that all

collision rates are systematically wrong because of an insufficient understanding of

intermolecular interactions?

In order to answer these questions, or completely avoid them, it would be useful

to be able to determine the rate constants or other microscopic cluster properties

directly based on measurements. Since the dependence of concentrations on rate

constants cannot, in general, be described by a closed-form function that could

be inverted to solve rate constants based on concentrations, the problem must

be approached in a more roundabout way. Some relatively straight-forward but

somewhat problematic approaches for determining cluster energies based on equi-

librium concentrations are described in Section 3.1. The widely used slope analysis

method devised for finding the highest-energy cluster along the formation pathway

is presented in Section 3.2, and some flaws of the method pointed out in Paper

IV are summarized in Section 3.2.2. Finally, Section 3.3 discusses some earlier at-

tempts at determining rate constants by fitting a model to experimental data, and

an extensive framework introduced in Paper V for determining all rate constants

is presented in Section 3.3.2.

Attempts at determining rate constants or cluster energies from cluster measure-

ments raise a whole new set of questions regarding the reliability of experimental

results. What happens inside the instruments used for measuring cluster concen-

trations? How accurate is the conversion from instrument count rates to cluster

concentrations? Are all clusters measured with the same detection efficiency?

Does the composition of some clusters change in the instrument before they are

detected? Also these questions are discussed briefly in Sections 3.1 and 3.3.
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3.1 Cluster energies from equilibrium concentrations

For a cluster population at constant pressure and temperature, the appropriate

energy quantity for comparing cluster stabilities is the Gibbs free energy of for-

mation. If the system is in equilibrium, the concentrations follow the Boltzmann

distribution

Ceq
i ∝ exp

(
−∆Gi

kBT

)
, (18)

where Ceq
i is the concentration of molecule or cluster i, ∆Gi is its Gibbs free energy

of formation, kB is the Boltzmann constant and T is the temperature. Thus, by

measuring cluster concentrations, it would be possible to solve directly the cluster

formation free energies. An outline of the procedure is presented in Figure 2.

This approach has been used already in the 1960s for ionic clusters (Hogg and Ke-

barle, 1965; Kebarle and Hogg, 1965; Hogg et al., 1966), and is still the dominant

method for experimental determination of cluster energies (Froyd and Lovejoy,

2003a,b, 2012). It has also been extended to neutral clusters by employing chem-

ical ionization mass spectrometry (Hanson and Lovejoy, 2006) or infrared (IR)

spectroscopy (Hippler, 2007; Bork et al., 2014a,b). There are, however, several

caveats in the measurements and data analysis that must be considered. Most of

these were actually discussed to some extent already in the very first papers (see

for instance Hogg et al., 1966).

First of all, the cluster distribution must be in equilibrium. In other words, no

larger particles are allowed to form. This can be achieved by using low enough

vapor concentrations that while small clusters are formed, a barrier in the forma-

tion free energy surface inhibits effectively the formation of larger clusters. Even

if some nucleation occurs, the steady-state size distribution of clusters below the

Equilibrium
cluster

distribution

Mass spectrometer

?

Values of
equilibrium

cluster
concentrations

Cluster
formation
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counts

Vacuum

Altered
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Figure 2: Outline of the process for obtaining cluster energies from a cluster dis-

tribution measurement.
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critical size is close to the Boltzmann distribution (Yasuoka and Matsumoto, 1998)

if the system exhibits a high energy barrier. In order for the system to reach equi-

librium or a steady-state, the time that the clusters are allowed to grow before

being either measured or lost on walls or, in case of ions, by recombination must

be longer than their lifetime with respect to growth and evaporation processes

(Hogg and Kebarle, 1965).

In case of hydrate distributions of ions, the requirement of reaching equilibrium

is, in general, not a problem. Water has a high equilibrium vapor pressure, so

high vapor concentrations can be used without worrying about nucleation. The

high vapor concentration and high evaporation rates result in a short time scale

for collision and evaporation processes, and the hydrate distribution is likely to be

close to equilibrium regardless of any other processes such as external losses. The

situation is more complicated for substances that form strongly bound clusters,

as a high vapor concentration leads to particle formation and a too low vapor

concentration enhances the effect of external losses.

Once the desired equilibrium cluster distribution has been produced, the next

question is whether it can be measured. In the experiments where a mass spec-

trometer is used, the interface between the chamber where the clusters are formed

and the instrument must be considered in detail. When a sample enters a mass

spectrometer, it experiences a substantial pressure drop. Before entering the in-

strument, a dynamic equilibrium is maintained by molecules colliding with clusters

at a rate equal to that of molecules evaporating from the clusters, but after the

monomer concentration has been lowered by vacuum pumps, evaporation processes

start to dominate. If the evaporation life times of the clusters are shorter than

the residence time in the mass spectrometer, the clusters are detected at lower

masses than what they had when they entered the mass spectrometer (Hogg and

Kebarle, 1965). Fragmentation of the clusters can also be induced by energetic

collisions with carrier gas molecules when the ions are accelerated (Hiraoka and

Kebarle, 1975; Froyd and Lovejoy, 2003a, Adamov et al., 2013). On the other

hand, in some experimental set-ups the sample is cooled adiabatically in the inlet

of the mass spectrometer. This may lead to growth of the clusters if evaporation

rates decrease with decreasing temperature faster than the monomer concentra-

tion decreases (Hogg and Kebarle, 1965). These processes cannot be completely

eliminated, but the extent to which cluster sizes change in the inlet of the mass

spectrometer can be varied by tuning flow rates, electric fields and other parame-
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ters, and this can give some insight into the importance of these phenomena (Hogg

and Kebarle, 1965; Hiraoka and Kebarle, 1975; Froyd and Lovejoy, 2003a).

Another issue related to measuring the cluster distribution with a mass spectrom-

eter is the mass dependence of the transmission and detection efficiency of the

instrument (Hogg and Kebarle, 1965; Ehn et al., 2011). The ion counts must,

in principle, be converted to concentrations in order to obtain cluster energies.

However, as only the concentration ratios between consecutive clusters are needed

for determining step-wise formation energies, the effect of mass discrimination is

often neglected on the basis that the counting efficiency does not differ much for

two consecutive cluster sizes (Hogg and Kebarle, 1965; Froyd and Lovejoy, 2003a).

A more sound approach is to convert the ion counts to concentrations using a

mass-dependent transformation, but obtaining reliable conversion functions is far

from trivial (Ehn et al., 2011). When neutral clusters are charged by chemical ion-

ization before entering the mass spectrometer, differences in charging probabilities

between the clusters (Paper III) add to the uncertainty in converting ion counts

to concentrations, and changes in composition after ionization (Paper III, Or-

tega et al., 2014) complicate the assignment of the observed masses to the original

neutral clusters.

Experiments based on IR spectroscopy avoid the problems related to sampling and

fragmentation encountered when using a mass spectrometer, as the measurement

can be performed in the same mixing cell where the clusters are produced (Hippler,

2007; Bork et al., 2014a,b). On the other hand, converting the signal into a cluster

concentration requires the absorption coefficient of the cluster, which can only be

obtained from quantum chemistry. Therefore, cluster energies determined from IR

measurements are, in a sense, not purely experimental.

A different approach with regard to the transmission efficiency of different clusters

through an instrument was introduced by Hanson and Eisele (2000). In their study,

the fact that different clusters have different transmission probabilities through a

flow reactor was not a problem to be solved or avoided, but instead the key to

a new way of determining formation energies of neutral clusters. The effective

sulfuric acid wall loss in a laminar flow tube was determined at different relative

humidities by introducing sulfuric acid vapor in the flow tube and measuring its

concentration with a Chemical Ionization Mass Spectrometer (CIMS) at different

points along the tube. The CIMS was assumed to detect the plain acid molecule

and its hydrates as bisulfate ions with identical efficiency. The sulfuric acid hydrate
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distribution was solved from the overall wall loss of sulfuric acid based on the

different diffusion limited wall loss constants of the plain acid molecule and its

hydrates. The diffusion coefficients of the hydrates were estimated theoretically,

leading to the drawback of also this method not being purely experimental.

A similar idea is taken further in the experiment proposed in Paper III. The

method is based on acid-base clusters having a different detection efficiency than

acid monomers in the CIMS, but now these efficiencies do not need to be known in

advance. The total sulfuric acid concentration in an experiment chamber is kept

constant, and the base concentration is varied over several orders of magnitude.

The bisulfate signal in the CIMS is measured at each base concentration, and the

point where it is halfway between its low-base and high-base limits gives the base

concentration where half of the sulfuric acid molecules are clustered with a base

molecule. This base concentration can be used to solve the Gibbs free energy of

formation of the cluster. The only requirement is that the neutral molecules and

clusters are close to equilibrium, or in practice in a steady state where collisions

between acid and base monomers are much more frequent than any processes

removing acid molecules or acid-base dimers from the experiment. Such losses

include for instance deposition on walls. Also growth of clusters to larger sizes

must be negligible, which means that the acid concentration must be low enough.

3.2 The critical cluster from the nucleation theorem

While the equilibrium distribution is the distribution best suited for solving cluster

energies, reaching equilibrium is only possible in situations where clusters do not

grow to large sizes. However, the main focus in the study of atmospheric particle

formation has often been in understanding and quantifying the formation of par-

ticles large enough to act as cloud condensation nuclei. This requires a diameter

of at least some tens of nanometers, corresponding to hundreds of thousands or

millions of molecules.

The gas-to-liquid phase transition occurring when particles are formed from vapor-

phase molecules has generally been assumed to proceed by nucleation. This means

that the particle formation free energy surface has a barrier that has to be crossed

before particle growth becomes energetically favorable. The cluster with the high-

est free energy of formation is called the critical cluster.
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Theoretical research on first-order phase transitions and nucleation led to the dis-

covery of the nucleation theorem (Nielsen, 1964; Kashchiev, 1982)(
∂log J

∂logC

)
T

≈ n∗ (19)

relating the steady-state nucleation rate J , the precursor concentration C and

the critical cluster size n∗ at constant temperature T . This simple formula has

given rise to a seemingly easy-to-use data analysis scheme often referred to as

slope analysis. Particle formation rates are determined experimentally at different

precursor concentration, the data is presented on a log-log scale, and the slope of

a linear fit to the data points is interpreted as the critical size. An outline of the

procedure is presented in Figure 3.
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Figure 3: Outline of the process for solving the critical cluster size from particle

formation experiments. Both steps, obtaining the nucleation rate and applying

the nucleation theorem, are problematic.

3.2.1 The theory behind slope analysis

In the simplest case of a one-component system with no cluster-cluster collisions,

no splitting of clusters into two non-monomer products and no external losses, the

dynamics of the system is described by the Szilárd-Farkas scheme where the net

fluxes between two consecutive cluster sizes are

Ik = β1,kc1ck − γ1,kck+1 , (20)

where c1 is the monomer concentration of the vapor, ck and ck+1 are the concen-

trations of clusters consisting of k and (k + 1) molecules, respectively, β1,k is the

collision frequency between the monomer and the k-molecule cluster, and γ1,k is

the evaporation rate of a molecule from the (k + 1)-molecule cluster. In equilib-

rium, the collision and evaporation fluxes would be in equal, resulting in the net

flux being zero. Another special case is the steady-state where all concentrations

are time-independent but there is a net flow through the system as clusters form
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and grow to big sizes. The time derivative of each cluster concentration is zero,

and can be expressed as
dck
dt

= Ik−1 − Ik = 0 , (21)

in terms of the fluxes to and from that cluster.

Calculating d(log J)/d(log C)

Following the reasoning of McGraw and Wu (2003), the steady-state formation

rate can be solved from Eqs. (20) and (21) with the help of so-called “constrained

equilibrium” concentrations ck,0. These are defined through the detailed balance

condition

β1,kc1ck,0 = γ1,kck+1,0 (22)

and setting c1,0 = c1. Eq. (20) can now be written as

Ik = β1,kc1ck − β1,k
c1,0ck,0
ck+1,0

ck+1

= β1,kc1ck,0

(
ck
ck,0
− ck+1

ck+1,0

)
,

which can be rearranged to

Ik
β1,kc1ck,0

=
ck
ck,0
− ck+1

ck+1,0

. (23)

From Eq. (21), it follows that all fluxes Ik are equal in steady-state. In particular,

all the fluxes are equal to the nucleation rate J , which is defined as the flux from

the critical size n∗ to the size n∗ + 1. Substituting J for Ik and summing both

sides of Eq. (23) over all cluster sizes up to some big number N gives

J

N∑
k=1

1

β1,kc1ck,0
=

c1

c1,0

− c2

c2,0

+
c2

c2,0

− · · · − cN−1

cN−1,0

+
cN−1

cN−1,0

− cN
cN,0

= 1− cN
cN,0

, (24)

where the ratio of steady-state and “constrained equilibrium” concentrations at

size N still needs to be solved in order to calculate the nucleation rate.

Based on the detailed balance condition (22), the “constrained equilibrium” cluster

concentrations have a power law dependence

ck,0 =

(
k−1∏
j=1

β1,j

γ1, j

)
ck1 (25)
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on the monomer concentration. If the stability of the clusters increases with in-

creasing size so that γ1,k/(c1β1,k) < a for some number a < 1 and all values of k

beyond some size, it follows from Eq. (25) that cN,0 →∞ when N →∞. On the

other hand, assuming that in steady-state the net flux is dominated by collisions

(γ1,kck+1 � β1,kc1ck) for all values of k beyond some size, the steady-state concen-

trations of large clusters are approximately ck ≈ J/(c1β1,k). If the collision rates

increase with increasing size, or at least decrease slower than 1/ck,0, it follows that

cN/cN,0 → 0 as N → ∞. Taking the limit N → ∞ in Eq. (24) then yields the

expression

J =

(
∞∑
k=1

1

β1,kc1ck,0

)−1

(26)

for the steady-state nucleation rate in terms of the “constrained equilibrium” clus-

ter concentrations.

Going back to Eq. (25), the derivatives of the “constrained equilibrium” concen-

trations with respect to the monomer concentration are(
∂ck,0
∂c1

)
T

= k
ck,0
c1

,

when the temperature and thereby the collision and evaporation rates defining the

concentrations ck,0 are kept constant. The derivative of the nucleation rate (Eq.

26) is(
∂J

∂c1

)
T

= −

(
∞∑
k=1

1

β1,kc1ck,0

)−2 [ ∞∑
n=1

−1

β1,n (c1cn,0)2

(
cn,0 + c1n

cn,0
c1

)]

=
J

c1

(
∞∑
k=1

1

β1,kc1ck,0

)−1 ∞∑
n=1

n+ 1

β1,nc1cn,0
,

which can be rewritten in terms of a logarithmic derivative as(
∂log J

∂log c1

)
T

=

∑∞
n=1

n+1
β1,nc1cn,0∑∞

k=1
1

β1,kc1ck,0

=

∑∞
n=1 f(n)n∑∞
k=1 f(k)

+ 1 = 〈n〉+ 1 , (27)

where 〈n〉 is the average of the cluster size n over the distribution f(n) =

1/(β1,nc1cn,0).
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It should be noted that, so far, the “constrained equilibrium” concentrations have

been used simply as a shorthand notation, and the same results can be derived di-

rectly in terms of the collision and evaporation coefficients by substituting Eq. (25)

into Eq. (23). This approach was first presented by Ford (1997) before McGraw

and Wu (2003) introduced the “constrained equilibrium” concentrations.

Connecting the slope to the energy profile

If the evaporation rates are properties of the clusters and independent of the sur-

rounding vapor as assumed in Section 2.3, they can be solved from the detailed

balance condition applied to any equilibrium distribution. The evaporation rate

of a monomer from the (n+ 1)-molecule cluster is (see Eqs. 12–16)

γ1,n = β1,n
p	

kBT
exp

(
G	n+1 −G	n −G	1

kBT

)
, (28)

where the G	’s are the Gibbs free energies of the three species, p	 is the reference

pressure at which the free energies are evaluated, kB is the Boltzmann constant,

and T is the temperature. Inserting Eq. (28) into Eq. (25) and using the ideal gas

law for the monomer concentration, the “constrained equilibrium” concentrations

can be written as

cn,0 = cn1

n−1∏
j=1

[
kBT

p	
exp

(
−
G	j+1 −G	j −G	1

kBT

)]

= c1

(
p1

kBT

)n−1(
kBT

p	

)n−1

exp

(
−G

	
n − nG	1
kBT

)
= c1 exp

(
−Gn,c1 − nG1,c1

kBT

)
= c1 exp

(
−∆Gn,c1

kBT

)
, (29)

where the third and fourth equalities, respectively, result from transforming the

Gibbs free energies from pressure p	 to pressure p1 = kBTc1 as

Gi,c1 = G	i − kBT log

(
p1

p	

)i
,

and denoting the Gibbs free energy of formation of the n-molecule cluster from

monomers as ∆Gn = Gn − nG1.

If the Gibbs free energy of formation has one high and narrow global maximum

at the critical size n∗, and the size dependence of the collision rate constant β1,n

is not very strong, the function

f(n) = (β1,nc1cn,0)−1 =
(
β1,nc

2
1

)−1
exp

(
∆Gn,c1

kBT

)
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introduced in Eq. (27) will peak even more strongly than the formation free energy

at the critical size n∗. If this is the case, the term corresponding to the critical

cluster size will dominate the sums in Eq. (27), leading to the one-component

nucleation theorem (
∂log J

∂log c1

)
T

≈ n∗ + 1 .

The theorem has also been generalized for some special cases of multicomponent

nucleation by McGraw and Wu (2003) and McGraw and Zhang (2008). Paper

IV presents in detail another derivation of the multicomponent nucleation theorem

with a different set of assumptions, as well as a discussion of these assumptions.

3.2.2 The reality of slope analysis

While slope analysis seems, at a first glance, like a powerful and easy-to-use tool,

it is important to keep in mind the details of the derivation of the nucleation

theorem. Along the way, several very drastic approximations and assumptions are

made. First and foremost, it is assumed that there are no external losses and no

coagulation to big particles. This simplification leads to the nucleation theorem

not being valid in practically any realistic situation, the possible exceptions being

cases like expansion chamber experiments where extremely high nucleation rates

can be achieved.

If the effect of external losses can be argued to be negligible in some specific

situation, the derivation still contains several other problematic assumptions. The

clusters are assumed to grow solely by the addition of single molecules, while for

instance in sulfuric acid–driven particle formation, a large fraction of sulfuric acid

molecules are expected to be clustered with one or more water molecules and there

is no reason to believe that these small clusters would not participate in particle

formation and growth. The formation free energy curve, or for multicomponent

nucleation the formation free energy curve along the formation pathway, is assumed

to have one high maximum that dominates the summation in Eq. (27). Based on

quantum chemical calculations, it seems plausible that the formation energy curve

may instead have several local maxima and that several cluster sizes can have

non-negligible contributions to the summation as discussed in Paper IV.

Even assuming that the nucleation theorem would, in principle, be valid in some

given situation, there are some practical problems to be overcome before employing
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it. First of all, the nucleation rate is not a directly measurable quantity. What

can be measured is the particle concentration in a specific size range or above

some cutoff size. If the main assumptions of the nucleation theorem are valid,

namely there are no external losses and no coagulation (that is, no collisions where

neither of the collision partners is a monomer), the nucleation rate can be obtained

directly as the time derivative of the particle concentration above some given

size. Otherwise, calculating the nucleation rate requires further assumptions and

approximations as well as knowledge about the external losses and the particle

growth rate. As the growth rate cannot be measured directly or obtained reliably

from concentration measurements (Olenius et al., 2014), an accurate determination

of the nucleation rate is also not possible. Furthermore, there are several other

technical problems related to determining the slope of the nucleation rate, keeping

the monomer concentrations of all but one of the precursor compounds constant

between experiments, measuring the monomer concentrations, and achieving a

steady-state in nucleation experiments. These issues are discussed in detail in

Paper IV.

Due to all the above-mentioned technical and fundamental problems, slope anal-

ysis, while seemingly convenient, cannot be considered a useful tool for analyzing

experimental data and extracting information about cluster properties. However,

as the only information that the nucleation theorem would yield even in an ideal

situation is the approximate size and composition of the critical cluster, discarding

this tool is not a very big loss. While knowing the size of the critical cluster can

be interesting in its own right and even give some vague idea of the dynamics of

the system, it does not give any detailed information about the energetics or time

scale of the cluster formation process.

3.3 Fitting rate constants to produce observed cluster con-

centrations

Sections 3.1 and 3.2 present data analysis methods developed for special idealized

situations: equilibrium or steady-state conditions, respectively, and no external

losses. Both methods are based on an intricate theoretical framework, and as

most of the work is done in the derivation of the method, they are in practice very

simple to use.
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When analyzing cluster distributions in complicated, non-ideal situations, such

easy-to-use, previously-derived tools are not available, and each case must be

treated as a separate problem. What needs to be done is to develop a model

for calculating cluster concentrations based on precursor concentrations and rate

constants, and fit this model to observed cluster distributions (Figure 4). While

this approach is more difficult to implement than those discussed earlier, it also

has one great advantage. It can, at least in principle, be used to solve any num-

ber of rate constants for any set of clusters using measurements from any kind of

experimental setup.

Measured
cluster

distributions

Cluster
distributions

Model

Rate
constants

Cluster
concentrations

Vapor
concentrations

Fitting

Rate constants
corresponding

to the measured
concentrations

Figure 4: Outline of the process for estimating cluster collision and evaporation

rates by combining a cluster formation model with concentration measurements.

3.3.1 Case studies based on traditional optimization methods

A simple but case-specific approach for solving rate constants from concentration

measurements was introduced by Bzdek et al. (2010a). They studied the substi-

tution of one base molecule type by another in small positively charged acid–base

clusters (the acid being sulfuric acid or nitric acid and the base being ammonia,

methylamine, dimethylamine or trimethylamine), and measured the concentra-

tions of different cluster types as a function of time. Each experiment started

by the mass-selection of clusters of a specific composition, and these were let to

react with a high vapor concentration of one base compound. The authors solved

analytically the differential equations describing the time evolution of the cluster

concentrations to get an expression for the concentration of each cluster type as

a function of time. The reaction rates were treated as free parameters, and their

values were optimized to find a best fit to the measured concentrations.
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Each experiment dealt with a maximum of five cluster types, corresponding to

four substitution reaction rates to be fitted. The fitting was done using the sim-

plex method, and a reasonably close agreement was found between the measured

and optimized theoretical concentrations. In later similar experiments focusing on

larger sulfuric acid–base clusters (Bzdek et al., 2010b), positively charged methane-

sulfonic acid–base clusters (Bzdek et al., 2011b) and negatively charged sulfuric

acid–base clusters (Bzdek et al., 2011a), decomposition of some clusters was ob-

served to compete with the studied base-substitution reactions. The assumed

simple reaction scheme was, therefore, not strictly valid, but still described the

system closely enough that the discrepancy was found not to affect significantly

the kinetic analysis.

Jen et al. (2014) took a step towards analyzing more complicated situations. They

used a flow tube to study the formation of neutral clusters from sulfuric acid

and base vapors, the base being either ammonia, methylamine, dimethylamine or

trimethylamine. A Cluster CIMS (a nitrate ion chemical ionization mass spec-

trometer; Eisele and Hanson, 2000; Hanson and Eisele, 2002; Zhao et al., 2010)

was used to detect sulfuric acid molecules and different clusters containing up to

two sulfuric acid molecules. The HSO4
– ion signal was converted into a concen-

tration of neutral sulfuric acid molecules, possibly clustered with water and base

molecules, and the H2SO4 ·HSO4
– ion signal was converted into the summed con-

centration of all neutral cluster types containing two sulfuric acid molecules and

any number of water and base molecules.

As two major precursor compounds (sulfuric acid and a base) were present, and

clusters were forming and growing, a detailed description of the process would have

led to at least tens of unknown rate constants even neglecting the distribution of

different hydration states for each cluster type. Instead of trying to optimize

all these parameters, Jen et al. (2014) laid out two simplified cluster formation

schemes where the addition of a base molecule could take place either only as a

second step after the formation of an unstable pure acid dimer or only as a first

step before the second acid molecule was added. In both schemes, all cluster types

could also be lost to an external sink. All collision rates were set to a fixed value

taken from kinetic gas theory, and most evaporation rates were set to zero. Only

two evaporation rates in the first scheme or one in the second scheme were treated

as free parameters. Even with these simplifications, the models could not be solved

analytically. Instead they were solved numerically both for steady state and for a
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time period corresponding to the residence time in the flow tube. The models were

fitted to the experimental data separately for each of the four base compounds, and

the main qualitative trends of the concentration of two-acid clusters as a function

of precursor concentrations could be reproduced. However, none of the four models

(the two schemes and either steady state or time dependence) could capture all

features of the acid and base concentration dependence for all base compounds.

The study of Jen et al. (2014) serves to illustrate a major obstacle encountered

when fitting cluster models to experimental data: multidimensional optimization

problems are far from trivial, and not having an analytical solution for the time

evolution of cluster concentrations makes the fitting even trickier. On the other

hand, if the cluster model is simplified in order to have less free parameters, the

model might no longer describe the system accurately enough for the fitted pa-

rameters to have a clear physical meaning. If the aim is to obtain a predictive

tool for calculating cluster concentrations as was the case in the study of Jen et al.

(2014), using a simple model can be adequate if it captures all important trends

in the data. If, however, the focus is on solving the rate constants, the dynamics

of the cluster population needs to be described more accurately.

3.3.2 Markov chain Monte Carlo for parameter estimation

Most optimization methods commonly used for multidimensional problems start

from some initial guess for the parameter values, take steps in the parameter space

aiming to decrease the value of the function to be minimized, and stop when a

minimum is found. Starting the algorithm from different initial points may result

in finding different local minima, but there is no general way to ensure that the

global minimum has been found. This drawback is, to a great extent, resolved in

Markov chain Monte Carlo (MCMC) methods.

Like traditional optimization methods, MCMC methods for parameter estimation

are also based on taking steps in parameter space. However, the aim is not to

move always only toward lower values of the function. In fact, although MCMC

methods can be applied to fitting and optimization problems, they are not exclu-

sively optimization algorithms in the sense that they would only give as output

the parameter values corresponding to the best fit or global minimum. Instead,

they provide the probability distribution of different combinations of parameter

values, given the observed data and the probability distribution of measurement
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errors. All parameter values through which the algorithm has walked are saved,

and the steps are chosen so that the distribution of points in this list converges

toward the desired probability distribution.

In the Metropolis algorithm (Metropolis et al., 1953), a random step is taken at

each iteration from the old parameter values kold to some new set of parameter

values knew. In this first and most simple Monte Carlo method, a symmetric ran-

dom walk algorithm is used, meaning that the likelihood Pold,new of choosing a

step to knew when starting from kold is equal to that of choosing a step leading

to kold when starting from knew. In the case of fitting a cluster formation model

to measured concentrations, these parameter values kold and knew correspond to

possible sets of values for rate constants and other unknown parameters to be

determined. These can include for instance collision and evaporation rates, wall

loss constants and probabilities for different clusters to fragment in the instrument

before detection. Once the new parameter values have been chosen, a cluster for-

mation simulation is performed using these values, and the output concentrations

Cnew are compared to the measured concentrations Cexp. Assuming that the mea-

surement errors of the experimental cluster concentrations are independent and

log-normally distributed with variance σ2, the likelihood that the new parameters

would produce the experimental data is

p(Cexp | knew) =
1

(2πσ2)ndata
exp

(
− 1

2σ2
SSnew

)
, (30)

where ndata is the number of experimental data points and

SSnew =

ndata∑
i=1

(log10Cexp,i − log10Cnew,i)
2 (31)

is the square sum of the differences between the logarithms of the measured and

modeled concentrations. If the new parameter values produce the experimental

observations better than the previous values, that is, if SSnew < SSold, the new

point is directly accepted into the list of saved points. Otherwise, the point may

still be accepted, but with a probability that decreases with increasing SSnew. The

two cases can be combined into the joint expression

α = min

(
1, exp

[
−1

2
σ−2(SSnew − SSold)

])
(32)

for the acceptance probability. If the new point is not accepted, the old values

kold are saved again into the list of points as a new entry. Then, a new random
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step is taken from whichever point was accepted into the list of parameter values,

a new simulation is performed, the new point is either accepted or rejected, and

the process is repeated over and over again.

If the algorithm for taking the random steps is ergodic, that is, if any point in

parameter space can be reached in a finite number of steps starting from any other

point, it has been shown by Metropolis et al. (1953) that the list of saved parameter

values converges toward the distribution

π(ki) ∝ exp

(
− 1

2σ2
SSi

)
, (33)

which has the same form as p(Cexp | ki) defined in Eq. (30). This can be illustrated

by considering a large ensemble of systems where a random walker is moving along

the parameter space according to the Metropolis algorithm. If the numbers of

walkers currently located at ki and kj are νi and νj, respectively, and SSi > SSj,

the number of walkers accepting a step from ki to kj is Pi,jνi, as all steps from ki

to kj are accepted. In the opposite direction, SS increases and only a fraction of

the attempted steps are accepted. The number of walkers accepting a step from

kj to ki is Pj,iνj exp[−1/(2σ2)(SSi − SSj)]. As the likelihood Pi,j of attempting

a step from ki to kj is assumed to be symmetric with respect to i and j, the net

flux from ki to kj is

fi→j = Pi,jνi − Pj,iνj exp

[
−1

2
σ−2(SSi − SSj)

]
= Pi,jνj

[
νi
νj
− π(ki)

π(kj)

]
. (34)

If νi/νj > π(ki)/π(kj), there is a net flux toward kj , and if νi/νj < π(ki)/π(kj)

the net flux is in the opposite direction. In both cases, the ensemble moves toward

the distribution defined in Eq. (33).

Assuming that cluster formation can be described adequately with birth-death

equations, MCMC parameter estimation is an extremely powerful tool for infer-

ring rate constants from cluster formation experiments. It performs well even for

problems with tens of unknown parameters, and not having an analytical expres-

sion for the cluster concentrations is not a problem. In addition to collision and

evaporation rates, also other unknown parameters such as the detection efficien-

cies of different clusters or their fragmentation probabilities inside an instrument

can be determined. The method was tested in Paper V by solving evaporation
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rates from simulated cluster distributions where the values for all parameters are

known, and for most of the reactions along the main formation pathway these

correct values could be retrieved from the analysis. MCMC was also applied to

steady-state concentrations of negatively charged sulfuric acid–ammonia clusters

measured in the CLOUD chamber (Olenius et al., 2013b), but there were not

enough experimental data points available to get unambiguous estimates for all

parameters. This setback, in fact, points out the one big weakness in MCMC

parameter estimation: it requires an extensive amount of input data. Getting

collision rates from the data analysis in addition to the evaporation rates was not

even attempted, as this would have required information about the time scale of

the cluster formation process instead of only steady-state distributions. Ideally, all

precursor concentrations should be varied widely and measured accurately, and the

time dependence of the precursor and cluster concentrations should be recorded

over the whole experiment.

While the MCMC analysis applied to the measured cluster concentrations in Pa-

per V did not yet provide a clear picture of which clusters are stable and what

their main formation pathways are, it gave some new insight into the process of

analyzing cluster distribution measurements. First, several very different com-

binations of values for the evaporation rates were observed to yield an equally

good agreement with the measured concentrations. This implies that finding some

model that reproduces well a limited set of cluster concentration measurements

does not necessarily mean that it is the correct model describing the true dynam-

ics of the cluster population. The second major finding was that fragmentation of

clusters in the APi-TOF mass spectrometer seems to affect strongly the shape of

the measured cluster distribution as suggested earlier by Adamov et al. (2013).
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4 Review of papers and the author’s contribu-

tion

Paper I presents simulations of ammonia-to-dimethylamine substitution in small

positively charged and electrically neutral sulfuric acid–ammonia clusters. Ther-

mochemical data for the clusters are also presented. The simulation related to

positive clusters shows good agreement with a previously published experiment.

A comparison between the positively charged and electrically neutral cases points

out how strongly the properties and dynamics of clusters are affected by the charg-

ing state. I performed most of the quantum chemical calculations, wrote the code

for simulating the base substitution processes, performed the simulations and wrote

the paper.

Paper II studies the formation of sulfuric acid–dimethylamine clusters. Most

of the paper is devoted to measurements performed in the CLOUD chamber at

CERN, and the results are complemented with cluster dynamics simulations per-

formed with the Atmospheric Cluster Dynamics Code (ACDC). Dimethylamine is

observed to enhance cluster formation much more strongly than ammonia, and neu-

tral cluster formation is noted to dominate over ionic pathways. The experimental

results and simulations are in qualitative agreement. I participated in develop-

ing ACDC, performed most of the ACDC simulations, wrote parts of the model

description in the Supplementary Information and commented on the manuscript.

Paper III investigates the charging of sulfuric acid and sulfuric acid–dimethylamine

clusters by nitrate ions in the chemical ionization mass spectrometer (CIMS). The

charging process is simulated using the ACDC, and new thermochemical data

are presented for some of the clusters. The paper also presents a comparison of

three different quantum chemical methods and two different parameterizations of

ion-neutral collision rates. I came up with the research idea, participated in devel-

oping ACDC, performed the quantum chemical calculations and cluster kinetics

simulations and wrote the paper.

Paper IV examines the applicability of the nucleation theorem in non-ideal sit-

uations. The derivation of the nucleation theorem is reviewed in detail, and the

required assumptions and their validity are discussed. ACDC is used for simulat-

ing the nucleation rate of a multicomponent system in cases where one or more

of the assumptions are not valid, and the appropriate partial derivatives of the
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nucleation rate are compared to the size and composition of the critical cluster.

The nucleation theorem is seen to fail badly in all remotely realistic situations. I

participated in planning the study, developed a detailed derivation for the mul-

ticomponent nucleation theorem, performed and interpreted part of the ACDC

simulations and wrote a major fraction of the paper.

Paper V introduces a Monte Carlo approach for inferring evaporation rates and

fragmentation probabilities from cluster distribution measurements. The method

is first tested on simulated concentration distributions of negatively charged sulfu-

ric acid–ammonia clusters, and it is shown to give reasonably accurate estimates

for many of the input rate constants. The method is then applied to experimen-

tal data, but due to the limited number of experiments, an unambiguous solution

is not reached. Instead, several different sets of parameter values leading to the

correct cluster concentrations are found. I developed a Fortran version of ACDC,

wrote a program for performing Monte Carlo simulations, performed the simula-

tions, analyzed the results and wrote the paper.
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5 Accomplished goals and future perspectives

During the time spent on the work presented in this Thesis, modeling tools for

studying cluster formation have taken a big leap forward. Collision rates from

classical physics and cluster energies from quantum chemistry have been com-

bined with cluster kinetics modeling, and for the first time a qualitative, if not

quite quantitative, agreement has been achieved between experimental and theo-

retical cluster concentrations (Paper I, Olenius et al., 2013b) and formation rates

(Paper II). While the accuracy of cluster formation energies can still be improved

by using more sophisticated quantum chemistry methods and more data can be

computed for different clusters, the basic framework is now ready.

The focus is, therefore, shifting from the development of simulation tools and

comparisons between modeling and experiments to a wider variety of applications

for cluster formation simulations. Papers III–V illustrate some of these new

directions.

One big problem when comparing simulations and measurements is that the quan-

tities that are compared are not always equivalent, or the model does not take into

account all details of the experiment. For instance, what is called the sulfuric acid

monomer concentration in experimental studies, is actually likely to correspond

to the signal from sulfuric acid monomers as well as all clusters containing one

sulfuric acid molecule and any number of water and base molecules (Paper III).

Furthermore, these clusters might have a higher detection efficiency than the plain

monomers and thus contribute more to the measured sulfuric acid concentration

than the sulfuric acid monomer itself. Paper III only focuses on one part of one

instrument, the chemical ionization chamber, and on a few molecules and clusters.

A similar chemical ionization study has also been performed for positive charging

of base molecules with protonated acetone (Ruusuvuori et al., 2014). In the future,

also other instruments such as the Particle Size Magnifier (Vanhanen et al., 2011)

should be investigated using cluster formation simulations. Incorporating detailed

cluster population modeling into a classical fluid dynamics simulation as was done

by Panta et al. (2012) will improve significantly the comparability between flow

tube experiments and cluster formation simulations.

The issue of comparing quantities that are defined differently in different contexts

is also related to the second focus area in future applications for cluster population
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simulations: reviewing data analysis methods commonly applied to experimental

data. One example is the slope analysis method discussed in Paper IV. Another

instance is the detailed analysis of discrepancies between different definitions for

growth rates by Olenius et al. (2014). A similar task would be to evaluate how

well the simulated particle formation rates defined as a flux across some size limit

correspond to formation rates determined from cluster concentrations using the

tools typically applied to experimental data. In addition to evaluating data analy-

sis methods, cluster kinetics simulations can also be used to evaluate the accuracy

of condensation models often applied to study particle growth.

A third big theme in future applications for cluster formation simulations is the

use of MCMC parameter estimation to determine rate constants and other not

directly measurable parameters related to cluster formation and cluster measure-

ments (Paper V). A big challenge in advancing the use of MCMC methods in

this context is that big enough data sets are not commonly available. Although

a large number of similar experiments are often performed, all results from each

of these are seldom reported, as this would not be informative for most readers.

Instead, the data is analyzed with some suitable tools and published in a way that

best illustrates the findings. However, this way the data is typically not detailed

enough to be suitable for MCMC parameter estimation. Therefore, the best way

to proceed is by close collaboration between experimentalists and modelers.

Besides focusing on the applications mentioned above, also some new features

could still be incorporated into cluster formation simulations. So far, the only

reactions that have been included in ACDC are proton transfers, and even those

are described in a rather cursory way: the protons are always on the molecules

where it is energetically most favorable to have them, and any molecules can

evaporate from the clusters regardless of their protonation state. In the future,

evaluating whether this approach is sensible and possibly modifying it, and on the

other hand also enabling other chemical reactions in the cluster-phase might be

useful.

From a more theoretical point-of-view, one future challenge is to look into the

assumption that each collision results immediately in the minimum-energy config-

uration of the formed cluster. It might be necessary to find a way to take into

account that after a cluster is formed, its evaporation rate may vary with time as

it rearranges toward a more favorable configuration and loses or gains energy in

collisions with air molecules.
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Failure of Classical Nucleation Theory: Incorrect Description of the Smallest

Clusters. Phys. Rev. Lett., 98(14):145702.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller,

E. (1953). Equation of State Calculations by Fast Computing Machines. J.

Chem. Phys., 21(6):1087 – 1092.

Mirabel, P. and Katz, J. L. (1974). Binary homogeneous nucleation as a mechanism

for the formation of aerosols. J. Chem. Phys., 60(3):1138 – 1144.

51



Mohnen, V. A. (1970). Preliminary results on the formation of negative small ions

in the troposphere. Journal of Geophysical Research, 75(9):1717 – 1721.

Montgomery, Jr, J. A., Frisch, M. J., Ochterski, J. W., and Petersson, G. A. (1999).

A complete basis set model chemistry. VI. Use of density functional geometries

and frequencies. J. Chem. Phys., 110(6):2822 – 2827.

Moran, T. F. and Hamill, W. H. (1963). Cross Sections of Ion–Permanent-Dipole

Reactions by Mass Spectrometry. J. Chem. Phys., 39(6):1413 – 1422.

Munson, M. S. B. and Field, F. H. (1966). Chemical Ionization Mass Spectrometry.

I. General Introduction. J. Am. Chem. Soc., 88(12):2621 – 2630.

Nielsen, A. E. (1964). Kinetics of Precipitation. International Series of Monographs

in Analytical Chemistry, Vol. 18. Pergamon Press, Oxford.
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E., Petäjä, T., and Kulmala, M. (2011). Particle Size Magnifier for Nano-CN

Detection. Aerosol Sci. Technol., 45(4):533 – 542.

Viggiano, A. A. and Arnold, F. (1981). Extended sulfuric acid vapor concentration

measurements in the stratosphere. Geophys. Res. Lett., 8(6):583 – 586.

Volmer, M. and Weber, A. (1926). Keimbildung in übersättigten Gebilden. Z.
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