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Abstract

The effects of co-occurring species, namely 
biotic interactions, govern performance and 
assemblages of species along with abiotic factors. 
They can emerge as positive or negative, with 
the outcome and magnitude of their impact 
depending on species and environmental 
conditions. However, no general conception 
of the role of biotic interactions in functioning 
of ecosystems exists. Implementing correlative 
spatial modelling approaches, combined with 
extensive data on species and environmental 
factors, would complement the understanding 
of biotic interactions and biodiversity. Moreover, 
the modelling frameworks themselves, 
conventionally based on abiotic predictors 
only, could benefit from incorporating biotic 
interactions and their context-dependency.  

In this thesis, I study the influence of 
biotic interactions in ecosystems and examine 
whether their effects vary among species and 
environmental gradients (sensu stress gradient 
hypothesis = SGH), and consequently, across 
landscapes. Species traits are hypothesized to 
govern the species-specific outcomes, while the 
SGH postulates that the frequency of positive 
interactions is higher under harsh environmental 
conditions, whereas negative interactions 
dominate at benign and productive sites. The 
study applies correlative spatial models utilizing 
both regression models and machine-learning 
methods, and fine-scale (1 m2) data on vascular 
plant, bryophyte and lichen communities from 
Northern Finland and Norway (69°N, 21°E). In 
addition to conventional distribution models of 

individual species (SDM), also species richness, 
traits and fitness are modelled to capture the 
community-level impacts of biotic interactions. 
The underlying methodology is to incorporate 
biotic predictors into the abiotic-only models 
and to examine the impacts of biotic interactions 
and their dependency on species traits and 
environmental conditions. Cover values of the 
dominant species of the study area are used as 
proxies for the intensity of their impact on other 
species. 

The results show, firstly, that plant–plant 
interactions consistently and significantly affect 
species performance and richness patterns. 
Secondly, the results make evident that the 
impacts of biotic interactions vary between 
species, and, more importantly, that the guild, 
geographic range and traits of species can 
indicate the outcome and magnitude of the 
impact. For instance, vascular plant species, 
particularly competitive ones, respond mainly 
negatively to the dominant species, whereas 
lichens tend to show more positive responses. 
Thirdly, as proposed, the manifestation of biotic 
interactions also varies across environmental 
gradients. Support for the SGH is found as the 
effect of the dominant species is more negative 
under ameliorate conditions for most species and 
guilds. Finally, simulations of species richness, 
where the cover of the dominant species is 
modified, demonstrate that the biotic interactions 
exhibit a strong control over landscape-level 
biodiversity patterns. These simulations also 
show that even a moderate increase in the 
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cover of the dominant species can lead to drastic 
changes in biodiversity patterns. Overall, all 
analyses consistently demonstrate that taking 
into account biotic interactions improves the 
explanatory power and predicting accuracy of 
the models. 

There are global demands to understand 
species-environment relationships to enable 
predictions of biodiversity changes with regard 
to a warming climate or altered land-use. 
However, uncertainties in such estimates exist, 
especially due to the precarious influence of 
biotic interactions. This thesis complements 
the understanding of biotic interactions in 
ecosystems by demonstrating their fundamental, 
yet species-specific and context-dependent, role 
in shaping species assemblages and performance 
across landscapes. From an applied point of 
view, our study highlights the importance of 
recognizing biotic interactions in future forecasts 
of biodiversity patterns.
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1 Introduction

Biodiversity is shaped by varying drivers, 
creating mosaic-like patterns across landscapes 
(Gaston 2000; Ricklefs 2004). While the effects 
of some of these drivers on distributions and 
assemblages of species are rather straightforward 
and well known (Whittaker et al. 2001; Sarr et al. 
2005; Field et al. 2009), the role of co-occurring 
species, namely biotic interactions, is less 
understood and more complex (Götzenberger 
et al. 2012; Morales-Castilla et al. 2015). Biotic 
interactions can be negative or positive, with the 
outcome and magnitude of the effect varying 
among species and environmental conditions 
(Callaway et al. 2002; Liancourt et al. 2005; 
He et al. 2013; Chamberlain et al. 2014). Thus, 
ecological and biogeographical theories have 
struggled to form an all-embracing concept 
of how biotic interactions function among 
ecosystems (Whittaker et al. 2001; Bruno et al. 
2003; Lortie et al. 2004; Michalet et al. 2006; 
Maestre et al. 2009). The limited understanding 
of biotic interactions and how their effects vary 
among species, environmental conditions and 
ecosystems hinders biodiversity estimates and 
conservation (Brooker et al. 2007; Tylianakis et 
al. 2008; Gilman et al. 2010; Walther 2010; Blois 
et al. 2013). 

Biotic interactions have been mainly 
investigated using experimental study designs 
(Aarssen & Epp 1990; Dormann & Brooker 
2002). These studies have demonstrated the 
influence of co-occurring species on governing 
species performance, and the connection 
between the environmental conditions and the 
manifestation of biotic interactions (Brooker 
& Callaghan 1998; Klanderud 2005; He et al. 
2013; Chamberlain et al. 2014). However, while 
the ecological experiments are fundamental 
in evaluating the causal effects between co-

occurring species (Dormann & Brooker 
2002), they are limited in the number of 
species and range of environmental conditions 
covered (Wardle et al. 1998). Thus, forming a 
comprehensive conception of biotic interactions 
within ecosystems using experiments alone 
might be unfeasible (Leathwick & Austin 2001). 
Correlative spatial models, such as species 
distribution modelling (SDM), are widely used 
observational approaches in biogeography and 
ecology to examine and predict biological 
responses in space and time (Guisan et al. 2013; 
Guo et al. 2015). The methods are based on 
associations between spatially explicit biological 
and environmental data, i.e. biotic measures are 
correlated to environmental conditions based on 
geographical positions (Guisan & Zimmermann 
2000; Elith & Leathwick 2009; Franklin 
2009; Peterson et al. 2011). Combining the 
models with appropriate datasets would enable  
examination of the role of biotic interactions 
simultaneously among multiple species and 
across a variety of environmental gradients (Wisz 
et al. 2013; Leathwick & Austin 2001). Thus, 
applying modelling tools could complement 
understanding of the functioning of biotic 
interactions, especially at the ecosystem- and 
landscape-level where manipulative experiments 
are difficult to conduct. 

Further, the applicability of the models 
should also benefit from consideration of 
biotic interactions (Thuiller et al. 2013). As 
these models aim to understand relationships 
among ecosystems by relating observed or 
measured biological responses to surrounding 
environmental conditions, all environmental 
variables having an impact on the studied 
biological phenomenon should be accounted for 
in the models (Guisan & Zimmermann 2000; 
Guisan & Thuiller 2005; Austin & Van Niel 2011). 
However, despite their ecological significance 
and demonstrated importance for the SMDs (e.g. 
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Araújo & Luoto 2007; Heikkinen et al. 2007; 
Pellissier et al. 2010; González-Salazar et al. 
2013; le Roux et al. 2014; Bueno de Mesquita 
et al. in press), biotic interactions are often 
neglected in spatial modelling (Zimmermann 
et al. 2010; Thuiller et al. 2013). Disregarding 
biotic interactions in the models may hinder 
distinguishing actual connections between 
biodiversity and environmental conditions, 
and it can also result in biased predictions and 
poor conservation decisions (Davis et al. 1998; 
Godsoe et al. 2015). Elucidating the role of biotic 
interactions in both ecosystems and models is 
therefore crucial.

1.1 Biotic interactions
Biotic interactions are the effects that one 
organism of a community has on another (Begon 
et al. 2006). These effects can be direct, i.e. one 
species affects the growth or reproduction of 
another species (Nilsson et al. 2000), or secondary, 

i.e. one species modifies the suitability of the 
environment for another species (Jones et al. 1994, 
1997). Biotic interactions can thus emerge as 
negative (e.g. competition, Klausmeier & Tilman 
2002; Passarge & Huisman 2002) or positive 
(e.g. facilitation, Stachowicz 2001; Bruno et al. 
2003; Brooker et al. 2008), and enhance or inhibit 
species performance (e.g. growth, abundance). 
As a result, biotic interactions affect species 
distribution (Goldberg & Barton 1992; Tilman 
1994; le Roux et al. 2012 and Fig. 1) together 
with abiotic factors (see e.g. Fig. 2 and Soberón 
2007). Usually biotic interactions are considered 
between species (interspecific), but they also 
occur between individuals of the same species 
(intra-specific). In addition, the effect of biotic 
interactions scales from individual and species 
level to other biological measures such as species 
richness and trait composition (Michalet et al. 
2006, 2015; McIntire & Fajardo 2014; Olsen & 
Klanderud 2014; Morales-Castilla et al. 2015). 

There are at least two prevailing perceptions 
of the role of biotic interactions along with abiotic 
factors in constraining species assemblages. The 
first one, namely the BAM model, acknowledges 
the roles of both abiotic and biotic conditions 
combined with dispersal and argues that a 
species can exist only where its abiotic and 
biotic requirements are met and where it can 
move (Soberón & Peterson 2005; Soberón 2007; 
see also Fig. 3). The second viewpoint relates 

Figure 1. Biotic interactions affect the distribution of 
species. Negative influence of co-occurring dominant 
species (i.e. competition, interference) may decrease 
species distribution (species 1). Positive impact via 
modifying abiotic conditions may enhance species 
distribution (species 2). Nevertheless, not all species 
are affected by the dominant species (species 3).

Figure 2. Factors governing performance (e.g. 
occurrence, growth, fitness) of vascular plants (Nobel 
2005) and similar sessile terrestrial guilds (i.e. lichens, 
bryophytes).
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the factors constraining species assemblages 
to spatial scale (Fig. 4), where the large-scale 
species pool is defined by broad climatic patterns 
and evolutionary history. At finer scales, abiotic 
factors governed by topography and geology 
define the species assemblages, and finally, at 
the local scale, biotic interactions dictate species 
occurring at the site. Both viewpoints have their 
origins in Hutschinson’s (1957) view of niche-
concept, where the species’ realized niche, i.e. 
observed occurrence, is the space constrained by 
abiotic factors (i.e. fundamental niche) further 
defined by biotic interactions (Pulliam 2000; 
Soberón 2007; Soberón & Nakamura 2009; 
Wiens 2011).

Interestingly, the impact of one species 
on another, i.e. outcome and magnitude of 
the biotic interaction, has been demonstrated 
to be both species-specific and conditional 
on environmental stress (Choler et al. 2001; 

Chamberlain et al. 2014). Thus, the impact of one 
species is not constant, but varies according to 
the species being affected and the environmental 
conditions present (Elmendorf & Moore 2007). 
Species traits (i.e. such properties as productivity, 
resource capturing ability and stress tolerance) 
have been suggested to govern the outcome of 
biotic interactions between species pairs and 
along environmental gradients, but no unanimous 
conclusions about the dominant trait have been 
reached yet (Wardle et al. 1998; Liancourt et al. 
2005; Maestre et al. 2009; Pellissier et al. 2010; 
Adler et al. 2013; Butterfield & Callaway 2013; 
Kunstler et al. 2016). 

The environment-dependence of the outcome 
of biotic interaction is formalized as the stress-
gradient hypothesis (SGH, Bertness & Callaway 
1994; Brooker & Callaghan 1998; He et al. 
2013), and it relates to the productivity-diversity 
paradigm (Michalet et al. 2006; Virtanen et al. 
2013 and Fig. 5). The SGH postulates that under 
benign conditions with high productivity the 
negative (i.e. competition) interactions prevail 
thus potentially decreasing species range and 
diversity. In contrast, under high environmental 
stress and disturbance, and thus, low productivity, 
the presence of dominant species has a positive 
(or less negative) effect due to the amelioration 
of harsh conditions, such as winds. This, in turn, 
could enlarge ranges with also a positive influence 
on species richness. Most studies of the SGH are 
conducted using only one type of environmental 
(stress) gradient (although see Kawai & Tokeshi 

Figure 3. Factors governing realized niche, i.e. 
occurrences, of a species. A species is able to occur 
where both suitable abiotic and biotic conditions 
are met and no dispersal barriers inhibit movement 
(modified from BAM model by Soberón & Peterson 
2005 and Soberón 2007). 

Figure 4. Hierarchical representation of 
the factors confining species distribution 
to geographical scale (following the ideas 
presented in Hutchinson 1957; Pulliam 
2000; Pearson & Dawson 2003; Pearson 
et al. 2004; Guisan & Thuiller 2005; Sarr 
et al. 2005). 
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2007; Maalouf et al. 2012), or combining stress 
gradients (i.e. using elevation as a surrogate for 
multiple parallel gradients, Callaway et al. 2002). 
However, scaling the results of such studies to 
actual ecosystems, where the basis for biological 
patterns and processes is formed of multiple 
co-varying environmental gradients, is difficult 
(Kawai & Tokeshi 2007; Maalouf et al. 2012). 

While evidence to support the essential 
role of co-occurring species in the ecosystem 
exists (Chapin III et al. 1997; Götzenberger 
et al. 2012), and context-dependency of biotic 
interactions has been demonstrated (He et al. 
2013), the generality of the hypotheses is still 
under discussion. A general consensus on the 
role of biotic interactions across all ecosystems 
(Schemske et al. 2009), species, guilds and taxa 
(Giannini et al. 2013), environmental conditions 
(Chamberlain et al. 2014) and spatial scales 
(Chase & Leibold 2002) should be formed. The 
absence of such a consensus impedes predictions 
of the manifestation of biotic interactions across 
landscapes comprising a multitude of different 
habitats. 

1.2 Modelling of biodiversity
Correlative spatial modelling, such as SDM 
and species richness modelling, is widely 
used in biogeography and ecology (Guisan & 
Zimmermann 2000; Guisan & Thuiller 2005; 
Algar et al. 2009; Peterson et al. 2011; Pottier 
et al. 2013; D’Amen et al. 2015) both to 
examine the relationships between response and 
predictor variables (i.e. explanatory model) and 
to predict the response variable in space or time 
(i.e. predictive model, Mac Nally 2000, 2002). 
The models exploit mathematical functions 
to relate the response variable to explanatory 
ones and use the fitted model for prediction 
(Elith & Leathwick 2009). Understanding 
and forecasting biodiversity responses to 
environmental fluctuations are topical due to 
the expected changes in the environment (e.g. 
warming climate and land-use modification, 
Guisan et al. 2013; Ehrlén & Morris 2015). While 
these models are useable in determining even 
complex and non-linear relationships between 
multiple factors (Guo et al. 2015), their predictive 
ability, in particular, makes them practical tools 
for environmental change impact assessments 
(Mouquet et al. 2015).

Models can be fitted using a variety of 
algorithms (Guisan & Thuiller 2005; Elith 
et al. 2006; Elith & Graham 2009; Franklin 
2009). Performance of different algorithms 
vary in relation to data, mathematical functions 
and chosen parameters and settings (Segurado 
& Araújo 2004; Heikkinen et al. 2006; Wisz 
et al. 2008; Marmion et al. 2009a; Nenzén & 
Araújo 2011; Aguirre-Gutiérrez et al. 2013). 
Thus, a suitable algorithm and its parameters 
should be selected based on the data and 
question at hand. However, choosing the best 
method beforehand can be difficult. Also, when 
modelling multiple response variables, assigning 
individual settings for each model might not 

Figure 5. Productivity-diversity paradigm postulates 
that species richness decreases with both increasing 
biotic and abiotic stress due to competition and harsh 
environmental conditions, respectively, regulating 
species assemblages (modified from Michalet et al. 
2006). In addition to the biotic stress (i.e. negative 
biotic interactions) being more pronounced under 
productive conditions, the SGH adds that positive 
interactions would dominate in areas of high 
environmental stress (Bertness & Callaway 1994).
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be feasible (Gotelli et al. 2009). Under such 
circumstances, one solution is to use multiple 
algorithms with different parameters and through 
a model validation choose the best performing 
modelling method (Guisan & Zimmermann 
2000; Thuiller 2003). Another way to overcome 
the varying predictions of different algorithms 
is to use ensemble modelling (Araújo & New 
2007), where results of different algorithms 
are averaged. This approach can increase 
the robustness and accuracy of predictions 
(Grenouillet et al. 2011), which, however, are 
dependent on the performance of individual 
models (Marmion et al. 2009b).

As a technical detail, the terminology used 
in this thesis must be addressed. There are a 
myriad of terms referring to correlative spatial 
models of biodiversity, including ecological 
niche modelling (Peterson et al. 2011), predictive 
habitat distribution modelling (Guisan & 
Zimmermann 2000), macroecological modelling 
(Dubuis et al. 2011), correlative modelling in 
predictive vegetation mapping (Franklin 1995; 
Tarkesh & Jetschke 2012), predictive spatial 
modelling of biodiversity (Ferrier & Guisan 
2006) and predictive geographical modelling in 
ecology (Guisan & Zimmermann 2000). Some of 
these terms refer to a specific response variable, 
like the most commonly used term of species 
distribution modelling, SDM, literally meaning 
the distribution models of individual species 
(although some literature sources apply the term 
to cover also other biological response variables 
such as species abundance and richness, e.g. 
Franklin 2009). Nonetheless, all of these terms 
share a correlative and spatial nature and the 
goal of explaining and/or predicting biological 
responses. In this thesis, the terminology for 
modelling refers to the above-mentioned type 
of modelling and covers all response variables 
(i.e. species distributions, richness, traits and 
reproductive effort), unless otherwise specified. 

1.3 Increasing the realism 
of biodiversity models
Variable selection in correlative spatial models of 
biodiversity should be guided by biogeographical 
and ecological theories (Araújo & Guisan 
2006; Austin & Van Niel 2011; Thuiller et 
al. 2013), meaning that as the models aim to 
understand the relationships between biological 
responses and surrounding environment, all 
explanatory variables having a causal impact 
on the studied biological phenomenon should 
be considered (Guisan & Zimmermann 2000). 
In ecophysiological terms, these variables would 
thus include both the resources required by species 
(e.g. water, nutrients) and non-resource variables 
(e.g. temperature, competition) constraining 
species performance (see e.g. Fig. 2). Some 
other factors, such as topographic variables, may 
also influence species assemblages. However, 
their effects are not causal, but indirect (Austin 
2002, 2007). For example, elevation governs 
species richness (Bruun et al. 2006; Grytnes et 
al. 2006), but the detected effect results from 
the impact that elevation has on temperature, 
which in turn affects species (Moeslund et al. 
2013). There is also an ongoing discussion 
about how evolutionary history and dispersal 
influence local biological patterns found in the 
ecosystems (Huston 1999 and Fig. 3). However, 
under the current conception, these processes do 
not operate on the scale (both  local extent and 
fine-resolution) utilized in this thesis (Cornell 
& Lawton 1992; Sarr et al. 2005; Soberón & 
Peterson 2005, see also Barve et al. 2011). 

While the impact and recognition of 
causal abiotic constraints in these models are 
relatively straightforward and widespread, the 
conception of the role of biotic interactions and 
the ways off incorporating them are complex 
(Boulangeat et al. 2012; Kissling et al. 2012; 
Giannini et al. 2013; Wisz et al. 2013). Thus, 
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biotic interactions are rarely incorporated into 
spatial models, despite the response variables 
used (e.g. species occurrence, abundance, 
species richness) usually being related to the 
realized niches of species. Consequently, without 
incorporating information on biotic interactions , 
the models can only insufficiently represent the 
relationship of species ranges to the surrounding 
environment (Davis et al. 1998; Thuiller et al. 
2013; Godsoe et al. 2015, see also Gotelli & 
McCabe 2002). Indeed, SDMs of individual 
species have demonstrated improved explanatory 
and predictive power when incorporating (a 
proxy of) biotic interactions (e.g. Pellissier et 
al. 2010; Meier et al. 2011; González-Salazar et 
al. 2013). Accordingly, spatial models of other 
biological measures (e.g. fitness, morphology 
and abundance, Tielbörger & Kadmon 2000; 
Leathwick & Austin 2001) should also benefit 
from including biotic interactions (le Roux et al. 
2014, although see Mitchell et al. 2009) 

Applying spatial models to evaluate biological 
measures other than species distributions is 
also interesting from an ecological point of 
view. Most of the studies aiming to explain and 
predict biodiversity with correlative models 
have concentrated on individual species and 
their distributions (Ehrlén & Morris 2015). 
Although valuable as such, concentrating on 
multiple species or other entities of ecosystems, 
communities and biodiversity, such as species 
richness or composition, may provide a more 
comprehensive understanding of the functioning 
of ecosystems and biodiversity (Gotelli & 
Colwell 2001; Ferrier & Guisan 2006; Certain 
et al. 2014). Further, including species’ properties 
(i.e. traits) could enable generalizations to be 
made regarding discrepant responses of different 
species to explanatory variables (McGill et al. 
2006; Adler et al. 2013). Therefore, incorporating 
biotic interactions into the models of species 
richness and traits should not only increase the 

realism of models, but might also provide a 
deeper understanding of their functioning at the 
ecosystem level.

There are multiple ways of incorporating 
biotic interactions into spatial models (Kissling 
et al. 2012; Giannini et al. 2013; Wisz et al. 2013). 
In this study, one of the most straightforward 
approaches, “Adding an interacting species as 
an additional predictor” (sensu Kissling et al. 
2012), was chosen. This approach is applicable 
in the ecosystems where only a few potential 
species, with abilities to dictate other species, 
exist (le Roux et al. 2014). When using this kind 
of approach to account for biotic interactions, 
abiotic predictors must be selected carefully. 
With an insufficient set of abiotic predictors, 
the effect of unaccounted abiotic factors might 
appear as a pseudo-effect of biotic interactions, 
i.e. the biotic predictor is shown to be significant 
due to shared environmental preferences 
(Ovaskainen et al. 2010; le Roux et al. 2013b). 
Preferably, also the impact of dominant species 
should be (experimentally) validated to ensure 
causal impacts (Dormann et al. 2012; Giannini 
et al. 2013). Further, such species must be 
widespread with a known (or easily interpretable) 
distribution in the study area to allow predictions.

1.4 Arctic-alpine environments 
Arctic-alpine landscapes provide a suitable 
setting for studying biotic interactions for 
multiple reasons. First, these cold environments 
are relatively simple, with a low number of 
interacting species, vegetation layers and 
trophic levels (Billings & Mooney 1968; Wisz 
et al. 2013). While accounting for interactions 
can be a challenging task (Morales-Castilla et 
al. 2015), in species-poor environments the 
few interacting species and layers decrease the 
complexity. Second, mountainous areas have 
varying topography, createing heterogeneous 
environmental conditions covering broad 
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gradients (Billings & Mooney 1968), therefore 
enableing spatially effective field-work. Third, 
arctic-alpine species and environments are 
currently under intense research, allowing 
comparison and validation of results between 
studies (Dormann & Brooker 2002; Dormann & 
Woodin 2002). Fourth, as remote areas, arctic and 
alpine ecosystems usually encounter little human 
interference, and thus, the measured biological 
and environmental properties represent natural 
conditions (Hannah et al. 1994).

In addition, it is important to study arctic and 
alpine ecosystems, as they are highly sensitive 
to changes in climate and land-use (Parmesan 
2006; Post et al. 2009). The melting of ice and 
snow increases the warming experienced in these 
environments relative to other parts of the world. 
Moreover, the possibilities of arctic and alpine 
species to follow isotherms to higher latitudes 
or altitudes are limited (Parmesan 2006), with 
the dispersal of species from lower latitudes and 
altitudes further seizing space from arctic and 
alpine ecosystems (Sturm et al. 2001; Elmendorf 
et al. 2012). Due to the susceptibility of these 
ecosystems to environmental changes, it is 
essential to understand the factors and processes 
affecting arctic and alpine biodiversity and how 
the potential responses to changes in one part of 
the ecosystem affect the other parts (Post et al. 
2009; Elmendorf et al. 2012). Studies of biotic 
interactions in the ecotone between the boreal 
zone and arctic provide a valuable means for 
assessing climate change impacts.

1.5 Objectives of the thesis
The main aim of this thesis is to examine the role 
of biotic interaction in ecosystems by exploiting 
correlative spatial modelling frameworks and 
fine-resolution data on vascular plant, bryophyte 
and lichen communities. Attention is especially 
paid to two issues: 1) species-specific outcomes 
of biotic interactions and their dependence 

on species’ guild, traits and biogeographic 
ranges; and 2) how the manifestation of 
biotic interactions is related to environmental 
conditions. Understanding the functioning 
of biotic interactions across species, guilds, 
environmental conditions and ecosystems enables 
a more comprehensive view of how biodiversity 
takes shape across landscapes. An applied aim 
of the thesis is to promote the implementation of 
spatial modelling and predictions of biodiversity. 
Analyses are conducted using data on vascular 
plants, bryophytes and lichens from the ecotone 
between mountain birch forest zone and tundra, 
including boreal and arctic-alpine species and 
conditions, but the findings are not restricted only 
to these guilds or ecosystems.

More specifically, this thesis seeks answers 
to these five study questions:
1. 	 Do biotic interactions impact high-

latitude ecosystems? (all Papers)
2. 	 Does the effect of biotic interactions 

vary between guilds, species and 
species traits? (Papers II-IV)

3. 	 Is the outcome of biotic interactions 
contingent on environmental 
conditions? (Papers III and IV)

4. 	 How do biotic interactions manifest 
across the landscape, in relation to 
environmental conditions and guilds? 
(Papers I and IV)

5. 	 Do biotic interactions improve spatial 
models of biodiversity? (all Papers)

2 Materials and methods

2.1 Study area
The data derive from Northern Finland and 
Norway (69°N, 21°E; Fig. 6). The study area 
represents the ecotone between the boreal forest 
zone and the arctic tundra, with alpine features 
at high altitudes (Bliss 1971; Billings 1973; 
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Figure 6. Data are gathered from 3084 plots (1 m2) in Northern Finland and Norway (69°N, 21°E). Altogether 2124 
plots are organized along transects on the slopes of seven massifs (black dots; sub-areas 1-3), and 960 plots are 
organized in six grids on the northern slope (700 m.a.s.l.) of Saana massif (black square; sub-area 4). Hillshade 
(ESRI 2015), based on the 10 m resolution digital elevation model, demonstrates the topographic conditions of the 
study area. Elevation of the study area varies from 400 to 1360 m.a.s.l.
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Haapasaari 1988; Virtanen et al. 2016). The 
vegetation and climatic conditions are influenced 
by the northern location and the border between 
continental and oceanic zones crossing the study 
area. Mean annual temperature of the area is 
-1.9°C (January: -12.9°C, July: 11.2°C), and the 
annual precipitation sum is 487 mm (1981-2010 
averages for Kilpisjärvi Meteorological Station, 
Pirinen et al. 2012). However, large spatial 
variations exist in temperature and moisture 
conditions due to the geographical extent and, 
especially, the heterogeneous topography of the 
area (Aalto et al. 2013, 2014); the maximum 
distance between sampled sites is 65 km, and 
elevation of the studied sites varies from 400 
to 1360 m.a.s.l. The geographical location and 
topography affect also the spatial and temporal 
distribution of energy; solar radiation varies 
in relation to azimuth, slope and time of year, 
creating a mosaic of shade and light (Caldwell 
et al. 1980). Also geology in the area increases 
the heterogeneity of the abiotic, and thus, biotic 
environment (Eurola et al. 2003, 2004). The tail 
of the Scandinavian Caledonides extends to the 
study area, adding calcareous rock to otherwise 
acidic bedrock (granite and gneiss) of the Baltic 
shield (Lehtovaara 1995). Soil properties of the 
cold environments are also indirectly affected 
by geomorphological disturbances (e.g. frost-
related cryoturbation and solifluction) in the area 
(le Roux et al. 2013a; le Roux & Luoto 2014). 

Vegetation in the area comprises dwarf-shrub-
dominated heath and tundra vegetation (Kaplan 
et al. 2003), with boreal features at the lower 
altitudes (below 600-650 m.a.s.l.) dominated by 
Betula pubescens ssp. czerepanovii, which also 
forms the tree line in the area (Eurola & Virtanen 
1991; Oksanen & Virtanen 1995; Virtanen et al. 
2010). Empetrum hermaphroditum (also known 
as Empetrum nigrum ssp. hermaphroditum; 
hereafter Empetrum) is the most abundant 
species in the area, followed by Betula nana, 

Juniperus communis and species from the 
Ericaceae family. The most common graminoids 
are Calamagrostis lapponica, Carex bigelowii, 
Deschampsia flexuosa and Festuca ovina, and 
the most common forbs are Bistorta vivipara and 
Solidago virgaurea. The field layer is rich with 
forbs and graminoids under the tree line, whereas 
the sparse vegetation at the highest altitudes is 
dominated by, for example, a few graminoid 
species from the Luzula and Juncus genera. 
At drier sites, lichens are abundant (Eurola & 
Virtanen 1991), with genus Cladonia being the 
most common, whereas under greater moisture 
conditions, bryophytes dominate over lichens. 
Vegetation is organized into zones following 
primarily the altitude and latitude, i.e. climatic 
constraints (Haapasaari 1988). From south/low 
altitudes to north/high altitudes, the vegetation 
zones are northern boreal/upper oroboreal, 
hemiarctic/orohemiarctic and southern arctic/
lower oroarctic. The highest peaks of the 
study area represent the middle oroarctic zone. 
However, the ranges of these zones vary due 
to azimuth, with heterogeneous topography and 
geology creating mosaic patterns.

2.2 Materials
The two datasets exploited in the thesis comprise 
fine-resolution, spatially explicit information 
on vascular plant, bryophyte and lichen species 
and environmental conditions, allowing spatial 
modelling of biological responses for multiple 
guilds. Both datasets consist of 1 m2 study plots (n 
= 3084), with field-quantified and remotely sensed  
data, and geographic information system (GIS) 
and digital elevation model (DEM) derivatives 
and interpolations. Data on geology were also 
derived using geological maps (Korsman 1997), 
and species traits were gathered from databases 
(e.g. the LEDA-Traitbase, Kleyer et al. 2008) 
and literature sources (e.g. Austrheim et al. 
2005). Temperature- and precipitation-related 
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predictors are based on climate station data 
processed following Aalto et al. (2014). In the 
first dataset, the plots are organized into 531 sites, 
each consisting of four plots, with 5 m distances 
to the centre of the site (Virtanen et al. 2010). 
The second dataset is organized in six 8 x 20 m 
grids (le Roux et al. 2013b). Data gathering and 
analyses were chosen to be performed with fine 
scales to allow a more accurate understanding 
of the ecosystems studied and more precise 
predictions (Gottschalk et al. 2011). This is 
also an appropriate resolution to study biotic 
interactions, which presumably operate mainly 
at finer scales (Huston 1999; Pearson & Dawson 
2003; Sarr et al. 2005; McGill 2010, although see 
Araújo & Luoto 2007 and Araújo & Rozenfeld 
2014). The field data were collected during 2008-
2013.

In each 1 m2 plot studied, the identity and 
cover of vascular plant species were recorded 
following Hämet-Ahti et al. (1998). Additionally, 
in subsets of study plots, the identity and cover 
of lichen and bryophyte species were recorded 
(n = 1080; identified following Hallingbäck et 
al. 2008 and Stenroos et al. 2011, respectively), 
and number of flowers and berries per vascular 
plant species counted (i.e. reproductive effort; n 
= 960). For the analyses, the cover values were 
transformed to presence-absence values or to 
richness values to represent the total species 
richness or the richness of a certain trait. Totals 
of 218, 209 and 98 vascular plant, bryophyte 
and lichen species, respectively, were identified 
in study plots. Plot-level species richness of 
vascular plants, bryophytes and lichens varied 
from 0 to 40, 23 and 23, respectively.

Abiotic explanatory variables represent 
ecophysiologically essential factors for plant and 
lichen species, such as temperature, moisture, 
nutrients and radiation, which should be included 
as a comprehensive set in models (Guisan & 
Zimmermann 2000; Austin & Van Niel 2011). 

Temperature conditions are represented by 
temperature of the coldest quarter (TCQ; Dec-
Feb) and growing degree days (GDD; daily 
sums of temperatures when mean temperature is 
above 3°C). Moisture conditions are represented 
by water balance (WAB; a ratio of precipitation 
to evaporation), topographic wetness index 
(TWI; wetness index based on DEM) and 
field-measured soil moisture (volumetric water 
content). Proportion of calcareous bedrock 
(CAL) was used as a proxy for nutrient content, 
i.e. soil fertility. Radiation (RAD) was calculated 
using DEM and GIS-algorithms. Some analyses 
(Paper III) included also the geomorphological 
disturbance variable as a predictor regulating 
species performance (le Roux et al. 2013a). 
It is a visually estimated proportion of topsoil 
under active geomorphological disturbances 
(e.g. cryoturbation, solifluction, fluvial erosion) 
per plot. CO2 was excluded from the analysis, as 
its current levels are not assumed to limit species 
performances (Inauen et al. 2012; Bader et al. 
2013).

2.3 Proxy for biotic interactions
The dominant species of the study area, namely 
Nordic crowberry (Empetrum), Dwarf birch 
(B. nana) and Mountain birch (B. pubescens), 
were chosen as surrogates for biotic predictors 
(following e.g. Meier et al. 2010; Pellissier et al. 
2010; le Roux et al. 2012). Empetrum and B. nana 
are dwarf shrubs, with the former being evergreen 
and the latter deciduous. Empetrum is known 
to affect other species by spreading allelopathic 
compounds to soil (Nilsson 1994; Gallet et al. 
1999; Nilsson et al. 2000; González et al. 2014). 
However, it does sustain ericoid mycorrhiza in 
the soils, thus potentially favouring species 
forming symbiosis with the same mycorrhiza 
(mainly Ericaceae-species, Tybirk et al. 2000). 
Betula nana is an ectomycorrhizal species (Väre 
et al. 1997). Betula pubescens is a subspecies of 
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moor birch, and it forms birch forests at the lower 
altitudes (Eurola & Virtanen 1991). 

These species are known to influence co-
occurring species (Tybirk et al. 2000; Grytnes 
et al. 2006; Aerts 2010; Pellissier et al. 2010; 
le Roux et al. 2013b, 2014), with, however, 
species-specific outcomes (Shevtsova et al. 
1995; Pellissier et al. 2010). Specifically, their 
percentage cover values per plot were used as 
proxies for intensity of biotic interactions (le 
Roux et al. 2012). High cover values are assumed 
to represent competitive effects (Pajunen et al. 
2011). However, as relatively tall species with 
dense growth, these species could function as 
facilitators for other species by ameliorating 
environmental conditions (Brooker et al. 2008). 
Some evidence from experimental studies exists 
on switching impact of Empetrum (Carlsson 
& Callaghan 1991; Olofsson 2004), while 
B. pubescens, especially, could pose species-
specific impacts: positive influence on boreal 
species and negative on arctic-alpine (Grytnes 
et al. 2006; Nieto-Lugilde et al. 2015).  

2.4 Methods
The methodology implemented in the thesis 
is based on correlative spatial modelling 
frameworks (Guisan & Zimmermann 2000; 
Elith & Leathwick 2009; Franklin 2009). The 
general idea was to examine the impact of 
inclusion of biotic predictors in the models, i.e. 
the effect of biotic interactions in explaining the 
species richness, distribution or reproductive 
effort (following Meier et al. 2010; le Roux et 
al. 2012, 2014; Meineri et al. 2012), and how 
the effect depends on species, guilds, traits or 
environmental conditions. Species richness 
models were run using two types of frameworks 
(Ferrier & Guisan 2006; Dubuis et al. 2011): 
stacked species distribution modelling (SSDM) 
and macroecological modelling (MEM). For the 
SSDM, first the distributions of individual species 

are modelled and then the species richness value 
is formed by summing the predicted occurrences. 
In the MEM-based approach, the observed 
species richness value is modelled directly. 
Species traits were examined both as response 
variables (number of species with a certain trait 
in a plot) and against detected relationships (to 
determine whether the responses of species 
with different traits vary). The measures of 
reproductive effort were used solely as response 
variables in the models. Species distributions 
were mainly used as response variables, but when 
modelling fitness, cover value of the species were 
included to control size-related variation in fruit 
and/or flower production.

The models were run using various 
algorithms. For the analyses in Paper I, ensemble 
modelling using generalized linear modelling 
(GLM), generalized additive modelling (GAM) 
and generalized boosting method (GBM; also 
known as boosted regression trees = BRT) was 
exploited. Here, for the two different kinds 
of modelling frameworks implemented, the 
ensembles of the three algorithms were formed 
by majority vote approach for the SSDM and by 
counting an arithmetic mean of the predictions for 
the MEM (Araújo & New 2007). In the majority 
vote approach, a phenomenon is recorded as true/
false if the majority (here two out of three) of 
algorithms predicts true/false. In Papers II and IV, 
the analyses were run utilizing GBM. In Paper 
III, the analyses were primarily conducted using 
GLM, but repeated with generalized estimating 
equation (GEE) models to account for possible 
spatial autocorrelation (Kraan et al. 2010).  

GLM (Nelder & Wedderburn 1972) and 
GAM (Hastie & Tibshirani 1986) are regression 
models based on linear models, but they can fit 
non-normally distributed response variables 
through link functions, and thus, they are suitable 
for modelling species distributions and richness 
(Guisan et al. 2002). GMB is a machine learning 
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method that fits multiple models by dividing data 
into homogeneous subsets to optimize predictive 
performance (Elith et al. 2008). In contrast to 
regression models, machine learning methods are 
data-driven, with multiple non-parametric trees 
fitted to detect rules for how the response variable 
is related to explanatory variables. The strength 
of GBM is especially in its ability to handle non-
linearity and high-order statistical interactions 
between predictors (De’ath & Fabricius 2000). 
GEEs are used in biogeography to account for 
spatial autocorrelation (Carl & Kühn 2007), a 
common problem of spatially structured datasets 
(Legendre & Fortin 1989; Legendre 1993). They 
are based on GLM, but factor in potential non-
independency of predictors.

Determining the accuracy of the models is 
necessary before interpreting the results (Fielding 
& Bell 1997; Araújo et al. 2005). A commonly 
used approach is to examine the explanatory 
power (i.e. deviance explained) of the model. 
Explanatory power (or any measure of model 
performance) can also be used in model selection 
(a form of explanatory modelling approach used 
in Paper III), where a hypothesis is tested by 
choosing the best-performing set of predictors 
from competing models (Johnson & Omland 
2004). For predictive purposes, the prediction 
accuracy of a model must also be assessed. 
Approaches such as cross-validation and 
bootstrapping are used when no independent 
evaluation dataset exists (Steyerberg et al. 2001). 
In this thesis, four-fold cross-validation was used 
with data randomly divided into four parts. Models 
with binary response variables were evaluated by 
adjusted R2, area under curve (AUC) and true 
skills statistics (TSS) values (Manel et al. 2001; 
Allouche et al. 2006). Richness models based 
on MEM were evaluated based on correlation 
between observed and predicted species richness. 
For Paper III, Akaike information criterion (AIC) 
values were inspected to choose the best-fitting 

models (Akaike 1974; Ward 2008). To assess 
the influence of predictors, their response 
coefficients and variable importance values were 
derived (Friedman 2001; Papers II and III).

In Papers I and II, both species richness 
(implementing SSDM and MEM) and species 
distribution of vascular plants, bryophytes and 
lichens were modelled using three climate 
variables (TCQ, GDD, WAB), three abiotic 
variables (TWI, CAL, RAD) and three biotic 
variables (cover estimates of Empetrum, B. nana 
and B. pubescens), with 1080 cells of transect-
dataset. In Paper III, both species reproductive 
effort (i.e. number of flowers/berries per 
species per cell) and species distribution of 17 
vascular plant species were modelled using soil 
moisture, geomorphological disturbance, cover 
of Empetrum and their statistical interactions (n 
= 960). In Paper IV, species richness of vascular 
plants (n = 2292), bryophytes, lichens (n = 1080) 
and different specific leaf area classes (SLA; a 
trait representing species competitiveness–stress 
tolerance, Wilson et al. 1999) were modelled 
implementing MEM and using the same climatic 
and abiotic predictors as in Papers I and II, with 
addition of only one biotic predictor: cover of 
Empetrum. 

3 Results

Influence of biotic interactions in governing 
species performance and assemblages

Biotic interactions were shown to be important 
in explaining species distribution (Papers I 
and II), species richness (Papers I, II and IV), 
richness of traits (Paper IV) and reproductive 
effort (Paper III). The findings were robust for 
all guilds examined. Explanatory power (Papers 
I and IV) and the best-subset model approach 
(Paper III) showed that biotic interactions (here 
cover of dominant species) are important in 
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explaining these biodiversity properties. For 
example, including biotic predictors in the GLM 
of vascular plant species richness improved 
adjusted R2 from 38% to 55% (Paper I). Indeed, 
the importance of biotic interactions exceeded 
the variable importance of some abiotic variables 
in explaining species richness (Paper II). Cover 
of Empetrum was the second most important 
predictor to explain the richness of vascular 
plants, and to explain richness of lichen species, 
B. pubescens ranked third.

Species-specific impacts of biotic interactions 
and relation to traits, guild and geographic 
range

In addition to the magnitude of biotic interactions 
varying between guilds, also the outcomes of 
interactions differed among guilds, species 
and biotic predictors (Papers II and IV). For 
example, 77% of vascular plant species, 
especially competitive ones (as measured with 
SLA), respond mainly negatively to Empetrum, 
whereas its relationships with lichen species 
were mainly positive (60% of the species). 
In contrast, B. pubescens had mainly positive 
relationships with vascular plant species (59% 
of species), but negative relationships with 
lichens (67% of species). Bryophytes showed 
only weak responses to biotic predictors. Also 
B. nana had only a weak influence on species 
distributions or richness of any guilds. When 
examining the reproductive effort of the 17 
species, eight showed negative and six positive 
responses, whereas three species showed no 
effect on Empetrum (Paper III). In addition to 
guild and SLA, geographic range of species can 
indicate species responses to biotic interactions 
(Paper II). For example, although not statistically 
significant, arctic-alpine species tended to show 
more negative responses to dominant species 
than boreal species. 

Context-dependency of the impacts of biotic 
interactions
The outcome of biotic interactions was dependent 
on environmental conditions. The analyses in 
Paper IV showed that the dominant species had 
the strongest statistical interaction with GDD, 
meaning that the impact of Empetrum varied 
along the temperature gradient. Based on the 
best-subset model approach, outcome of biotic 
interactions was dependent on environmental 
conditions for all but one species (Paper III). 
In addition, for most species, the outcome was 
not only dependent on a single environmental 
gradient, but multiple gradients simultaneously 
(soil moisture and geomorphological disturbance; 
Paper III). Most of the detected relationships 
gave support for the SGH (Papers III and IV). For 
example, more positive interactions occur under 
intense geomorphological disturbance, and the 
dominant species had more negative influence on 
species richness of vascular plants under benign 
and productive conditions.

Manifestation of biotic interactions across 
landscapes

Biotic interactions govern the spatial patterns of 
species richness (Paper I). In addition, the context-
dependency of the outcomes of interactions was 
apparent also across the landscape (Paper IV). 
The effect of the dominant species on species 
richness of vascular plants was most negative 
under benign conditions at low altitudes, with 
high GDD. At higher altitudes the effect was 
less negative or even positive. For lichens, the 
findings were the opposite: Empetrum had the 
most positive influence at low altitudes, with the 
effect diminishing with increasing elevation and 
environmental stress. The weak effect of dominant 
species on bryophytes (Paper II) is apparent 
also at landscape level: biotic interactions have 
marginal effects on spatial patterns of species 
richness of bryophytes (Paper IV). 
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Importance of biotic interactions in spatial 
modelling of biodiversity

For all frameworks and guilds, the models trained 
with abiotic only and abiotic + biotic predictors 
were compared. Incorporating biotic interactions 
improved the SDMs for individual species 
(Paper I). This resulted also in improvement in 
SSDM, i.e. decreased overprediction of species 
richness. For MEM, including biotic interactions 
as predictors removed bias at both ends of the 
species richness gradient. These improvements 
were shown for all guilds (vascular plants, 
bryophytes, lichens and three SLA classes; 
Papers I and IV). In addition, in most models 
(Paper III), the cover of a dominant species was 
found to be an important factor in explaining the 
reproductive effort of the species. Improvement 
in the species richness models affected spatial 
predictions accordingly. While the SSDM and 
MEM, based on climatic and abiotic predictors, 
produced spatially highly varying predictions 
of species richness, the inclusion of biotic 
interactions converged the predictions of the 
two frameworks (Paper I).

4 Discussion

4.1 Role of biotic interactions 
in ecosystems
This thesis contributes to elucidation of the roles 
of biotic vs. abiotic factors in governing species 
performance, niches and richness (Grinnell 1924; 
Hutchinson 1957; Menge & Sutherland 1976; 
Martin 2001; Wiens 2011; Klanderud et al. 
2015). By using multiple approaches, species, 
guilds and predictors, this study shows that 
biotic interactions have as high, or even higher, 
significance in driving species’ performance and 
assemblages as abiotic drivers. In addition to 
demonstrating how biotic interactions determine 
ecosystems along with abiotic factors, the biotic 

interactions were revealed to affect ecosystems 
dependent on abiotic conditions (Fig. 7). Thus, 
although this study does not explicitly examine 
the scale-dependence of biotic interactions (see 
Fig. 4 and e.g. Sarr et al. 2005; McGill 2010, 
Araújo & Rozenfeld 2014), the results show that, 
at least partly, biotic interactions are conditional 
on environmental factors and their variability in 
space. 

In addition, the results support species-
specific outcomes of biotic interactions (Papers 
II and IV). Studies of individual species have 
shown that the outcome of biotic interactions are 
species-pair-specific (Pellissier et al. 2010; Nylén 
et al. 2013; Bueno de Mesquita et al. in press). 
Moreover, species- and guild-specific outcomes 
would only be reasonable since responses of 
different species and guilds to abiotic predictors 
vary as well (Bruun et al. 2006; Grytnes et al. 
2006; Löbel et al. 2006). Yet, more importantly, 
and as proposed earlier (e.g. McGill et al. 2006; 
Soliveres et al. 2012), these analyses indicate that 
species traits drive the magnitude and outcome of 
biotic interactions (see e.g. Kunstler et al. 2016). 
Here, species’ competitiveness – stress tolerance, 
geographic range and guild were found to be 
decisive traits (see e.g. Fig. 8).

Moreover, the results reveal that species- 
and individual-level effects can also be seen 
at the landscape level (Fig. 9). The multiple 

Figure 7. Biotic interactions play a part in defining 
biodiversity along with abiotic factors. In addition to the 
direct impacts, their effects are partly dependent on 
environmental conditions. 
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predictions demonstrate how biotic interactions 
can have equally important influences on 
spatial biodiversity patterns as abiotic drivers. 
Hypotheses, like the SGH, and species traits 
are demonstrated to be useful in predicting 
the spatial manifestation of biotic interactions. 
In conclusion, biotic interactions are both 
ecologically and biogeographically significant 
in determining ecosystems and biodiversity 
(Wiens 2011). 

Two applied conclusions can also be drawn. 
Firstly, the demonstrated complex manifestation 
of biotic interactions indicates that scaling the 
results of studies concerning only a few species, 
one taxa or snapshots of environmental conditions 
to cover whole ecosystems might result in 
incomplete conceptions. This finding should 
especially be acknowledged in conservation 
targeted research (Cornelissen et al. 2001; Gilman 
et al. 2010). Secondly, the magnitude of the impact 
of the dominant species was unexpectedly strong. 

In a set of model simulations where the cover 
of the dominant species was slightly increased, 
vascular plant richness was decreased by up to 
half. The most negative impacts occur under 
productive conditions. Paper II also cautions that 
arctic-alpine species are particularly sensitive to 
dominant species. These findings are alarming 
with regard to the future of cold environments 
(Klanderud et al. 2015). Under potentially 
warmer conditions, negative interactions would 
be more intense and widespread, and an increase 
in the abundance of the dominant species could 
affect particularly the arctic-alpine species. 

4.2 Role of biotic interactions 
in spatial modelling
As biotic interactions are shown to be important 
both ecologically and biogeographically, it is 
critical to account for them in spatial models. 
Indeed, here, all utilized modelling frameworks 
showed improved explanatory and predictive 

Figure 8. Magnitude and outcome of biotic interactions (i.e. the effect of Empetrum hermaphroditum) varied along 
both abiotic and biotic stress gradients and between guilds (here vascular plants and lichens). 
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power when incorporating biotic interactions 
along with abiotic predictors into the models of 
all three guilds examined. Especially, Paper I 
shows that the previously reported importance 
of biotic interactions in SDMs of individual 
species (e.g. Araújo & Luoto 2007; Pellissier 
et al. 2010) also applies to two fundamentally 
different species richness modelling frameworks. 

Stacked species distribution models are 
demonstrated to suffer from overprediction 
(Newbold et al. 2009; Dubuis et al. 2011; Mateo 
et al. 2012; Pottier et al. 2013; Cord et al. 2014). 
This is presumably due to the omission of biotic 
interactions and environmental carrying capacity 
in the models, thus allowing enlarged predictions 
of ranges of species, therefore also overpredicting 
species richness (Guisan & Rahbek 2011). 
In contrast, the MEM-based species richness 
models are found to overpredict species richness 
in species-poor areas, whereas underprediction 
occurs in species-rich areas (Newbold et al. 2009; 
Dubuis et al. 2011). These biases are presumably 
due to the MEM not being able to distinguish 
between sites that have similar abiotic conditions, 

but varying biotic composition. Thus, in both 
SSDM and MEM frameworks, the demonstrated 
decreases in prediction biases were presumably 
a result of increased realism in the models by 
incorporating biotic interactions (Paper I and 
Guisan & Rahbek 2011; Thuiller et al. 2013; 
D’Amen et al. 2015). Further, analyses in Paper II 
demonstrate the importance of biotic interactions 
in the models to exceed that of abiotic predictors, 
while the analyses in Papers III and IV show the 
significance of biotic interactions in the spatial 
models for other biological measures, namely 
reproductive effort and community traits, as well. 
Taken together, biotic interactions play a critical 
role in governing biodiversity at multiple levels, 
and omitting their effect in the models may result 
in unrealistic forecasts.

4.3 Methodological issues
While correlative models have many advantages, 
some methodological caveats also exist (e.g. 
Barry & Elith 2006). The most criticized 
weakness is their correlative nature (Gotelli et 
al. 2009; Kearney & Porter 2009; Kearney et 

Figure 9. High cover of Empetrum hermaphroditum has a negative impact on vascular plant species richness 
under benign conditions (e.g. at low altitudes), whereas the negative effect decreases and becomes slightly 
positive with increasing environmental stress. For lichens, the effect of Empetrum is constantly positive, with the 
impact being the strongest with intermediate stress and cover of the dominant species. In the figure, red indicates 
positive and blue negative interactions, with the intensity of the colour reflecting the magnitude of the interaction.
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al. 2010; Dormann et al. 2012). Relationships 
detected by models are based on statistical 
correlations between response and predictor 
variables, and presuming causality based 
on the detected relationships could lead to 
precarious assumptions. To overcome this 
issue, models must rely on strong theory when 
choosing covariates, and preferably, also on 
experimental studies to demonstrate causality 
between the variables (Austin 2002). Here, the 
variable selection was based on ecophysiological 
necessities of vegetation, meaning that the set 
of explanatory variables comprises factors with 
known causal effects on terrestrial plant and 
lichen species (i.e. temperature, water, nutrients, 
light, disturbances, biotic interactions). However, 
despite the experimentally demonstrated impacts 
and mechanisms of these dominant species on 
other species (e.g. Carlsson & Callaghan 1991; 
Nilsson et al. 2000; Aerts 2010), it is justifiable 
to question whether the proxy used for biotic 
interactions represents the influence of the 
dominant species or only shared environmental 
preferences between species (Giannini et al. 
2013). In addition, while the percentage cover 
of the dominant species represents a proxy of 
volume of species, some other measures might 
provide more accurate approximations of  
volume (Suvanto et al. 2014), and thus, intensity 
of interactions. It is, for example, possible that 
the demonstrated reduction of competition 
with increasing environmental stress might 
result from the parallel decrease in dominant 
species height, which was not considered here. 
Moreover, allelopathic effects of Empetrum 
might be mitigated by disturbance (Bråthen et 
al. 2010). 

One of the implicit problems with location-
based correlative models is spatial autocorrelation, 
which is typical of spatially-structured datasets 
(de Oliveira et al. 2014). Neighbouring data 
points are more similar than distant ones, causing 

non-independence of observations (Legendre 
& Fortin 1989; Legendre 1993), which in turn 
hinders the accuracy of models. Multiple methods 
for testing the data for spatial autocorrelation and 
for taking it into account in the analyses have 
been proposed (Carl & Kühn 2007; Dormann et 
al. 2007). Here, in addition to the use of GEE 
(Paper III), Moran’s I correlograms (Moran 
1950) were used to examine the similarity of data 
points (raw data and model residuals) against the 
distance between them. Only very weak spatial 
autocorrelation was found, and thus, it was not 
considered in subsequent analyses (see Paper I). 

4.4 Future perspectives
This thesis contributes to the understanding of the 
functioning of biotic interactions in ecosystems. 
Nevertheless, many gaps remain, some of which 
are presented below. Firstly, the chosen proxy 
for biotic interactions might not be applicable 
outside the communities of the study area. 
To apply similar models to other ecosystems, 
their influential species must be known. In 
more complex systems, identifying dominant 
species might not be possible. Further, to make 
predictions for a new area or time, grid-type 
data of all predictors covering the whole area 
of interest are required. This is rarely the case 
for individual (even dominant) species. Thus, 
to effectively account for biotic interactions in 
spatial models of biodiversity, a more general 
proxy should be developed. Remotely sensed, 
high-resolution vegetation or productivity 
indices might be a solution here (Virtanen et al. 
2010; Johansen & Tømmervik 2014).

Secondly, the effects of biotic interactions 
were studied only among sessile species. 
Studies covering a variety of species, guilds and 
environmental conditions should be repeated for 
animals, where additional (across-trophic level) 
interactions, such as prey-predation and parasitic 
or host-plant interactions, exist (Wisz et al. 2013). 
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Plants (and similar taxa) can also experience 
interactions other than intra-taxa interactions. 
For example, interactions between soil microbes 
and plants and between herbivores and plants 
have been demonstrated (Olofsson et al. 2013; 
Bueno de Mesquita et al. in press). Here, only the 
relationships between above-ground species and 
guilds were tested, but presumably interactions 
between, for example, above- and below-
ground organisms could also be detected (Van 
Der Heijden et al. 2008), probably influencing 
biodiversity predictions (Van Der Putten et al. 
2010; However, in a study using the same data 
as here, inclusion of herbivory had only a weak 
effect on the predictive power of the species 
distribution models of 41 plants). Nevertheless, 
all types of biotic interactions can be assumed to 
affect the models (with the type of interactions 
[negative competition, positive mutualism, etc.] 
governing the effect in models), and thus, the 
predictions of future biodiversity (see e. g. Araújo 
& Luoto 2007 for the impact of host plants on 
a distribution model of butterfly). For instance, 
positive interactions presumably enlarge the 
ranges of species with a positive impact on 
species richness, while negative interactions 
would have the opposite effect.

Thirdly, for applied purposes, both future 
climatic and biotic conditions should be 
simultaneously incorporated for realistic 
approximations of future biodiversity. Dominant 
species were shown to strongly influence 
biodiversity, and alterations in their abundance 
and distribution are probable in warming 
conditions (Shevtsova et al. 1997; Sturm et 
al. 2001). Therefore, predictions of future 
biodiversity should be conducted  acknowledging 
both future climatic conditions and predicted 
abundance of dominant species. This approach 
should provide more realistic predictions of 
changes in biodiversity.

5 Conclusions

This study demonstrates how the co-occurring 
dominant species affect species performance and 
assemblages, with their effect in some cases even 
exceeding that of abiotic factors. Further, the 
multiple modelling frameworks used found these 
effects to vary among species, guilds and traits 
and also in relation to environmental conditions. 
In conclusion, the magnitude and outcome of 
biotic interactions vary across landscapes due 
to the different assemblages of species and 
environmental conditions. Nevertheless, species 
traits and the SGH provide indications to predict 
the manifestation of biotic interactions. These are 
ecologically valuable findings, with especially 
important implications for biogeographical 
studies. Biotic interactions also drive the spatial 
biodiversity, and thus, abiotic factors alone 
cannot be used to explain these patterns.

Biotic interactions proved to be a critical part 
of not only the ecosystems but also the spatial 
models of biodiversity. This was evident in the 
improved explanatory power and predictive 
accuracy of the models with the inclusion 
of  biotic predictors. Acknowledging biotic 
interactions in models increases the realism of 
predictions of biodiversity. 
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