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ABSTRACT 

The renin-angiotensin system (RAS) is a key regulator of blood pressure and electrolyte 

homeostasis. Most hemodynamic responses to angiotensin (Ang) II are mediated via 

angiotensin II type 1 receptor (AT1R). Posttranscriptional regulation is an important 

mechanism in the regulation of AT1R expression. The primary target for posttranscriptional 

regulation of AT1R is the 3’-untranslated region (UTR) of its mRNA. AT1R 3’UTR has 

multiple adenylate-uridylate-rich elements that are recognized by various RNA-binding 

proteins (RNBP). These RNBPs regulate the expression of their target mRNAs by affecting 

mRNA stability, conformation, subcellular localization, and translation.  

The aim of this study was to identify novel AT1R 3’UTR-binding RNBPs and understand 

their physiological role in AT1R function. AT1R 3’UTR-associated RNBPs were isolated 

from human vascular smooth muscle cell lysates by protein affinity purification with AT1R 

3’UTR as a probe. Mass spectrometric identification of the AT1R 3’UTR-binding proteins 

led to identification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Hu antigen 

R (HuR) and TIA1 cytotoxic granule-associated RNA-binding protein (TIA-1).  

Oxidative stress induced by hydrogen peroxide (H2O2) increases AT1R expression. 

GAPDH was identified as a novel AT1R mRNA binding protein. GAPDH binds to a 

hairpin-structure rich in adenosine and uridine in the proximal 1-100 region of the AT1R 

3’UTR and suppresses AT1R translation. Interestingly, H2O2 promoted GAPDH 

dissociation from AT1R 3’UTR. Thus, loss of GAPDH-mediated inhibition explains 

oxidative stress-induced increase in AT1R expression. 

Insulin increases AT1R expression via posttranscriptional mechanisms. Insulin was shown 

to stabilize AT1R mRNA in a 3’UTR-dependent manner. HuR was found to bind with 

AT1R 3’UTR and stabilize AT1R mRNA. Insulin was shown to induce nucleocytoplasmic 

translocation of HuR to cytoplasm. This translocation of HuR increased HuR binding to 

AT1R 3’UTR, leading to increased AT1R expression by stabilization of AT1R mRNA. 

AT1R avoids the endoplasmic reticulum (ER) stress-mediated translational suppression. 

TIA-1 was shown to bind to the 3’UTR of AT1R mRNA and inhibit AT1R expression. 

Using fluorescent microscopy, TIA-1 was shown to normally colocalize with AT1R mRNA 
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in the cytoplasm but to dissociate from it during ER stress. The dissociated TIA-1 was 

directed to translationally-silenced stress granules (SG), while AT1R mRNA remained 

excluded from them. Thus, AT1R mRNA avoids aggregation to SGs and TIA-1-mediated 

translational suppression during ER stress. 

In conclusion, the 3’UTR of AT1R mRNA mediates the regulation of AT1R expression by 

oxidative stress, insulin stimulation, and ER stress. AT1R expression is modified by altered 

protein-mRNA interactions by changes in RNBP localization or expression levels. 
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INTRODUCTION 

Angiotensin (Ang) II is a central component of the renin-angiotensin system (RAS) that 

regulates blood pressure, electrolyte and body fluid homeostasis, as well as cardiovascular 

structure. Most of the deleterious effects of Ang II, including elevated blood pressure, 

production of reactive oxygen species and activation of pro-inflammatory pathways, are 

mediated by angiotensin II type 1 receptor (AT1R) (Touyz and Schiffrin 2000, Dinh et al. 

2001, Mehta and Griendling 2007, Higuchi et al. 2007). The type 2 receptor expression is 

much more restricted and usually has counteracting effects on AT1R (Horiuchi et al. 1999, 

Dinh et al. 2001). Cardiovascular diseases (CVD) combined constitute the leading cause of 

death and disability globally (www.who.int/en/). The important role of AT1R in 

development of CVDs is supported by the beneficial effects obtained by pharmacological 

inhibition of AT1R function (Oparil et al. 2001, PROGRESS Collaborative Group 2001, 

Gradman et al. 2005). 

AT1R expression is regulated at multiple levels from transcription to translation. A number 

of physiological factors have been found to regulate AT1R expression via a 

posttranscriptional mechanism. Growth factors (Nickenig and Murphy 1994), Ang II 

(Nickenig and Murphy 1996), and estrogen (Wu et al. 2003) have been established as 

negative, whereas low-density lipoprotein (LDL) (Nickenig et al. 1997) and insulin 

(Nickenig et al. 1998) as positive regulators of AT1R expression in a posttranscriptional 

manner. Thyroid hormone mediates posttranscriptionally both positive and negative effects 

on AT1R expression, depending on cell type (Fukuyama et al. 2003, Diniz et al. 2012). 

RNA-binding proteins (RNBP) identified to posttranscriptionally regulate AT1R expression 

via the 3’-untranslated region (UTR) of AT1R mRNA include AU-rich element RNA-

binding protein 1, 37kDa (AUF1) (Pende et al. 1999), calreticulin (Nickenig et al 2002, 

Mueller et al. 2008), and P100 (Paukku et al. 2008). Apart from Ang II-mediated 

posttranscriptional regulation of AT1R expression by AUF1 (Pende et al. 1999) and 

calreticulin (Nickenig et al. 2002, Mueller 2008), detailed molecular mechanisms of AT1R 

posttranscriptional regulation remain poorly understood.  

Comprehensive understanding of regulation of AT1R expression may provide new 

possibilities in CVD treatment. This thesis explores the posttranscriptional regulation of 
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AT1R expression in more detail at the level of molecular mechanisms. The aim was to 

identify novel AT1R 3’UTR-associated RNBPs, describe their effect on AT1R mRNA 

dynamics and AT1R expression, and to define the physiological factors and mechanisms 

regulating their function. 
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REVIEW OF THE LITERATURE 

1. Pathogenesis of hypertension and atherosclerosis 

Cardiovascular diseases (CVD) such as hypertension, atherosclerosis, coronary heart 

disease, heart failure, cerebrovascular disease, and peripheral artery disease constitute the 

leading cause of death and disability globally. It has been estimated that in 2012 around 

17.5 million people died from CVDs and according to a global status report by the World 

Health Organization, 9.4 million deaths could be attributed to high blood pressure in 2010 

(www.who.int/en/). The present day global obesity epidemic further worsens these 

numbers. 

1.1. Pathogenesis of hypertension 

According to the European Society of Hypertension (ESH) and European Society of 

Cardiology (ESC) guidelines, the clinical classification of hypertension is a condition where 

blood pressure (BP) is continuously 140/90 mmHg or higher (http://www.escardio.org/). 

Hypertension can be divided into two categories, primary or secondary. The majority of 

cases, around 95 %, are classified as primary hypertension where there is no obvious 

underlying medical cause (Carretero and Oparil 2000). Secondary hypertension is caused 

by an underlying condition such as the presence of renovascular disease or a tumor-secreting 

blood-pressure-elevating hormones (Chiong et al. 2008).  

Primary hypertension is a multifactorial condition where both genetic and environmental 

factors influence the development of hypertension. While no single genetic defect has been 

found to be the cause of primary hypertension, the genetic impact on BP varies greatly. In 

a study by Kupper et al. (2005) the heritability of BP was calculated to be 32-57% for 

systolic and 31-63% for diastolic, depending on the evaluation criteria. In addition to genetic 

predisposition, environmental factors play a significant role in the development of 

hypertension. The major environmental risk factors for hypertension include high alcohol 

consumption, diminished aerobic physical exercise, and unhealthy diet such as excess use 

of sodium, saturated fats, or high-fructose corn syrup. 
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The first steps in prevention or treatment of hypertension involve lifestyle changes and if 

this is not enough, pharmacological intervention may be applied. The main classes of anti-

hypertensive drugs, according to the ESH and ESC guidelines, include beta-blockers, 

diuretics, calcium (Ca2+) antagonists, angiotensin converting enzyme (ACE) inhibitors, 

angiotensin II receptor blockers (ARB), renin inhibitors, and mineralocorticoid receptor 

antagonists (http://www.escardio.org/). Of these, ARBs directly inhibit AT1R activation 

whereas inhibitors of renin and ACE prevent Ang II production and thus indirectly inhibit 

AT1R functions. 

1.2. Pathogenesis of atherosclerosis 

Atherosclerosis is characterized by the formation of atheromatous plaques in the tunica 

intima of the arteries, leading to the thickening and stiffening of the arterial wall. The 

growing plaques may cause stenosis that reduces blood flow, leading to ischemia. Rupture 

of the plaques in turn may cause myocardial infarction or stroke via thrombosis i.e. the 

formation of a blood clot. A thrombus may block the artery, resulting in the restriction of 

blood flow at the site of the rupture or, if dislodged, in distal arteries. Extensive studies to 

unravel the pathophysiological mechanisms of atherosclerosis have revealed it as a 

multifactorial and complex disease. While a great deal has been learned from various animal 

models and cell culture experiments, the pathophysiological mechanisms in humans are still 

largely unknown. What is known is that the progression of atherosclerosis takes decades 

and involves a complex interplay between extra- and intracellular lipid metabolism, 

inflammatory processes, endothelial dysfunction, and immunological responses (Lusis 

2000, Libby et al. 2011, Weber and Noels 2011) 

As stated by the response to retention model, subendothelial accumulation of apolipoprotein 

B-containing lipoproteins, including low-density lipoprotein (LDL) and apolipoprotein B 

remnants, and resulting inflammation are considered as key initiators of atherogenesis, i.e. 

the formation of the plaques (Williams and Tabas 1995, Tabas et al. 2007). There are, in 

addition, other pathways connected to the initiation of atherogenesis. According to the 

response to injury model, atherogenesis is initiated by physical injury of the endothelial 

layer of the vascular wall, thus promoting the adhesion of leukocytes and production of pro-

inflammatory factors at the site of injury (Ross et al. 1977). As the majority of developing 
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plaques show no evidence of physical injury of the endothelial layer, this triggering pathway 

was later modified suggesting that the endothelial dysfunction may act as an enhancer of 

atherogenesis by increasing the endothelial permeability to lipoproteins (Ross 1999, 

Gimbrone 1999). The second pathway connected to initiation of atherosclerosis, known as 

the oxidative modification hypothesis, underlines the importance of oxidatively modified 

lipoproteins such as oxidized LDL (oxLDL) in the progression of atherogenesis. This is 

supported by the findings that oxidative modification of LDL, taking place primarily in the 

tunica intima, promotes its uptake by macrophages via their scavenger receptors and is 

required for many of the pro-atherogenic functions of LDL (Steinberg et al. 1989, Diaz et 

al. 1997).  

While the key triggering mechanisms of atherogenesis or their combinations are under 

extensive research and discussion, the subsequent consequences follow the same scheme. 

One of the first steps in atherogenesis is characterized by the adhesion of circulating 

leukocytes, mainly monocytes, to the endothelial cells lining the inner wall of the arteries 

(Figure 1 A-B) (Gerrity 1981). In response to atherogenic stimuli, vascular cells release 

chemoattractant cytokines (Moore and Tabas 2011, Drechsler et al. 2015) and the 

endothelial cells begin to express adhesion molecules, such as vascular cell adhesion 

molecule-1 (VCAM-1), on their surface (O’Brien et al. 1993, Cybulsky et al. 2001, Galkina 

and Ley 2007). Leukocytes that are guided to the site by chemotaxis attach to the adhesion 

molecules, roll on the endothelial surface and finally migrate across the endothelial 

monolayer to the underlying tunica intima. When resident in the intima, monocytes, a subset 

of leukocytes, differentiate into macrophages that engulf modified lipoproteins, including 

oxLDL or enzymatically modified LDL, transforming them into lipid-loaded foam cells that 

serve as an important source of lipid (mostly cholesterol ester) and cell debris accumulation 

in the developing plaque (Figure 1B) (Gerrity 1981, Bentzon et al. 2014). 

Another important step in the initiation of atherogenesis is the infiltration of vascular smooth 

muscle cells (VSMC) from tunica media to tunica intima. When resident in the intima, the 

VSMCs proliferate and secrete collagen and elastin. These extracellular matrix components 

produce a structure known as a fibrous cap that covers and stabilizes the developing plaque 

(Figure 1 C) (Libby et al. 2011). Dying cells, such as VSMCs and foam cells, under the 

fibrous cap lead to accumulation of extracellular cell debris, lipids, and even cholesterol 
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crystals at the central part of the developing plaque, forming a structure known as the 

necrotic core (Libby et al. 2011, Bentzon et al. 2014). 

Ultimately, disruption of the fibrous cap leads to plaque rupture (Figure 1 D). One of the 

key features rendering the plaque susceptible to rupture is the thinning of the fibrous cap. 

This is thought to be due to decreased matrix formation, especially reduced collagen content, 

as a response to increased apoptosis of the plaque resident VSMCs and macrophage-induced 

proteolytic degradation of the matrix components (Bentzon et al. 2014). Fractured plaque 

exposes pro-coagulant material of the plaque core to coagulants in the blood, leading to the 

formation of the thrombus that is responsible for the ultimate pathological consequences of 

atherosclerosis. 

 

Figure 1. Atherogenesis. Adapted from Libby et al. 2011. 

2. Regulation of gene expression at mRNA level 

Cells regulate the expression of their genes in order to keep up normal physiological 

functions as well as to adapt to environmental changes. Gene expression is regulated at 

several different levels. Everything from the speed of transcription to the decay rate of the 

mRNA molecule are under strict control. The pre-mRNA molecules undergo extensive 

modifications such as the formation of the 5’-cap, addition of the poly-A tail and possible 
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splicing of introns and exons before being transported from the nucleus to the cytoplasm 

where they are taken up by the translational machinery (Proudfoot et al. 2002). In addition 

to these classical processes, there are several other regulatory steps between transcription 

and decay that are collectively referred to as posttranscriptional regulation. 

2.1. mRNA structure and cis-acting elements 

The three dimensional structure of an mRNA molecule is significantly more complex and 

versatile compared to a DNA molecule. The backbone of an RNA molecule consists of a 

phosphate group and a ribose sugar unlike the deoxyribose sugar in DNA molecules. 

Because RNA, unlike DNA, does not form double helix by pairing with a complementary 

RNA molecule, they can form different types of secondary structures within a single 

molecule. The secondary structures, such as hairpins and loops, are usually formed between 

complementary sequences within the mRNA by canonical Watson-Crick basepairing where 

cytosine and uracil pair up with guanine and adenine, respectively (Watson and Crick 1953). 

These structures play an important role in the regulation of RNA function. They may act as 

targets for various trans-acting factors such as RNA-binding proteins (RNBP) that have 

multiple roles in the posttranscriptional processes of mRNA molecules.  

As a rule, mRNA structure can be divided into five different segments in 5’-3’ order: 5’cap, 

5’-untranslated region (UTR), protein coding sequence (CDS), 3’UTR and the poly-A tail 

(Figure 2). The 5’-end of the transcript contains the 5’cap structure, the role of which is to 

guide the assembly of the translational machinery and protection of the mRNA transcript 

from exonuclease-mediated decay (Proudfoot et al. 2002). Following the cap, there is the 

5’UTR that may regulate translational efficiency via various cis-acting elements such as 

internal ribosomal entry sites (IRES), which function in the cap-independent translation 

under situations like cellular stress when cap-dependent translation is halted (Kullmann et 

al. 2002, Holcik and Sonenberg 2005, Thakor and Holcik 2012). The presence of out-of-

frame upstream open reading frames (uORF) allow the translation to initiate from an 

alternative site, thus competing with the translation from the actual start codon and resulting 

in reduced protein expression (Morris and Geballe 2000, Meijer and Thomas 2002, Calvo 

et al. 2009). When in-frame with the actual coding sequence, they may also produce 

isoforms varying in their N-terminal amino acid content (Martin et al. 2001) 



 
 
 
 

17

 

Figure 2. Structure of an mRNA molecule and its trans-acting factors. Adapted from Mignone et 
al. 2002. 

The coding sequence located between the 5’ and 3’UTR acts as a template for the encoded 

protein. The content of the coding sequence can be regulated via a process known as 

alternative splicing that can alter the actual polypeptide encoded by the mRNA. Following 

the coding sequence is the 3’UTR that is considered to be the major posttranscriptional 

regulatory element. While not being translated, this element functions as the target site for 

various regulatory mediators affecting the mRNA stability, conformation, nuclear export, 

translation, and localization. The cis-acting elements in the 3’UTR are specific sequences 

and structures that serve as targets for a variety of trans-acting factors such as RNBPs and 

microRNA (miRNA) molecules. Various cis-acting elements found in 3’UTRs are listed in 

Table 1. 
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Table 1. Cis-acting elements in 3’UTRs 

CIS-acting element Function Example mRNA Reference 

AU-rich element (ARE) Translation, stability AT1R Pende et al. 1999 

GU-rich element (GRE) Stability c-jun Vlasova et al. 2008 

CU-rich element 
(CURE/DICE) Translation, stability MAP3K7IP2, 

r15-LOX 
Wang et al. 2006,  
Messias et al. 2006 

CA-rich element (CARE) Splicing, stability bcl-2, eNOS Hui et al. 2003 
Lee et al. 2009,  

Iron responsive element (IRE) Translation, stability TfR Casey et al. 1989 

Selenocysteine insertion 
sequence (SECIS) UGA to selenocysteine GPx Gromer et al. 2005 

AT1R = angiotensin II type 1 receptor; AU = adenylate-uridylate; bcl-2 = B-cell CLL/lymphoma 2; CA = 
cytidylate-adenylate; c-jun = jun proto-oncogene; CU = cytidylate-uridylate; eNOS = endothelial nitric oxide 
synthase; GPx = Glutathione peroxidase; GU = guanylate-uridylate; MAP3K7IP2 = TGF-beta activated kinase 
1/MAP3K7 binding protein 2; r15-LOX = reticulocyte 15-lipoxygenase; TfR = transferrin receptor. 

The poly-A tail at the end of the transcript is added in a process known as polyadenylation, 

orchestrated by a multi-protein 3’-processing complex (Colgan and Manley 1997). The 

length of the poly-A tail can vary significantly but in mammals it is usually around 250 

nucleotides (nt) in size (Kühn et al. 2009). In addition to protecting the transcript from 

exonuclease activity, the poly-A tail takes part in nuclear export of the molecule and in its 

translational regulation (Millevoi and Vagner 2010, Matoulkova et al. 2012). Genes may 

also contain more than one polyadenylation signal that may result in changes in the coding 

sequence or more commonly in the 3’UTR length of the transcripts by alternative 

polyadenylation (Tian et al. 2005, Elkon et al. 2013). This may have a significant effect on 

the 3’UTR-mediated regulatory mechanisms of the mRNA. For example, the genes 

encoding for Hu antigen R (HuR) (Al-Ahmadi et al. 2009) and cyclooxygenase 2 (Cox-2) 

(Hall-Pogar et al. 2005) contain alternative poly-A sites that result in variation of their 3UTR 

lengths and inclusion or exclusion of different 3’UTR-located adenylate-uridylate (AU) -

rich elements (ARE). 
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2.2 AU-rich elements 

The best characterized group of cis-acting elements in the 3’UTRs are the AREs. The 

current estimates for ARE-containing human genes vary between 5% and 16% (Bakheet et 

al. 2006, Gruber et al. 2011). AREs are usually described as destabilizing elements that 

promote decay of the mRNA molecule. However, depending on their associated trans-

acting factors, they can lead to stabilization of the transcript as well (Lal et al. 2004, Barreau 

et al. 2006). 

The core sequence of this element is AUUUA, but the classification is further divided into 

sub-categories depending on the more specified nucleotide sequence. The basic model from 

Chen and Shyu (Chen and Shyu 1994, Chen and Shyu 1995) divides AREs in three classes 

based on the variation of the core sequence. Class I AREs contain the classic AUUUA 

sequence in 1 to 3 copies within a uridylate-rich region, whereas the class II AREs consist 

of at least two overlapping UUAUUUA(U/A)(U/A) sequences. The class III AREs are not 

that well defined and can consist of uridylate rich regions lacking the AUUUA sequence. 

More detailed classifications, such as the one used by the ARE database, ARED 

(http://brp.kfshrc.edu.sa/ARED/) uses the classification of Chen and Shyu as the basis but 

divides the class II further depending on the number of the AUUUA repeats and their 

surrounding sequences (Bakheet et al. 2001, Barreau et al. 2006) 

2.3 mRNA trans-acting factors 

Multiple aspects of mRNA processing, such as nuclear export, posttranscriptional 

processing, subcellular localization, translation, and half-life are regulated by trans-acting 

factors like RNBPs that recognize their target mRNAs cis-acting elements via RNA-binding 

domains. The RNA-binding domains of different RNBPs consist of a variety of elements 

that are shared between the proteins, but each RNBP has its own combination of them. This 

facilitates the diverse functions and specificity of different RNBPs (Glisovic et al. 2008). 

One of the most abundant and widely studied domains is the RNA recognition motif (RRM), 

proposed to be present in up to 1% of human genes (Lunde et al. 2007). In addition, there 

are some unconventional protein domains that have been shown to possess RNA-binding 

ability but are yet to be classified as actual RNA-binding domains. An example of such a 
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structure is the NAD+-binding domain of glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) that has been shown to bind AREs (Nagy and Rigby 1995, Nagy et al. 2000) 

AREs are targets for a group of proteins called ARE-binding proteins (ARE-BP). They are 

a diverse group of proteins with multiple functions. They can either stabilize or destabilize 

the target mRNA as well as affect their translational efficiency. The effect of AREs on the 

mRNA depends on their associated ARE-BPs (Barreau et al. 2006). Some of the 

characterized ARE-BPs and their RNA-binding domains are listed in table 2.  

ARE-BPs with opposite effects often compete for the same target mRNAs and one or the 

other is preferred, depending on environmental factors. For example, AUF1 and HuR both 

bind to the mRNA encoding for cyclin D1. HuR stabilizes the mRNA whilst AUF1 

promotes its rapid degradation (Lal et al. 2004). HuR also competes with CELF2 (also 

known as CUGBP2) for binding to the 3’UTR of Cox-2 mRNA. Here, both HuR and CELF2 

stabilize the mRNA, and while HuR enhances the translation, CELF2 has the opposite effect 

(Sureban et al. 2007). Cytochrome C expression is, in turn, regulated by HuR and TIA1 

cytotoxic granule-associated RNA-binding protein (TIA-1) via 3’UTR-dependent 

translational control. While neither HuR nor TIA-1 affect cytochrome C mRNA stability, 

HuR promotes and TIA-1 inhibits its translation (Kawai et al. 2006). 

In the coming sections only those ARE-BPs that are essential for the present thesis, i.e. 

GAPDH, HuR, and TIA-1, are described in more detail. 
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Table 2. Partial list of known ARE-BPs 

ARE-BP RNA-binding domains Target example Reference 

AUF1 RNA recognition motif (RRM) x2 IL-6 Paschoud et al. 2006 

CELF2 RRM x3 Cox-2 Mukhopadhyay et al. 2003 

GAPDH NAD+-binding domain Cox-2 Ikeda et al. 2012 

hnRNP A1 RRM x2 cIAP1 Zhao et al.  2009 

hnRNP A2 RRM x2 Glut 1 Hamilton et al. 1999 

hnRNP L RRM x2 Glut 1 Hamilton et al. 1999 

Hsp70 ATP- and peptide-binding domains Cox-2, VEGF Kishor et al. 2013 

HuR RRM x3 Cox-2 Doller et al. 2008 

KHSRP K homology domain (KH) x4 LDLR Li et al. 2009 

Nucleolin RRM x4 bcl-2 Sengupta et al. 2004 

PTBP1 RRM x4 LDLR Li et al. 2009 

RNPC1 RRM x1 MIC-1 Yin et al. 2013 

TIA-1 RRM x3 Cox-2 Dixon et al. 2003 

TIAR RRM x3 BRCA1 Podszywalow-Bartnicka et al. 2014 

TTP Zinc finger (Znf) CCCH-type x2 TNF  Carballo et al. 1998 

YBX1 Cold shock domain (CSD) x1 GM-CSF Capowski et al. 2001 

AUF1 = AU-rich element RNA-binding protein 1, 37kDa; bcl-2 = B-cell CLL/lymphoma 2; BRCA1 = breast 
cancer 1; CELF2 = CUGBP, Elav-like family member 2; cIAP1 = baculoviral IAP repeat containing 2; Cox-
2 = cyclooxygenase 2; GAPDH = glyceraldehyde-3-phosphate dehydrogenase; Glut-1 = glucose transporter 
1; GM-CSF = granulocyte-macrophage colony-stimulating factor; hnRNP A1 = heterogeneous nuclear 
ribonucleoprotein A1; hnRNP A2 = heterogeneous nuclear ribonucleoprotein A2/B1; hnRNP L = 
heterogeneous nuclear ribonucleoprotein L; Hsp70 = heat shock 70kDa protein 1A, HuR = Hu antigen R; IL-
6 = interleukin 6, KHSRP = KH-type splicing regulatory protein; LDLR = low density lipoprotein receptor; 
MIC-1 = macrophage inhibitory cytokine-1; TIA-1 = TIA1 cytotoxic granule-associated RNA-binding 
protein; TIAR = TIA1 cytotoxic granule-associated RNA-binding protein-like 1; TNF  = tumor necrosis 
factor ; TTP = tristetraprolin; PTBP1 = polypyrimidine tract binding protein 1; VEGF = vascular endothelial 
growth factor; YBX1 = Y box binding protein 1; RNPC1 = RNA binding motif protein 38. The RNA-binding 
motifs are collected from the articles when possible or from the RNA-binding protein DataBase, RBDP 
(http://rbpdb.ccbr.utoronto.ca/). 
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2.3.1. GAPDH 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is best known for its role in 

glycolysis where it catalyzes the conversion of glyceraldehyde 3-phosphate (G3P) to 1,3-

bisphosphoglycerate (1,3BPG) in a reaction that reduces nicotinamide adenine dinucleotide 

(NAD) from its oxidized form, NAD+ to NADH. GAPDH is a multifunctional protein that 

takes part in several cellular processes (Nicholls et al. 2012). GAPDH localizes to the 

nucleus where it protects the cells from telomere shortening (Sundararaj et al. 2004, 

Demarse et al. 2009) and promotes apoptosis (Dastoor and Dreyer 2001, Hara et al. 2005, 

You et al. 2013). GAPDH also functions as a transcriptional regulator (Zheng et al. 2003, 

Harada et al. 2007) and interacts with other proteins, for example in regulation of protein 

transport from endoplasmic reticulum to Golgi (Tisdale 2001, Tisdale et al. 2004). 

One of the best characterized extraglycolytic activities of GAPDH is its role as an RNBP. 

GAPDH binding to its target mRNAs is mediated by its NAD+-binding domain and the 

GAPDH-RNA interaction may be competed and even inhibited by NAD+, NADH, or ATP 

(Nagy and Rigby 1995, Nagy et al. 2000). Both connective tissue growth factor (CTGF) and 

Cox-2 mRNAs are targets of GAPDH; this interaction is inhibited by NAD+ (Kondo et al. 

2011, Ikeda et al. 2012). Kondo et al. also described the CTGF mRNA-GAPDH interaction 

to be decreased by an oxidative agent, diamide, thus suggesting a redox sensitive regulation 

of GAPDH binding to RNA (Kondo et al. 2011). This is further supported by redox-

sensitive, 3’UTR-mediated regulation of endothelin-1 by GAPDH (Rodriguez-Pascual et al. 

2008). Under normal conditions GAPDH acts as a negative regulator of endothelin-1 

expression via increasing its mRNA decay. The active site of GAPDH is needed for RNA 

binding as both NAD+ and G3P are capable of inhibiting the GAPDH-RNA interaction. 

Further, the catalytic cysteine residue at the active site of GAPDH regulates its redox-

sensitive RNA-binding capability. Exposure of the wild type GAPDH to oxidative agents 

leads to modification of the active-site cysteine and inhibition of GAPDH-RNA interaction. 

Mutation of the GAPDH active-site cysteine to a serine fails to significantly affect the 

protein structure or the RNA binding capability but prevents the cysteine-targeted oxidative 

modifications. This mutated GAPDH retains its RNA-binding capability and suppressive 

function over enothelin-1 expression after exposure to the oxidative agents. This shows that 
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the active-site cysteine is regulating the redox-sensitive binding of GAPDH to RNAs 

(Rodriguez-Pascual et al. 2008). 

2.3.2. HuR 

Hu antigen R (HuR), also known as ELAV like RNA binding protein 1 (ELAVL1), belongs 

to a protein family of Hu-proteins consisting of three other family members, HuB, HuC, and 

HuD (Hinman and Lou 2008). HuR is a ubiquitously expressed protein that was first 

characterized and mapped by Ma et al. (Ma et al. 1996, Ma and Furneaux 1997). HuR 

consists of three RNA recognition motifs (RRM) RRM1, RRM2, and RRM3. RRM2 and 

RRM3 are separated by a hinge region that contains the HuR nucleocytoplasmic shuttling 

sequence (Fan and Steitz 1998a). RRM1 and RRM2 are thought to mediate RNA-binding, 

whereas RRM3 stabilizes protein-protein interactions and binds to the poly-A tail of 

mRNAs. HuR is primarily nuclear but upon various stimulations shuttles to the cytoplasm 

where it binds to its target mRNAs (Doller et al. 2008). HuR was originally described as an 

mRNA stabilizing factor that protects VEGF (Levy et al. 1998) and c-fos (Fan and Steitz 

1998b, Peng et al. 1998) mRNAs from decay. Later, HuR was shown to stabilize a number 

of other ARE-containing mRNAs, including those for tumor necrosis factor  (TNF ) (Dean 

et al. 2001) and Cox-2 (Sengupta et al. 2003). In addition to promoting mRNA stability, 

HuR regulates alternative splicing (Izquierdo 2008, Zhao et al. 2014) and translation 

(Mazan-Mamczarz et al. 2003, Meng et al. 2005, Kawai et al. 2006). The detailed 

mechanisms by which HuR acts as a positive regulator of its target mRNAs is somewhat 

unclear but it has been suggested to involve regulation of polyadenylation (Dai et al. 2012), 

polysomal targeting (Doller et al. 2013), and competition with destabilizing factors (Linker 

et al. 2005, Sureban et al. 2007, Tiedje et al. 2012, Zhuang et al. 2013). 

2.3.3. TIA-1 

TIA1 cytotoxic granule-associated RNA-binding protein (TIA-1) was first characterized as 

a granule-associated protein in cytolytic lymphocytes and was originally designated as T-

cell restricted intracellular antigen-1. It was identified to be expressed as two isoforms called 

p40-TIA-1 and p15-TIA-1 (Anderson et al. 1990, Tian et al. 1991, Kawakami et al. 1994). 

Later, the p15-TIA-1 isoform was actually shown to be transcribed by a distinct gene and 
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thus renamed as Granule Membrane Protein of 17 kDa (GMP-17), while the name TIA-1 

was reserved for the p40 isoform (Medley et al. 1996). The gene encoding TIA-1 consists 

of 13 exons and there are two splice variants: TIA-1a that lacks exon 5 and TIA-1b where 

the exon 5 is included. Little is known about the functional differences between these two 

variants. They have been shown to exhibit differential tissue expression, and TIA-1b 

appears to have enhanced splicing activity over TIA-1a (Kawakami et al. 1994, Izquierdo 

and Valcárcel 2007). 

In addition to its role in splicing, TIA-1 is associated with other cellular processes, including 

induction of apoptosis (Tian et al. 1991) and translational suppression (Dixon et al. 2003, 

Kawai et al. 2006). One of the best characterized functions of TIA-1 is its role in stress 

granule (SG) assembly in unfolded protein response (UPR) (Kedersha et al. 1999). TIA-1 

is most abundantly found in the nucleus but constantly shuttles between the nucleus and 

cytoplasm (Zhang et al. 2005). 

TIA-1 consists of three RRMs and a glutamine-rich C-terminal domain. The prion-related 

domain (PRD) in the C-terminus is needed for the aggregation of TIA-1 during SG assembly 

(Gilks et al. 2004). The three RRMs show distinct RNA-binding capabilities. The C-

terminal RRM2 and RRM3 are needed for TIA-1 to bind uridine-rich sequences, where 

RRM3 is not required for the binding but stabilizes the interaction (Dember et al. 1996). 

The N-terminal RRM1 expresses no significant RNA-binding capability without the 

presence of the other RRMs. However, it has been shown to enhance the C-terminal domain-

mediated protein-protein interaction between TIA-1 and U1-C protein of the U1 small 

nuclear ribonucleoprotein (Dember et al. 1996, Förch et al. 2002). 

3. Cellular stress and the unfolded protein response 

Cells are sensitive to different environmental changes and usually respond to them by 

adapting their metabolism accordingly. Nevertheless, sometimes the changes are too big or 

too long for the cells to cope with, leading to cellular stress. Oxidative stress, metabolic 

stress, and inflammation are common stressors that the cells are exposed to under various 

environmental conditions. The common denominator for all of them is the induction of 

endoplasmic reticulum (ER) stress and activation of UPR as an adaptive coping mechanism. 
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3.1. The unfolded protein response 

Endoplasmic reticulum is the site of synthesis for secretory and membrane-bound proteins 

of the cell surface and intracellular compartments. In addition, it also participates in lipid 

metabolism, Ca2+ storage, and carbohydrate synthesis (Halperin et al. 2014). A situation 

where the homeostasis of the ER is compromised is known as ER stress. ER stress leads to 

the accumulation of unfolded proteins in the ER lumen and dissociation of an ER chaperone 

glucose-regulated protein 78 kDa (GRP78) from the luminal, N-terminal parts of three 

distinct ER transmembrane sensors: protein kinase RNA-like ER kinase (PERK), inositol-

requiring protein 1  (IRE1 ) and activating transcription factor 6 (ATF6) (Figure 3). 

Dissociation of GRP78 from these sensors leads to their activation and to induction of UPR 

pathways to cope with and to overcome the unfolded protein load in the ER (Hetz 2012). 

 

Figure 3. ER stress and UPR pathways. Adapted from Minamino et al. 2010. 
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Activation of IRE1  and ATF6 leads to activation of transcription factors upregulating the 

expression of various UPR genes. Activated PERK phosphorylates eukaryotic translation 

initiation factor 2  (eIF2 ) leading to accumulation of non-functional translation initiation 

complexes. This inhibits the cap-dependent translation of new proteins, thus reducing the 

unfolded protein load in the ER. (Hetz 2012). Another consequence of eIF2  

phosphorylation is the subsequent formation of SGs. These are macromolecular 

ribonucleoprotein-complexes consisting of polyadenylated mRNAs and proteins. The main 

function of these structures is to sequester mRNAs into translationally-silenced foci during 

cellular stress while protecting them from decay (Anderson and Kedersha 2009, Adjibade 

and Mazroui 2014). 

3.2. Physiological stressors 

Oxidative stress 

Oxidative stress is a situation where the formation of reactive oxygen species (ROS) exceeds 

the capacity of the cells to neutralize them. ROS are needed for normal cellular signaling 

(Suzuki et al. 1997), but their excessive production has damaging effects on cells by 

oxidation of lipids, proteins, and nucleic acids, as well as by inactivating nitric oxide (NO). 

Some of the key sources for ROS within vascular cells are presented in Figure 4. NADPH 

oxidases (NOX) and xanthine oxidases, expressed in the cells at the vascular wall, are 

important sources of superoxide anion (O2-) and hydrogen peroxide (H2O2) (Berry et al. 

2000, Kelley et al. 2010). O2- reacts with the potent vasodilator NO, converting it to 

peroxynitrite (ONOO-), a strong oxidant that has been suggested to promote atherogenesis 

in vivo by increasing LDL oxidation (Leeuwenburgh et al. 1997). During oxidative stress, 

uncoupling of the endothelial nitric oxide synthase (eNOS) may further reduce NO 

bioavailability. Uncoupling of eNOS switches its function from NO production to 

production of O2- (Münzel et al. 2005). This further increases the ROS load in the cell. 

While H2O2 alone is a relatively weak oxidant, it can promote the formation of hydroxyl 

radicals (OH•) by reacting with O2- or via a Fenton reaction where it oxidizes ferrous (Fe2+) 

to ferric (Fe3+) iron (Maytin et al. 1999). 
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Figure 4. Production of ROS in the vasculature. 

Normally antioxidants, including vitamin E and C or various enzymes, including superoxide 

dismutases, catalase, glutathione peroxidase, and peroxiredoxins are capable of 

circumventing the deleterious effects of ROS by neutralizing them. Superoxide dismutases 

catalyze the conversion of O2- to oxygen (O2) and H2O2, which is further processed via 

catalase, glutathione peroxidase, and peroxiredoxins, to produce H2O (Förstermann 2010). 

Under pathophysiological conditions when the ROS production is increased or prolonged, 

these enzymes are unable to cope with the ROS burden leading to pathological oxidative 

stress. 

Metabolic stress 

Metabolic stressors like hyperglycemia, hyperinsulinemia, and dyslipidemia may promote 

the formation of ROS and lead to ER stress and activation of UPR pathways. 

Hyperglycemia is a situation where the blood glucose levels are too high. It is a common 

feature in type 2 diabetes (T2D) where the proper body insulin function is disrupted even 

though the insulin levels may be elevated. This is known as hyperinsulinemia or insulin 

resistance. Dyslipidemia refers to abnormal lipid levels in the blood and may be triggered 

by hyperinsulinemia. Relatively common examples of dyslipidemia are both 

hypercholesterolemia and hypertriglyceridemia combined with reduced high-density 

lipoprotein (HDL) levels. 

Hyperinsulinemia has several mechanisms by which it can cause ER stress, and some of 

these are cell-type specific. It results in downregulation of insulin receptors on 
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macrophages, resulting in ER stress and apoptosis. The mechanism is mediated by inhibition 

of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) family and subsequent 

increase of cytosolic Ca2+ (Han et al. 2006, Liang et al. 2012). Compared to normal 

macrophages, insulin-resistant macrophages show increased ER stress and apoptosis 

following cholesterol loading. This is mediated via a transcription factor that increase the 

expression of a protein known as inhibitor of NF- B (I B). Nuclear factor B (NF- B) is a 

transcription factor and inhibition of NF- B activity by I B leads to decreased expression 

of various antiapoptotic and inflammatory genes under its control. This has been suggested 

to play a role in plaque development, necrotic core formation, and complications of 

atherosclerosis in diabetic individuals (Senokuchi et al. 2008). 

Insulin resistance may reduce ER stress responses in adipose tissue via inhibition of the 

metabolic phosphoinoside 3-kinase (PI3K) pathway of insulin signaling. This pathway is 

inhibited in insulin resistant T2D patients or by lipid infusion in normal individuals (Boden 

et al. 2014). In the study by Boden et al. (2014), hyperinsulinemia, caused by hyperglycemia 

in normal individuals increased the expression of ER stress markers in the adipose tissue. 

However, no change in ER stress markers was seen if the PI3K-pathway was inhibited by 

lipid infusion. Similarly, in T2D patients with suppressed PI3K-pathway, no increase in ER 

stress markers was observed following insulin administration. Thus, it was proposed that 

insulin induces ER stress via PI3K-mediated metabolic pathways, affecting glucose 

metabolism and protein synthesis (Boden et al. 2014). 

ER stress induced by obesity and inflammation has been suggested to promote hepatic 

insulin resistance that leads to increased gluconeogenesis and hyperglycemia, hallmarks of 

T2D (Kim et al. 2015). Insulin resistance in liver also causes an increase in lipogenesis that 

leads to elevated triglyceride-enriched very low-density lipoprotein (VLDL) secretion into 

circulation, which in turn promote development of atherosclerosis (Adiels et al. 2008). 

In the vasculature and cells of vascular origin, hyperglycemia, hyperinsulinemia, and 

hyperlipidemia upregulate inflammatory biomarkers (Perkins et al. 2015). Hyperglycemia 

also induces nitric oxide synthase dysfunction, peroxynitrite production, and LDL oxidation 

(Tanaka et al. 2009). Further, in VSMCs, hyperglycemia induces ROS production via 

increased NADPH oxidase 4 (NOX4) expression (Xi et al. 2012). In VSMCs from a diabetic 
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rat model, hyperglycemia has in turn been shown to impair the regulation of intracellular 

Ca2+ sorting (Searls et al. 2010). 

Inflammation 

Inflammation and ER stress are closely linked. Several inflammatory factors may cause ER 

stress which further promotes the production of various pro-inflammatory molecules that 

attract inflammatory cells to the site of inflammation and thus amplify this positive feedback 

loop (Gargalovic et al. 2006, Zhang and Kaufman 2008). 

NF- B is a key regulator of the transcription of several inflammatory genes. It is activated 

during ER stress by phosphorylation of I B that normally keeps NF- B inactive (Pahl and 

Baeuerle 1995, Pahl and Baeuerle 1996, Jiang et al. 2003). Also, UPR-induced translational 

attenuation leads to increased NF- B activation. The half-life of I B is shorter than that of 

NF- B and thus I B is unable to suppress NF- B in a situation where the translation of new 

proteins is halted (Deng et al. 2004). Dissociation of I B from NF- B leads to exposure of 

its nuclear-localization signal and nuclear accumulation where it regulates the transcription 

of its target genes (Beg et al. 1992).  

Cytokines produced by inflammatory cells, such as TNF , may stimulate ER stress. TNF  

promotes intracellular ROS production thus leading to protein misfolding and ER stress 

(Xue et al. 2005). TNF , together with interleukin 1  and interferon , has also been shown 

to induce NO accumulation and subsequent nitrosative stress via pathways involving NF-

B activation, signal transducer and activator of transcription (STAT) signaling, and nitric 

oxide synthase upregulation (Kacheva et al. 2011). 

4. Renin-angiotensin system and angiotensin II type 1 receptor 

4.1 Renin-angiotensin system 

Blood pressure is regulated via a delicate signaling network comprising several organs and 

their hormonal products. Central in blood pressure regulation is the renin-angiotensin 

system (RAS) that is also involved in the regulation of fluid and electrolyte homeostasis. 
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The main organs involved in the RAS are kidneys, liver, and lungs. When blood volume is 

too low, the juxtaglomerular cells in the kidneys secrete renin that activates the conversion 

of liver-derived angiotensinogen to Ang I. Ang I is further processed to octapeptide Ang II 

by lung-derived ACE that removes two C-terminal peptides from the decapeptide precursor 

Ang I. Ang II is a vasoconstricting peptide that increases blood pressure by constricting the 

blood vessels. In addition, it stimulates the release of aldosterone from the adrenal cortex 

that acts by increasing sodium and fluid reabsorption in the kidneys, thus further elevating 

blood pressure via an increase of blood volume (Figure 5). 

 

Figure 5. Renin-angiotensin system and blood pressure. 

There are two different receptors for angiotensin II: AT1R and angiotensin II type 2 receptor 

(AT2R). Of these, AT1R is the predominant receptor that accounts for the deleterious effects 

of angiotensin II, whereas AT2R usually has counteracting effects (Stoll et al. 1995, 

Nakajima et al. 1995, Yamada et al. 1998, Horiuchi et al. 1999, Porrello et al. 2009). 
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4.2. AT1R signaling in vascular renin-angiotensin system 

The Ang II-induced signaling via AT1R is mediated by activation of G-proteins coupled to 

the C-terminal tail of AT1R. These G-proteins can activate various signaling pathways that 

in the vasculature leads to vasoconstriction and transcription of various response genes 

(Figure 6). AT1R signaling leads to activation of a number of effector molecules, such as 

phospholipases and protein kinases (Touyz and Schiffrin 2000, Dinh et al. 2001). The acute 

response to angiotensin II in VSMCs includes activation of the phospholipase C (PLC) -

pathway that leads to formation of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol 

(DAG) from phosphatidylinositol 4,5-bisphosphate. IP3 induces the release of Ca2+ from 

cellular compartments. DAG activates protein kinase C (PKC) that in turn activates the 

Na+/H+ exchanger affecting intracellular pH. Ang II further increases Na+ influx by 

activating the Na+-dependent Mg2+ exchanger. These events stimulate VSMC contraction 

by increasing myosin light chain phosphorylation and actin-myosin interaction. Myosin 

light chain is phosphorylated by myosin light chain kinase (MLCK). MLCK activation is 

primarily regulated by the IP3-route of PLC-pathway. IP3-mediated increase in intracellular 

Ca2+ leads to increased activation of calmodulin, a Ca2+-dependent activator of MLCK. 

This, in turn, leads to increased VSMC contraction via increased phosphorylation of myosin 

light chain by MLCK (Touyz and Schiffrin 2000, Wynne et al. 2009, Lacolley et al. 2012). 
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Figure 6. A schematic representation of some of the most important AT1R downstream signaling 
pathways in vascular cells. Adapted from Touyz and Schiffrin 2000. 

The long term effects mediated by AT1R signaling include activation of various signal 

transducers, including Janus kinase (JAK), signal transducer and activator of transcription 

(STAT), and mitogen-activated protein kinases (MAPK) and their signaling pathways. 

Activation of phospholipases A2 (PLA2) and D (PLD) by AT1R increase the release of 

arachidonic acid (AA) which can be further metabolized to vasocoreactive prostaglandins, 

for example by Cox-2 (Touyz and Schiffrin 2000, Dinh et al. 2001, Hu et al. 2002). AT1R 

may also have a central role in cellular redox signaling and in the adverse effects of oxidative 

stress. Several studies show increased production of ROS via activation of vascular NOXs 

following Ang II administration (Griendling et al. 1994, Rajagopalan et al. 1996, Lassègue 

et al. 2001, Gragasin et al. 2003). The mechanism is suggested to be mediated via AT1R in 

vascular cells where the specific blockade of AT1R function inhibits Ang II-induced NOX 

activity (Rajagopalan et al. 1996, Gragasin et al. 2003). 



 
 
 
 

33

Besides G-proteins the cytoplasmic tail of AT1R associates with several other proteins such 

as Cox-2 (Sood et al. 2014) and angiotensin II receptor-associated protein (ATRAP) (Daviet 

et al. 1999). ATRAP is a negative regulator of Ang II-induced AT1R signaling by promoting 

AT1R internalization (Daviet et al. 1999, Cui et al. 2000, Lopez-Ilasaca et al. 2003). In 

VSMCs Ang II induces Cox-2 expression and the mechanism involves AT1R 

internalization (Ohnaka et al. 2000, Hu et al. 2002, Morinelli et al. 2008). In HEK293 cells, 

elements in the cytoplasmic tail of AT1R have been shown to directly associate with Cox-

2 and to downregulate its expression by ubiquitination and subsequent degradation (Sood et 

al. 2014). 

In addition to the classical RAS components there are a number of variations adding a layer 

of complexity to the system. Several truncated peptides of Ang I or Ang II have been 

discovered. These include Ang 1-7, Ang 1-9, Ang 2-8 (also known as Ang III) and Ang 3-

8 (also known as Ang IV). Ang 1-9 and Ang 1-7 are produced by angiotensin converting 

enzyme 2 (ACE2) -mediated removal of a single C-terminal peptide from Ang I or Ang II, 

respectively (Reudelhuber 2005, Fyhrquist and Saijonmaa 2008). The function of Ang 1-9 

is poorly known. Some evidence suggests that it might act via AT2R to reduce blood 

pressure and have a beneficial effect on heart, blood vessels, and kidneys against 

cardiovascular remodeling due to hypertension or heart failure (Ocaranza et al. 2014). Ang 

1-7 acts via binding to a receptor known as proto-oncogene mas (MAS1) and has been 

reported to act as a vasodilator and ACE inhibitor (Santos et al. 2003). Ang III is produced 

from Ang II by removal of an N-terminal peptide by aminopeptidase A and it can be further 

processed to produce Ang IV by aminopeptidase N. Ang III can bind to both AT1R and 

AT2R but with weaker affinity than Ang II (Reudelhuber 2005, Fyhrquist and Saijonmaa 

2008). The receptor for Ang IV was first characterized in 1992 (Swanson et al. 1992), but 

it took nearly a decade before it was identified as the insulin-regulated aminopeptidase 

(IRAP) (Albiston et al. 2001).  

In addition to the classical circulating RAS there is also a local tissue RAS that is found in 

several tissues and cell types. Among these, heart, vasculature, pancreas, brain, adipose 

tissue, and macrophages produce RAS components and are thus able to regulate RAS-

mediated functions outside the control of the circulating RAS (Bader and Ganten 2008, 

Fleming et al. 2006). 
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5. Regulation of AT1R expression 

AT1R was first cloned from rat (Murphy et al. 1991) and bovine (Sasaki et al. 1991), 

followed by cloning and characterization of the human AT1R complementary DNA 

(cDNA) (Furuta et al. 1992, Bergsma et al. 1992, Curnow et al. 1992). AT1R is a 41 kDa 

protein consisting of 359 amino acids. The gene encoding AT1R in humans is located in 

chromosome 3. It is a seven-transmembrane-spanning G-protein-coupled receptor with an 

extracellular N- and cytosolic C-terminus (de Gasparo et al. 2000). 

5.1. AT1R transcript variants 

The AT1R gene has been reported by NCBI to encode at least five different transcript 

variants (www.ncbi.nlm.nih.gov/gene/185). The variants consist of five alternative exons 

of which the last one contains the open reading frame for the functional protein whereas 

exons 1-4 are located in the 5’UTR. The five exons are of varying nucleotide length: exon 

1 is 257 nt; exon 2 is 84 nt; exon 3 is 58 nt; exon 4 is 157 nt; and exon 5 is 2015 nt. The four 

noncoding 5’ exons are present in various combinations together with the actual protein-

coding exon 5 (2015 nt). The currently-reported exon organizations between the different 

transcript variants are 1/2/5 (variant 1), 1/5 (variant 2), 1/3/5 (variant 3), 1/2/3/5 (variant 4), 

and 3/4/5 (variant 5) (Warnecke et al. 1999, Elton and Martin 2007, 

http://www.ncbi.nlm.nih.gov/gene/185). The transcript variant 2 consisting of exons 1 and 

5 encodes the predominant functional isoform. Exon 1 (257 nt) contains an IRES that 

functions in cap-independent translational activation during amino acid starvation-induced 

stress (Martin et al. 2003). Cellular stress is known to promote translation from uORFs and 

IRESs due to eIF2  phosphorylation (Vattem and Wek 2004, Holcik and Sonenberg 2005, 

Thakor and Holcik 2012). 

Inclusion of exon 2 (84 nt) to the transcript in variants 1 and 4 creates two alternative uORFs 

that leads to decreased expression of AT1R via reduced translation (Warnecke et al. 1999). 

Before encountering a stop codon, the first uORF is predicted to encode a 7 amino-acid-

long peptide and the second uORF, 11 and 9 amino acids in variants 1 and 4, respectively. 

It is thought that these uORFs are able to initiate translation, thus competing for ribosomes 

with the main initiation site in exon 5 (Martin et al. 2006).  



 
 
 
 

35

Inclusion of exon 3 (58 nt) in the transcript creates two additional in-frame uORFs that 

could lead to incorporation of an extra 32 or 35 amino acids to the N-terminus of the protein. 

The nucleotides surrounding the most upstream start codon are not optimal considering 

translation initiation whereas the downstream uORF is in suboptimal context. This results 

in translation of AT1R isoform harboring 32 additional N-terminal amino acids (Curnow et 

al. 1995, Martin et al. 2001). As demonstrated by Martin et al., transcripts containing exon 

3 are bicistronic, i.e. both the exon 3 and exon 5 start sites are used for translation and thus 

both the long and short receptor isoforms are produced from a single transcript (Martin et 

al. 2001). They further demonstrated that the binding of Ang II to the long isoform is weaker 

than to the predominant isoform and downstream signaling is activated at higher Ang II 

concentrations. This was hypothesized to allow fine-tuned regulation of Ang II responses 

by regulating the ratios of the two receptor isoforms. Moreover, as AT1R dimerizes with 

both AT1R and AT2R, creating homo and heterodimers, the long and short AT1R isoforms 

may add another level of regulatory complexity to the receptor function (AbdAlla et al. 

2000, AbdAlla et al. 2001a, AbdAlla et al. 2001b). 

The transcript variant harboring exon 3 and exon 4 (157 nt) is extremely rare and has been 

reported only from a human liver cDNA library (Guo et al. 1994). Taken together, these 

alternatively spliced isoforms enable a delegate fine-tuning, but at the same time increasing 

complexity, in the regulation of AT1R expression and function (Elton and Martin 2003, 

Elton and Martin 2007). 

5.2. Posttranscriptional regulation of AT1R 

AT1R expression is posttranscriptionally regulated by various physiological factors. 

Growth factors (Nickenig and Murphy 1994), Ang II (Nickenig and Murphy 1996), and 

estrogen (Wu et al. 2003) have been established as negative regulators of AT1R expression 

by a posttranscriptional mechanism. Thyroid hormones have been shown to decrease AT1R 

expression posttranscriptionally in VSMCs (Fukuyama et al. 2003) while increasing it in 

cardiomyocytes (Diniz et al. 2012). Other physiological factors that exert a positive impact 

on AT1R expression in posttranscriptional manner include LDL (Nickenig et al. 1997) and 

insulin (Nickenig et al. 1998). 
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The mRNA of AT1R carries an approximately 900 nt long 3’UTR that contains several 

AREs (Pende et al. 1999). A number of proteins and miRNAs have already been identified 

to regulate AT1R expression via these elements in a posttranscriptional manner (for AREs, 

see Section 2.2).  

While the roles of these physiological factors, proteins, and miRNAs in AT1R regulation 

have been established, the exact detailed mechanisms of how they are interconnected remain 

poorly known. For the most part, the posttranscriptional regulators mediating the effects of 

the various physiological factors have not yet been identified. Similarly, the physiological 

factors regulating many of the identified trans-acting factors remain to be characterized (for 

cis-acting elements, see Section 2.1). 

5.2.1. AUF1 

AU-rich element RNA-binding protein 1, 37kDa (AUF1), also known as heterogeneous 

nuclear ribonucleoprotein D (HNRNPD), is best known for promoting the decay of ARE-

containing mRNAs (DeMaria and Brewer 1996, White et al. 2013). AUF1 was the first 

RNBP to be identified as a 3’UTR-dependent posttranscriptional regulator of AT1R 

expression. AUF1 acts as a negative regulator of AT1R expression by decreasing the half-

life of AT1R mRNA. Further, Ang II increases AUF1 expression, thus reinforcing its 

negative effect on AT1R (Pende et al. 1999). 

5.2.2. Calreticulin 

Calreticulin is another mediator of angiotensin II-induced destabilization of AT1R mRNA. 

Calreticulin is an ER-located protein classically described as a Ca2+-binding protein 

regulating intracellular Ca2+ homeostasis and its ER storage capacity. In addition to ER 

localization, calreticulin can be found in other cellular compartments where it has multiple 

functions (Michalak et al. 2009, Gold et al. 2010). Ang II induces phosphorylation of 

calreticulin that enables its binding to the 3’UTR of AT1R. Similar to AUF1, calreticulin 

also negatively regulates AT1R expression by promoting the decay of its mRNA (Nickenig 

et al. 2002, Mueller et al. 2008). The experiments describing calreticulin in AT1R regulation 
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have been performed in vascular smooth muscle cells of rat origin and thus the mechanisms 

have not yet been validated in humans. 

5.2.3. P100 

P100, also known as staphylococcal nuclease and tudor domain containing 1 (SND1), is a 

component of the RNA-induced silencing complex (RISC). It functions in several aspects 

of mRNA processing including spliceosome assembly as well as the coactivation of several 

transcription factors (Yang et al. 2002, Paukku et al. 2003, Caudy et al. 2003, Scadden et al. 

2005, Yang et al. 2007). P100 increases AT1R expression by 3’UTR-mediated stabilization 

and increased translation (Paukku et al. 2008). In addition to binding to AT1R 3’UTR under 

normal conditions, P100 also colocalizes with AT1R mRNA to SGs after heat shock or 

sodium arsenite treatment in HeLa cells (Gao et al. 2014). 

5.2.4. MicroRNAs 

In addition to RNBPs, certain miRNAs have been shown to target the 3’UTR of AT1R 

mRNA. TargetScan (http://www.targetscan.org/) predicts that AT1R mRNA may be a 

target for 302 miRNAs. The best characterized of the validated miRNAs is miR-155 that 

targets AT1R 3’UTR at a site containing a single nucleotide polymorphism (SNP) A1166C 

(rs5186). According to the Ensembl database (www.ensembl.org), the overall allele 

frequency for the minor allele is 0.118 but varies greatly between populations. The minor 

allele is most common among American (0.23) and European (0.27) populations whereas it 

is relatively rare in populations of African (0.02), East Asian (0.06), and South Asian (0.07) 

origin. The CC genotype of A1166C SNP is associated with increased aldosterone levels in 

hypertensive subjects and increased in vitro AT1R mRNA expression (Hannila-Handelberg 

et al. 2010). In large GWAS studies, however, no statistically significant association 

between AT1R SNPs and hypertension has been shown (Padmanabhan et al. 2015). The A 

allele-containing mRNA has been shown to be a target of miR-155-mediated 

downregulation, whereas the C allele leads to diminished interaction between the mRNA 

and miR-155 and thus increased AT1R expression (Zheng et al. 2010, Ceolotto et al. 2011, 

Haas et al. 2012). Further, miR-155 negatively affects Ang II-mediated VSMC viability and 

proliferation along with AT1R expression (Yang et al. 2014). 
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AT1R is expressed in the human gastrointestinal tract where it is involved in regulation of 

fluid and electrolyte transport, as well as contractions of the colonic smooth muscle cells. 

AT1R expression is posttranscriptionally regulated in the human colorectal adenocarcinoma 

cell line, C2BBe1, by miR-802. This miRNA is expressed mostly in fetal colon and in adult 

colon as well, yet to a considerably lesser degree (Sansom et al. 2010). 

Recently miR-410 has been shown to target the 3’UTR of AT1R mRNA in pancreatic 

cancer cells. The cancer tissue displays downregulation of miR-410 and upregulation of 

AT1R expression. The mechanism of miR-410 action is linked to suppression of cell 

growth, invasion, migration, and angiogenesis by suppressing AT1R expression (Guo et al. 

2015). 

6. AT1R pathophysiology 

6.1. Vascular AT1R in hypertension 

The vascular characteristics of chronic hypertension include vascular remodeling leading to 

stiffening and narrowing of the vessels due to increased media thickness (Intengan and 

Schiffrin 2001). Many hypertension-promoting cellular events are influenced by Ang II-

mediated signaling pathways (Kim and Iwao 2000, Schiffrin and Touyz 2004, Mehta and 

Griendling 2007). This emphasizes the role of AT1R in the adverse effects of hypertension 

and is supported by the beneficial effects of anti-hypertensive drugs targeted to counteract 

AT1R function (Oparil et al. 2001, PROGRESS Collaborative Group 2001, Gradman et al. 

2005).  

The acute vasoconstricting response of AT1R may partly be explained by the PLC pathway, 

as discussed earlier (chapter 4.2.). Other mechanisms may take part in the prolonged 

regulation. One of the major intracellular consequences of AT1R signaling is the production 

of ROS, in particular that of O2-, which are central contributors to AT1R-mediated pro-

hypertensive mechanisms. AT1R downstream signaling leads to activation of vascular 

NADPH oxidases, such as NOX1 on VSMCs or NOX4 on endothelial cells (Lassègue et al. 

2001, Ago et al. 2004). The activation of the NOXs leads to production of O2-. 
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Accumulation of O2- in turn leads to inactivation of NO by conversion to ONOO-, thus 

inhibiting the vasodilating effects of NO (de Gasparo 2002, Schulman et al. 2005). 

In vitro studies using rat VSMCs suggest that NO inhibits the adverse effects of Ang II by 

suppressing AT1R expression (Ichiki et al. 1998). Another study with rat VSMCs further 

shows that Ang II increases VSMC migration and O2- production, and together with insulin 

reduces NO availability (Yang et al. 2005). Thus, the Ang II-induced scavenging of NO by 

ROS may further increase AT1R upregulation via attenuating the AT1R suppressive 

functions of NO. Taken together, these studies support the role of AT1R as a pro-

hypertensive mediator. The central role of AT1R in regulation of blood pressure and 

development of hypertension is elegantly shown in animal models: mice expressing several 

copies of AT1R-gene or a constitutively active AT1R mutant develop hypertension, whereas 

AT1R knockout models show reduced blood pressure and response to Ang II (Ito et al. 1995, 

Le et al. 2003, Billet et al. 2007). 

6.2. AT1R in atherosclerosis 

There are several factors indicating a central role of AT1R in the progression of 

atherosclerosis, although the detailed mechanisms are poorly known. These include the role 

of AT1R in production of ROS, LDL oxidation and cellular uptake, production of pro-

inflammatory factors, and expression of adhesion molecules on vessel wall. Ang II-

mediated increase of ROS and decrease of NO leads to migration and infiltration of 

monocytes to the site of vascular endothelium under oxidative stress via increased 

expression of monocyte chemoattractant protein-1 (MCP-1) (Usui et al. 2000). Ang II-

mediated signaling of AT1R further promotes the adhesion of monocytes to the vascular 

wall by increasing the expression of adhesion molecule VCAM-1 in endothelial cells (Pueyo 

et al. 2000). 

Ang II and AT1R play a role also in the LDL-mediated adverse effects of atherogenesis. 

Normal and oxidized LDL upregulate AT1R expression in smooth muscle and endothelial 

cells of the vasculature, respectively (Nickenig et al. 1997, Li et al. 2000). Uptake of oxLDL 

by macrophages is further increased by AT1R-dependent upregulation of oxLDL receptor 

known as LOX-1 (Li et al. 1999, Morawietz et al. 1999). Accumulation of oxLDL in 
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macrophages leads to formation of cholesterol-ester-enriched foam cells that are present 

already in the early stages of atherosclerotic lesions (Libby et al. 2011). OxLDL also 

increases NF- B expression and activation leading to increased transcription of pro-

inflammatory genes, such as interleukin 6 (IL-6) and TNF  (Li et al.2005). Inflammation 

also attenuates HDL facilitated cholesterol removal from macrophage foam cells (Gillespie 

et al. 2015). Furthermore, increased AT1R expression due to oxLDL is linked to NF- B 

activation (Li et al. 2000). 

Hypertension is a significant risk factor for the development of atherosclerosis, and certain 

drugs used to treat hypertension have beneficial effects against atherogenesis in 

experimental setups. In an animal study, the AT1R antagonist losartan showed a beneficial 

effect on atherogenesis in atherosclerotic rabbits on a high fat diet. Losartan decreased the 

levels of inflammatory factors IL-6 and C-reactive protein as well as reduced thickening of 

the tunica intima (Xu et al. 2013). Importantly, serum lipid and Ang II concentrations were 

similarly increased in both losartan treated and untreated rabbits on a high fat diet. This 

indicates that the losartan-mediated anti-atherosclerotic effect is not mediated by reduction 

of lipid or Ang II levels, but may include reduction of NF- B function, usually activated in 

response to Ang II. This limits the expression of NF- B-regulated inflammatory cytokines 

and adhesion molecules. Further, in a study by Ishii et al. (2013), AT1R blockers olmesartan 

and valsartan reduced the volume of coronary atherosclerotic plaques in human patients by 

ca. 5% after six months of treatment. The reduction in plaque volume was accompanied by 

reduction in blood pressure. Whether the beneficial effects of the drugs were due to reduced 

blood pressure or more specific actions involving AT1R suppression remained unclear. 

7. ER stress in atherosclerosis and hypertension 

There is a growing amount of evidence showing that ER stress and UPR are associated with 

the development of atherosclerosis and hypertension (Tabas 2010, Minamino et al. 2010, 

Zhou and Tabas 2013, Santos et al. 2014). This is rational considering that many of the 

known risk factors and cellular responses associated with atherosclerosis and hypertension 

are also known ER stressors. Indeed, several ER stress markers are expressed in 

atherosclerotic lesions (Myoishi et al. 2007). Unstable plaques show increased expression 
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of ER stress markers as well as apoptotic smooth muscle cells and macrophages, which has 

been hypothesized to play a role in plaque vulnerability (Myoishi et al. 2007, Sanson et al. 

2009). VSMCs apoptosis may promote plaque rupture as VSMCs produce collagen that 

normally stabilizes the fibrous cap (Geng and Libby 1995, Bauriedel et al. 1999). Another 

mechanism inducing plaque vulnerability involves the plaque resident inflammatory cells 

that secrete cytokines such as IL-6 that promote degradation of the extracellular matrix 

(Schieffer et al. 2000). Supporting this, in an atherosclerotic mouse model, VSMC apoptosis 

induced plaque vulnerability by reduced extracellular matrix, thinning of the fibrous cap, 

increased intimal inflammation, and accumulation of cell debris. VSMC apoptosis was 

linked to an increase of IL-6 levels and plaque MCP-1 expression (Clarke et al. 2006). In 

human VSMCs, OxLDL induces apoptosis by activating a pro-apoptotic signaling 

molecule, PKC isozyme  (PKC ). The mechanism is supposed to involve NOX-dependent 

production of ROS by oxLDL and activation of ER stress pathways. (Larroque-Cardoso et 

al. 2013). Though the detailed apoptosis-causing mechanisms in atherosclerosis are poorly 

understood, a chronic ER stress may be involved. Several ER stress-inducing agents have 

been described to induce VSMC and endothelial cell apoptosis in vitro (Scull and Tabas 

2011). The results remain, however, to be validated in vivo.  

ER stress also promotes inflammation associated with the progression of atherosclerosis. 

Free cholesterol accumulation in macrophages leads to ER stress and activation of pro-

inflammatory NF- B and MAPK pathways. This promotes inflammation by increased 

expression of inflammatory cytokines such as TNF  and IL-6 (Li et al. 2005). Oxidized 

phospholipids that accumulate in atherosclerotic lesions also trigger UPR and activate 

transcription factors needed for the expression of the various inflammatory cytokines 

(Gargalovic et al. 2006). 

The direct association of ER stress with hypertension has mostly been shown by studies 

using animal models. In mice with Ang II-induced hypertension, inhibition of ER stress has 

beneficial effects. Chemical chaperones, used as ER stress inhibitors, reduce blood pressure, 

expression of ER stress markers, endothelial dysfunction and cardiac damage (Kassan et al. 

2012). ER stress inhibitors also have beneficial effects on pulmonary artery hypertension in 

both rats and mice (Dromparis et al. 2013). Further, ER stress in the brain has been reported 

to promote Ang II-induced hypertension in mice. Increased ER chaperone expression in the 
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brain was shown to have a protective effect against both ER stress and hypertension (Young 

et al. 2012). The ER stress-induced hypertension by Ang II in the brain was later identified 

to be mediated via AT1R-dependent activation of transcription factor NF- B (Young et al. 

2015). 
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AIMS OF THE PRESENT STUDY 

This study was aimed at identifying novel AT1R 3’UTR-associated RNA-binding proteins 

(RNBP) and to explore their mechanistic role as posttranscriptional effectors of AT1R 

mRNA and protein expression. The specific aims were as follows: 

1. To identify novel AT1R 3’UTR-associated RNBPs involved in posttranscriptional 

regulation of AT1R expression (Studies I-III). 

2. To investigate the posttranscriptional mechanisms by which insulin increases AT1R 

mRNA and protein expression (Study II). 

3. To identify the physiological factors regulating the effects of the identified RNBPs 

on AT1R expression (Studies I and III). 

4. To map the binding sites of the identified RNBPs on AT1R 3’UTR (Studies I-III). 

5. To identify the posttranscriptional mechanisms, including regulation of mRNA 

stability, translation, and localization, by which the identified RNBPs mediate their 

action on AT1R expression (Studies I-III). 
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MATERIALS AND METHODS 

Detailed descriptions of the materials and methods used in the different experiments can be 

found in the original publications I-III. 

1. Cell culture studies 

Cell culture 

HEK293 cell line, derived from human embryonic kidney cells, was chosen as the principal 

experimental model since it is an immortalized cell line of human origin. HEK293 cells do 

not express AT1R, or express only minimally, which could interfere with the experiments 

via competition. When possible, data on HEK293 cells were validated in primary cells, 

human VSMCs. These cells do express AT1R which enables investigation of the 

mechanisms in an endogenous environment. 

HEK293 cells were grown in Dulbecco’s modified Eagle’s medium supplemented with 10% 

fetal bovine serum (FBS), antibiotics, and glutamine. Early passage VSMCs were purchased 

from Lonza and grown in smooth muscle growth medium-2 with 5% FBS and supplements. 

To maintain the cell cultures, the sub-confluent cultures were detached from the culture 

plates with trypsin and split to new culture plates with appropriate seeding density. HEK293 

cells were split twice a week with a 1:10 seeding density, whereas VSMCs were split 

approximately once a week with a 1:5 seeding density. 

Transfections, transductions, and stimulations 

Transfections were used to manipulate the expression of specific proteins in HEK293 cells. 

To overexpress the protein of interest, an expression plasmid was transfected to the cells 

using Fugene 6 or Fugene 6 HD transfection reagent. In order to silence the expression of 

specific proteins, siRNAs against its mRNA were transfected to the cells by Lipofectamine 

2000. The cells were harvested 24-72 hours after the transfections for further analysis. 
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In studies II and III, expression levels of endogenous HuR or TIA-1 were altered by 

lentiviral vector systems. The use of lentiviral vectors enables the creation of stable cell 

lines with either over or downregulated expression of the protein of interest. In study II, 

both HuR-overexpressing and HuR-silenced VSMC cell lines were created using pLenti6 

vector system (Sigma). In study III, TIA-1 expression was silenced in VSMCs by GIPZ 

lentiviral vector system (GE Healthcare). 

Both HEK293 and VSMC cells were subjected to various chemical treatments, including 

H2O2, insulin, thapsigargin, and angiotensin II in the experiments. 

2. Protein expression studies 

Cell fractionation and protein extraction 

The cells were lysed in appropriate lysing buffers or fractionated in cytoplasmic and nuclear 

extracts by a Cell Fractionation Kit (Pierce). The lysates were cleared by centrifugation and 

the protein concentrations were measured by Protein Assay kit (Bio Rad). 

RNA probe preparation 

In order to study binding and distribution of RNBPs on AT1R 3’UTR, either a full length 

or various fragments of the 3’UTR were synthesized in vitro. The RNA probes were 

prepared from cDNA templates by adding a T7 RNA polymerase promoter sequence to the 

5’-end of the polymerase chain reaction (PCR) products. An additional 30-nt-long poly-A 

tail was added to the probes used in affinity purification. The PCR products were separated 

by agarose gel electrophoresis and extracted from the gel. The RNA probes were 

subsequently transcribed from the template by MEGAscript in vitro transcription system 

according to the manufacturer’s instructions (Life Technologies). For probes to be used in 

RNA electrophoretic mobility shift assay, biotinylated UTP was used in the synthesis. 
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Affinity purification 

Affinity purification was used to study protein-RNA interactions. In this method, the in vitro 

synthetizied AT1R 3’UTR RNA-probes, containing the poly-A tail, were coupled to poly-

T linked Oligotex beads. The RNA probes were incubated in cell lysates after which the 

beads were added to the mixture. After extensive washing, the samples consisting of RNA 

probes connected to the beads and the proteins associated to the probes were subjected to 

either mass spectrometric identification or to western blotting. 

Western blotting 

To study protein expression, equal amounts of cell lysates or samples from affinity 

purifications were boiled in reducing Laemmli buffer and separated by sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The separated proteins were 

subsequently transferred to a nitrocellulose membrane by semi-dry western blotting. After 

the blotting, the membrane was blocked for nonspecific binding and then subjected to the 

primary antibodies against the protein of interest. The unbound antibodies were washed off 

and the primary antibodies were detected by either biotinylated or fluorescently-labeled 

secondary antibodies. After final washing, the fluorescently labeled secondary antibodies 

were visualized using Odyssey scanner (Li-Cor). The biotinylated antibodies were subjected 

to streptavidin horseradish peroxidase-conjugate and the emitted light was exposed to an X-

ray film. 

Mass spectrometry 

Proteins isolated by affinity purification were separated by SDS-PAGE and the gel was then 

subjected to silver (Study I and II) or Coomassie blue (Study III) staining to visualize the 

proteins. Protein bands of interest were cut out of the gel and digested in-gel to peptides 

with trypsin. The recovered peptides were subjected to matrix-assisted laser 

desorption/ionization-time of flight (MALDI-TOF) and MALDI-TOF/TOF using Ultraflex 

TOF/TOF instrument (Bruker) for mass analysis. The protein identification from the 

acquired data was performed using Mascot Peptide Mass Fingerprint and Mascot MS/MS 

Ion Search programs (www.matrixscience.com). 
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Recombinant protein production and purification 

In study III a recombinant MBP-TIA-1 fusion protein was produced to study the direct and 

GAPDH-dependent association of TIA-1 to the 3’UTR of AT1R mRNA. The fusion protein 

was produced in E.coli using TIA-1 cDNA and a pMAL Protein Fusion and Purification 

System (New England BioLabs). 

Luciferase assay 

Luciferase expression constructs were used in order to study the effect of AT1R 3’UTR on 

protein expression under various conditions in Studies I-III. The constructs consisted of a 

coding sequence for luciferase protein and various fragments or the full length 3’UTR of 

AT1R mRNA fused downstream of the coding sequence. When transfected to HEK293 cells 

the mRNA transcribed by the construct was subjected to the regulatory mechanisms 

mediated by the 3’UTR fragment present in the transcript. The produced luciferase protein 

could be quantified from cell lysates by photometric methods, where the luminescent signal 

produced by the luciferase protein was measured with a luminometer. To establish the role 

of the 3’UTR on protein expression, the results were normalized against measurements 

obtained from cells transfected with a luciferase construct lacking the 3’UTR. 

Microscopy 

Immunofluorescent microscopy was used to study localization and colocalization of 

endogenous proteins in VSMCs by confocal microscopy. The cells were grown on glass 

coverslips and fixed using paraformaldehyde. The proteins of interest were detected with 

specific antibodies that were further stained with fluorescently-labeled secondary 

antibodies. After the coverslips were mounted on microscopy slides the cells were 

visualized by a laser-scanning confocal microscope. 

Immunofluorescent in situ hybridization was used to study the colocalization of endogenous 

AT1R mRNA and proteins. VSMCs were fixed on glass coverslips and hybridized with 

fluorescently-labeled RNA-probes against AT1R mRNA. After washing away the unbound 

probes, the samples were processed to facilitate immunofluorescent staining against the 
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protein of interest. The fluorescent labels were visualized with a conventional fluorescent 

microscope. 

Ligand-binding assay 

In studies I and III, a ligand-binding assay was used to determine AT1R expression on cell 

surface. Subconfluent VSMCs grown on 24-well culture plates were subjected to 

radiolabeled 125I-[Sar1,lle8] Ang II (PerkinElmer) or unlabeled Ang II as control to quantify 

the membrane expressed AT1R. Following incubation with the normal or radiolabeled Ang 

II, the cells were washed with PBS containing 0.1% BSA and lysed in 0.5 N NaOH. The 

AT1R expression was quantified by measuring the radioactivity of the bound radiolabeled 

Ang II using a liquid scintillator. The results were normalized against the samples incubated 

with unlabeled Ang II. 

In vitro translation 

The direct role of GAPDH on AT1R mRNA translation was studied in Study I by in vitro 

translation assay. Here, a luciferase construct with or without AT1R 3’UTR was in vitro 

translated and biotinylated in the presence or absence of purified recombinant GAPDH. The 

translated protein product was assayed by luciferase method and by detection of the biotin 

label in western blots. 

3. Protein-RNA interaction studies 

Protein-RNA co-immunoprecipitation 

Immunological methods were used to study protein-RNA interactions in Studies I-III. Cell 

lysates were prepeared using a lysis buffer that preserves the protein-RNA interactions 

(Peritz et al. 2006). The lysates were incubated with antibodies against the protein of 

interest. Protein G sepharose beads were added to the samples to bind the antibodies. After 

extensive washing, the proteins from the immunoprecipitated protein-RNA complexes were 

digested with proteinase K. The extracted RNA molecules were phenol-chloroform 

precipitated and subjected to expression profiling or reverse transcribed to cDNA. 
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RNA electrophoretic mobility shift assay 

Changes in the protein-RNA interactions were explored in Studies I and II by RNA 

electrophoretic mobility shift assay (REMSA). Here, an in vitro synthesized and 

biotinylated RNA probe was added to cell lysates alone or together with an excess amount 

of unlabeled probe as competitor. Alternatively, an antibody against the protein of interest 

was added together with the biotinylated probe, in order to detect a specific protein-RNA 

complex by a band shift. Next the RNA, unbound to proteins, was digested with RNase, 

whereafter the samples were separated on a non-reducing SDS-PAGE and transferred to a 

nylon membrane. The biotin-labeled RNA was detected by chemiluminescence and 

observed for changes in the signal intensities or band shifts between different samples. 

Random mutagenesis 

In Study I, random mutagenesis was employed to detect the GAPDH-binding site at the 1-

100 region of the AT1R 3’UTR. A library of luciferase reporter constructs containing the 

1-100 3’UTR fragment with random mutations was created by GeneMorph II EZClone 

Domain Mutagenesis Kit (Agilent Technologies). From the created clones, those affecting 

protein expression were screened by luciferase assay. Binding of GAPDH to the mutated 

RNA was studied by affinity purification and REMSA. 

4. mRNA expression studies 

RNA isolation, cDNA synthesis and qPCR 

In Studies I-III, quantitative polymerase chain reaction (qPCR) was used to quantify mRNA 

abundance or half-life in VSMCs or HEK293 cells. After appropriate treatments, the cells 

were harvested and the total RNA isolated using Nucleospin RNA II kit (Macherey-Nagel). 

The total RNA or RNA from protein-RNA immunoprecipitation was reverse transcribed to 

cDNA by Superscript II or III First Strand Synthesis System (Invitrogen) using oligo(dT)12-

18 primers. The expression of the gene of interest and appropriate controls were quantified 

by LightCycler (Roche) using Maxima SYBR Green (Fermentas) according to the 

manufacturer’s instructions. 
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Expression profiling 

In Study I, the precipitated RNA from protein-RNA co-immunoprecipitation was subjected 

to expression profiling in order to identify mRNAs coupled to immunoprecipitated GAPDH. 

The RNA was converted to biotinylated complementary RNA, hybridized to GeneChips 

and analyzed according to Affymetrix instructions. 
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RESULTS 

1. Effect of the 3’UTR on AT1R expression 

The regulatory effect of the AT1R 3’UTR on protein and mRNA expression was explored 

in Study I. HEK293 cells transfected with a luciferase construct containing the AT1R 

3’UTR downstream showed a significant decrease in protein expression when compared to 

controls lacking the 3’UTR. This indicates that the 3’UTR is a negative regulator. This was 

accompanied by a comparable, 3’UTR-dependent decrease in luciferase mRNA expressions 

levels. Similar 3’UTR-dependent change in mRNA expression was observed when the 

luciferase coding sequence was replaced with AT1R coding sequence, thus confirming that 

the 3’UTR is indeed the regulatory element (Figure 7). To further study the regulatory 

mechanisms by which the 3’UTR mediates its effect, both in vitro translation and luciferase 

mRNA half-life were measured in the presence and absence of the 3’UTR. Addition of the 

3’UTR to the mRNA was observed to both increase the mRNA degradation and to suppress 

its translation (Study I, Figures 1C and 1D). 

 

Figure 7. Effect of the AT1R 3’UTR on protein and mRNA expression. The results are shown as 
mean ± SD. A combination of data from Study I. 
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2. Binding and distribution of RNBPs to AT1R 3’UTR 

In studies I-III, three new RNBPs were identified to associate with the AT1R mRNA and 

regulate its expression via 3’UTR-mediated mechanisms. The identified proteins included 

GAPDH, HuR, and TIA-1. All of them are known RNBPs functioning in posttranscriptional 

regulation. The three proteins show distinct regulatory functions on AT1R expression. 

The RNBPs were identified by mass spectrometry after affinity purification of RNBPs from 

cell lysates using probes consisting of the AT1R 3’UTR. In Study I, a protein at around 36 

kDa range was observed to abundantly interact with various AT1R 3’UTR fragments and 

the protein was identified as GAPDH (Study I, Figure 2B). In Study II, the insulin-

mediated regulation of AT1R expression was explored. Another protein of around 36 kDa 

range was shown to exhibit increased association to the 3’UTR following insulin stimulation 

(Study II, Figure 2A). This protein was subsequently identified as HuR. In Study III, a 

protein of around 40 kDa was shown to specifically associate with full length AT1R 3’UTR 

and was identified as TIA-1 (Study III, Figure 1A). 

Using affinity purification with various AT1R 3’UTR fragments and western blotting, the 

binding of the proteins to the 3’UTR was confirmed and the binding sites mapped (Figure 

8). In Study I, GAPDH was shown to bind the proximal region, spanning the 100 first 

nucleotides of the 3’UTR. In Study II, HuR was identified to bind a region spanning 

nucleotides 300-887 and in Study III, TIA-1 binding sites were mapped to two distinct 

locations, the proximal 1-100 and distal 600-887 fragments of the 3’UTR (Figure 8). 

 

Figure 8. Binding and distribution of RNBPs to AT1R 3’UTR. Western blot images of GAPDH, 
HuR, and TIA-1 are displayed indicating binding to specific nucleotide regions. A combination of 
data from Studies I-III. 
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As observed by REMSA, the binding of GAPDH to the AT1R 3’UTR 1-100 region was 

direct as purified recombinant GAPDH did not require other proteins for the association 

(Figure 9A). Deletion of nucleotides 9 and 11 from the 3’UTR were able to abolish GAPDH 

binding, identifying this as the GAPDH responsive element. Computational modelling of 

the AT1R 3’UTR 1-100 region suggested a hairpin-like structure that is disrupted by the 

9/11 deletion (Figure 9B). When analyzing the sequences from several GAPDH target 

mRNAs, the GAPDH motif was identified as an AU-rich sequence element (Figure 9C). 

 

Figure 9. GAPDH-binding motif of AT1R 3’UTR. (A) REMSA showing the binding of purified 
GAPDH to AT1R 3’UTR 1-100 region. (B) REMSA showing the inhibition of GAPDH binding to 
AT1R 3’UTR 1-100 by 9/11 deletion. The predicted structure of the wild type and deletion RNAs 
is shown. The deleted nucleotides are shown in red (1-100). (C) The consensus GAPDH target 
sequence. A combination of data from Study I. 
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Insulin-induced association of HuR with AT1R mRNA was confirmed by 

immunoprecipitation coupled to qPCR from VSMCs (Study II). HuR was 

immunoprecipitated with a HuR-specific antibody from VSMCs before or after insulin 

stimulation and the associated AT1R mRNA was quantified by qPCR. At baseline, AT1R 

mRNA showed increased association to HuR when compared to a control where nonspecific 

IgG was used for immunoprecipitation. After insulin stimulation, AT1R mRNA association 

to HuR further increased when compared to the IgG control. No significant change in AT1R 

mRNA association was observed to other known AT1R 3’UTR-binding proteins in response 

to insulin stimulation (Study II, Figure 2B). 

Since GAPDH was identified to associate to the proximal 3’UTR region (Study I), the 

possible interaction between TIA-1 and GAPDH at this site was explored in Study III. TIA-

1 binding to AT1R 3’UTR was shown to be GAPDH-dependent, as GAPDH silencing 

attenuated TIA-1 binding to the 1-100 region as observed by affinity purification, whereas 

TIA-1 silencing had no effect on GAPDH binding (Study III, Figure 3A). Further, using 

purified GAPDH and TIA-1-MBP fusion protein in affinity purification, TIA-1 binding to 

the 1-100 region was increased by addition of GAPDH to the samples. GAPDH binding 

however, was not significantly dependent on the presence of TIA-1 (Study III, Figure 3B). 

These data suggest that GAPDH binds to the AT1R 3’UTR directly, whereas TIA-1 requires 

GAPDH for the association at the proximal site. Using purified proteins in the affinity 

purification also demonstrated that TIA-1 and GAPDH do not require any other proteins for 

the association with the 3’UTR. TIA-1 binding to the distal 600-887 region was direct as 

GAPDH did not bind to this region in affinity purification from cell lysates nor was TIA-1 

binding affected by GAPDH in affinity purification using purified proteins (Study III, 

Figures 3A and 3B). To study endogenous protein-RNA interactions, fluorescent in situ 

hybridization against AT1R mRNA combined with immunofluorescent staining was used. 

In this experimental setup both TIA-1 and GAPDH were shown to colocalize with AT1R 

mRNA in VSMCs under normal conditions (Study III, Figures 1D, 4C and 6A). 
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3. RNBP effects on AT1R expression 

The mechanism by which GAPDH regulates AT1R expression was investigated in Study I, 

using a luciferase reporter gene expression system. GAPDH was identified as a negative 

regulator of AT1R expression via a 3’UTR-mediated mechanism. Following GAPDH 

silencing, a luciferase reporter gene exhibited an AT1R 3’UTR-dependent increase in 

luciferase protein expression in HEK293 cells, whereas the luciferase mRNA was reduced. 

Similar responses were seen in expression of both endogenous AT1R protein and mRNA in 

VSMCs (Figure 10). This suggests that GAPDH stabilizes AT1R mRNA while suppressing 

its translation. As nucleotides 9 and 11 of the 3’UTR are needed for GAPDH binding, a 

luciferase construct lacking these nucleotides showed no significant response to GAPDH 

silencing (Study I, Figure 4A).  
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Figure 10. RNBP effects on AT1R expression. AT1R 3’UTR-binding RNBPs have been silenced 
as indicated. Luciferase protein and mRNA expression was studied in HEK293 transfected with an 
AT1R 3’UTR-bearing luciferase construct. Endogenous AT1R protein and mRNA levels were 
measured in VSMCs. The results are shown as mean ± SD of relative quantities. A combination of 
data from Studies I- III. 

In Study II, the mechanisms underlying HuR-mediated AT1R regulation were explored. 

Silencing of HuR expression in HEK293 cells expressing a luciferase-reporter-gene 

construct decreased the luciferase expression in an AT1R 3’UTR-dependent manner. 

Similarly, HuR silencing reduced the endogenous AT1R mRNA in VSMCs (Figure 10). In 

line with this, HuR overexpression had a positive effect on both protein and mRNA levels 

(Study II, Figures 4B and 4C). This suggests that HuR upregulates AT1R expression by 
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affecting the mRNA expression. The mechanism was identified to be mediated via HuR-

induced stabilization of the mRNA as HuR overexpression increased the half-life of a 

luciferase mRNA containing the AT1R 3’UTR, whereas silencing of HuR expression had 

an opposite effect (Study II, Figure 5). 

The regulatory mechanisms of TIA-1-mediated AT1R expression were investigated in 

Study III. TIA-1 silencing increased the protein expression of an AT1R 3’UTR-containing 

luciferase reporter construct in HEK293 cells and the endogenous AT1R protein expression 

in VSMCs. Conversely, endogenous AT1R mRNA levels were reduced in VSMCs 

following TIA-1 silencing (Figure 10). Collectively, these results indicate that under 

normal conditions TIA-1 suppresses protein expression while stabilizing the mRNA. 

Further, both identified TIA-1 binding sites were independently capable of mediating the 

TIA-1 effect (Study III, Figures 2B and 2C). However, as TIA-1 binding to the proximal 

region required GAPDH, inhibition of GAPDH binding, by using 3’UTR constructs lacking 

nucleotides 9 and 11, attenuated the TIA-1 effect at the proximal site (Study III, Figure 

3C). Neither TIA-1 nor GAPDH overexpression had any significant influence on the 

luciferase expression levels when GAPDH binding was blocked by this deletion construct. 

4. Physiological and pathophysiological AT1R regulators and 
their RNBP mediators 

The 3’UTR of AT1R mRNA destabilizes the mRNA under normal conditions as shown in 

Study I. Incorporation of the 3’UTR in a reporter gene construct leads to both decreased 

protein and mRNA expression. In studies I-III various environmental stimulations were 

shown to regulate the 3’UTR-mediated effects via the identified three RNBPs: GAPDH, 

HuR, and TIA-1. 

In study I the effect of GAPDH on AT1R regulation was shown to be regulated by H2O2. 

Exposure of VSMCs to various concentrations of H2O2 increased AT1R expression in a 

dose-dependent manner, as shown by a western blot (Study I, Figure 6A). The increase in 

AT1R expression was coupled to both decreased GAPDH expression and reduced 

association of GAPDH to AT1R 3’UTR (Study I, Figures 6A and 6B). The diminished 

association of GAPDH to AT1R 3’UTR after H2O2 exposure was not only due to decreased 
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GAPDH expression, as treatment of VSMC lysates with H2O2 decreased the association 

without affecting GAPDH levels (Study I, figure 6C).  

The effect of GAPDH on H2O2-mediated regulation of AT1R was further studied by 

luciferase assay in HEK293 cells transfected with a control or AT1R 3’UTR containing 

luciferase reporter construct, together with a control or GAPDH expression vector. 

Subsequent exposure of the cells to H2O2 increased the luciferase expression when the 

AT1R 3’UTR was present. Simultaneous overexpression of GAPDH diminished the H2O2 

effect validating the role of GAPDH as a mediator of the H2O2 response (Figure 11). This 

was further confirmed by the observation that a luciferase construct lacking the nucleotides 

9 and 11, needed for GAPDH binding, was unresponsive to both GAPDH overexpression 

and H2O2 as compared to controls (Study I, Figure 6D). 
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Figure 11. Factors regulating the effects of the identified GAPDH, HuR, and TIA-1 on AT1R 
expression. For H2O2 and insulin experiments, HEK293 cells were transfected with a luciferase 
expression construct bearing AT1R 3’UTR and the luciferase activity was measured to determine 
protein expression. In the thapsigargin experiment, the endogenous AT1R expression in VSMCs 
was measured by ligand-binding assay. The proteins of interest were overexpressed or silenced as 
indicated. The results are shown as mean ± SD. A combination of data from Studies I-III. 
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In Study II, insulin stimulation of VSMCs was shown to increase endogenous AT1R protein 

expression (Study II, Figure 1A). In line with this, insulin increased AT1R mRNA 

expression in a dose-dependent manner by increasing the mRNA half-life (Study II, 

Figures 1B and 1C). Insulin stimulation of HEK293 cells transfected with a luciferase 

reporter construct further demonstrated that the time-dependent increase in AT1R 3’UTR-

mediated luciferase expression was coupled to increased nucleocytoplasmic HuR 

translocation and association with AT1R 3’UTR, as observed by affinity purification and 

REMSA (Study II, Figures 3A-C).  

The effect of insulin on AT1R regulation was shown to be mediated by HuR. HEK293 cells 

transfected with a luciferase reporter construct exhibited an AT1R 3’UTR-dependent 

increase in luciferase expression following insulin stimulation. Co-transfection with a HuR 

expression construct showed an increase in luciferase expression similar to that upon insulin 

stimulation, but no additional insulin effect was observed. Silencing HuR expression in turn 

decreased the luciferase expression and rendered it unresponsive to insulin (Figure 11). In 

line with these results, a similar effect on endogenous AT1R protein and mRNA expression 

was observed in VSMCs where HuR was either overexpressed or silenced by lentiviral 

expression constructs prior to insulin stimulation (Study II, Figure 4C). This shows that 

HuR is mediating the insulin effect on AT1R regulation. 

Using luciferase constructs containing various AT1R 3’UTR fragments the insulin 

responsive element was identified to require at least the 637 first nucleotides of the 3’UTR. 

The first 607 nucleotides had only a minor effect on the reporter gene expression. This 

placed the insulin responsive element between nucleotides 607-637 (Study 2, Figure 6B). 

Using the same luciferase constructs together with HuR overexpression, the HuR responsive 

element was shown to be the same as noted for insulin (Study II, Figure 6C). This further 

supports the assumption that HuR serves as the mediator of the insulin response on AT1R 

expression, 

As the function of HuR on posttranscriptional regulation of its targets requires its 

nucleocytoplasmic translocation (Fan and Steitz 1998a, Doller et al. 2008), the effect of 

blocking HuR translocation process on AT1R expression was studied. Silencing of HuR 

transporter CRM1 by shRNA or inhibition of its function by Leptomysin B (LMB) in 



 
 
 
 

61

HEK293 cells, transfected with luciferase reporter gene construct, resulted in decreased 

responsiveness to insulin in a 3’UTR-dependent manner (Study II, Figures 7A and 7B). 

As shown by western blotting, the effect was accompanied by inhibition of insulin-induced 

nucleocytoplasmic HuR translocation. In line with this, as studied by immunofluorescent 

microscopy, insulin stimulation increased cytoplasmic HuR accumulation in VSMCs 

whereas LMB inhibited the insulin-induced nuclear export of HuR (Study II, Figure 7C). 

In study III, the TIA-1-mediated effects on AT1R were observed to be regulated by ER 

stress. Ligand-binding experiments revealed that thapsigargin-induced ER stress increased 

the AT1R protein expression in VSMCs. Silencing TIA-1 expression by lentiviral shRNA 

constructs led to increased baseline AT1R expression but no additional effect was seen after 

thapsigargin exposure. (Figure 11). Thapsigargin treatment induced the expression of 

various stress marker proteins and reduced the total mRNA expression levels while the 

relative AT1R mRNA expression was increased (Figure 12). Endogenous mRNA levels 

also showed no significant response to thapsigargin in TIA-1-silenced VSMCs compared to 

controls. In unstimulated cells however, TIA-1 silencing decreased the relative baseline 

AT1R mRNA levels, in line with previous results (Study III, Figure 5B). This indicates 

that TIA-1 suppresses AT1R expression under normal conditions and that the suppression 

is attenuated by ER stress. 
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Figure 12. Thapsigargin effect on AT1R mRNA expression. (A) Thapsigargin-induced increase in 
stress marker proteins and relative AT1R mRNA expression. A combination of data from Study 
III. (B) Thapsigargin effect on total mRNA levels of AT1R and actin that was used for the 
normalization of the results (unpublished data). The results are shown as mean ± SD of relative 
quantity to results at 0 hours. 

Using immunofluorescent microscopy and fluorescent in situ hybridization, both TIA-1 and 

GAPDH were shown to colocalize with AT1R mRNA in VSMCs under normal conditions. 

However, thapsigargin-induced ER stress dissociated TIA-1 from AT1R mRNA. During 

ER stress, TIA-1 translocated to SGs, leaving AT1R mRNA to the cytoplasm. Association 

of GAPDH to AT1R mRNA was unaffected by ER stress while a fraction of GAPDH 

localized to SGs as well (Figure 13). 
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Figure 13. Effect of ER stress on TIA-1 or GAPDH cellular localization and association to AT1R 
mRNA. (A) Localization of TIA-1, GAPDH, and a SG-marker protein PABP in unstressed 
VSMCs (A-C) or in VSMCs under ER stress (D-F). (B) Association of TIA-1, GAPDH, or PABP 
to AT1R mRNA in unstressed VSMCs (A-C) or in VSMCs under ER stress (D-F). The arrows 
show colocalization of the signals. A Combination of data from Study III. 
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The results from Studies I-III with respect to the identified AT1R 3’UTR trans-acting 

factors, their various effects and modes of action are summarized in Table 3. 

Table 3. Summary of the AT1R 3’UTR trans-acting factors and their regulatory mechanisms. ND 
= not determined. 

ARE-BP Effect Mechanism Experimental model Region 
(3’UTR) 

Binding  
to mRNA Study 

GAPDH Negative Translation 
& stability 

H2O2 dissociates 
GAPDH from 3’UTR 1-100 Direct I 

HuR Positive Stability Insulin increases HuR 
association to 3’UTR 607-637 ND II 

TIA-1 Negative Translation 
& stability 

Thapsigargin dissociates 
TIA-1 from 3’UTR 

1-100 
600-887 

Via GAPDH (1-100) 
& direct (600-887) III 
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DISCUSSION 

1. AT1R 3’UTR trans-acting factors 

1.1 Initial studies 

The present series of investigations were set up to identify novel AT1R 3’UTR trans-acting 

factors involved in the regulation of AT1R expression. The first indications of 3’UTR-

mediated regulation of AT1R mRNA were made by Bonnardeaux et al. (1994) when they 

characterized a 3’UTR-located A1166C SNP that seemed to be associated with essential 

hypertension. Their study suggested that the identified SNP might function as a marker for 

an unidentified functional variant. Later this SNP was shown to overlap with a miR-155 

binding site. The CC genotype was further shown to inhibit miR-155 binding and to be 

associated with both elevated blood pressure and AT1R protein expression (Ceolotto et al. 

2011). Since the first discovery of the A1166C SNP, several other studies focusing on the 

regulation of AT1R expression on mRNA level suggested a posttranscriptional model 

orchestrated by RNBPs (Lassègue et al. 1995, Nickenig and Murphy 1996). Finally AUF-1 

was identified as such a posttranscriptional regulator (Pende et al. 1999). Since then, several 

other proteins and miRNAs have also been identified, implicating the 3’UTR as one of the 

key regulatory targets of AT1R expression (Nickenig et al. 2002, Paukku et al. 2008, 

Sansom et al. 2010, Guo et al. 2015). In this thesis, three new RNBPs have been 

characterized as 3’UTR-mediated posttranscriptional regulators of AT1R expression. The 

currently known AT1R 3’UTR trans-acting factors and their binding sites are shown in 

Figure 14. 
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Figure 14. A schematic representation of known AT1R 3’UTR trans-acting factors and their 
binding sites. Locations of AREs are shown (arrows). *, the binding site is based on experiments 
performed in the rat and no details are available in humans. 

1.2 GAPDH 

GAPDH was shown to associate with the 3’UTR of AT1R mRNA, increasing the mRNA 

stability while suppressing its translation under normal conditions (Study I). When exposed 

to an oxidizing environment, however, GAPDH was released from the mRNA leading to 

increased AT1R protein expression. The dissociation of GAPDH from AT1R mRNA in 

response to H2O2 treatment, was coupled with overall reduction of GAPDH expression. 

Rodriguez-Pascual et al. (2008) and Kondo et al. (2011) identified GAPDH as a redox-

sensitive regulator of mRNA expression. A similar mechanism has been proposed in the 

present study where H2O2 abolishes GAPDH-AT1R 3’UTR interaction. H2O2 is known to 

reduce both GAPDH half-life (Sukhanov et al. 2006) and activity (Janero et al. 1994, 

Schuppe-Koistinen et al. 1994, Ciolino and Levine 1997). This is in line with the present 

study showing that H2O2 induces reduction of both GAPDH expression and its association 

to AT1R 3’UTR. It should be noted that H2O2 increases both eNOS expression and 

enzymatic activity, thus increasing NO production (Drummond et al. 2000, Thomas et al. 

2002). In addition to H2O2, NO is a known inhibitor of GAPDH by nitrosylation of its active 

site (McDonald and Moss 1993, Padgett and Whorton 1995). Other oxidation-induced 

modifications such as aggregation of GAPDH (Nakajima et al. 2007) or protein-protein 

interactions (Kim et al. 2003) induced by H2O2, should also be considered as possible 

mechanisms by which H2O2 exposure may lead to dissociation of GAPDH from AT1R 

mRNA. 
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While the function of GAPDH in SG assembly has not been described in detail, the present 

study demonstrates partial localization of GAPDH to SGs after thapsigargin-induced ER 

stress (Study III). This is supported by another study where GAPDH was identified as an 

SG component when searching for SG components after arsenite-induced SG assembly 

(Ohn et al. 2008). In that study, the role of GAPDH in SGs was not described in more detail, 

however. The present thesis further supports the localization of GAPDH to SGs but its exact 

physiological role in these organelles remains to be further explored. 

1.3 HuR 

In the present study HuR was shown to mediate the insulin-induced upregulation of AT1R 

protein expression via a posttranscriptional mechanism. HuR associates with the AT1R 

3’UTR leading to increased mRNA stability, the effect of which is increased by insulin 

(Study II). 

The relationship between insulin and AT1R has been established previously. In a study by 

Nickenig et al. (1998), insulin increased AT1R expression in rat VSMCs, and the underlying 

mechanism was reported to involve posttranscriptional stabilization of the AT1R mRNA. 

In the present study, the insulin responsive element in human AT1R mRNA was mapped to 

the 3’UTR. A luciferase reporter construct containing the AT1R 3’UTR showed increased 

mRNA and protein expression in response to insulin stimulation. 

When searching for proteins mediating the insulin effect via the AT1R 3’UTR, HuR was 

identified as a candidate. HuR is one of the best characterized ARE-BPs. As such, it was 

not unexpected to find it associated with the AT1R 3’UTR bearing multiple AREs (Study 

II). In fact, Pende et al. (2008) were the first to suggest a possible role of HuR in 

posttranscriptional regulation of AT1R. They demonstrated that Ang II induced the 

nucleocytoplasmic translocation of a HuR fusion protein, and a purified HuR fusion protein 

was shown to bind AT1R 3’UTR. The mechanisms or effects of HuR on AT1R expression 

were not studied in more detail by Pende et al. (2008). The present study further expands 

these original observations. In fact, it was confirmed that endogenous HuR was able to bind 

to the AT1R 3’UTR leading to increased stability of the mRNA (Study II). This is in line 

with the best known actions of HuR as a stabilizing factor of its target transcripts. 
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One of the prerequisites for HuR action is its nucleocytoplasmic translocation. This is 

consistent with the results from the present study in which insulin induced this translocation. 

A transporter protein CRM-1 was shown to mediate HuR translocation and to be required 

for the insulin-induced upregulation of a luciferase reporter construct bearing AT1R 3’UTR. 

Inhibition of CRM1 by siRNA, or by a specific blocker (LMB), inhibited the cytoplasmic 

HuR translocation and attenuated the insulin effect on luciferase expression. This suggests 

that the insulin-induced upregulation of AT1R expression by HuR require the 

nucleocytoplasmic translocation of HuR by CRM1. 

In the study by Nickenig et al. (1998), insulin-mediated upregulation of AT1R expression 

was identified as MAPK-dependent. Another study by Subbaramaiah et al. (2003) reported 

that stabilization of Cox-2 mRNA by HuR was dependent on p38 MAPK and MAPK-

activated protein kinase 2 (MK2). Insulin is known to both activate p38 MAPK and induce 

the nucleocytoplasmic translocation of CRM1 (Begum and Ragolia 2000, Somwar et al. 

2000, Kim et al. 2011). In addition, a study by Gurgis et al. (2015) reported that increased 

IL-6 mRNA stability was dependent on the p38 MAPK-MK2-HuR pathway. Taken 

together, these previous observations combined with the results from Study II, describing 

insulin-induced nucleocytoplasmic translocation of HuR by CRM-1, paint a broad outline 

of a possible signaling cascade required for the insulin-induced stabilization of AT1R 

mRNA by HuR (Figure 15). However, this signaling cascade and its detailed mechanisms 

need to be confirmed. 
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Figure 15. Outline of a possible signaling cascade resulting in insulin-induced association of HuR 
with AT1R mRNA 

1.4 TIA-1 

TIA-1 was shown to bind to both the proximal and distal regions of the AT1R 3’UTR (Study 

III). The association at the proximal site was identified to be GAPDH-dependent but binding 

at the distal site was direct and independent of other proteins. Three different mechanisms 

for interaction may be proposed (Figure 16). In model A the two TIA-1 binding sites are 

independent and do not interact with each other, whereas in model B homodimerization of 

TIA-1 from the two sites is proposed to cause a loop-structure in the mRNA. The 

homodimerization of TIA-1 is supported by a study describing TIA-1 aggregation via its 

prion-related domain in SG assembly (Gilks et al. 2004). Looping of the mRNA would 

enable protein-protein or protein-RNA interactions over distinct regions. The H2O2-induced 

dissociation of GAPDH from the AT1R mRNA (Study I) would dissociate TIA-1 from the 
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proximal site suggesting that this site might be involved in the ROS sensitive regulation via 

TIA-1 and GAPDH. In model B, GAPDH and TIA-1 dissociation from the proximal site 

would further attenuate the conformational change of the mRNA molecule by disrupting the 

loop structure. TIA-1 binding at the distal site is not GAPDH-dependent and the TIA-1 

effects at this site may be controlled by some other mechanisms.  

 

Figure 16. Proposal of models for GAPDH-TIA-1 interactions with AT1R 3’UTR 

In model C, TIA-1 would only bind to the distal region and the proximal association (Study 

III) would be due to protein-protein interactions of TIA-1 and GAPDH over the distinct 

binding sites. This is supported by a previous study showing protein-protein interactions 

between TIA-1 and a small nuclear ribonucleoprotein (snRNP) in spliceosome assembly 

(Förch et al. 2002). Also in model C, GAPDH and TIA-1 heterodimerization would cause 

a loop structure in the mRNA. Dissociation of either of the proteins would lead to disruption 

of the loop, leaving the other protein at its place in the mRNA. 
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The best described role of TIA-1-induced translational suppression involves the recruitment 

of target mRNAs to SGs during cellular stress. However, AT1R mRNA was shown to be 

suppressed by TIA-1 under normal conditions but escape recruitment to SGs by dissociation 

of TIA-1 (Study III). The mechanism of TIA-1-mediated regulation of its target mRNAs in 

unstressed environment is poorly known but it may involve regulation of transcript variants 

via splicing or translational suppression and mRNA decay (Izquierdo and Valcárcel 2007, 

Yamasaki et al. 2007). Further, the 3’UTR is known to be involved in translational 

regulation of some mRNAs. While the detailed mechanisms are still poorly known, they 

involve protein-protein interactions over the 5’ and 3’UTRs by looping of the mRNA and 

affecting the assembly of the translation initiation complexes (Szostak and Gebauer 2013). 

The TIA-1-mediated conformational changes in AT1R mRNA via protein-protein 

interactions, proposed in Figure 16 models B and C, would support this mechanism but this 

remains to be confirmed. 

2. AT1R as a stress-regulated receptor 

The expression of AT1R has been shown to be increased under various conditions 

associated with both the development of CVDs and cellular stress. In this thesis, three 

models of such stressful environments and their affected RNBPs were explored: oxidative 

stress via GAPDH (Study I), hyperinsulinemia via HuR (Study II), and ER stress via TIA-

1 (Study III). 

2.1. AT1R and cellular stress 

H2O2 increases the ROS load in the cells, exposing them to oxidative stress. The association 

between ROS and AT1R expression is well known. While AT1R activation increases ROS 

production, AT1R expression and function have been shown to be increased by ROS (Li et 

al. 2000, Nickenig and Harrison 2002, Sungkaworn et al. 2013, Bhatt et al. 2014). This may 

lead to a vicious cycle accelerating the cellular oxidative stress. However, the molecular 

mechanisms involved in ROS-dependent upregulation of AT1R expression are poorly 

known. In Study I, H2O2 increased AT1R protein expression by releasing the translational 

suppressor GAPDH from AT1R 3’UTR. Bhatt et al. (2014) further described AT1R 
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upregulation by H2O2 to involve activation of transcription factor NF- B. Interestingly, NF-

B activation is also induced by AT1R activation (Kranzhöfer et al. 1999, Mitra et al. 2010, 

Young et al. 2015). This would enable a positive feedback loop promoting AT1R 

upregulation. Taken together, these results shed light on how AT1R expression may be 

upregulated by ROS via both transcriptional and posttranscriptional mechanisms. 

In Study II, the effect of insulin on posttranscriptional regulation of AT1R expression was 

explored. Type 2 diabetes (T2D) is a common risk factor for CVD and is often associated 

with hyperinsulinemia. Previous studies have established the link between T2D, insulin, and 

AT1R expression. In atherosclerotic arteries of a diabetic mouse model, AT1R expression 

is increased compared to non-diabetic arteries (Ihara et al. 2007). Further, in human carotid 

artery samples from T2D patients, AT1R expression is increased compared to non-diabetic 

patients. In VSMC cultures from these samples, similar baseline increase in AT1R 

expression and insulin-induced increase in both AT1R mRNA and protein levels may be 

observed (Hodroj et al. 2007). In the study by Nickenig et al. (1998), insulin was shown to 

increase the relative AT1R mRNA levels in both a time and dose-dependent manner and the 

results were coupled to increased expression of the membrane-bound receptor. While 

insulin had no effect on the transcription rate of AT1R gene, it increased the half-life of the 

mRNA. Thus, a posttranscriptional regulatory mechanism was proposed (Nickenig et al. 

1998). This is in accordance with the results of the present study in which the positive insulin 

effect on AT1R expression was mediated via the 3’UTR of AT1R mRNA (Study II). Insulin 

increased cytoplasmic HuR accumulation and binding to AT1R 3’UTR. Insulin-mediated 

binding of HuR to AT1R 3’UTR was further shown to stabilize the mRNA and increase 

protein expression. While the functionality of this posttranscriptional regulatory mechanism 

remains to be confirmed in vivo, it proposes an elegant model of how AT1R expression may 

be regulated by insulin. 

The fact that both ROS and insulin increase AT1R expression, and that both are known ER 

stressors, raises the question of whether AT1R is a general ER-stress-regulated protein. 

Thapsigargin induces ER stress by increasing the cytoplasmic free Ca2+ levels via inhibition 

of the SERCA family of Ca2+ pumps (Thastrup et al. 1990, Lytton et al. 1991). In this thesis, 

the effect of ER stress on AT1R expression was explored using thapsigargin. AT1R mRNA 

was shown to escape thapsigargin-induced sequestration into SGs (Study III). While it needs 
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to be confirmed, this would allow AT1R mRNA to remain accessible for the translational 

machinery during ER stress. This is supported by the relative increase in both AT1R mRNA 

and protein levels during ER stress in VSMCs. This is in line with a previous study 

describing that AT1R mRNA remains translationally active under cellular stress (Martin et 

al. 2003). In addition to posttranscriptional mechanisms, AT1R expression may be 

upregulated under cellular stress via NF- B-mediated transcriptional control. A number of 

studies show that NF- B is activated by oxidative and ER stress (Pahl and Baeuerle 1995, 

Pahl and Baeuerle 1996, Deng et al. 2004). This suggests that both transcriptional and 

posttranscriptional mechanisms regulate AT1R expression during cellular stress. 

While ER stress may be caused by several mechanisms it is not known if they all have 

similar impact on AT1R expression. H2O2-induced oxidative stress was shown to dissociate 

GAPDH from AT1R mRNA (Study I) while during thapsigargin-induced ER stress TIA-1 

was dissociated but GAPDH remained colocalized with AT1R mRNA (Study III). At the 

same time, a fraction of GAPDH localized to SGs. This suggests that a different pool of 

GAPDH localizes to SGs than that associating with AT1R mRNA. Whether this is due to 

some posttranslational modification of GAPDH remains to be answered. Different cellular 

stressors may also have different effects on the mRNA-binding capabilities of GAPDH. 

Phosphorylation of eIF2  is considered to be a proxy for ER stress and a prerequisite to SG 

formation. However, various stressors phosphorylate eIF2  via different kinases (Donnelly 

et al. 2013). In addition, the mRNA subsets affected by phosphorylation of eIF2  have been 

shown to differ depending on the kinase phosphorylating eIF2  (Dang Do et al. 2009). 

Emara et al. (2012) proposed that H2O2-induced SGs differ from the canonical SGs and are 

assembled independently of eIF2  phosphorylation. Further, Larroque-Cardoso et al. (2013) 

showed that in human VSMCs, oxLDL is capable of inducing eIF2  phosphorylation but 

require PKC  for activation of pro-apoptotic pathways, whereas thapsigargin is not 

dependent on PKC  and can also activate the apoptotic pathway in PKC  deficient cells. 

Taken together, the ER stress pathways are diverse and complex, suggesting that the stress-

induced regulation of AT1R expression may differ depending on the stressor. 

The cellular stressors used in this thesis and the mechanism by which they increase AT1R 

expression via GAPDH, HuR, and TIA-1 are summarized in Figure 17. 



 
 
 
 

74

 

Figure 17. A summary of the mechanisms by which oxidative stress, hyperinsulinemia, and ER 
stress increase AT1R expression by affecting GAPDH, HuR, and TIA-1 binding to the 3’UTR of 
AT1R mRNA. 

2.2. GAPDH, HuR and TIA-1 as mediators of stress responses 

The RNBPs identified in this thesis, i.e. GAPDH, HuR, and TIA-1, have been previously 

associated to various stress response pathways. All of them have been shown to 

posttranscriptionally regulate the expression of Cox-2, a central mediator of inflammatory 

responses (Dixon et al. 2003, Cok et al. 2003, Ikeda et al. 2012). Cox-2 is expressed in fatty 

streaks in arteries from both human and mice, and Cox-2 mRNA is upregulated in 

atherosclerotic plaques (Cipollone et al. 2004, Baldan et al. 2014). Another inflammatory 

cytokine, TNF , is also posttranscriptionally regulated by GAPDH, HuR, and TIA-1 

(Piecyk 2000, Dean et al. 2001, White et al. 2015). A number of CVD risk factors are 

associated with cellular events that have been proposed to involve TNF . These include 

cardiac remodeling (Zhao et al. 2008), vascular calcification (Masuda et al. 2013), 

inflammation (Li et al. 2005), and AT1R upregulation (Gurantz et al. 1999, Cowling et al. 

2002). These studies indicated that ER-stress-related pathways were involved in mediating 

TNF  effects. Further, HuR has been shown to promote, and TIA-1 to inhibit, the translation 

of apoptosis regulator, mitochondrial cytochrome c. The regulation is affected by ER stress 

that dissociates HuR from the mRNA, leaving it under the suppressive control of TIA-1 
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(Kawai et al. 2006). Taken together, in addition to the posttranscriptional regulation of 

AT1R expression described in this thesis, GAPDH, HuR, and TIA-1 regulate a number of 

other factors associated with the development of CVDs. All in all, this suggests that 

GAPDH, HuR, and TIA-1 may form a posttranscriptional regulatory complex regulating 

several components of the CVD predisposing pathways. 

3. Challenges in studying the regulation of AT1R expression 

Currently the most common methods to study AT1R expression include measurement of 

AT1R mRNA expression by qPCR, measurement of the activation of downstream signaling 

molecules in response to Ang II, immunological assays using antibodies against AT1R, and 

measurement of membrane-expressed receptor by ligand-binding assay using radiolabeled 

Ang II. Of these, only the ligand-binding assay and immunological methods indicate actual 

changes in expression at the level of receptor protein. The changes in mRNA expression as 

measured by qPCR do not always correlate with changes in the protein expression. Changes 

in expression or activation of AT1R downstream signaling molecules in response to Ang II 

stimulation do not alone confirm alterations in AT1R expression. In contrast, they may 

simply indicate changes in AT1R signaling due to alteration in the balance of transcription 

variants or dimerization of the receptor (Warnecke et al. 1999, Martin et al. 2001, Martin et 

al. 2006, AbdAlla et al. 2000, AbdAlla et al. 2001a, AbdAlla et al. 2001b, Sungkaworn et 

al. 2013). While immunological methods are generally considered to be an established way 

to demonstrate actual changes at the protein level, they have proved to be challenging in the 

assessment of AT1R. Recent studies describe lack of specificity of the commercially 

available AT1R antibodies (Benicky et al. 2012, Herrera et al. 2013, Elliott et al. 2013). For 

this reason there is a need to generate more specific antibodies: either monoclonal or peptide 

antibodies. For the time being, ligand-binding assays may offer the most reliable approach 

to quantitate AT1R protein expression levels. 

In the current study, the proteins associated with AT1R 3’UTR were isolated by affinity 

purification and separated by SDS-PAGE. Thereafter the gels were either silver or 

coomassie-blue stained, the bands of interest were cut out, the proteins were treated with 

trypsin to generate peptides and identified by mass spectrometry. While this is a relevant 
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method, some AT1R 3’UTR-associated proteins may have escaped detection. Affinity 

purification relies on synthetic RNA probes consisting of only the 3’UTR. This may have 

an impact on the formation of the RNA secondary structures, like looping, affecting protein 

binding. Moreover, the silver and coomassie blue stainings are adequate techniques to detect 

abundantly-associated proteins, whereas proteins binding to lesser extent or only under 

specific conditions may remain undetected even when using a mass spectrometry approach. 

The use of GAPDH as a loading control or housekeeping gene in experimental setups should 

be considered carefully, especially in experiments using oxidative conditions. As shown in 

Study I, H2O2 decreased GAPDH expression. This is in line with a previous study showing 

reduced half-life of GAPDH due to H2O2-mediated oxidation (Sukhanov et al. 2006). In 

addition, the use of GAPDH for normalization of data has been questioned before in a study 

showing increased GAPDH mRNA expression during atherogenesis (Hiltunen et al. 1995). 

These observations combined with the multiple known functions of GAPDH in various 

cellular events makes its use as an experimental control questionable. If GAPDH expression 

is affected, the results will be incorrect when normalized against it. Therefore the use of 

multiple controls or total protein staining for western blots should be considered for more 

reliable normalization of data (Vandesompele et al. 2002, de Jonge et al. 2007, Gürtler et 

al. 2013, Li and Shen 2013). 

An additional technical caveat may come from recent studies proposing that AT1R mRNA 

expression may be differentially regulated in different cell types or tissues. An insulin-

resistant rat model with increased plasma insulin levels showed increased AT1R expression 

in thoracic arteries, in line with the results from Study II. However, the AT1R expression in 

the abdominal arteries was unchanged, suggesting that the regulatory mechanisms of AT1R 

may differ even in closely-connected areas (Karpe et al. 2012). In another study by Gao et 

al. (2014), AT1R mRNA localized into SGs in HeLa cells, which is opposite to observations 

from Study III where AT1R mRNA escaped sequestration to SGs in VSMCs. This suggests 

that AT1R regulation may be cell-type specific. This also raises the question of using 

immortalized cell lines as experimental models. While they are easy to work with, they 

differ from normal diploid cells significantly. Most of the immortalized cell lines have 

severe changes in their karyotypes (www.atcc.org/). As such, the results should be 

confirmed in primary cells if possible. It should be noted, however, that primary cells may 
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also have genetic and epigenetic differences, depending on the patients they have been 

obtained from. 



 
 
 
 

78

CONCLUSIONS 

Cardiovascular diseases (CVDs), including hypertension and atherosclerosis, constitute the 

leading cause of death and disability globally. CVDs are multifactorial diseases and several 

underlying mechanisms contribute to the risk of their development. AT1R is a central 

component of the renin-angiotensin system regulating the blood pressure as well as body 

fluid and electrolyte homeostasis. AT1R signaling also results in the generation of ROS that 

contribute to various deleterious cellular effects in CVDs. The role of AT1R in the 

development of CVDs is supported by the beneficial effects achieved by pharmacological 

inhibition of AT1R function. 

AT1R expression is regulated at multiple levels but the underlying mechanisms are not 

completely understood. The aim of this thesis was to identify novel RNBPs involved in the 

posttranscriptional regulation of AT1R expression. The 3’UTR of AT1R mRNA has 

emerged as a key regulatory element that posttranscriptionally regulates AT1R expression 

via trans-acting factors. During the course of this study, three novel RNBPs regulating 

AT1R expression via AT1R 3’UTR were identified: GAPDH, HuR, and TIA-1. While 

certain aspects of the individual roles of these three trans-acting factors 

posttranscriptionally regulating AT1R mRNA expression have been delineated in the 

present thesis, the details of their cooperation and interactions remain to be resolved. 

Under normal physiological conditions, both GAPDH and TIA-1 repress AT1R expression 

while HuR increases it. GAPDH inhibits the translation of AT1R mRNA while stabilizing 

the mRNA transcript. Similarly, TIA-1 suppress AT1R protein expression while having a 

positive effect on the mRNA levels. On the other hand, HuR stabilizes the AT1R mRNA 

leading to increased AT1R protein expression. Together with previous studies, these 

findings further strengthen the role of AT1R 3’UTR as an important regulatory element in 

AT1R expression. The 3’UTR of AT1R is a target for a number of both positive and 

negative trans-acting factors. This proposes that the expression of AT1R may be controlled 

by affecting the balance between the positive and negative regulators associated with the 

3’UTR. 
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The expression of AT1R is affected by various pathophysiological stimuli by regulating the 

association of trans-acting factors to the 3’UTR. Under oxidizing conditions, overall 

GAPDH expression is reduced and GAPDH dissociated from the AT1R mRNA. This 

releases AT1R mRNA from the translational suppression of GAPDH leading to increased 

AT1R protein expression. The insulin-induced upregulation of AT1R expression is 

mediated by HuR via AT1R 3’UTR. Insulin stimulation increases the nucleocytoplasmic 

translocation of HuR. This is accompanied by increased association of HuR with AT1R 

3’UTR, promoting the positive impact of HuR on AT1R expression. During ER stress, 

caused by ER Ca2+ deprivation, AT1R mRNA escapes the sequestration to translationally 

silenced SGs. ER stress releases the SG component TIA-1 from AT1R mRNA, whereafter 

unbound TIA-1 is directed to SGs releasing AT1R mRNA from TIA-1 suppression. As a 

result, the relative AT1R protein expression is increased during ER stress. 

Taken together, the results of this thesis suggest that insulin resistance, ROS, and ER stress 

may contribute to the development of CVDs by affecting posttrancriptional regulation of 

AT1R expression. Better understanding of the complex network of posttranscriptional 

regulation of AT1R expression may create new possibilities to assist in the investigation of 

the pathophysiology and novel treatments of human CVDs. 
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