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Abstract
Drug-induced Mood- and Cognition-related adverse events (MCAEs) are often only detected during the clinical trial phases 
of drug development, or even after marketing, thus posing a major safety concern and a challenge for both pharmaceutical 
companies and clinicians. To fill some gaps in the understanding and elucidate potential biological mechanisms of action 
frequently associated with MCAEs, we present a unique workflow linking observational population data with the available 
knowledge at molecular, cellular, and psychopharmacology levels. It is based on statistical analysis of pharmacovigilance 
reports and subsequent signaling pathway analyses, followed by evidence-based expert manual curation of the outcomes. 
Our analysis: (a) ranked pharmaceuticals with high occurrence of such adverse events (AEs), based on disproportionality 
analysis of the FDA Adverse Event Reporting System (FAERS) database, and (b) identified 120 associated genes and com-
mon pathway nodes possibly underlying MCAEs. Nearly two-thirds of the identified genes were related to immune modula-
tion, which supports the critical involvement of immune cells and their responses in the regulation of the central nervous 
system function. This finding also means that pharmaceuticals with a negligible central nervous system exposure may induce 
MCAEs through dysregulation of the peripheral immune system. Knowledge gained through this workflow unravels putative 
hallmark biological targets and mediators of drug-induced mood and cognitive disorders that need to be further assessed 
and validated in experimental models. Thereafter, they can be used to substantially improve in silico/in vitro/in vivo tools 
for predicting these adversities at a preclinical stage.

Keywords  Neurotoxicity · Pharmaceuticals’ safety · Psychiatric/psychological adverse events · Cross-talk analysis · 
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Introduction

Serious safety concerns contribute to a significant proportion 
of clinical trial failures, thus heavily increasing the costs 
associated with drug development (Allison 2012). Although 
drug safety is addressed throughout every preclinical and 
clinical trial phase, adverse events (AEs) may only become 
directly attributable to a drug as late as in phase III and 
post-approval (phase IV) stages (Crowther 2013). Some AEs 
may also occur following compassionate use of drugs. For 
example, the United States’ Food and Drug Administration 
has recently authorized the use of methylenedioxymetham-
phetamine (MDMA)-assisted psychotherapy for post-trau-
matic stress disorder (PTSD), although MDMA may induce 
suicidal ideation and behavior (Sessa et al. 2019). Such AEs, 
which show a likely causality to a drug, are known in clinical 
practice as adverse reactions or adverse effects (Edwards and 
Aronson 2000).

Within the scope of drug development, the Central Nervous 
System (CNS) is responsible for a lower percentage of project 
terminations due to safety concerns at preclinical when com-
pared to clinical stages, implicating that certain serious CNS-
related AEs are hardly predictable in the preclinical phase 
(Cook et al. 2014). Various drug classes are capable of induc-
ing CNS-related AEs, in particular Mood and/or Cognition 
AEs (MCAEs) (Afzal et al. 2017). As a couple of illustrative 
examples, interferon-based immunotherapy has been shown to 
induce depression and suicidal ideation in patients with hepa-
titis C (Renault et al. 1987), cancer (Valentine et al. 1998), or 
multiple sclerosis (Fragoso et al. 2010). Furthermore, a recent 
cohort study performed in Danish women with no previous 
psychiatric diagnoses identified a positive association of hor-
monal contraception with suicidal ideation and attempt (Skov-
lund et al. 2018). Antiepileptic drugs such as perampanel have 
also been associated with adverse mood changes (e.g. depres-
sion) and effects on cognition (Afzal et al. 2017; Goji and 
Kanemoto 2019). In patients with lower urinary tract symp-
toms (Muderrisoglu et al. 2019), muscarinic antagonists and 
5-alpha-reductase inhibitors were associated with impaired 
cognition and depression, respectively. Recently, both the 
United States and European regulators issued a warning about 
the potential of neuropsychiatric AEs of fluoroquinolones, 
including suicidal ideation (Bennett et al. 2019).

These AEs were largely revealed by PharmacoEpidemiol-
ogy (PE) and PharmacoVigilance (PV) data. Such databases 
include the FDA Adverse Event Reporting System (FAERS) 
database (FDA 2018) that retrieves information on adverse 
event and medication error reports submitted to the FDA; 
the Global Individual Case Safety (ICSRs) Reports Database 
System (VigiBase) (Lindquist 2008), that collects reports 

of suspected adverse effects of medicines worldwide, and 
Eudravigilance (Postigo et al. 2018), the European Union data 
processing network and management system for reporting and 
evaluation of suspected adverse drug reactions.

As a concept complementary to PV databases, Adverse 
Outcome Pathways (AOPs) help to understand the mecha-
nisms leading to adverse outcomes (AOs). In essence, AOPs 
describe how the interaction of a substance with a biological/
toxicological target, also termed Molecular Initiating Event 
(MIE), triggers a sequential cascade of linked events (Key 
Events-KEs), at molecular, cellular or tissue levels, ultimately 
resulting in an AO in the organism (Bal-Price et al. 2017; 
Bal-Price and Meek 2017). Validated AOPs become valuable 
prediction tools to estimate a drug’s potential to elicit an AO 
(Pletz et al. 2018).

This work comprises a comprehensive joint effort led by 
the NeuroDeRisk consortium, formed through the Innovative 
Medicines Initiative (IMI) to collect, organize, and expand 
existing knowledge on the biological pathway elements impli-
cated in the onset of MCAEs, with a particular focus on the 
role of immune system modulation. Here, we employed an 
original methodology with a unique workflow that represents, 
to the best of our knowledge, the first attempt to provide a 
new mechanistic interpretation of neurotoxic effects involved 
in mood and cognition. Contrasting with the more traditional 
approaches (e.g. systematic reviews, meta-analysis of clinical 
trials), we mined the selected PV database (FAERS) for phar-
maceuticals that demonstrate a high occurrence of MCAEs 
based on disproportionality analysis. We then performed a 
functional enrichment and cross-talk analysis with the aim to 
elucidate the molecular mechanisms underlying these drug-
induced changes. Our integrated approach has particularly 
highlighted the key role played by immune function media-
tors in the mechanisms leading to MCAEs. At the same time, 
our parallel top-down and bottom-up analysis revealed distinct 
differences both in the sets of drugs and in the biological path-
ways associated with MCAEs.

Methods

Data sources

FAERS is a publicly available database that contains 
Adverse Event reports that were submitted to FDA by 
healthcare professionals and patients (https​://www.fda.
gov) (FDA 2018). As of this writing, it contains over 
9 million reports from 2004 to date. Individual reports 
in FAERS are patient-based. Reports document the 
patient-experienced AEs as a result of the administra-
tion of one or more drugs. Each report lists the drugs 
taken, with information regarding the putative role of 
the drug in the AEs of the report, i.e. whether a drug 

https://www.fda.gov
https://www.fda.gov
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has been a suspect for an AE or is simply a concomitant 
drug. However, there is no direct association between 
each AE and respective drug(s) in a report. Other infor-
mation contained in FAERS reports include the age of 
the patient and the indication for which the drug has 
been prescribed. FAERS data (4th quarter of 2018) were 
obtained using the openFDA drug adverse event Applica-
tion Programming Interface (API, https​://open.fda.gov/
apis/downl​oads/).

The drugs of interest were used as queries to collect 
data from DGIdb (Drug Gene Interaction Database) 
(Cotto et al. 2018). Medical Dictionary for Regulatory 
Activities (MedDRA) classes corresponding to mood 
and cognitive AEs, Anatomical Therapeutic Chemical 
(ATC) codes mapping drugs to therapeutic classes and 
MeSH pharmacological actions, were taken from the 
NIH UMLS (Unified Medical Language System) version 
2018AB database (Bodenreider 2004). Bibliographic 
links to Drugs (e.g. from Genes, Pathways, Physiology 
terms, etc.) were taken from Biovista’s COSS (Clinical 
Outcome Search Space) database, specifically using the 
Vizit tool (Andronis et al. 2012). Biovista Vizit is a vis-
ual bibliographic PubMed-based search tool that helps 
researchers and medical practitioners explore the existing 
knowledge of a biomedical domain, discover non-obvi-
ous links between entities (e.g. genes, pathways, drugs, 
etc.), visualize biological interconnections and communi-
cate findings with peers (https​://www.biovi​sta.com/vizit​
/). Data on immune system genes were obtained from 
two publicly available databases: a) InnateDB (Breuer 
et al. 2013) developed by the Department of Molecu-
lar Biology and Biochemistry, Simon Fraser University, 
Canada, and b) The Immunology Database and Analysis 
Portal (ImmPort), developed by the National Institutes 
of Health (NIH), National Institute of Allergy and Infec-
tious Diseases (NIAID), Division of Allergy, Immunol-
ogy, and Transplantation (DAIT) (Bhattacharya et al. 
2018).

FAERS drug entries / Drug name unification

A selection of fields encompassing Indications, AEs, Patient 
age, Date received and Adverse Drug Reaction outcome, 
were used to populate an internal database.

AE names in FAERS are standardized on the MedDRA 
terminology. On the other hand, drug names entered in 
FAERS are not based on any standard terminology. Drug 
entries in FAERS may contain any of the following varia-
tions of terms: Drug names appended with the pharmaceu-
tical salt, Active ingredients, Brand names, Drug combina-
tions (usually, but not always, separated by ‘;’). Drug names 
also frequently contain typographic errors, making any 
aggregation attempt quite difficult. Finally, drugs appearing 

in FAERS also include Nutritional supplements used in 
alternative therapies and Investigational compounds. Lack 
of data standardization in drug naming in FAERS is a known 
issue and efforts to tame this problem have been carried out 
in the past (Banda et al. 2016; Maciejewski et al. 2017). 
An example drug presented with this issue is isotretinoin 
which exists in FAERS with at least 4 synonyms (number of 
rows in FAERS database in parenthesis): Accutane (10 038), 
isotretinoin (8 832), Roaccutane (894), Roacutan (240). 
Clearly, any effort to find a meaningful Drug-AEs combina-
tion would have to address drug name synonymization.

The initial P/P subset of AEs contained 4,370,408 Drug-
AE combinations, 1,356,883 reports, 38,424 Drug entries 
and 717 AEs. As a result of the synonymization process, 
drug names were normalized to 88.4% of the reports in the 
P/P subset of FAERS based on their canonical form (usually 
the active ingredient of the drug) (Fig. 1b). More specifi-
cally, out of 38,424 drug entries in the P/P subset of FAERS, 
12,235 were normalized to 3,324 drugs. 26,189 drug entries 
could not be further mapped to canonical names of drugs. 
However, these 26,189 drug entries cover only 11.6% of the 
reports in this subset of FAERS. All in all, 92.6% of actual 
Drug-AE combinations have been covered by our Drug 
name synonymization efforts. The P/P subset of FAERS 
remaining after filtering contained 1,211,954 reports, 29,513 
Drug entries and 711 AEs (Fig. 1b).

Mode of action

The ATC ontology, used as a primary means of identifying 
compounds for selection, based on their mode of action, was 
also derived from the UMLS 2018AB distribution.

Search strategy and selection criteria

Terms related to MCAEs

The list of MCAEs was created by selecting Mood- and 
Cognition-relevant MedDRA terms from Unified Medical 
Language System (UMLS), as presented in Fig. 1a. Note-
worthy, MedDRA uses clinically validated, standardized 
medical terminology, which is commonly used by regula-
tory authorities.

Selection of pharmaceuticals related to MCAEs

Drug-MCAE combinations were generated from the 
FAERS database (FDA Adverse Event Reporting System, 
https​://www.fda.gov) (FDA 2018). A subset of this data-
base was then filtered with AEs that were descendants of 
the MedDRA Psychiatric/Psychological (P/P) disorders 
class. Drug names in FAERS (as opposed to AEs) are not 
based on a controlled vocabulary. This requires significant 

https://open.fda.gov/apis/downloads/
https://open.fda.gov/apis/downloads/
https://www.biovista.com/vizit/
https://www.biovista.com/vizit/
https://www.fda.gov
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Fig. 1   Major elements of the 
workflow applied to the analysis 
of pharmacovigilance reports 
and its subsequent linking with 
the basic biological knowledge. 
a Mood and cognitive MedDRA 
terms used for the selection of 
mood- and cognitive-related 
AEs. b Graphical representa-
tion of the two approaches used 
to identify the pathways and 
mechanisms of action leading 
to Mood and Cognitive AEs. 
Expert curation was carried out 
using PubMed and the Biovista 
Vizit tool
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consolidation and normalization before they can be used in 
any downstream analysis such as the one presented here. To 
address the problem of drug name incoherence in FAERS 
we employed Biovista’s internal COSS database (Deftereos 
et al. 2011) that contains synonyms for medicines based on 
a multitude of knowledge sources, including FDA approved 
drugs, MeSH Chemicals and Drugs, RxNorm and internal 
curation efforts.

Drug-MCAEs combinations in the P/P subset of FAERS 
were further filtered based on a number of criteria. First, 
Drug-AEs combinations where the Drug entry was not con-
sidered as “Suspect” in FAERS for a particular AE, were 
discarded. Drug-MCAEs combinations where the name 
of the AE was the same with the name of the indication 
were also discarded as they were considered as a data entry 
error (Maciejewski et al. 2017). Other FAERS entries (i.e. 
Drug-AEs combinations) with errors due to data entry (e.g. 
abnormal patient ages, duplicated content, etc.) were also 
discarded.

Drug-MCAE combinations for patients over 90 years of 
age were not included for further analysis not only due to 
their very small contribution to the overall number of reports 
but also because they included invalid age entries (data not 
shown). Similarly, Drugs-MCAEs combinations from chil-
dren up to 12 years of age were not considered for further 
analysis due to the highly variable and unreliable AE assess-
ment in these patients. Finally, FAERS contains numerous 
records (> 38.3% of the P/P reports) without patient age 
information. These rows were still kept for further analysis 
due to their significant contribution to the P/P subset.

Disproportionality analysis and information component 
methods

Disproportionality methods and Information Component 
(IC) (Lindquist et al. 2000) analyses are standard approaches 
of identifying statistical associations between Drugs and 
AEs reported in PV databases (such as FAERS) (Duggi-
rala et al. 2018). In this respect, we sought to calculate the 
Proportional Reporting Ratio (PRR) (Bate and Evans 2009; 
Evans et al. 2001) and the IC in order to calculate the asso-
ciation between the Drugs in the P/P FAERS subset and 
Mood/Cognitive MCAEs.

Two separate two-by-two contingency tables were con-
structed, one for Mood AEs and one for Cognitive AEs, 
using the MedDRA AEs from Fig. 1a (Duggirala et al. 2018; 
Montastruc et al. 2011; Sakaeda et al. 2013).

Two-by-two contingency table used for Disproportional-
ity analysis for a Drug X against the combination of Mood 
or Cognitive AEs.

M/C AE All other AEs

Drug X a b a + b
All other products c d c + d

a + c b + d Total

The PRR was then calculated as follows:

The Information Component was calculated based on the 
methodology outlined by the Uppsala Monitoring Centre in 
https​://www.who-umc.org/vigib​ase/vigil​yze/analy​tics-in-
vigil​yze/:

where Nexpected = (Nsubst * Nreaction) / Ntotal.
Nexpected: the number of reports expected for the drug-

AE combination.
Nobserved: the actual number of reports for the drug-AE 

combination.
Nsubst: the number of reports for the drug.
Nreaction: the number of reports for the effect.

Assessment of pharmaceuticals’ targets associated 
with MCAEs

Biological (macro)molecules with which the pharma-
ceuticals interact directly (Online Resource 1), identified 
via the Drug Gene Interaction Database (DGIdb), were 
defined as candidate pathway elements (CPEs). The term 
“pharmaceutical(s)” herein employed comprises both small 
molecules and biologics. Small molecules comprise low 
molecular weight compounds of natural or synthetic ori-
gin that bind, and alter the function of biomolecules (e.g. 
proteins), thus regulating biological processes. In contrast, 
biologics account for molecules of biological origin, with 
high molecular weight (e.g. monoclonal antibodies, pro-
teins), most of which do not readily cross cell membranes 
but may trigger messenger responses (Samanen 2013). The 
nature of association of each CPE with MCAEs was fur-
ther validated in PubMed, either directly or with the help of 
the Biovista Vizit tool, by cross-referencing CPEs with the 
MCAE terms (Fig. 1a). Only targets clearly reported to have 
a direct association with the above-mentioned AEs were fur-
ther listed in Online Resource 2. The following information 
was added to each CPE listed in Online Resource 2: name 
of the gene encoding for the CPE; name of the pathways in 
which the CPE participates, according to Reactome (https​://
react​ome.org) and WikiPathways (https​://www.wikip​athwa​
ys.org); citation(s) of the publications comprising the ration-
ale for retaining the CPE in the curated list; sites of target 

(1)PRR =
[

a∕(a + b)
]

∕
[

c∕(c + d)
]

(2)IC = log2((Nobserved + 0.5)∕(Nexpected + 0.5))

https://www.who-umc.org/vigibase/vigilyze/analytics-in-vigilyze/
https://www.who-umc.org/vigibase/vigilyze/analytics-in-vigilyze/
https://reactome.org
https://reactome.org
https://www.wikipathways.org
https://www.wikipathways.org
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expression, assessed using “The Human Protein Atlas” and 
“Human Protein Reference Database” databases, divided by 
level of protein expression whenever applicable; pharmaceu-
ticals associated with the CPE, according to DGIdb.

Pathway functional enrichment and cross‑talk 
analysis

Genes encoding for the identified CPEs were mapped to 
known functional information in humans, using the g:GOSt 
functionality of g:Profiler (https​://biit.cs.ut.ee/gprof​iler/
gost) (Raudvere et al. 2019), based on Reactome biological 
pathways. Significantly enriched pathways were identified. 
Size of functional categories were limited to minimum 3 
and maximum 350. Small pathways decrease the statisti-
cal power because of excessive multiple testing while very 
large pathways are of very generic nature. Moreover, the 
intersection query/term was set to 3 in order to consider 
only more reliable pathways. Pathways were automatically 
ranked according to their adjusted p-value (statistical sig-
nificance). Genes, from the list provided, associated with the 
respective pathways were also indicated. The interconnec-
tions of enriched Reactome pathways were visualized using 
the EnrichmentMap plugin from within Cytoscape (https​://
www.bader​lab.org/Softw​are/Enric​hment​Map) (Merico et al. 
2010).

Adverse outcome pathways related to MCAEs

The published AOPs were also considered for the assess-
ment of pathways directly associated with Mood and Cogni-
tion-related changes. AOPWiki (AOP-Wiki 2019) and AOP-
Knowledge Base (AOP-KB 2019) were queried using the 
broad terms associated with Mood and Cognition AEs listed 
in Fig. 1a. The association of the query-retrieved AOPs with 
MCAEs was manually curated by subject experts.

Identification of CPEs associated with immune 
system‑related MoA

Identification of CPEs associated with an immune function 
response was performed by querying InnateDB and ImmPort 
databases for all immune system-related genes, followed by 
their mapping in the “Interacting Genes” list (taken from 
DGIdb). Further manual curation of the CPEs encoded by 
those genes, as well as cross-referencing of CPEs listed in 
Online Resource 2 that were not retrieved by InnateDB or 
ImmPort, was performed by carefully reading the publica-
tions retrieved by the PubMed database.

Results

Outline of an integrative approach to AE 
identification

An illustration of the integrative approach proposed by our 
group is provided in Fig. 1b. For the Pathway Enrichment 
Analysis, lists of MCAEs (MedDRA terms in Fig. 1a) were 
used to create a FAERS-based resource of drugs associated 
with either of the two categories of AEs. Drugs were ranked 
according to the number of reports containing such AEs, 
based on disproportionality analysis. Drug-gene interac-
tion databases and tools (DGIdb, NCBI Gene and Biovista 
Vizit) were used to identify interacting genes and CPEs 
for each drug. CPEs with an immunomodulatory mecha-
nism of action were retrieved from immunological data-
bases (Immport, Innate DB). Pathway Enrichment Analysis 
(g:Profiler, Enrichment Map) resulted in enriched pathway 
networks associated with Mood and/or Cognition AEs. The 
same lists of MCAEs (Fig. 1a) were used to query AOP 
databases (AOP Wiki and AOP Knowledge Base) in order 
to identify AOPs involving these adverse events. MoA infor-
mation was subsequently curated in PubMed for establish-
ing supposedly causal rather than coincidental relationships 
between a CPE and each MCAE.

Identification of pharmaceuticals associated 
with MCAEs in FAERS

To establish Drug-MCAEs associations we employed a dis-
proportionality analysis. The PRR and IC values with CI 
95% were calculated to establish a causative relationship 
between a pharmaceutical and MCAEs. A pharmaceutical 
was considered positively correlated with a MCAE if it met 
four criteria: (a) lower boundary of the CI 95% of the PRR 
(PRR025) greater than 1, (b) lower boundary of the CI 95% 
of the IC (IC025) greater than 0, (c) a PRR value greater 
than 2, and (d) have at least 100 reports with a Mood or 
Cognitive AE (columns Drug/Mood and Drug/Cognition 
combinations, respectively, in Online Resource 1), in the P/P 
subset of FAERS. The first three thresholds are commonly 
used in the literature (Caster et al. 2014; Poluzzi et al. 2012; 
Zink et al. 2013) whereas (d) was added to increase selec-
tion stringency. Based on these criteria, 29 pharmaceuticals 
were associated with Mood AEs and 32 pharmaceuticals 
with Cognition AEs (Fig. 1b). Table 1 also lists the top 10 
drugs (by number of Drug/AE combinations) associated 
with Mood and Cognition AEs, respectively.

Highly interesting, pharmaceuticals conspicuously asso-
ciated with Mood AEs were clearly separable from the ones 
associated with cognitive AEs. Specifically, when select-
ing IC025 values > 0 (Fig.  2a) and PRR025 values > 1 

https://biit.cs.ut.ee/gprofiler/gost
https://biit.cs.ut.ee/gprofiler/gost
https://www.baderlab.org/Software/EnrichmentMap
https://www.baderlab.org/Software/EnrichmentMap
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(Fig. 2c) for Drug–Mood AE combinations (in blue), the 
IC025 and PRR025 values for cognitive changes (in orange) 
were consistently below the corresponding thresholds. The 
inverse was also true: drugs associated with cognitive AEs 
(orange in Fig. 2b, d) were not associated with Mood AEs. 
This strong separation suggested the existence of differ-
ences in the molecular mechanisms underlying the two AE 
categories.

A complete list of pharmaceuticals and their dispropor-
tionality values is shown in Online Resource 1. Notably, the 
identified pharmaceuticals comprised different pharmaceuti-
cal classes, many of them being primarily CNS-acting drugs 
(e.g. antidepressants, antiepileptics), but also non-CNS-act-
ing drugs (e.g. antineoplastic, immunomodulating agents).

Signaling pathway analysis reveals similarities 
and differences in the molecular mechanisms 
underlying MCAEs

Following expert curation of the 232 genes associated with 
the FAERS-selected drugs, we identified altogether 120 
CPEs directly associated with MCAEs: 58 associated with 
Mood- and 99 with Cognition-related AEs, while 30 CPEs 
were related to both Mood and Cognition AEs (listed in 
Online Resource 2). Those CPEs included several mem-
brane-bound (e.g. dopamine, glutamate ionotropic, cholin-
ergic nicotinic) and nuclear (e.g. vitamin D, progesterone, 
retinoic acid alpha) receptors, enzymes (e.g. phosphodies-
terases, monoamine oxidase A/B), immune system-related 
components (e.g. interleukins, interferon-gamma), but 
also some other types of biomolecules. About a quarter 
of the identified CPEs (31 out of 120) represented recep-
tors, and the modulation of some of them was previously 
identified in AOP databases as MIEs (e.g. modulation of 

Table 1   Top 10 drugs associated with mood or cognitive adverse events

Drug name No. of P/P 
FAERS 
reports

Drug/mood 
combinations

Drug/
mood 
PRR

Drug/
mood 
PRR025

Drug/
mood 
IC025

Drug/cognitive 
combinations

Drug/
cognitive 
PRR

Drug/cogni-
tive PRR025

Drug/
cognitive 
IC025

Top 10 Drugs (by number of Drug/mood combinations) associated with mood AEs
 Varenicline 36,666 12,180 2.23 2.2 1.07 3879 0.51 0.49  − 1.01
 Levonorgestrel 12,232 4650 2.5 2.44 1.25 854 0.34 0.32  − 1.67
 Isotretinoin 8224 4574 3.66 3.59 1.8 379 0.22 0.2  − 2.33
 Drospirenone and 

ethinyl estradiol 
Combination

11,721 3860 2.15 2.1 1.04 475 0.2 0.18  − 2.49

 Rofecoxib 8002 3540 2.9 2.83 1.46 1271 0.77 0.73  − 0.47
 Metoclopramide 6611 2640 2.61 2.53 1.3 464 0.34 0.31  − 1.7
 Alendronate 5910 2451 2.7 2.62 1.36 892 0.73 0.69  − 0.56
 Apremilast 4887 1937 2.58 2.49 1.28 531 0.53 0.49  − 1.06
 Aprotinin 2637 1923 4.75 4.64 2.16 36 0.07 0.05  − 4.45
 Finasteride 3706 1854 3.26 3.15 1.62 1470 1.93 1.86 0.86

Drug name No. of P/P 
FAERS 
reports

Drug/mood 
combinations

Drug/
mood 
PRR

Drug/
mood 
PRR025

Drug/
mood 
IC025

Drug/cognitive 
combinations

Drug/
cognitive 
PRR

Drug/cogni-
tive PRR025

Drug/
cognitive 
IC025

Top 10 Drugs (by number of Drug/cognitive combinations) associated with Cognitive AEs
 Natalizumab 24,838 2726 0.71 0.68  − 0.56 10,397 2.08 2.05 0.99
 Dimethyl fumarate 11,638 1210 0.67 0.64  − 0.67 5060 2.14 2.09 1.03
 Rivastigmine 3399 515 0.98 0.9  − 0.17 1690 2.43 2.35 1.19
 Memantine 3029 389 0.83 0.76  − 0.44 1300 2.09 2.01 0.97
 Temozolomide 1040 60 0.37 0.29  − 1.84 492 2.3 2.16 1.05
 Cytarabine 1055 59 0.36 0.28  − 1.89 440 2.03 1.89 0.86
 Etoposide 882 57 0.42 0.32  − 1.69 406 2.24 2.09 1
 Ranolazine 875 33 0.24 0.17  − 2.6 398 2.21 2.06 0.98
 PEG-interferon 

beta-1a
868 124 0.92 0.78  − 0.41 397 2.23 2.07 0.99

 Indapamide 495 23 0.3 0.2  − 2.41 303 2.98 2.78 1.38
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Fig. 2   IC025 (a, b) and PRR025 (c, d) values of Drugs associated 
with either Mood or Cognitive AEs. IC025 represents the informa-
tion component (IC)’s lower bound 95% Confidence Interval value. 
PRR025 indicates the Proportional Reporting Ratio (PRR)’s lower 

bound 95% confidence interval (CI) value. Drug—Mood AEs com-
binations are shown in blue. Drug—Cognitive AEs combinations are 
shown in orange (color figure online)
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glutamate ionotropic receptors) or KEs (e.g. regulation 
of serotonergic receptor 5-HTR3). Most of the identified 
CPEs are expressed in the CNS (83 out of 120), mainly 
in the cerebral cortex, cerebellum and/or hippocampus 
(Online Resource 2).

Pathway enrichment analysis (Online Resource 3) con-
ducted via g:Profiler, using Reactome as its basis, revealed 
three classes of molecular mechanisms significantly associ-
ated with both Mood and Cognition AEs: (1) modulation of 
N-methyl-D-aspartate (NMDA) receptors, (2) neurotrans-
mission, and (3) interleukin signaling. The main pathways 
associated with Mood AEs are listed in Online Resource 
4. In addition, Cognitive AEs were significantly associated 
with RUNX and FOXP3 pathways, which regulate the devel-
opment of T-lymphocytes, TP53 gene transcription, and are 
also involved in the modulation of acetylcholine nicotinic 
receptors (Online Resource 5).

Pathway cross-talk analysis (Fig. 3) enabled the visu-
alization of the commonalities and differences between 
Reactome pathways associated with Mood and Cognition 
AEs in the form of interconnected networks. Figure 3 evi-
dences the high degree of overlap between pathways leading 
to MCAEs, as demonstrated by the high number of nodes 
simultaneously colored in green (Mood-related) and blue 
(Cognition-related). These common nodes were observed 
within two main clusters. The first one connected the mod-
ulation of NMDA receptors, MAPK-family signaling cas-
cades, long-term potentiation and events related to synaptic 
neurotransmission. The second cluster connected interleukin 
signaling (i.e. IL-4 and -13, and IL-10) with the intrinsic 
apoptosis pathway, which in turn further linked to protein 
SUMOylation via TP53-mediated transcriptional regulation 
of cell death.

The analysis of pathway cross-talk for Mood AEs (Online 
Resource 7–Fig. 1) shows that pathways mainly grouped 
around the two clusters discussed above, with no apparent 
connection between them. However, other events seem to 
cluster around them. For example, modulation of trafficking 
and glutamate-mediated activation of α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) receptors, as well 
as synaptic plasticity, represent additional nodes modulat-
ing neurotransmission and activation of NMDA receptors. 
MECP2-mediated transcriptional regulation of neuronal 
receptors and channels is associated with MAPK-family, as 
well as with the membrane-bound Neurotrophic Receptor 
Tyrosine Kinase 2 (NTRK2)-related signaling, both of which 
further associate with FLT3 signaling and transcription regu-
lation by RUNX. Curiously, no apparent connection could 
be depicted between Na + ,Cl−-dependent neurotransmitter 
transporters and the other pathways.

Cognition-related pathway cross-talk analysis (Online 
Resource 7–Fig. 2) shows a more intricate clustering pattern, 
with no clearly separated clusters. This might be expected 

in light of the differences observed during our dispropor-
tionality analysis between the Mood and Cognition AEs 
(Fig. 2). Interestingly, some of the events involved in these 
cognition-related pathways seem to be regulated upstream of 
the events leading to Mood AEs. For example, some of the 
identified CPEs leading to cognitive deficits are involved in 
DNA repair-associated pathways (e.g. ABL Proto-Oncogene 
1, Non-Receptor Tyrosine Kinase) and cell cycle regulation 
(e.g. cyclin-dependent kinases). These pathways and CPEs 
further connect with the activation of the intrinsic apoptotic 
pathway (common node for both types of AEs) by triggering 
cytochrome c release, activation and translocation of PUMA, 
and activation of BH3-only proteins at the mitochondrial 
level. The tumor proteins 53 (TP53) and 73 (TP73), Bcl-2, 
and E2F Transcription Factor 1 seem to play a major role in 
connecting these pathways.

The epidermal growth factor and estrogen receptors, 
which are involved in both estrogen receptor signaling and 
transcriptional regulation of the AP-2 family of transcrip-
tion factors, seem to be important in connecting SUMOyla-
tion and nuclear receptor transcription pathways with the 
MAPK-family signaling in cognitive AEs. CPEs involved in 
pathways related to the post-synaptic activation of nicotinic 
acetylcholine receptors emerge as uniquely associated with 
cognitive AEs. Similarly to the regulation of NMDA recep-
tors, the modulation of these receptors likely represents an 
early event in the cascade leading to cognitive deficits, fur-
ther clustering with the neurotransmission-related pathways 
and MAPK-family signaling.

Consolidation of MCAEs’ mechanisms via the AOP 
database

Our query of toxicologist-curated OECD-managed databases 
retrieved 11 AOPs, summarized in Online Resource 6. Con-
cerning cognitive changes, this Table shows that inhibition 
of NMDA receptors, binding to SH/SeH proteins involved in 
protection against oxidative stress, activation of ionotropic 
glutamate receptors or inhibition of Na + /I− symporter (NIS) 
trigger a set of downstream events leading to learning and 
memory impairment (AOPs 12, 13, 17, 48 and 54). Binding 
of an antagonist to NMDA receptors (AOPs 12 and 13) or of 
an agonist to ionotropic receptors (AOP 48) were reported 
to modulate calcium influx, and either reduce BDNF levels 
or impair mitochondrial function, respectively, inducing cell 
death and/or decreased neurotransmitter release (Fig. 4). In 
fact, cell injury/death seems to be a common node to AOP 
12, 13, 17 and 48. Both inhibition of NIS (AOPs 54, 134) 
and thyroperoxidase (AOP 42) impact thyroxine levels in 
neuronal tissues, specifically altering hippocampal gene 
expression, anatomy and physiology, resulting in cognitive 
function deterioration (Fig. 4).
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Concerning adverse mood changes, increased seroto-
nin transporter activity has been reported to modulate 
intra- and extracellular serotonin levels, resulting in either 
depression or agitation (AOPs 222, 224, 225). Addition-
ally, activation of glucocorticoid receptors and increase 
of their activity has been proposed to initiate a sequence 

of events leading to depression and agitation (AOP 214). 
The reduction of BDNF levels seems to represent a com-
mon node to the majority of both MCAEs. This BDNF 
reduction is further responsible for a series of events, 
including decreased neuroplasticity, increased cell injury/
death or decreased neurotransmitter (e.g. glutamate, 

Fig. 3   Pathway cross-talk analysis. a The interconnections among 
pathways associated with either mood- (green) or cognitive (blue)-
related AEs was established using functional enrichment analysis and 
visualized as an enrichment map, as described in Supplemental Mate-
rial Methods. Nodes common to both mood and cognitive AEs are 

represented in both green and blue colors. Data was further curated 
and displayed according to each type of AE-related pathways, namely 
Online Resource 7—Fig.  1: mood AEs-, and Online Resource 7—
Fig. 2 cognitive AEs-related pathways (color figure online)
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GABA) release that results in decreased synaptogenesis 
or increased neuroinflammation, ultimately leading to 
learning and memory impairment (Fig. 4).

Noteworthy, AOPs 17, 134, 222, 224 and 225 are 
still under development. As such, information available 
regarding the KEs involved in those AOPs remains insuf-
ficiently understood.

Marked contribution of immunomodulation 
to MCAEs

CPEs from Online Resource 2 involved in immunomodula-
tory functions were also identified by combining domain-
specific databases (i.e. InnateDB, ImmPort) with expert-
based literature curation of the database s-retrieved data. 
Online Resource 2 evidences that 79 out of all the identified 
CPEs (representing 66% of total elements) are associated 
with immunomodulation, emphasizing the importance of 

Fig. 4   Interactions among AOPs associated with mood- and/or cog-
nitive-related adverse outcomes. Molecular Initiating Events (blue 
boxes) trigger different downstream cascades of Key Events (green 
boxes) that ultimately lead to a mood- or cognitive-related Adverse 
Outcome (yellow boxes). Each AOP sequence of effects may be 

assessed by following its respective AOP ID next to each connect-
ing edge. Information on MIEs, KEs and AOs herein depicted was 
retrieved from AOP databases (i.e. AOPWiki and AOP-KB) (color 
figure online)
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this broad mechanism to the onset of MCAEs. These CPEs 
mostly include cytokines (e.g. interferon-gamma, several 
interleukins), and interleukin receptors (e.g. IL-2 receptor). 
Noteworthy, some of these biomolecules (e.g. androgen 
receptor, IL-2 receptor) are not expressed in the CNS, or at 
least not to a considerable extent.

Discussion

Our unique workflow unraveled valuable insights into the 
potential molecular mechanisms leading to MCAEs. As 
expected, several pathways identified as potentially trigger-
ing MCAEs have already been reported in existing AOPs, 
mostly assessed in rodent models (e.g. reduced BDNF levels, 
increased neuroinflammation). However, only a few well-
documented AOPs causally relate MIEs and KEs to AOs 
in the CNS (Bal-Price et al. 2015), evidencing the scarce 
knowledge in the field. Specifically: (i) the identified AOPs 
mostly focused on brain-occurring MIEs/KEs, despite grow-
ing evidence that MCAEs may also result from the modu-
lation of molecules outside the CNS (Capuron and Miller 
2011); (ii) AOPs often fail to clearly associate a drug’s 
pharmacological action with a MIE, as they do not account 
for either targets’ subunits, site-specific regulation, nor pos-
sible off-targets; (iii) AOPs do not specify the molecules 
involved in a particular KE. Still, AOPs represent useful 
tools to determine whether a CPE modulation represents 
candidate early (MIE) or downstream events (KEs). For 
example, based on the comparison of our list of MCAE-
related CPEs with identified AOPs, the modulation of the 
5-HT3 receptor by metoclopramide, or glutamate ionotropic 
AMPA and NMDA receptors by perampanel and meman-
tine, respectively, may be regarded as MIEs. On the other 
hand, the modulation of BDNF, a common KE to most of the 
identified AOPs (Fig. 4), by topotecan (Wick et al. 2004), or 
of pro-apoptotic protein Bax by interferon alpha-2 (Alvarez 
et al. 2002) may be regarded as late-stage events. Nonethe-
less, for most of the identified CPEs, it is very difficult to dis-
entangle without the support of experimental data, whether 
they represent MIEs or KEs.

Beyond any doubt, some of the identified CPEs are likely 
to have important roles in the manifestation of MCAEs. For 
example, there is substantial evidence implicating gluta-
matergic neurotransmission (e.g. via NMDA and AMPA 
receptors) in the manifestation of mood disorders (Sequeira 
et al. 2009; Utge et al. 2010; Zarate et al. 2010), at least in 
part by governing synaptic plasticity and excitatory trans-
mission in limbic pathways (Witkin et al. 2007). Changes 
in the glutamatergic system have been observed in the 
serum, cerebrospinal fluid (CSF) and brain tissue of patients 
with mood disorders (Hashimoto et al. 2007; Maeng and 
Zarate 2007). Particularly, genetic studies suggested the 

involvement of GRIN2B, which encodes the critical struc-
tural and functional NR2B subunit of NMDA receptors, in 
bipolar disorder and as a genetic predictor for treatment-
resistant depression in major depressive disorder (Martucci 
et al. 2006; Zhang et al. 2014). Reduced levels of AMPA 
receptor subunits have also been reported in the striatum and 
prefrontal cortex of patients with mood disorders (Beneyto 
et al. 2007; Hashimoto et al. 2007; Meador-Woodruff et al. 
2001; Scarr et al. 2003).

On the other hand, animals overexpressing the GluN1 
subunit showed increased learning ability, supporting the 
involvement of impaired NMDA receptor function in cogni-
tive disturbances (Tang et al. 2001). Additionally, GluN2C 
subunit ablation may result in relevant cognitive deficits in 
animals (Gupta and Chadda 2016).

Several lines of evidence support that changes in nico-
tinic acetylcholine (nACh) receptor signaling (identified in 
our study as CPE) are involved in mood regulation (Pic-
ciotto et al. 2015). By and large, an increased cholinergic 
neurotransmission activity, most likely mediated through 
overactivation of nACh receptors, has been associated with 
depressed mood states (Picciotto et al. 2015; Shytle et al. 
2002). However, numerous studies have shown that suppres-
sion of a4b2 leads to positive effects on mood symptoms, an 
effect shared by the activation of a7nACh receptor signaling 
(reviewed by Picciotto et al. 2015), meaning that signaling 
modulation of different nACh receptors can have diverse 
outcomes on mood regulation. Additionally, single nucleo-
tide polymorphisms in the promoter region of CHRNA7, 
encoding the a7nACh receptor subunit, significantly associ-
ated with schizophrenia (Stephens et al. 2009).

Apart from the nACh receptor system, the muscarinic 
receptor system has also been implicated in the pathophysi-
ology of schizophrenia and depressive disorders (reviewed 
by Scarr 2009). For instance, animals that do not possess 
CHRM1 show working memory deficits, despite their nor-
mal hippocampal activity (Anagnostaras et al. 2003).

Most of the receptors identified as CPEs represented 
G-protein coupled receptors (GPCRs), suggesting the 
existence of converging downstream signaling pathways 
leading to MCAEs. Many GPCRs are known to activate 
cyclic adenosine monophosphate (cAMP) signaling and the 
subsequent Mitogen-Activated Protein kinases (MAPKs)-
mediated cascade of events. Noteworthy, MAPKs mediate 
fundamental biological processes and cellular responses to 
external stress signals, including the regulation of synthesis 
of inflammatory mediators at transcription and translation 
levels (Kaminska 2005). Strikingly, our analysis clearly 
evidenced the importance of immunomodulation changes 
towards the onset of MCAEs.

More specifically, we showed that modulation of inter-
leukin (i.e. IL-4, -10, and -13) signaling pathways represent 
common nodes in both Mood and Cognition AE-related 
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mechanisms. They are possibly involved in these AEs by 
triggering intrinsic apoptotic pathways and/or affecting 
protein SUMOylation. Such data align with findings on the 
involvement of IL-4 and IL-13 production by meningeal T 
cells in maintaining cognitive function in mice (Brombacher 
et al. 2017; Derecki et al. 2010).

Surprisingly, we found no relationship between any of 
the interacting genes concerning four pharmaceuticals (apro-
tinin, ertapenem, natalizumab, and ranolazine) and MCAEs. 
Of these, only ranolazine is known to cross the blood–brain 
barrier (BBB), while the other should apparently have acted 
in an indirect manner (i.e. via off-target signaling). The 
importance of immune mediators was further strengthened 
by observing that some of the pharmaceuticals, for which 
a high occurrence of MCAEs has been reported, represent 
high molecular-weight biologicals (e.g. natalizumab, inter-
feron alpha-2) that do not easily cross the BBB (Misiak et al. 
2018). Indeed, immune-mediated inflammatory diseases 
have long been reported to co-occur with, or contribute to, 
mood changes, like depression (Nerurkar et al. 2019).

Immune modulation in the CNS [e.g. by affecting 
cytokines, chemokines, and other immune mediators or cells 
(e.g. microglia)] particularly represents an interesting and 
especially complex topic from the standpoint of anatomi-
cal microenvironment. The CNS is selectively permeable to 
proteins and peripheral immune cells (e.g. leukocytes) via 
(1) blood vessels within the BBB/blood-spinal cord barrier, 
(2) the blood-CSF barrier through an epithelial barrier in the 
choroid plexus, and (3) the meningeal lymphatic route (Lou-
veau et al. 2017). Recently, Lutz et al. (2017) showed that 
circulating Th1 lymphocytes reach the CNS by using cave-
olae to go through the CNS blood vessel endothelial cells.

There are multiple potential scenarios with CNS barri-
ers, peripheral immune system and CNS-resident immune 
cells as key players that require investigation, including: (i) 
direct regulation of drug transport function at CNS barriers 
by cytokines; (ii) facilitation of cytokines transport across 
CNS barriers into the brain by a drug; (iii) modulation of 
peripheral immune cells extravasation across CNS barriers 
by an (immunoactive) drug. The role of various endoge-
nous and exogenous cytokines in BBB modulation has been 
explored broadly, mainly in vitro (Bauer et al. 2005; Hartz 
et al. 2006; Poller et al. 2010). Among well-studied mecha-
nisms is modulation of P-glycoprotein (P-gp) by tumor 
necrosis factor-alpha which leads to a rapid decrease in P-gp 
mediated transport activity with no change in transporter 
protein expression, potentially affecting CNS exposure of a 
P-gp substrate drug that otherwise would have limited BBB 
transport (Erickson and Banks 2018). The rate and extent of 
cytokines transport across the CNS barriers have also been 
explored, with suggestions that their transport is saturable, 
and perhaps even specific for a certain cytokine/family of 
cytokines (Erickson and Banks 2018; Pan et al. 1997; Pan 

and Kastin 2002; Patel et al. 2012). However, the intricate 
mechanisms on how circulating factors, including drugs, 
may affect the transport of cytokines across the CNS barri-
ers are not yet elucidated.

Limitations

Our findings represent a cornerstone in the identification 
of candidate targets and pathways leading to MCAEs. Nev-
ertheless, some limitations of our analysis, which do not 
compromise the overall findings, should be noted. First of 
all, it is highly possible that CPEs (e.g. receptors) with dif-
ferent binding sites may be site-specific regulated and/or 
that allosteric vs orthosteric binding may produce distinct 
outcomes. Moreover, as the analysis relies on both complete-
ness and accuracy of the available sources, it is possible that 
a substantial number of potential binding sites of various 
drugs have not yet been identified.

It has been noted that pharmaceuticals with very few 
FAERS reports are frequently associated with higher values 
of PRR and IC. To alleviate this issue, we decided to add a 
minimum number of reports (100) as an extra filtering crite-
rion, as well as a PRR value > 2 which increased stringency 
to the expense of missing potentially relevant drugs. In the 
future we plan to explore additional filtering methods like 
the Empirical Bayesian Geometric Mean (EGBM) scoring 
(https​://www.fda.gov/scien​ce-resea​rch/data-minin​g/data-
minin​g-fda-white​-paper​).

Although pathway cross-talk analysis provides interest-
ing insights into CPEs and pathways that could be used as 
biomarkers to predict MCAEs at early stages of drug R&D, 
most of this information will need additional experimental 
validation (e.g. addressing how a particular drug adminis-
tration regimen, i.e. acute vs chronic, impacts AEs). Also, 
novel and unexpected “hits” that resulted from our proce-
dure should be carefully assessed experimentally to ascertain 
whether they are false positives or novel relevant elements 
of MCAEs’ underlying biology. Finally, we did not take into 
account the influence of external factors (e.g. environmental 
stress, diseases, drugs) on MCAEs via epigenetic modifica-
tions, due to scarce relevant data. Nevertheless, the impact 
of such modifications should not be disregarded, due to the 
growing evidence linking them to adverse mood changes 
(Labonte and Turecki 2012; Tsai et al. 2011).

Conclusions

This work combined the power of statistical analysis of phar-
macovigilance data with the refinement of expert literature 
curation to propose a set of CPEs consistent with a causal 
relationship to the onset of MCAEs, many of which are of 

https://www.fda.gov/science-research/data-mining/data-mining-fda-white-paper
https://www.fda.gov/science-research/data-mining/data-mining-fda-white-paper
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considerable clinical importance. Pathway enrichment and 
cross-talk analyses, based on genes encoding for the identi-
fied CPEs, suggested a number of pathways that represent 
strong candidates for the observed AEs reported in FAERS 
that also overlap with existing AOPs. Comparison of this 
data with well-documented AOPs further allowed deter-
mining whether some of those targets could be considered 
MIEs, or how downstream a particular CPE modulation may 
occur in the molecular cascade of events. Additionally, we 
evidenced the key role played by immune modulation, par-
ticularly interleukin signaling, in MCAEs.

Our findings represent a valuable tool to improve experi-
mental design (by tackling specific targets), and refine drug 
safety prediction at preclinical stages of drug R&D, consid-
ering the anticipation of potential neurotoxic AEs, namely 
those related to mood changes and cognitive deficits. The 
experimental data, which the NeuroDeRisk consortium aims 
to generate, will be of utmost importance to validate these 
findings and pave the way to the early detection of MCAEs. 
Considering the substantial overlap between molecular KEs 
occurring at later stages in the event cascade, we anticipate 
that the type of AE (i.e. Mood or Cognition) needs to be 
defined at an early stage of the pathway network.
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