
Master’s Thesis

Theoretical Physics

Optimal Quantum Driving for Single-Qubit Gates

Joni Ikonen

17.12.2015

Instructors: Prof. Mikko Möttönen
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Quantum computers store and manipulate information in individual quantized energy levels.

These devices, not yet realized in their full potential, have the ability to perform certain

computational tasks more efficiently than any classical computer. One possible way to implement

a quantum computer is to use superconducting circuits controlled by single-mode electromagnetic

fields. These circuits constitute the physical quantum bits, or qubits, that are used to store

quantum information. A complete, fault-tolerant quantum computer potentially consists of

at least millions of physical qubits which are grouped to form fault-tolerant logical qubits.

Controlling each physical qubit individually requires a great amount of energy, and hence a

future challenge is to reduce the energy consumption in qubit control while maintaining the high

precision.

In this thesis, we derive a fundamental upper bound for the gate fidelity of a single-qubit not gate

implemented with a single resonant driving pulse. It is shown that the upper bound approaches

unity inversely proportionally to the increasing mean photon number of the pulse. Furthermore,

we find that the upper bound is achieved with an optimal superposition of squeezed states. The

typically employed coherent state produces twice as high gate error as the corresponding optimal

state.

In addition, we present and numerically study a correction protocol that allows using the same

drive state for multiple qubit operations. This sustained state is refreshed by sequentially coupling

ancillary qubits to it, effectively resetting it and removing entanglement with the previously

operated qubits. Thus our protocol allows using the same drive state to implement not gates

for different qubits indefinitely, and hence provides a possible route to energy-efficient large-scale

quantum computing.
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1 INTRODUCTION

1 Introduction

Quantum computers [1, 2] are one of the most intriguing practical applications of quantum
mechanics. The power of quantum computers is based on the principle of superposition, a
property that emerges only in coherent quantum systems. Similar to electrical bits of an
ordinary computer, a quantum computer stores its information in quantum-mechanical two-
level systems, known as quantum bits, or qubits. The crucial advantage is that the value of a
qubit is not restricted to either 0 or 1, but may be in a superposition of the two. In principle,
this simple yet unintuitive property, along with the ability to prepare, manipulate, and read
the qubit information, allows constructing computational algorithms more powerful than
any classical algorithm [1]. These algorithms can be used in tasks that cannot otherwise be
executed efficiently, such as factoring large numbers, searching large unordered data sets,
and simulating quantum mechanical systems [2]. This was demonstrated in the 1990’s with
the Deutsch–Jozsa [3], Shor’s [4], and Grover’s [5] algorithms, for example. Today, the
major challenge is to develop technology that is able to execute quantum algorithms with
minimal error.

To serve as a useful platform for quantum computation, a system needs to fulfill a num-
ber of requirements, first listed by DiVincenzo [6]. The obvious requirement is that the
system exhibits distinct quantum properties, such as the coherent superposition of qubit
states. In addition, the qubits must provide high-precision in their preparation, control,
and measurement while simultaneously being resistant to environmental noise. This im-
poses challenges: a qubit that is strongly coupled to the driving system usually also couples
strongly to the decoherence-inducing environment. On the other hand, weakly coupled sys-
tems are typically more difficult to entangle and control [1]. Much of the current research is
centered around finding a way to achieve both precise control and resistance to decoherence.

Many different technologies have been suggested as a platform for quantum computers.
The earliest schemes envisioned atoms flying through cavities filled with microwave radia-
tion [7]. The information would be carried by the atom states, while the cavities would act
as gates, i.e., elements of the computer that perform chosen operations. The modern mod-
ification of this method uses ions that are optically trapped and controlled with lasers [8].
A completely different approach is to use photons as the information carriers. In this case,
the qubit information is encoded in, for example, different polarizations of light and the
gates are constructed with beam splitters and wave plates [9]. Other possible realizations
for qubits include nuclear spins controlled by resonant magnetic fields [10], and electron
spins in quantum dots or donor atom potentials [11].

The most advanced quantum computer to date [12] is based on solid-state supercon-
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1 INTRODUCTION

ductors at sub-kelvin temperatures. The most appealing features of this technology, known
as circuit quantum electrodynamics (cQED), are precise qubit control and straightforward
scaling possibilities [2]. The state-of-the-art superconducting qubits, known as transmons or
Xmons [12], essentially consist of an LC-circuit where Cooper pairs travel across a Joseph-
son junction and have a collective energy spectrum similar to that of an anharmonic oscil-
lator [13]. Due to the nonlinear inductance of the Josephson junction, the spectrum can
be utilized as an effective two-level system. Despite its macroscopic size, this construction
has the required properties of a qubit [13]. The state of the qubit is controlled by mi-
crowave pulses which are capacitively coupled to the circuit, either directly or through a
microwave resonator. The cQED systems and many other driven qubits are modeled with
the Jaynes–Cummings model, describing the dynamics of a two-level system coupled to a
bosonic field [14].

Each of the technologies has disadvantages. A few trapped ions can be controlled with
high precision, but increasing the amount of qubits while keeping the same level of precision
is challenging [8]. In the case of photon qubits, the greatest obstacle is to reliably transfer
information between the photons [2], whereas the nuclear spin qubits are difficult to initial-
ize [1]. The early implementations of the superconducting qubits were susceptible to noise
and decoherence, while the electron spin qubits were challenging to couple. However, as
demonstrated by recent experiments [15, 16], the possible error sources in solid-state cQED
have been reduced enough to allow fault-tolerant computation with error correction.

The inevitable errors can be accounted for by implementing a quantum error correction
code [17]. This is possible by coding the information of one logical qubit into a large ensemble
of physical qubits. Even without accessing the information content of the logical qubit, a
proper error correction code can measure and correct the possible errors in the physical
qubits [17]. One of the most tolerant type of correction codes are surface codes which allow
reliable computation if the single-step error is below a modest threshold of 1% [18]. Recently,
single-qubit gates with 0.08% gate error have been demonstrated using superconducting
circuits [15], along with precise measurement and two-qubit control. These result in a
single-step error which is well below the tolerance threshold of the surface code, implying a
significant step towards robust, large-scale quantum computers. The drawback of the surface
code is that a fault-tolerant logical qubit requires an order of 103–104 physical qubits [18].
However, the number of physical qubits can be decreased significantly by increasing the
precision of the qubit operations. Alternative error correction codes [19] require less physical
qubits per logical qubit at the expense of more stringent thresholds.

Since large-scale quantum computers seem to emerge in the near future, it is important to
consider the trade-off between energy consumption and precision in qubit control. In cQED,
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1 INTRODUCTION

each single-qubit operation is realized with a microwave pulse which decoheres and entangles
with the qubit due to the quantum back-action and therefore should not be used repeatedly
as such. The amount of energy required per pulse may be small, but cannot be neglected
if the number of physical qubits is 105 or more. The question of energy consumption is
enforced even more by the fact that this computer must operate at temperatures below
100 mK, making cooling and efficient heat conduction challenging. This raises the need to
decrease the dissipated power per qubit while improving their operation fidelity.

Thus we arrive at the following research questions: with a given pulse energy, is there
a limit on the best achievable fidelity? With what kind of pulse is this limit achieved? Is
the coherent pulse, commonly used in qubit operations, the optimal one? Is it possible to
remove the entanglement between the qubits and the drive, so that a single drive pulse
could be used for many operations, perhaps even indefinitely? This thesis answers these
questions. The first four chapters provide an introduction to the mathematics and physics
of cQED. The main results of the thesis are derived and discussed in Chapters 5–9.

In Chapter 2, we present the mathematical framework and formalism needed in the
subsequent chapters. This includes brief introductions to density operators, quantum oper-
ations applied to qubits, and quantized bosonic fields. Some useful concepts, such as fidelity,
the Bloch sphere, and the Wigner function are also discussed. Chapter 3 briefly presents
the dynamics of superconducting circuits in a scope needed for this thesis. In Chapter 4,
we use these tools to study the coupling of qubits and photons. We solve the dynamics of
an ideal Jaynes–Cummings system and note some of its most important features, such as
Rabi oscillations.

In Chapters 5 and 6, the main results of this thesis are presented. We write an expression
for the fidelity of a bit flip state transformation, with a given interaction time, and extremize
it with respect to all possible drive states. This eventually provides an expression for the
upper bound for gate fidelity, along with the corresponding optimal drive state. We also
show that the optimal states produce smaller errors than the corresponding coherent states.
We find that the optimal pulses can be produced experimentally with known techniques,
allowing the energetically optimal not gate to be implemented in practice.

In Chapter 8, we take this research a step further, and present a procedure where a single
drive state can be used multiple times for sequential gates. Namely, the drive state can be
restored to its initial value by sequentially coupling auxiliary qubits to it, thus erasing the
inevitable decoherence and entanglement caused by the quantum back-action. This way, in
principle, an infinite amount of operations can be performed without creating a new pulse
for each operation. Finally, our results are summarized in Chapter 9.
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2 MATHEMATICAL PRELIMINARIES

2 Mathematical preliminaries

In this chapter, we introduce the concepts, tools, and notations used in the following chap-
ters. The topics include the most common representations for qubits and electromagnetic
fields, along with the mathematical tools of density operators, quantum gates, purity, fi-
delity, and ladder operators.

2.1 Quantum bits

According to the postulates of quantum mechanics, any physical system can be described
completely by a Hilbert space and operators acting on it [1]. The state of the system is
represented by the state vector, which is an element of this space. The two Hilbert spaces
used in this thesis are the two-dimensional spaceHQ and the infinite-dimensional Fock space
HD, which represent a two-level system and a bosonic electromagnetic mode, respectively.

Quantum bits, commonly known as qubits, are here the elementary units of information.
They are counterparts of bits in a classical computer. Any physical system that is effectively
described by a two-dimensional Hilbert space HQ is a potential candidate for a qubit [18].

In this thesis, we only consider qubits that have non-degenerate energy levels. Thus for
the two-dimensional space, we choose a basis spanned by the energy eigenstates |g〉 and |e〉.
The labels refer to the ground and excited state, respectively. In quantum computing, the
logical values 0 and 1 are assigned to these states. Any qubit state |χ〉 may be expressed as

|χ〉 = z |e〉+ w |g〉 , (2.1)

where the amplitudes z and w are complex numbers restricted by the normalization con-
dition |z|2 + |w|2 = 1. Using this condition and excluding a physically irrelevant common
phase factor, |χ〉 can equivalently be written as

|χ〉 = z |e〉+

√
1− |z|2 |g〉 , (2.2)

with |z| ≤ 1. Thus the state of the qubit is completely determined by the complex qubit
value z.

Where matrix representations are used, we follow the convention

|g〉 =̂

(
1

0

)
, |e〉 =̂

(
0

1

)
. (2.3)
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2.2 Fock space 2 MATHEMATICAL PRELIMINARIES

In a general case, we represent qubits with density operators in this basis, as discussed in
Sec. 2.3.

2.2 Fock space

To describe the electromagnetic mode that drives the qubits, an infinite-dimensional Hilbert
space is needed. Employing the method of second quantization, the electromagnetic field
can be expressed using the Fock space [20]. For simplicity, we assume that the field is
described by a single mode of well-defined frequency. The most convenient formalism for
such system consisting of identical bosons is the occupation number representation, in which
the space is spanned by the number states |n〉, where n ≥ 0 is the number of excitations,
i.e., photons, in the field.

The number states are connected via creation and annihilation operators [20], also known
as the ladder operators

â =
∞∑
m=0

√
m |m− 1〉〈m| , (2.4)

â† =
∞∑
m=0

√
m+ 1 |m+ 1〉〈m| . (2.5)

They obey the commutation relation
[
â, â†

]
= 1, characteristic of all bosonic systems. The

effect of these operators is to lower or raise the number of excitations by one. For example,
we can construct a number state |n〉 using the vacuum state |0〉 and the creation operator

|n〉 =
1√
n!

(
â†
)n |0〉 . (2.6)

Another important operator is the number operator N̂ = â†â, the eigenvalue of which is the
photon number itself, N̂ |n〉 = n |n〉 .

2.2.1 Special states and operators

In addition to the number states, there are certain superpositions of Fock states that have
special properties. The most commonly known example is the coherent state [20]

|Dα〉 = e−
1
2
|α|2

∞∑
n=0

αn√
n!
|n〉 , (2.7)

5



2.2 Fock space 2 MATHEMATICAL PRELIMINARIES

where α is a complex number. The coherent state is an eigenstate of the annihilation
operator, â |Dα〉 = α |Dα〉. The probability of measuring n photons in a coherent state is
P(n) = e−|α|

2 |α|2n /n!, which is the Poisson distribution with the parameter λ = |α|2. The
expectation value of the Poisson distribution is λ, and thus the average number of photons
in a coherent state is given by n ≡ 〈N̂〉 = |α|2. If n� 1, the coherent state takes the form
of a normal distribution, resembling a classical state with definite, macroscopic energy. For
this reason, the coherent state is sometimes referred to as the classical state of light [20], as
opposed to the non-classical number states.

Another way of expressing the coherent state is given by the displacement operator

D̂(α) = eαâ
†−α∗â. (2.8)

The effect of D̂(α) is to shift the probability distribution P(n) by |α|2. The coherent state
can be produced by displacing the vacuum [21]

|Dα〉 = D̂(α) |0〉 . (2.9)

Another useful operator is the squeezing operator [21]

Ŝ(s) = e
1
2

[
s∗â2−s(â†)

2
]
. (2.10)

Operating on a coherent state, the effect of the squeezing is to reshape the probability
distribution P(n) to sub-Poissonian or super-Poissonian, depending on the phase of the
complex parameter s. Combining the two operators we obtain the so called squeezed states,
|S(s)
α 〉 = D̂(α)Ŝ(s) |0〉, that have been observed experimentally [20]. The explicit expressions

for the amplitudes of a squeezed state are quite complicated; for details see Ref. [21].
Assuming s, α ∈ R, the mean photon number and variance of |S(s)

α 〉 are given by [22]

n = |α|2 + sinh2 s (2.11)

ν2 = |α|2 e−2s + 2 sinh2 s cosh2 s. (2.12)

If |α|2 is large compared to the other terms, the mean stays almost the same while the
variance decreases (s > 0) or increases (s < 0). The coherent and squeezed states are
illustrated in Fig. 2.1.

6



2.3 Density operators 2 MATHEMATICAL PRELIMINARIES

Figure 2.1: Amplitudes of a squeezed state (bars) and a coherent state (line). The displacement
parameter of both states is α = 5, resulting in an average photon number of 〈N̂〉 = 52 = 25. The
squeezing parameter of the squeezed state is s = 0.4, making the distribution peak more strongly
than the non-squeezed state.

2.3 Density operators

The temporal evolution of a closed system, described by the state |ψ(t)〉, is determined by
the Hamiltonian operator Ĥ of the system, and the Schrödinger equation [23]

i~
∂

∂t
|ψ(t)〉 = Ĥ(t) |ψ(t)〉 , (2.13)

where ~ denotes the reduced Planck constant. A formal solution is given by

|ψ(t)〉 = T̂ e−i
´ t
0 Ĥ(t′)dt′/~ |ψ(0)〉 ≡ Û(t) |ψ(0)〉 , (2.14)

where T̂ is the time-ordering operator that ensures the non-commuting Hamiltonians be
sorted by increasing time. In the last equality, we have defined the time evolution operator
Û(t) = T̂ exp(−i

´ t
0
Ĥ(t′)dt′/~), which transforms the system from an initial state |ψ(0)〉 to

a state at a later time t. The temporal evolution operator is a unitary operator.
When two quantum systems interact, say, the qubit and its environment, the separate

systems are not closed and their evolution is not unitary in general. In a non-unitary evolu-
tion, the qubit state may decohere, an evolution that may be understood as a measurement
by the environment [1]. In this case, the individual systems cannot be described by state
vectors. Instead, the decoherent state can be represented by means of a density operator,
a Hermitian operator of unit trace. The density operator is formulated as an ensemble of
multiple state vectors, each with a corresponding probability. Formally, the density operator

7



2.3 Density operators 2 MATHEMATICAL PRELIMINARIES

ρ̂ is defined as [1]
ρ̂ =

∑
i

pi |ψi〉〈ψi| . (2.15)

Here |ψi〉 are any state vectors of the Hilbert space, and the real positive coefficients pi
are classical probabilities for the respective states |ψi〉. Thus the coefficients must obey∑

i pi = 1. Given a complete orthonormal basis {|en〉}, the density operator can also be
expressed in terms of a density matrix ρnm as

ρ̂ =
∑
i

pi

(∑
n

|en〉〈en|

)
|ψi〉〈ψi|

(∑
m

|em〉〈em|

)
=

∑
nm

|en〉〈em|
∑
i

pi 〈en |ψi〉〈ψi | em〉

≡
∑
nm

|en〉〈em| ρnm. (2.16)

A density operator with exactly one nonzero coefficient pi = 1 corresponds to a pure state.
The formalism of pure states reduces to that of state vectors. On the contrary, states with
multiple nonzero coefficients {pi} are mixed [1]. A completely mixed state is represented by
a diagonal density matrix, ρnm = δnmd

−1, where d is the dimension of the Hilbert space and
δnm is the Kroenecker delta. This ensemble has no quantum properties and all states have
equal probability.

In the density operator formalism, the temporal evolution of a system is given by the
von Neumann equation [23]

i~
d

dt
ρ̂(t) =

[
Ĥ(t), ρ̂(t)

]
. (2.17)

which can be derived by multiplying the Schrödinger equation (2.13) with its Hermitian
conjugate, and using Eq. (2.15). This guarantees that the dynamics of pure states reduces
to those given by the Schrödinger equation. The solution of the von Neumann equation is
formally ρ̂(t) = Û(t)ρ̂(0)Û †(t), where the operator Û(t) is defined in Eq. (2.14).

2.3.1 Partial trace

Often we are interested in the state of either the qubit or the field, rather than the system
as a whole. The state of a desired component can be extracted from the larger state by
taking the partial trace over the other component spaces. For an arbitrary density operator

8



2.3 Density operators 2 MATHEMATICAL PRELIMINARIES

ρ̂ ∈ HA ⊗HB, the partial trace over HB is defined as [1]

TrB (ρ̂) =

dB∑
n=1

Tr
(
ρ̂ ÎA ⊗ |en〉〈en|

)
∈ HA. (2.18)

Here, ÎA is the identity operator of HA and {|en〉} are the basis states of HB.

2.3.2 Purity

It is not immediately obvious whether an arbitrary density operator represented as a matrix
in some basis is pure or mixed. An adequate indicator of the nature of the state is the trace
Tr (ρ̂2). In the domain of possible density operators, it assumes values in the range [1/d, 1].
For this reason, we define the purity P of a state as [24]

P (ρ̂) =
dTr (ρ̂2)− 1

d− 1
, (2.19)

where the rescaling has been introduced to have P (ρ̂) ∈ [0, 1]. For pure states, the purity
is 1 by definition since Tr (ρ̂2) = Tr (|ψ〉〈ψ |ψ〉〈ψ|) = Tr (ρ̂) = 1. On the other hand, P = 0

corresponds to a completely mixed state with ρnm = δnmd
−1. The purity is also related to

so-called linear entropy S by P = 1−S, so a pure state is a state of minimal linear entropy,
whereas a completely mixed state is has maximum linear entropy [24]. Thus this definition
of purity serves as an intuitive measure of the quality of the state.

2.3.3 Fidelity

Another useful quantity is the fidelity F , which measures the overlap of two states. It is
defined as1

F (ρ̂A, ρ̂B) = Tr (ρ̂Aρ̂B) . (2.20)

Like purity, the fidelity is a monotonic function ranging from 0 (corresponding to orthogonal
states) to 1 (equal states). For pure states, the fidelity simply reduces to the usual overlap
of two state vectors, F = |〈ψA |ψB〉|2.

1Sometimes the fidelity is defined as F (ρ̂A, ρ̂B) = Tr

√
ρ̂
1/2
A ρ̂Bρ̂

1/2
A [1]. The motivation behind this

definition is that it coincides with the classical notion of fidelity. Compared to our definition, it only
produces slightly different values in the range ]0, 1[ but is a lot more cumbersome in practical calculations.
Removing the square root reduces it to the definition of Eq. (2.20), used e.g. in Refs [15, 24, 25].

9



2.3 Density operators 2 MATHEMATICAL PRELIMINARIES

2.3.4 Bloch representation

An intuitive description of a qubit is offered by the Bloch representation, which maps a
density operator to a three-dimensional vector. Any two-dimensional density matrix can be
expressed using the Pauli spin matrices

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
, (2.21)

as [26]

ρ =

(
ρgg ρge

ρ∗ge ρee

)
=

1

2
(I +Bxσx +Byσy +Bzσz) , (2.22)

where I is the identity matrix and {Bi} are the components of the Bloch vector B. Explicit
expressions for the components can be obtained by multiplying Eq. (2.22) by a corresponding
Pauli matrix and taking a trace. They are given by

Bx = 2Re (ρge), By = −2Im (ρge), Bz = ρgg − ρee. (2.23)

A Bloch vector of a pure state is confined to the surface of a unit sphere, whereas mixed states
are mapped to inside the sphere. This restriction can be observed by inserting Eq. (2.22)
into the definition of purity, whence

P (ρ̂) = 2 Trρ2 − 1 = |B|2 . (2.24)

Thus the magnitude of the Bloch vector represents the purity of the state and |B|2 ∈ [0, 1].
The ground and excited states are mapped to the north and south pole of the sphere,
respectively. The completely mixed state corresponds to the null vector.

In addition, the Bloch vector gives a visual representation of fidelity. Consider two pure
qubits with Bloch vectors BA and BB (|BA| = |BB| = 1). Using Eqs. (2.20) and (2.22) we
obtain

F (ρ̂A, ρ̂B) =
1

2
(1 + BA ·BB) = cos 2

(
θAB

2

)
, (2.25)

where θAB is the angle between the two vectors. The higher the fidelity, the closer the Bloch
vectors are to each other on the Bloch sphere.

10



2.4 Quantum gates 2 MATHEMATICAL PRELIMINARIES

Figure 2.2: Action of the displacement and squeezing operators in the Wigner representation. The
vacuum state yields a circular distribution centered at the origin. The rightmost distribution is
obtained by squeezing the vacuum with a squeezing parameter s = 0.3 and then displacing the
result with α = 3. The topmost distribution is similarly obtained with the parameters s = −0.4
and α = 3i.

2.3.5 Wigner pseudo-probability function

Density operators of the Fock space can be visualized with the Wigner pseudo-probability
function. The Wigner function represents a density operator ρ̂ in the complex plane, with
the value at point z given by [27]

W (z) =
2

π
Tr
[
D̂(−z)ρ̂D̂(z)eiπâ

†â
]
. (2.26)

The Wigner function represents the coherent states as Gaussian-like distributions, the peak
center given by the displacement parameter α. In this space, the effect of the displacement
and the squeezing operators are rather intuitive: D̂(α) shifts the location of the distribution
by α, whereas Ŝ(s) deforms the shape from circular to elliptical. The complex phase of
the parameter s dictates the angle of the ellipse; with real s, the distribution is squeezed
in the direction of the real axis and stretched along the imaginary axis. These effects are
illustrated in Fig. 2.2.

2.4 Quantum gates

To manipulate the information stored in the qubits, we need to be able to change their
states. Whereas the true evolution of the system is described by a specific Hamiltonian

11
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operator, the abstract theory of quantum information is not tied to any particular physical
system. Instead of specific operators corresponding to physical observables, the evolution
of the qubits is typically studied with the help of ideal quantum gates. A quantum gate
performs a certain logical operation typically on one or two qubits at a time.

A trace-preserving single-qubit gate Φ̂ acting on a density operator ρ̂ can be expressed
in the operator-sum form as [1]

Φ̂(ρ̂) =
∑
i

K̂iρ̂K̂
†
i , (2.27)

where the so-called Kraus operators {K̂i} must sum up to the identity operator,
∑

i K̂iK̂
†
i =

Î. For example, the quantum counterpart of the classical not operation 0↔ 1, the quantum
bit flip operation, is performed by the gate

Φ̂NOT(ρ̂) = σ̂xρ̂σ̂x. (2.28)

The quantum not gate corresponds to interchanging the basis vectors, |g〉 ↔ |e〉.
Other useful gates include the phase flip and bit–phase flip gates, which correspond

to the Pauli matrices σ̂z and σ̂y, respectively. The effects of different quantum gates are
conveniently visualized with the Bloch sphere. The X, Y, and Z gates rotate the Bloch
vector of a state about the respective axes by π and are thus referred to as π rotations.
Furthermore, rotations by π/2 are represented by

√
σ̂n̂, depending on the desired axis n̂.

Up to a global phase shift, many other gates can be expressed by a combination of these
operators, such as the Hadamard gate

σ̂H = σ̂x

√
σ̂y =̂

1√
2

(
1 1

1 −1

)
. (2.29)

To construct a quantum computer, we need to implement the logical quantum gates
using physical interactions. In the thesis, we will use the fidelity of states to compare the
physical temporal evolution with an ideal quantum gate.
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3 DYNAMICS OF SUPERCONDUCTING CIRCUITS

3 Dynamics of superconducting circuits

Throughout this thesis, we use the Jaynes–Cummings model developed originally in 1963
[28]. It describes a two-level system interacting with a quantized field of bosons. Although
it was first derived for atoms and ions in a radiation field, the model can be applied to many
other systems, including mesoscopic superconducting circuits. In this chapter, we briefly
discuss how the mathematical representation of a specific quantum circuit can be cast in
the form needed for the Jaynes–Cummings model.

3.1 Hamiltonian of the qubit

A superconducting qubit, traditionally referred to as the Cooper pair box, is essentially a
small LC circuit with non-linear inductance arising from Josephson junctions. The Cooper
pair box along with its circuit diagram is illustrated in Fig. 3.1. Below the critical tem-
perature, the current in the circuit becomes supercurrent which is carried by electron–hole
pairs, known as Cooper pairs [13].

A Josephson junction consists of two superconductors separated by a barrier that is thin
enough for the Cooper pairs to cross via coherent quantum tunneling. The current I and
voltage Vq across the junction are given by the Josephson equations [29]

Figure 3.1: (a) Illustration of a superconducting qubit coupled to a superconducting resonator
(gray and brown components, respectively). The inset shows a Josephson junction between two
superconductors, with a Cooper pair crossing the junction. (b) Circuit diagram of the coupled
system of the qubit and the resonator (blue and red boxes, respectively). The qubit consists of a
capacitor and a Josephson junction, denoted by a cross. The symbols are defined in the main text.
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3.1 Hamiltonian of the qubit 3 DYNAMICS OF SUPERCONDUCTING CIRCUITS

I(t) = I0 sin [ϕ(t)] , (3.1)

Vq(t) =
~
2e

∂ϕ

∂t
, (3.2)

where I0 is the so-called critical current of the junction, ϕ = ϕ(t) is the phase difference of
the electron wave functions across the junction, and ~ and e are the reduced Planck constant
and elementary charge, respectively. The potential energy stored in the junction is given by

−
ˆ
VqIdt =

I0~
2e

cosϕ. (3.3)

In a Cooper pair box shown in Fig. 3.1b, energy is conservatively stored by a Josephson
junction and a capacitor. Thus the Lagrangian describing the dynamics of the qubit can be
expressed as

L =
1

2
C0V

2
q +

I0~
2e

cosϕ

=
~2

4EC

(
∂φ

∂t

)2

+ EJ cosϕ, (3.4)

where C0 is the capacitance of the capacitor, and the scaling constants EJ = ~I0/(2e) and
EC = (2e)2/(2C0) are known as the Josephson energy and the charging energy, respectively.

Let nC denote the net number of Cooper pairs tunneled across a Josephson junction,
carrying a charge 2e. Neglecting a possible small charge offset caused by external couplings,
the voltage of the capacitor is given by Vq = 2enC/C0, which combined with Eq. (3.2) yields

nC =
~

2EC

∂ϕ

∂t
. (3.5)

The quantities ~nC and ϕ are canonical conjugates, since

∂L
∂
(
∂ϕ
∂t

) =
~2

2EC

∂ϕ

∂t
= ~nC. (3.6)

The Hamiltonian of the qubit is therefore given by

HQ = ~nC
∂ϕ

∂t
− L = ECn

2
C − EJ cosϕ. (3.7)

We invoke canonical quantization of the system by promoting the canonical conjugates
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3.2 Interaction with photons 3 DYNAMICS OF SUPERCONDUCTING CIRCUITS

to operators ϕ̂ and n̂C. Furthermore, we define ladder operators b̂ and b̂† such that

n̂C =

(
EJ

2EC

) 1
4 1√

2

(
b̂+ b̂†

)
, (3.8)

ϕ̂ = i

(
EJ

2EC

)− 1
4 1√

2

(
b̂† − b̂

)
. (3.9)

The operators b̂† and b̂ create or annihilate an excitation of the qubit. Similar to the
harmonic oscillator, they obey [b̂, b̂†] = 1 and the canonical commutation relation [n̂C, ϕ̂] = i

is satisfied.
The ratio EJ/EC, which depends on the design of the circuit, determines whether the

charging or the Josephson part dominates the dynamics [13]. Here, we use as an example
the transmon qubit [30], a successful qubit type with a ratio EJ/EC ≈ 100, derived from the
Cooper pair box. In this regime, it is shown in Ref. [30] that ϕ� 1 and thus the cosine in
Eq. (3.7) may be approximated as cosϕ ≈ 1−ϕ2/2. Inserting Eqs. (3.8) and (3.9) into (3.7)
yields the approximate Hamiltonian

ĤQ ≈
√

2ECEJ

(
b̂†b̂− 1

2
Î
)
− EJÎ. (3.10)

Due to the anharmonicity of the transmon, the oscillator can effectively occupy only
the two lowest energy eigenstates, |g〉 and |e〉 [30]. Therefore the ladder operators can be
approximated with b̂† ≈ |e〉〈g| and b̂ ≈ |g〉〈e|. After restricting to the two-level space, we
may choose the zero point of energy such that

ĤQ ≈
1

2

√
2ECEJ (|e〉〈e| − |g〉〈g|) . (3.11)

It is customary to express this using the angular frequency ωq corresponding to the transition
energy of the qubit and the Pauli Z operator as

ĤQ = −1

2
~ωqσ̂z. (3.12)

3.2 Interaction with photons

Typically, the qubits are controlled by bosonic fields. In cQED, this can be achieved by cou-
pling the qubit to a superconducting wave guide or a resonator. The supercurrent traveling
in the wave guide induces an electromagnetic field outside it and, like any electromagnetic
wave, it can be described by photons. The resonator is made so narrow that only longitu-
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dinal modes can exist in it. We consider only the lowest mode with angular frequency ω.
Using the number basis of Sec. 2.2, the free Hamiltonian of the driving resonator can be
expressed as [23]

ĤD = ~ωâ†â. (3.13)

Here, we have removed the zero-point energy ~ω/2 by choice of the energy reference.
Studying a circuit in which a qubit is capacitively coupled to a resonator, depicted in

Fig. 3.1, yields a Hamiltonian with three distinct parts. In addition to the free Hamiltonians
of the subsystems, ĤQ and ĤD, the third part describing the interactions between the two
is given by [31]

Ĥint = −CgV̂q ⊗ V̂r, (3.14)

where Cg is the capacitance of the coupling capacitor, V̂r is the voltage operator of the
resonator, and V̂q is that of the qubit. The voltage in the resonator can be written as
V̂r = Vrms

(
â+ â†

)
, where Vrms is the root-mean-square voltage of a single photon [30]. The

qubit voltage is given by

V̂q =
2e

CΣ

n̂C = −
√

2e

CΣ

(
EJ

2EC

) 1
4 (
b̂† + b̂

)
. (3.15)

Here, CΣ is the total capacitance of the qubit and the coupling capacitor. Thus the inter-
action Hamiltonian is given by

Ĥint =
√

2eVrms
C

CΣ

(
EJ

2EC

) 1
4 (
b̂+ b̂†

)
⊗
(
â+ â†

)
≡ ~g

(
b̂+ b̂†

)
⊗
(
â+ â†

)
, (3.16)

where all variables depending on the physical details have been combined into the coupling
constant g. In the next chapter, the free Hamiltonians, ĤQ and ĤD, and the interaction
Hamiltonian, Ĥint, are used to derive the Jaynes–Cummings model.

We emphasize that effective Hamiltonians of the same form can be obtained for many
different systems, not only for the superconducting transmon used here. For example,
consider an atom in a cavity. The resonance frequencies can be chosen so that the atom
can only make transitions between two energy levels. It interacts with the electric field Ê

through its dipole moment d̂ as Ĥatom
int = d̂ · Ê. This can be similarly cast in the form of

Eq. (3.16) [1, 32].
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4 QUANTUM DRIVING

4 Quantum driving in the Jaynes–Cummings model

This chapter presents the physics of the Jaynes–Cummings model. We keep the system
of interest on the abstract level, where a two-level system is driven by a quantized field
of bosons. Section 4.1 completes the derivation of the Jaynes–Cummings Hamiltonian by
invoking the rotating-wave approximation. In Sec. 4.2, this is used to calculate the complete
temporal evolution of the system. Finally in Sec. 4.3, it is shown how the dynamics of this
system manifest in a phenomenon known as Rabi oscillations, and how these oscillations
can be used to control single qubits.

4.1 Rotating-wave approximation

We assume the coupled qubit–field system to be closed; we do not consider the noise and
possible dissipative effects of an environment. The field is assumed to be monochromatic,
a feature that is realized remarkably well in coplanar waveguides used in cQED. We only
consider the resonant case where the transition energy of the qubit equals the energy of the
photons. This assumption greatly simplifies our analysis. For a more general treatment,
one would define a detuning parameter as the difference between the qubit energy gap and
the photon energy. A treatment with detuning can be found in, e.g., Refs. [33, 14].

The Hilbert space of the combined system is a tensor product of that of the two-level sys-
tem and the Fock space, H = HQ⊗HD. The Hamiltonian consists of the free Hamiltonians
of the individual systems and the additional part describing their interaction

Ĥ = ĤQ ⊗ ÎD + ÎQ ⊗ ĤD + Ĥint, (4.1)

where Î is the identity operator of the respective spaces. As demonstrated in Ch. 3, they
are given by

ĤQ =
~ω
2

(|e〉〈e| − |g〉〈g|) (4.2)

ĤD = ~ωâ†â (4.3)

Ĥint = ~g
(
b̂† ⊗ â+ b̂⊗ â† + b̂† ⊗ â† + b̂⊗ â

)
. (4.4)

with b̂ = |g〉〈e|. For general treatment, we assume that the coupling g has temporal depen-
dence.

Note that Ĥint contains terms of two types. The first two terms contain a creation
operator and an annihilation operator, corresponding to energy transfer between the qubit
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and the field. The remaining terms involve two operators that increase or decrease the
energy of both subsystems. By transforming the system into an interaction picture with
respect to the free Hamiltonian Ĥ0 = ĤQ⊗ ÎD + ÎQ⊗ĤD, we show that the last two terms in
Eq. (4.4) can be neglected if ω � g. In the interaction picture, all operators are transformed
as [23]

Â→ ÂI = eiĤ0t/~Âe−iĤ0t/~, (4.5)

where
eiĤ0t/~ = ei(ĤQ⊗ÎD+ÎQ⊗ĤD)t/~ = eiĤQt/~ ⊗ eiĤDt/~. (4.6)

The transformed operators are denoted by a superscript I. The purpose of the transformation
in Eq. (4.5) is to switch into a coordinate system in the Hilbert space that is co-moving
with the natural free evolution of the system.

The exponentiations of the free Hamiltonians ĤQ and ĤD, defined in Eqs. (4.2) and (4.3),
can be calculated by standard matrix exponentiation, yielding

eiĤQt/~ = e−iωt/2 |g〉〈g|+ eiωt/2 |e〉〈e| , (4.7)

eiĤDt/~ = eiωN̂t. (4.8)

According to Eq. (4.5), the annihilation operators transform as

b̂I = eiĤQt/~ b̂ e−iĤQt/~ = e−iωtb̂, (4.9)

âI = eiωN̂t â e−iωN̂t = e−iωtâ. (4.10)

Thus the transformed interaction Hamiltonian is given by

Ĥ I
int = eiĤ0t/~Ĥinte

−iĤ0t/~

= ~g
[(
b̂I
)†
⊗ âI + b̂I ⊗

(
âI
)†

+
(
b̂I
)†
⊗
(
âI
)†

+ b̂I ⊗ âI

]
= ~g

(
b̂† ⊗ â+ b̂⊗ â† + e2iωtb̂† ⊗ â† + e−2iωtb̂⊗ â

)
. (4.11)

We observe that in this frame, the energy transfer terms are stationary, i.e., co-rotating
with the frame, whereas the remaining, so-called counter-rotating terms oscillate with fre-
quencies ±2ω. If ω � g, the effect of the counter-rotating terms averages to out in the
natural time scale of the first terms [32]. For this reason, we neglect the counter-rotating
terms. By making this rotating-wave approximation, we arrive at the Jaynes–Cummings
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Hamiltonian

Ĥ I
int = ~g

(
b̂† ⊗ â+ b̂⊗ â†

)
=̂ ~g

(
0 â†

â 0

)
. (4.12)

For the matrix notation, we use the basis defined in Eq. (2.3). The Hamiltonian (4.12)
was first derived by Jaynes and Cummings [28] and it is the usual starting point of many
studies. The rotating-wave approximation offers significant simplifications in the following
derivations, altough some analytical results can be derived without it. A more general model
without the rotating-wave approximation is generally referred to as the Rabi model [34].

4.2 Temporal evolution

Having simplified the Hamiltonian into the Jaynes–Cummings form, we are able to ana-
lytically solve the complete dynamics of the system. We denote the density operators of
the qubit and the field by χ̂ and σ̂, respectively, and the operator of the whole system by
ρ̂ = χ̂⊗ σ̂.

In the interaction picture, the temporal evolution is determined by [23]

i~
d

dt
ρ̂I(t) =

[
Ĥ I

int(t), ρ̂
I(t)
]
. (4.13)

This is equivalent to the von Neumann equation involving the original Hamiltonian [Eq. (2.17)].
The equivalence can be shown by inserting the definition of the transformed density opera-
tor of Eq. (4.5) into Eq. (4.13). From this point on, the superscripts will be omitted as we
will work in the interaction picture only. As discussed in Sec. 2.3, the solution of Eq. (4.13)
is ρ̂(t) = Û(t)ρ̂(0)Û †(t), where the unitary operator is given by

Û(t) = exp

[
−i
ˆ t

0

Ĥint(t
′)dt′/~

]
. (4.14)

The only part of Ĥint with possible temporal dependence is g(t) which results in the inte-
gral
´ t

0
g(t′)dt′. For simplicity, we choose to use a constant interaction strength, for which´ t

0
g(t′)dt′ = gt, but a more general treatment can be reobtained by making the substitution

gt→
´ t

0
g(t′)dt′ below.

An explicit form of the temporal evolution operator is computed by writing the exponent
as a sum of matrices and separating the even and odd summations. Using the matrix
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representation for operators in HQ, Û(t) is expressed as

Û(t) =̂ exp

[
−igt

(
0 â†

â 0

)]
=
∞∑
n=0

(−igt)n

n!

(
0 â†

â 0

)n

=
∞∑
n=0

(−igt)2n

2n!

(
0 â†

â 0

)2n

+
∞∑
n=0

(−igt)2n+1

(2n+ 1)!

(
0 â†

â 0

)2n+1

. (4.15)

The matrix powers can be computed using Eqs. (2.5) and (2.4). For example(
0 â†

â 0

)2n

=

( (
â†â
)n

0

0
(
ââ†
)n
)

=

( ∑
k N̂

n |k〉 〈k| 0

0
∑

k

(
N̂ + 1

)n
|k〉 〈k|

)

=
∞∑
k=0

 (√
k
)2n

|k〉 〈k| 0

0
(√

k + 1
)2n |k〉 〈k|

 , (4.16)

and similarly for the matrix with powers of 2n+ 1. Combining these leads to

Û(t) =̂
∞∑

n,k=0

 1
2n!

(
−igt
√
k
)2n

|k〉 〈k| 1
(2n+1)!

(
−igt
√
k + 1

)2n+1 |k + 1〉 〈k|
1

(2n+1)!

(
−igt
√
k
)2n+1

|k − 1〉 〈k| 1
2n!

(
−igt
√
k + 1

)2n |k〉 〈k|


=

∞∑
k=0

 cos
(
gt
√
k
)
|k〉〈k| −i sin

(
gt
√
k + 1

)
|k + 1〉〈k|

−i sin
(
gt
√
k
)
|k − 1〉〈k| cos

(
gt
√
k + 1

)
|k〉〈k|

 . (4.17)

Introducing the shorthand notations Ck = cos
(
gt
√
k
)
and Sk = sin

(
gt
√
k
)
, the temporal

evolution operator can be expressed as

Û(t) =̂
∞∑
k=0

(
Ck |k〉〈k| −iSk+1 |k + 1〉〈k|

−iSk |k − 1〉〈k| Ck+1 |k〉〈k|

)
. (4.18)

Given an initial state ρ̂(0) = ρ̂0 = χ̂0 ⊗ σ̂0, the evolving state is given by

ρ̂(t) = Û(t) (χ̂0 ⊗ σ̂0) Û †(t). (4.19)

The reduced qubit and field density operators are obtained by using the partial traces as

χ̂(t) = TrDρ̂(t), σ̂(t) = TrQρ̂(t) . (4.20)

Note that the temporal evolution of ρ̂ ∈ H is unitary, as the evolution of closed system
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should be. On the other hand, in general there is no unitary evolution operator for the
separate components χ̂ ∈ HQ and σ̂ ∈ HD. As mentioned in Ch. 2.3, this means that
initially pure components do not necessarily remain pure. The loss of purity is caused by
the entanglement of the qubit and the field, causing some of the qubit information to be
transferred to the field.

4.3 Quantum driving

Controlling the state of a qubit with a quantized auxiliary system is here referred to as
quantum driving. For purposes of quantum computing, quantum driving with the Jaynes–
Cummings interaction is used to implement logical quantum gates. In this section, we
specifically focus on the not gate which exchanges the states |e〉 ↔ |g〉. This gate is
represented with the Pauli matrix σx.

What parameters can we manipulate to drive the qubit? The dynamics of the qubit
are determined by three components: the temporal evolution operator, the initial state of
the qubit, and that of the auxiliary system which we refer to as the drive. The state of
the qubit does not offer any free parameters since during a quantum computation the qubit
is generally in an unknown state. That is, we cannot adjust the gate depending on the
input. The evolution operator offers one parameter: the interaction time t (more precisely,
the dimensionless time gt) which can be chosen as needed. Finally, the initial state of
the drive, being an element of the Fock space, offers infinitely many degrees of freedom.
In summary, implementing a not gate corresponds to constructing a suitable drive state
with a matching interaction time. In the following sections of this chapter, we study some
example cases commonly found in the literature: Rabi oscillations and quantum driving in
the classical limit.

4.3.1 Rabi oscillations

A qubit coupled to a drive typically exhibits oscillations between the ground and the excited
state. This well-known effect arising from the Jaynes–Cummings interaction is known as
Rabi oscillation [14, 32] and it has been observed experimentally with superconducting
qubits [35]. An extreme and purely quantum mechanical case is the vacuum Rabi oscillation,
where coupling the qubit to a vacuum state causes it to oscillate. To study how Rabi
oscillation comes about, let the initial states be χ̂0 = |g〉〈g| and σ̂0 = |n〉〈n|. The evolving
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state is given by Eq. (4.19), which simplifies to

ρ̂(t) =̂
∞∑

k,j=0

(
Ck |k〉〈k| −iSk+1 |k + 1〉〈k|

−iSk |k − 1〉〈k| Ck+1 |k〉〈k|

)

×

(
|n〉〈n| 0

0 0

)(
Cj |j〉〈j| iSj |j〉〈j − 1|

iSj+1 |j〉〈j + 1| Cj+1 |j〉〈j|

)

=

(
CnCn |n〉〈n| iSnCn |n〉〈n− 1|

−iSnCn |n− 1〉〈n| SnSn |n− 1〉〈n− 1|

)
. (4.21)

To compute the evolving components, the partial trace equations (4.20) are used to obtain

χ̂(t) = cos2
(
gt
√
n
)
|g〉〈g|+ sin2

(
gt
√
n
)
|e〉〈e| , (4.22)

σ̂(t) = cos2
(
gt
√
n
)
|n〉〈n|+ sin2

(
gt
√
n
)
|n− 1〉〈n− 1| , (4.23)

showing the dynamically oscillating nature of the states.
The dynamics can be interpreted as the qubit coherently emitting a photon to the

resonator and re-absorbing it, periodically ad infinitum. The excitation probability is simply
Pe = sin2 (gt

√
n). Using an interaction time t = π/(2g

√
n) leads to Pe = 1, i.e., a complete

flip of the state. Thus we have demonstrated that the perfect state transformation |g〉 → |e〉
is implementable simply using a number state |n〉. However, this does not serve as a perfect
not gate, for example, because the excited state evolves with a frequency proportional
to
√
n+ 1. That is, the two basis states {|g〉 , |e〉} couple to different number states and

therefore rotate with different frequencies. In the extreme case of n = 0, the excited state
would oscillate normally but the ground state would not evolve at all. In the next sections,
we consider more complex initial states which may be used to implement a not gate.

4.3.2 Classical driving

The classical treatment of driving is notably simpler than the quantum driving discussed
above. In the non-quantized description for the electromagnetic field, one replaces the ladder
operators with complex numbers acl = |acl| eiϕ in Eq. (4.4) [36]. The complex number ϕ
represents the phase difference between the oscillations of the qubit and the field. In the
rotating-wave approximation with an amplitude acl, the interaction Hamiltonian and the
temporal evolution operator become

Ĥcl =̂ ~g

(
0 a∗cl

acl 0

)
, (4.24)

22



4.3 Quantum driving 4 QUANTUM DRIVING

Ûcl(t) =̂

(
cos (gt |acl|) −ie−iϕ sin (gt |acl|)

−ieiϕ sin (gt |acl|) cos (gt |acl|)

)
. (4.25)

Since the classical field is not considered to be part of the Hilbert space, the evolving
qubit is simply χ̂(t) = Ûcl(t)χ̂0Û

†
cl(t). With the choice t = π/(2g |acl|), the evolution operator

reduces to iÛcl = cos(ϕ)σ̂x + sin(ϕ)σ̂y. Thus the gates corresponding to σ̂x and σ̂y are
implemented by choosing the appropriate interaction time and phase of the pulse. In the
common nomenclature, this choice of interaction time is referred to as the π pulse. A
π pulse rotates the Bloch vector by π about the chosen axis—a classical π pulse with ϕ = 0

implements a perfect not gate. However, the semi-classical description of Eq. (4.25) is
not always accurate. To this end, take the above example of Rabi oscillations applied to
the vacuum by setting acl = 0. This leads to Ûcl(t) = Î, i.e., there is no oscillation at all in
the classical case, even though the dynamics of the excited state are non-trivial in the full
quantum treatment.

4.3.3 Quantum driving in the classical limit

The case of the classical drive offers a hint towards a good not gate. We need to find a
drive state that, in some sense, approaches the classical drive. This is commonly taken to
be the coherent state |Dα〉 [Eq. (2.7)] in the limit of infinite photons, n = |α|2 →∞ [36].

The quantum evolution of a ground-state qubit, coupled to the coherent drive state
σ̂0 =

∣∣D√n〉〈D√n∣∣ is illustrated in Fig. 4.1. The excitation probability is computed as
Pe(t) = 〈e| χ̂(t) |e〉, where χ̂(t) is given by Eqs. (4.20) and (4.19). For comparison, the
semi-classical evolution is also shown using Eq. (4.25). We observe that the coherent states
induce oscillations similar to those arising from the classical field. Specifically, the case
of n = |acl|2 matches the classical evolution. This observation suggests that the classical
state may be approximated by the coherent states, although the oscillations are damped in
time2. To achieve an optimal not gate, we need to stop the evolution when the probability
reaches its first local maximum. This corresponds to the π rotation. Due to the damping,
the following maxima are always lower than the first one, indicating a less precise state
transformation.

In the following, we show more rigorously how the dynamics with the coherent state
2The oscillation of the excited-sate probability seems to collapse to a static value of 50%, but after a

certain time the oscillations appear again (not shown in Fig. 4.1). This phenomenon is known as the revival
of the oscillation which has been studied extensively, see Refs. [36, 14, 32]. The theory of collapses and
revivals is beyond the scope of this thesis.
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Figure 4.1: Probability Pe to observe the qubit in the excited state as a function of dimensionless
time gt. At t = 0 the qubit is in the ground state. The two solid lines correspond to the initial
drive being in a coherent state with an average photon number of 10 (red) and 100 (blue). The
dashed line corresponds to the system evolving according to the classical Hamiltonian with a field
amplitude acl = 10.

reduce to those with the classical drive in the proper limit. First, we choose a different basis
for the qubit space, defined by [36]

|±〉 =
1√
2

(|g〉 ± |e〉) . (4.26)

These basis states are eigenstates of Ĥcl in Eq. (4.24). Their usefulness emerges when
coupled to a coherent state

∣∣D√n〉 = e−n̄/2
∑
n

n n/2

√
n!
|n〉 . (4.27)

The temporal evolution of the combined state |±〉 ⊗
∣∣D√n〉 has been calculated in Ref. [36]

in the classical limit of large n. Explicitly, their lengthy calculation shows that

[
|±〉 ⊗

∣∣D√n〉] (t) =
1√
2

[
e
−i gt

2
√
n |g〉 ± |e〉

]
⊗ e−n/2

∑
n

n n/2

√
n!

e±igt
√
n |n〉 . (4.28)

The most notable feature is that, besides gaining additional factors, the state vector accu-
rately stays in the factorized form throughout the evolution.
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To implement a not gate, we use a carefully chosen interaction time

t∗ =
π

2g
√
n
. (4.29)

This corresponds exactly to the first local extremum in Fig. (4.1). Evaluated at t∗, Eq. (4.28)
reduces to

[
|±〉 ⊗

∣∣D√n〉] (t∗) =
1√
2

[
e−

iπ
4n |g〉 ± |e〉

]
⊗ e−n/2

∑
n

nn/2√
n!

e±iπ/2 |n〉

= ±i |±〉 ⊗
∣∣D√n〉 , (4.30)

in the limit n→∞. The |±〉 states gain a phase factor of ±i. Switching back to the energy
basis and denoting the evolved states with an asterisk, we obtain

|±∗〉 = ±i |±〉

⇒ 1√
2

(|g∗〉 ± |e∗〉) = i
1√
2

(± |g〉+ |e〉)

⇒

{
|g∗〉
|e∗〉

=

=

i |e〉
i |g〉 .

(4.31)

Apart from the redundant phase i, the basis states are exchanged without error, as in the
case of a classical Hamiltonian. Thus the coherent state, in the limit n → ∞, can be used
to reproduce the classical results.

The remaining question is, what happens in the region of finite n. As demonstrated
in Fig. 4.1, decreasing the mean photon number of a coherent state increases the error of
the not gate. Furthermore, there is no fundamental reason why the coherent state would
yield the highest fidelity for a given n. Perhaps there are other states that could outperform
the coherent state with only a couple of photons. What is the most optimal state? In the
following chapter, we develop powerful tools to access these questions and to show that
indeed, the coherent state is not the optimal choice, even in the limit of large n.
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5 Drive state optimization

In the previous chapter, we showed that a large coherent state can be used to implement
a not gate. Here, we present a new approach to study which drive states are suitable
for different logical operations. When comparing the fidelity of possible logical gates, we
need to take into account that the state transformation fidelity depends on the input state.
Since the input values are generally unknown during the computation, a consistent way
to compare gates is to assess their minimum state fidelities, that is, the fidelity of the
worst possible input. In this thesis, the minimum fidelity is referred to as the gate fidelity
[1]. The higher the gate fidelity is, the more precisely all inputs are guaranteed to be
transformed. This is essential for error correction codes, in which any gate error must be
under the tolerance threshold. Another input-independent measure for gate performance is
the average transformation fidelity, which is discussed in Sec. 6.4.

5.1 Gate fidelity

Let the function F measure the fidelity of a given state transformation realized by the
Jaynes–Cummings interaction. Here, F depends on the initial state of the qubit and that
of the drive, denoted by χ̂0 ∈ HQ and σ̂0 ∈ HD, respectively. The gate fidelity is denoted
by Fmin and the worst-case qubit by χ̂w. The problem is to find the optimal drive state σ̂opt

that maximizes the gate fidelity, so that

Fmin(σ̂opt) = max
σ̂0

F (χ̂w, σ̂0) = max
σ̂0

min
χ̂0

F (χ̂0, σ̂0) . (5.1)

In addition, we are most interested in solutions that consist of as few photons as possible.
Let χ̂

U
(t) denote the state resulting from the physical interaction, and χ̂

K
the ideally

transformed qubit. By the results of the previous chapter, the evolving qubit state is
expressed as

χ̂
U

(t) = TrD

[
Û(t) (χ̂0 ⊗ σ̂0) Û †(t)

]
, (5.2)

where Û(t) is given by Eq. (4.18). The ideal target state is given by χ̂
K

= K̂χ̂0K̂
†, where

K̂ = K̂ ⊗ Î is the operator corresponding to the desired single-qubit gate. Using the
definitions given in Ch. 2, the fidelity is given by

F [χ̂
U

(t), χ̂
K

] = TrQ [χ̂
U

(t)χ̂
K

] . (5.3)
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5.1.1 Minimization with pure states

Due to the properties of the gate fidelity, the density operator formalism reduces to that
of the pure states. Here, we show that a pure drive state yielding the highest gate fidelity
cannot be surpassed by a mixed state. Let σ̂0 be an arbitrary initial drive state and express
it using the expansion in Eq. (2.15) as

σ̂0 =
∑
i 6=opt

pi |σi〉〈σi|+

(
1−

∑
i 6=opt

pi

)
|σopt〉〈σopt| . (5.4)

Here, |σopt〉〈σopt| denotes the state yielding the highest gate fidelity among all pure states.
Since χ̂

U
and F are linear in σ̂0, we observe that

Fmin(σ̂0) =
∑
i 6=opt

piFmin (|σi〉〈σi|) + (1−
∑
i 6=opt

pi)Fmin (|σopt〉〈σopt|)

= Fmin (|σopt〉〈σopt|) +
∑
i 6=opt

pi [Fmin (|σi〉〈σi|)− Fmin (|σopt〉〈σopt|)] (5.5)

By the assumption that |σopt〉〈σopt| produces the highest fidelity among pure states, the ex-
pression in the square brackets is never positive. Thus we have Fmin(σ̂0) ≤ Fmax (|σopt〉〈σopt|),
showing that a mixed drive state cannot produce a gate fidelity higher than the optimal
pure state.

A similar result holds for the mixed qubits, which is shown in Ref. [1]. The proof is based
on the fact that fidelity is a jointly concave function. Thus we conclude that a solution to
Eq. (5.1) can be found by considering pure states only.

5.1.2 State transformation fidelity with pure states

With pure initial states χ̂0 ⊗ σ̂0 ≡ |χ0〉〈χ0| ⊗ |σ0〉〈σ0| ≡ |χ0, σ0〉〈χ0, σ0|, Eq. (5.3) simplifies
into

F [χ̂
U

(t), χ̂
K

] = TrQ [χ̂
U

(t)χ̂
K

]

= TrQ

{
TrD

[
Û(t) (χ̂0 ⊗ σ̂0) Û †(t)

]
K̂χ̂0K̂

†
}

= 〈χ0| K̂†TrD

[
Û(t) |χ0, σ0〉 〈χ0, σ0| Û †(t)

]
K̂ |χ0〉

=
∞∑
k=0

〈χ0, k| K̂†Û(t) |χ0, σ0〉 〈χ0, σ0| Û †(t)K̂ |χ0, k〉
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=
∞∑
k=0

∣∣∣〈χ0, k| K̂†Û(t) |χ0, σ0〉
∣∣∣2 ≡∑

k

|Gk|2 . (5.6)

Here 〈χ0, k| ≡ 〈χ0| ⊗ 〈k| and we have denoted the final matrix elements by {Gk}.
To obtain an explicit expression for the matrix element Gk, we define the initial drive

state |σ0〉 and initial qubit state |χ0〉 as

|σ0〉 =
∞∑
j=0

cj |j〉, (5.7)

|χ0〉 =̂

 √
1− |z|2

z

. (5.8)

The coefficients {cj} are complex numbers that are normalized to unity,
∑

j |cj|
2 = 1. The

qubit state is completely determined by the complex parameter z. Using these definitions
and Eq. (4.18), the matrix element Gk can be written as

Gk = 〈χ0, k| K̂†Û(t) |χ0, σ0〉

=
∞∑
l=0

∞∑
j=0

( √
1− |z|2 〈k| z∗ 〈k|

)( K11 K12

K21 K22

)†

×

(
C l |l〉〈l| −iSl+1 |l + 1〉〈l|

−iSl |l − 1〉〈l| C l+1 |l〉〈l|

) √
1− |z|2cj |j〉
zcj |j〉


=

∞∑
j=0

( √
1− |z|2 z∗

)( K∗11 K∗21

K∗12 K∗22

)

×

(
Ckδjk −iSkδj,k−1

−iSk+1δj,k+1 Ck+1δjk

) √
1− |z|2

z

 cj

=
∞∑
j=0

cj

{
−iSk+1δj,k+1

[
K12

(
1− |z|2

)
+K∗22z

∗
√

1− |z|2
]

−iSkδj,k−1

[
K∗12 |z|

2 +K∗11z

√
1− |z|2

]
+Ck+1δjk

[
K∗22 |z|

2 +K12z

√
1− |z|2

]
+Ckδjk

[
K∗11

(
1− |z|2

)
+K∗12z

∗
√

1− |z|2
]}
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=
1∑

mn=0

Γknmck+n−m. (5.9)

In the last line, the sum has been structured to separate the amplitudes {ck} from the other
factors

{
Γknm

}
that depend on the initial qubit value z, the desired gate K̂, and time t.

Explicitly,

Γkmn(z, t, K̂) =

(
Ck
[
K∗

11

(
1− |z|2

)
+ K∗

12z
∗
√

1− |z|2
]

−iSk
[
K∗

12 |z|
2 + K∗

11z
√

1− |z|2
]

−iSk+1
[
K∗

21

(
1− |z|2

)
+ K∗

22z
∗
√

1− |z|2
]

Ck+1
[
K∗

22 |z|
2 + K∗

21z
√

1− |z|2
]
)
nm

. (5.10)

In summary, the fidelity of the state transformation can be evaluated with

F
(
z, σ0, t, K̂

)
=
∑
k

|Gk|2 =
∑
k

∣∣∣∣∣
1∑

mn=0

Γknm(z, t, K̂)ck+n−m

∣∣∣∣∣
2

. (5.11)

5.2 Maximizing the state fidelity

With expression (5.11), we are able to solve the optimization problem of Eq. (5.1) which
is equivalent to finding the critical points of F . The most straightforward procedure would
be to calculate the gradient of F with respect to all degrees of freedom, {cj}, z, and t.
Unfortunately, equating the gradient to zero yields a complex system of nonlinear equations.
However, with some reasoning z and t may be kept constant during the optimization with
respect to {cj}. This leads to a systematic technique to construct the optimal drive states.

In Ch. 4, we solved the dynamics for a coherent drive state and then chose an appropriate
interaction time t∗ optimal for a π rotation. Below however, we want to compare arbitrary
drive states which may produce their optimal results with different interaction times. To
make the comparison of states consistent, we fix the interaction time. Furthermore, solving
Eq. (5.1) does not require including z in the gradient if the point of minimum fidelity is
found by other means. This is possible with certain restrictions, detailed in the Sec. 6.1;
here, we assume that we have already found the qubit value z that minimizes the fidelity
and that it does not depend on {cj}.

With z, K̂, and t constant, we solve∇F
(
z, σ0, t, K̂

)
= 0, where the gradient is computed

with respect to the coefficients {cj} of the drive state |σ0〉. In addition, the normalization
constraint

∑
j |cj|

2 = 1 must be satisfied. Applying the method of Lagrange multipliers, we
set out to solve the following equation:

∇

[
F ({cj})− λ

(∑
j

|cj|2 − 1

)]
= 0. (5.12)
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Here, λ is the Lagrange multiplier of the constraint and F ({cj}) is given by Eq. (5.11). The
solutions of this equation represent the critical points of F in the Fock space.

We write the complex-valued amplitudes using two real numbers as cj = xj + iyj and
compute the gradient piece by piece. Using Eq. (5.9) we obtain

∇Gk =
∞∑
j=0

1∑
mn=0

Γknmδk,j+m−n∇cj =
∞∑
j=0

1∑
mn=0

Γknmδk,j+m−n (x̂j + iŷj) , (5.13)

and hence

∇F ({cj}) = ∇
∑
k

|Gk|2 =
∑
k

(∇G∗k)Gk + c.c.

=
∑
k

∑
jl

∑
mnm′n′

(
Γknm

)∗
Γkn′m′δk,l+m′−n′δk,j+m−n (x̂j − iŷj) cl + c.c.

=
∑
jl

Ajl (x̂j − iŷj) cl + c.c., (5.14)

where c.c. denotes the complex conjugate of the preceding expression, and we defined

Ajl =
∑

mnm′n′

(
Γj+m−nnm

)∗
Γj+m−nn′m′ δl+m′−n′,j+m−n≥0, (5.15)

which can be considered as the elements of a Hermitian matrix A(z, t) = [Ajl].
Thus Eq. (5.12) reads∑

jl

Ajl (x̂j − iŷj) cl + c.c.− λ
∑
j

(2xjx̂j + 2yjŷj) = 0. (5.16)

By the orthogonality of the unit vectors x̂j and ŷj, we obtain{ ∑
lAjlcl + c.c. = 2λxj

−i
∑

lAjlcl + c.c. = 2λyj
∀j, (5.17)

whence

2
∑
l

Ajlcl = 2λxj + 2λiyj, ∀j∑
l

Ajlcl = λcj, ∀j. (5.18)

This is an eigenvalue equation for the matrix A defined in Eq. (5.15). Since the eigenvectors
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of A represent the critical points in the Fock space, one of the eigenvectors, |σopt〉, gives the
global maximum of the fidelity.

Furthermore, the eigenvalues equal the fidelity produced by the corresponding drive
states. To show this, we rescale the solved coefficients with a real number ξ as

{
cλj
}
→
{
ξcλj
}
.

Since the fidelity is quadratic in
{
cλj
}
, the Lagrange equation optimizing the fidelity with

respect to ξ yields
∂

∂ξ

[
ξ2F

({
cλj
})
− λ

(∑
j

ξ2
∣∣cλj ∣∣2 − 1

)]
= 0

⇒ F
({
cλj
})

= λ
∑
j

∣∣cλj ∣∣2 = λ. (5.19)

Hence the greatest fidelity, corresponding to that of the optimal drive state, equals the
largest eigenvalue.

Note that the eigenvalue equation can be generalized for multiple values z1, z2, ...zN to
find the maximum of 1

N

∑N
p F (zp) . Repeating the above procedure, we observe that the

modified equation

∇

[
1

N

N∑
p=1

F (zp)− λ

(∑
j

|cj|2 − 1

)]
= 0 (5.20)

leads to ∑
l

[
1

N

N∑
p=1

Ajl(zp, t)

]
cl = λcj, ∀j. (5.21)

Thus A(z, t) can be replaced with 1
N

[A(z1, t) + A(z2, t) + ...+ A(zN , t)] to compute the drive
state that optimizes the fidelity averaged over multiple qubit states.
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6 Optimal drive states

In this chapter, the optimization method developed in the previous section is used to discover
the drive states that maximize the gate fidelity of a not gate and perform rotations more
accurately than their coherent counterparts, even in the classical limit. Section 6.2 shows
how the optimal states can be approximated accurately by a superposition of squeezed
coherent states. Similar results are obtained for the π rotation about the y-axis, as discussed
in Sec. 6.3. Using these approximations in Ch. 7, we are able to calculate the theoretical
upper bound of the not gate fidelity.

6.1 Numerically exact solutions for the not gate

In Sec. 5.2, we showed that the transformation fidelity of a given qubit can be maximized
with a proper choice of the drive state. However, optimizing the drive state using a fixed
input qubit state generally causes other input states to transform with smaller fidelities. This
problem can be avoided if the worst-case qubit zw, defined by F (zw) = minz F (z), does not
depend on the drive state. After finding such zw, the fidelity F (zw) can be maximized by
applying Eq. (5.21) and hence solving Eq. (5.1).

It turns out that for gates corresponding to the operators σ̂x and σ̂y, there is a symmetry
that causes zw to be independent of the drive state. In this section, we study the not gate,
K̂ = σ̂x, as a representative case. This choice simplifies Eq. (5.10) into

Γkmn(z, t) =

 Ckz∗
√

1− |z|2 −iSk |z|2

−iSk+1
(
1− |z|2

)
Ck+1z

√
1− |z|2


nm

. (6.1)

In appendix A, it is shown that for real {cj} and interaction time t ≤ π/(2g), the worst-
case qubit for the not gate is either zw = ir or zw = −ir, with r ≈ 1/

√
2. However,

maximizing F (ir) causes F (−ir) to decrease and vice versa. Therefore, the optimal state
is given by an equation that maximizes the sum F (ir) + F (−ir). Applying Eq. (5.21), this
sum is maximized by the solution of

∑
l

1

2

[
A

(
+i√

2
, t

)
+ A

(
−i√

2
, t

)]
jl

cl = λcj, ∀j, (6.2)

where A(z, t) is given by Eqs. (5.15) and (6.1). We do not attempt to solve this matrix
equation analytically. However, approximate analytical solutions are discussed in Sec. 6.2.
Numerically, the eigenvectors of Eq. (6.2) can be solved conveniently. Picking the states
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Figure 6.1: Amplitudes of photon number states in optimal drive states for times t = π/(2g
√
m)

with m = 6, 30, 60 (black, red, and blue bars respectively). For comparison, coherent states (solid
lines) of average photon number n = 6, 30, 60 are shown and rescaled to the same height.

corresponding to the largest eigenvalues, the optimal drive states are obtained for a chosen
time t. Examples of the solutions are illustrated in Fig. 6.1. Several distinct features are
observed:

• The optimal state |σopt(t)〉 resembles the coherent state
∣∣D√n〉 with t = π/

(
2g
√
n
)
.

This equals the π rotation time t∗ introduced in Sec. 4.3.3.

• In an optimal state, only even or odd number states are occupied. For each even state
there is an equivalent odd state with equal eigenvalue and resulting fidelity.

• The optimal states appear to be squeezed. The exact amount of squeezing is studied
in Sec. 7.1.

We conclude that the optimal states are modified versions of the usual coherent states.
These properties hold for any interaction time t ≤ π/ (2g). For the worst-case qubit value
z = ±ir we used the convenient r = 1/

√
2 ≈ 0.7. However, solving the optimal drive states

using values between r = 0.6...0.8 yields drive states that are nearly identical with the ones
obtained with r = 1/

√
2. The difference in the resulting gate fidelities is less than 10−4 for

only 25 average photons.
The gate fidelity with an optimal drive state is higher than that with the corresponding

coherent state. This is demonstrated in Fig. 6.2. If the initial state is a coherent state |D±α〉,
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Figure 6.2: Fidelity of the not gate as a function of the input qubit value z. The ground state,
the north pole of the Bloch sphere, is located at the origin (z = 0); the excited state corresponds
to the whole outer circumference (|z|2 = 1). (a) The initial drive state is chosen to maximize the
sum F (i/

√
2) + F (−i/

√
2) at time t = π/

(
2g
√

25
)
. (b) The initial drive state is a coherent state

of real amplitude corresponding to the same t as in (a). The fidelities averaged over the spheres
are 0.979 and 0.977 for panels (a) and (b), respectively.

the fidelity is very high around z = ±i/
√

2 but not impressive around z = ∓i/
√

2. If the
optimal drive state is used, such deep values are elevated, resulting in a higher minimum
fidelity on the Bloch sphere.

Why does the combination of modifications listed above yield the optimal solution?
A heuristic explanation could be that the gate error accumulates from two sources: the
uncertainty of the drive energy and the entanglement between the two subsystems. The
optimal state balances these two sources. It is not surprising that the optimal states are
similar to the coherent ones which are known to implement a not gate of rather high fidelity,
as discussed in Sec. 4.3.3. With a squeezed coherent state, the number distribution peaks
more strongly around the number state that matches the chosen π pulse time.

On the other hand, strong entanglement reduces the purity of the qubit, inevitably
increasing error. The amount of entanglement can be deduced by comparing the drive states
after the interaction with either the ground state or the excited state as the initial qubit
state. The interaction with the ground or the excited state reduces or increases the number
of photons by one, respectively. If we are able to distinguish between these alternatives by
measuring the resulting drive state, information has clearly been transferred in the form of
entanglement. This explains why squeezing the state only helps up to a certain point. A
significantly squeezed state is strongly peaked around the mean value, rendering the removal
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Figure 6.3: Average number of photons n in an optimal drive state for dimensionless interaction
time gt. The color indicates the minimum fidelity Fmin of a not gate with corresponding optimal
state and interaction time. Each curve is a family of optimal solutions. The states represented by
the higher curves are identical with those of the curve nearest to the origin. For example, the points
A and B represent solutions for a given time t. The point B does not represent a fundamentally
new solution since it is identical to the state represented by point C, only further in the oscillation
cycle.

or addition of a photon clearly observable. On the other hand, removing all even or odd
photon states from a coherent distribution does not increase entanglement: an even drive
state state evolves into an odd state regardless of the initial qubit state.

Note that the dimension of the Fock space is infinite and hence A has an infinite amount
of eigenvectors. Increasing the size of the matrix A and solving Eq. (6.2) for time t yields
drive states similar to the first solution, but with a higher mean photon number. For
an infinite-sized A, the optimal state would therefore seem to have an infinite amount of
photons. This behavior has been illustrated in Fig. 6.3. However, the additional solutions
are redundant; for these drive states, the given value of t is not the point of the first maximum
of fidelity oscillation. The same solutions are found with briefer interaction times, yielding
even higher gate fidelity. Thus without loss of generality, we may restrict our studies to the
family of solutions corresponding to the first maximum, hence removing the ambiguity of
states corresponding to a fixed choice of t.
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6.2 Approximate optimal states

Above, we solved the problem of finding the optimal drive states for the not gate. However,
our solutions are only a set of numbers that satisfy the eigenvalue equation. To study their
characteristics, it is useful to have the solutions in a closed analytic form.

6.2.1 Squeezed cat states

Guided by the observations in Sec. 6.1, we guess that the exact solutions can be approx-
imated very accurately by a certain superposition of squeezed states. The approximate
solutions should have the shape of a squeezed state and a well-defined parity, i.e., they
should contain only even or odd number states.

First, we use the squeezing operator Ŝ(s) to obtain a squeezed coherent state

∣∣S(s)
α

〉
= D̂ (α) Ŝ(s) |0〉 , (6.3)

introduced in Sec. 2.2.1. Second, we note that the parity property can be realized with a
superposition of coherent states of opposite phase as

1√
N

[
D̂(α)± D̂(−α)

]
|0〉 =

1√
N

[|Dα〉 ± |D−α〉]

=
1√
N

∞∑
n=0

1√
n!

[αn ± (−α)n] |n〉

=
1√
N

∑
n= even

odd

1√
n!
αn |n〉 . (6.4)

Here the normalization factor is N = 2 (1± exp(−2|α|2)) and the last sum involves either
even or odd numbers, depending on the sign in the superposition. This configuration is
commonly referred to as the cat state [20]. In the Wigner representation, the state exhibits
two Gaussian shapes centered at α and −α, with small interference near the origin. The
amplitude of the interference vanishes with increasing α.

Combining these two features, our ansatz for the approximate solution, which one may
refer to as the squeezed cat state, is thus

∣∣Σ±α〉 =
1√
Ñ

(∣∣S(s)
α

〉
±
∣∣∣S(s)
−α

〉)
, (6.5)

where Ñ is the normalization coefficient and the squeezing parameter s is to be determined.
In Sec. 7.1, it is shown to be s = 1

2
ln π

2
. The above ansatz coincides with the numerically
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obtained optimal drive state as α increases, which verifies that the optimal drive state for
n � 1 is a squeezed cat state. For example, the overlap of the exact solution and the
approximation is |〈σopt |Σα〉|2 ≈ 1 − 10−4 and the difference between the resulting gate
fidelities is Fmin (|σopt〉)− Fmin (|Σα〉) ≈ 10−5 in the case of only n = |α|2 = 25 photons.

Note that a single coherent state |D±α〉 with real α rotates the Bloch vector clockwise
or anticlockwise about the x-axis, depending on the sign of α. Thus in the optimal drive
state, the superposition of components rotating the vector in different directions results in a
constructive interference after a full rotation by π. This is the main reason why the optimal
drive state produces a better fidelity than a single coherent state; the effect of squeezing is
not as significant.

6.2.2 Normal distribution

A closed analytic form of the optimal coefficients is obtained by considering the squeezed cat
state |Σ±α 〉 in the limit α→∞. The photon number in the squeezed states obeys the Poisson
distribution P(n) with the mean and variance given by Eqs. (2.11) and (2.12). Assuming
large |α| and real squeezing parameter s, the moments are approximately n ≈ |α|2 and
ν2 ≈ |α|2 e−2s.

In the limit of large n, the Poisson distribution coincides with the normal distribution

P(n) ≈ 1√
2πν

exp

[
−(n− n)2

2ν2

]
. (6.6)

Thus the occupation probabilities of the squeezed state can be approximated with

|cn(α, s)|2 ≈ 1√
2π |α| e−s

exp

[
−(n− |α|2)2

2 |α|2 e−2s

]
. (6.7)

To include even number states only, we multiply this by a factor cos2(πn/2) which equals
0 for odd n and 1 for even n. The odd state is obtained with sin2(πn/2). After proper
rescaling, the amplitudes of the optimal state |Σ+

α 〉 =
∑

n c̃n |n〉 are given by

c̃n =
√

2
(
2πe−2s

)−1/4
α−1/2 exp

[
−e2s

4

(n
α
− α

)
2

]
cos2

(
πk

2

)
, α→∞. (6.8)

6.3 Additional gates

The not gate is not the only single-qubit gate that benefits from our optimization tech-
niques. The optimal drive state for the Pauli Y rotation or for the π/2 rotations about x-
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Table 6.1: Optimal implementations of rotation gates, with a given α. Decimal values are obtained
from numerical analysis. The gate fidelities are given for drive states with n = 25.

Gate σx(π) σy(π) σx(±π/2) σy(±π/2)

Worst-case qubit i/
√

2 1/
√

2 ∓0.93i ±0.93

Optimal state
∣∣∣S(s)
α

〉
±
∣∣∣S(s)
−α

〉 ∣∣∣S(s)
iα

〉
±
∣∣∣S(s)
−iα

〉 ∣∣∣S(s)
±α

〉 ∣∣∣S(s)
±iα

〉
Squeezing parameter s 1

2
ln π

2
−1

2
ln π

2
0.058 -0.058

Interaction time π/ (2α) π/ (2α) π/ (4α) π/ (4α)

Gate fidelity of optimal state 0.9692 0.9692 0.9781 0.9781

Gate fidelity of coherent state 0.9355 0.9355 0.9780 0.9780

and y-axes can be solved by replacing the Pauli operator σ̂x with σ̂y,
√
σ̂x, or

√
σ̂y in the

above analysis. After the worst-case qubit has been identified and used to carry out the
optimization, the resulting optimal states are approximated with squeezed (cat) states. The
results for different rotations about axes in the xy-plane are shown in Table 6.1. For exam-
ple, the worst-case qubits for the Pauli Y gate are given by zw ≈ ±1/

√
2 and the resulting

optimal states resemble the squeezed cat state
∣∣∣S(s)
iα

〉
±
∣∣∣S(s)
−iα

〉
. This is consistent with the

classical case of driving considered in Sec. 4.3.3, where the Y rotation was achieved with an
amplitude ±iα. The fidelity on the Bloch sphere is identical to that shown in Fig. 6.2, but
rotated by 90 degrees. The minimum and average fidelities for optimal X and Y gates are
equal for a given n. On the other hand, the π/2 rotations are readily optimized with drive
states that are very close to the non-squeezed coherent states.

Other gates, such as the Pauli Z gate and the Hadamard gate which can be constructed
using a combination of rotations about the x- and y-axes, cannot be optimized directly
by our method. For these gates, the worst-case qubit depends strongly on the initial drive
state and therefore a high minimum fidelity cannot be guaranteed. The optimization method
assumes a single drive state for the whole interaction, whereas the Pauli Z and Hadamard
gates constructed using the X and Y rotations require at least two different drive states for
the sequential interactions. The Pauli Z gate can also be implemented by a non-resonant
dispersive pulse, but it is beyond the scope of this thesis.
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6.4 Average state fidelity

The optimization method of the previous chapter can be used to solve a drive state that
maximizes the average state fidelity instead of the gate fidelity. Assuming the qubit obeys
a uniform probability distribution on the surface of the Bloch sphere, the fidelity averaged
over all qubit states is given by

F (σ0, t) =
1

4π

ˆ π

0

ˆ 2π

0

F (z, σ0, t, K̂) sin θ dφdθ, (6.9)

where F is the fidelity given by Eq. (5.11) and z = sin (θ/2) eiφ. Evaluation of the integral
for the not gate yields

F (σ0, t) =
1

3
+

1

6

∑
k

{
|ck|2

[
sin2

(
gt
√
k
)

+ sin2
(
gt
√
k + 1

)]
+2 sin

(
gt
√
k
)

sin
(
gt
√
k + 1

)
Re
(
ck+1c

∗
k−1

)}
, (6.10)

where {ck} are the drive state coefficients.
We optimize F using the method developed in Sec. 5.2. In this case, the Lagrange

multiplier equation leads to an eigenvalue equation
∑

lBjlcl = λcj, where the matrix B is
given by

Bjk =
1

6

{[
sin2

(
gt
√
k
)

+ sin2
(
gt
√
k + 1

)]
δjk + sin

(
gt
√
k + 2

)
sin
(
gt
√
k + 1

)
δl,k+2

+ sin
(
gt
√
k
)

sin
(
gt
√
k − 1

)
δl,k−2

}
. (6.11)

For small interaction times (gt� π/2⇔ n� 1), the states that optimize the two quantities,
Fmin and F , coincide. Thus the previously discovered squeezed cat state |Σ±〉 not only
maximizes the gate fidelity, but the average state fidelity as well. Note that this way, the
optimal state is reobtained without the assumption of real drive coefficients that was made
in Sec. 6.1.

The difference between the average fidelity of the coherent state and the optimal state
is rather small. Thus using the optimal drive state instead of the coherent state improves
the minimum fidelity while essentially preserving the average.
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7 Upper bound of not gate fidelity

With all the tools developed in the previous chapters, we are able to elaborate on the original
problem of finding

Fmin(n) = max
σ0

min
χ0

F [χ0, σ0(n)] . (7.1)

The gate fidelity Fmin(n) is limited by an upper bound Fb(n) which is reached with the
worst-case qubit and the optimal state. The worst-case qubit χw(z) for the not gate is
given by z ≈ i/

√
2 and the optimal state is expressed as |σopt(t)〉 =

∑
n c̃n(t) |n〉. With

these states, the fidelity [Eq. (5.11)] becomes

Fb(t) =
∑
k

∣∣∣〈χw, k| K̂†Û(t) |χw, σopt(t)〉
∣∣∣2

=
1

4

∑
k

∣∣∣∣∣〈k|( −i 1
)
Û(t)

(
1

i

)
|σopt(t)〉

∣∣∣∣∣
2

=
1

4

∑
k

∣∣∣∣∣
∞∑
l=0

〈k|
(
−iC l |l〉〈l| − iSl+1 |l + 1〉〈l| − iSl |l − 1〉〈l|+ iC l+1 |l〉〈l|

)
|σopt(t)〉

∣∣∣∣∣
2

=
1

4

∑
k

∣∣∣c̃k(t) [cos
(√

kt
)
− cos

(√
k + 1t

)]
+ c̃k−1(t) sin

(√
kt
)

+ c̃k+1(t) sin
(√

k + 1t
)∣∣∣2 .

Using trigonometric identities, the parity property c̃kc̃k±1 = 0, and an interaction time
t = π/

(
2g
√
n
)
corresponding to a π rotation, the expression becomes

Fb(n) =
1

2
+

1

2

∑
n

{
c̃n+1c̃n−1 sin

(
π

2

√
n

n

)
sin

(
π

2

√
n+ 1

n

)

−c̃2
n cos

(
π

2

√
n+ 1

n

)
cos

(
π

2

√
n

n

)}
. (7.2)

The real amplitudes {c̃k} of the optimal drive state can be computed in several ways. The
exact coefficients are obtained as a solution of the eigenvalue equation (6.2), but they may
as well be approximated with the squeezed cat states [Eq. (6.5)] or the normal distribution
[Eq. (6.8)].

Evaluated with the optimal amplitudes, Eq. (7.2) presents the highest not gate fidelity
that can be achieved with a single resonant pulse of a given average energy. It might be
surprising that an upper bound exists at all. By the arguments presented in Sec. 6.1,
squeezing the coherent state allows us to reduce the energy uncertainty at the cost of
increasing entanglement and mixing. The upper bound utilizes the optimal balance between
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these two.

7.1 Limit of infinite number of photons

We expect the upper bound to approach unity when n → ∞, since the coherent state is
known to implement a perfect not gate in this limit. To this end, we expand Fb(n) in
Eq. (7.2) in the first non-trivial order of n −1. Using Eq. (6.8) stemming from the normal
distribution, we show in appendix B that the upper bound assumes the from

Fb(n) = 1− 4e2s + e−2sπ2

16n
+O

(
n −2

)
. (7.3)

This expression allows us to solve for the optimal squeezing parameter s, completing our
solution of the optimal states. Computing ∂Fb/∂s = 0 yields

− 8e2s + 2π2e−2s = 0 ⇒ s =
1

2
ln
π

2
. (7.4)

With this value, the squeezed cat state yields the highest gate fidelity. To obtain Eq. (7.3),
we assumed the limit n→∞, but our numerical studies show that s = 1

2
ln π

2
is the optimal

value even for small n.
Finally, the approximate upper bound is given by

Fb(n) = 1− π

4n
. (7.5)

The exact upper bound together with Eq. (7.5) are shown in Fig. 7.1. For the usual non-
squeezed coherent drive state a similar calculation yields

F coherent
min (n) = 1− 4 + 4π + π2

16n
. (7.6)

This implies that the gate error Emax ≡ 1 − Fmin for a coherent state is Ecoherent
max (n) ≈

2.1 [1− Fb(n)], i.e., more than twice the optimal even in the limit n→∞.

41



7.1 Limit of infinite number of photons 7 UPPER BOUND

Figure 7.1: (a) not gate fidelities Fmin as functions of the average photon number n of the initial
drive state. The exact upper bound has been computed using the numerically solved optimal state.
Fmin of the coherent state and the first order approximations [Eqs. (7.5) and (7.6)] are shown for
comparison. (b) Same as in (a), but maximum error Emax = 1− Fmin in a logarithmic scale.
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8 Recycling the drive state

In the previous chapters, we studied the not gate fidelity for a single qubit driven by a single
bosonic mode. After an interaction period with a qubit of unknown value, the drive and
the qubit are entangled and have possibly exchanged energy. Thus the state of the drive is
strictly speaking unknown and potentially useless for subsequent operations. However, the
initialization of a new drive pulse for every gate would consume a great amount of energy
in a large-scale quantum computer and it would be beneficial to use the same pulse for
multiple operations. To make this recycling possible, the drive state must be purified and
restored to its original state. Rather surprisingly, this can be achieved using ancilla qubits.
The entanglement and excess energy of the field, originating from the quantum back-action
in the previous gates, are transferred to the ancillae, rendering the drive itself pure. This
treatment steers the drive to a stable state that can perform high-fidelity operations on the
computational qubits.

Similar kind of steering has been investigated in at least two previous works. In Refs. [37,
38], it has been shown that a thermalized or a flat drive state can be driven into a pure,
stable state by sequentially coupling qubits in specific states to it. Slosser [37] notes that
with certain parameters, the resulting stable state resembles the coherent state. However,
no previous work has studied the effect of coupling the drive to qubits in unknown states,
nor how the purified drive state can be used in computational operations.

8.1 Extended system

Here, the system under consideration is a collection of qubits sequentially interacting with
the same drive pulse. The qubits are divided into two categories: computational and ancilla
qubits. This division is only conceptual, physically the qubits may be similar. As in the
previous chapters, our goal is to implement the not gate on the computational qubits. On
the other hand, the ancilla qubits are nothing but an information and energy dump and
their initial values are chosen to optimize our protocol. The Jaynes–Cummings interaction
takes place between a single qubit and the drive at a given instant of time. We assume that
the state of the ancilla qubits can be accurately reset by external means when needed.

The recycling protocol is as follows: first, a drive state is prepared and used to rotate
a new computational qubit. This is a standard π rotation on a qubit with an unknown
value, during which the drive evolves into a slightly different state. Second, an auxiliary
qubit with specifically chosen value interacts with the drive, after which the ancillary qubit
is discarded or reset. If the value of the ancilla qubit is chosen properly, the drive will
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evolve towards a stable state that can again implement a high-fidelity rotation. This step is
repeated with multiple ancilla qubits until a desired accuracy for the refreshed drive state
is reached. Subsequently we can implement another rotation on a new computational qubit
without creating a new drive pulse.

To be precise, the density operator of the whole system should be written as the product
of the two-level density operators of the qubits (χ̂i) and that of the drive (σ̂) as

ρ̂ = χ̂0 ⊗ χ̂1 ⊗ χ̂2 ⊗ ...⊗ σ̂. (8.1)

But since the drive only interacts sequentially with the qubits, we can describe the ith
interaction by tracing over all qubit spaces not involved in it. The relevant density operator
corresponding to the ith iteration is thus ρ̂i = χ̂i ⊗ σ̂i, where σ̂i denotes the state of the
drive at the beginning of the ith interaction. We assume that the qubit states are initially
pure, but the evolving drive may not be. Using Eqs. (4.19) and (4.20), the ith iteration of
the drive state is given by

σ̂i = TrQi−1

[
Û(t) (|χi−1〉〈χi−1| ⊗ σ̂i−1) Û †(t)

]
, (8.2)

where the temporal evolution operator Û(t) is again given by Eq. (4.18).

8.2 Requirements for the protocol

8.2.1 Purity restoration

In order to our refresh protocol to work, we need to find ancilla qubits that both purify the
drive state and steer it towards its initial state. In addition, we want to keep the interaction
time the same throughout the protocol and hence the mean photon number should not
change. The initial drive state should be chosen so that it is able to perform a precise
rotation. We search for potential ancilla qubits by plotting the change in purity

∆P = P (σ̂i+1)− P (σ̂i) = TrD

(
σ̂2
i+1 − σ̂2

i

)
= TrD

[{
TrQi

[
Û(t) (|χi〉〈χi| ⊗ σ̂i) Û †(t)

]}2

− σ̂2
i

]
(8.3)

as a function of the ancilla qubit state |χi〉 =
√

1− |za|2 |g〉 + za |e〉. Starting from a pure
drive state, we can only decrease its purity. Therefore we study a state that represents
the drive during the protocol. Figure 8.1 shows the purity change for a drive state σ̂10
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Figure 8.1: Purity change of a drive state due to the interaction with an ancilla qubit initialized
in a state corresponding to za. The initial drive state σ̂10 was obtained by letting a coherent state
with n = 25 interact with 10 qubits in randomly chosen states. The interaction time corresponds
to a π rotation. The plotted purity change is ∆P = P (σ̂11)−P (σ̂10), where σ̂11 is the result of the
evolution of σ̂10 ⊗ |χ(za)〉 〈χ(za)|.

that was initially in a coherent state σ̂0 = |Dα〉〈Dα| and has subsequently interacted with
ten qubits in random pure states. The change ∆P is positive in a rather large region
around za = i/

√
2, suggesting that the purity of the drive will increase with the next

interaction. This feature persists across any number of interactions. Therefore we choose
za = i/

√
2 ⇔ |χi〉 = (|g〉+ i |e〉) /

√
2 as our candidate for a purifying ancilla state. Even

if this superposition state is not prepared precisely, the protocol should increase the purity
since the purity-enhancing region in Fig. 8.1 is relatively large.

Similarly, if the initial state is |D−α〉, the purity increasing qubit value is around z =

−i/
√

2. Other drive states do not increase the purity as much as the coherent one. For
the optimal squeezed cat state |Σ±〉 discovered in the previous chapter, the purity change
is consistently negative for all values of za. Hence, |Σ±〉 can not be used for the recycling
protocol.

8.2.2 Energy restoration

In addition to increasing the purity, the ancilla state |χi〉 = (|g〉+ i |e〉) /
√

2 has an inter-
esting property of restoring the mean photon number of the drive. This can be studied by
computing the change in the photon expectation value during one interaction. Computing

45



8.3 Refresh protocol 8 RECYCLING THE DRIVE STATE

Figure 8.2: Change of the average photon number ∆〈N̂〉 in an initial drive state
∣∣∣D√α2+δ

〉
as a

function of the deviation δ. The change results from an interaction of the drive with an ancilla
qubit prepared in the state (|g〉+ i |e〉) /

√
2 for time t = π/ (2gα).

〈N̂〉i = TrD(N̂ σ̂i) using Eq. (8.2) yields

∆〈N̂〉i = 〈N̂〉i+1 − 〈N̂〉i = TrD

(
N̂ σ̂i+1 − N̂ σ̂i

)
=

1

2

∞∑
k=0

σk,k

[
sin2

(
gt
√
k + 1

)
−sin2

(
gt
√
k
)]

+sin
(

2gt
√
k + 1

)
Reσk,k+1, (8.4)

where {σk,l} are the matrix elements of the initial density operator σ̂i. Fixing the interaction
time to t = π/ (2gα), we show in Fig. 8.2 this difference for states

∣∣D√α2+δ

〉
. The difference

is accurately proportional to the offset, ∆〈N̂〉 ∝ −δ, for δ � α2. Even for states that have
interacted with numerous qubits and have suffered substantial decoherence, similar results
are obtained.

The interaction with the ancilla qubit acts as negative feedback. The more the drive
has gained excess photons from interactions with the computational qubits, the more likely
it is to lose them for the ancillae. On the other hand, if the drive has lost photons, the
interaction is likely to restore them. Increasing α decreases the slope in Fig. 8.2, implying
that drive states with large amount of photons are more stable.

8.3 Refresh protocol

Above, we showed that the ancilla state |χi〉 = (|g〉+ i |e〉) /
√

2 is able to both increase the
purity and restore the photon number of the drive state. Finally, we test our protocol with
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Figure 8.3: (a) Purity of the drive state (P , red dots, right axis) and the minimum fidelity (Fmin,
black dots, left axis) of a hypothetical rotation as functions of the number of interaction periods
between the drive state and the qubits. The initial drive state is a coherent state with n = 25. The
first interaction is with a computational qubit of a random value. The following 99 interactions are
each with an individual correcting ancilla qubit prepared in the state (|g〉+ i |e〉) /

√
2 . (b) Same

as (a), but with 9 corrections per iteration and only Fmin shown. The red dots indicate interaction
with computational qubits initialized to random pure states.

the following sequence:

1. Preparation: Prepare the drive state to σ̂0 = |Dα〉〈Dα| with a given α.

2. Ancilla reset: Initialize m ancilla qubits to the state |χi〉 = (|g〉+ i |e〉) /
√

2 .

3. not gate: Let the drive and a new computational qubit interact for a time period
t = π/ (2gα). The initial value of the qubit is chosen randomly.

4. Refresh: Let the drive and an ancilla qubit interact for a time t = π/ (2gα). Repeat
for each ancilla.

5. Continue from step 2.

Figure 8.3 demonstrates that the above routine works. The temporal evolution of each
iteration is given by Eq. (8.2). After each interaction in steps 3 and 4, the purity of the
drive state is evaluated with Eq. (2.19) and the minimum fidelity is given by

Fmin = min
χ̂

TrQ

{
TrD

[
Û(t) (χ̂⊗ σ̂i) Û †(t)

]
σ̂xχ̂σ̂x

}
, (8.5)

where σ̂i is defined in Eq. (8.2).
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Figure 8.4: Gate fidelity as a function of the number of implemented not gates. A drive state is
repeatedly applied to implement the not gate on different computational qubits with 0, 1, or 9
correcting ancilla qubits between the gates. The ancilla qubits are initialized to a state given in
the main text. The random states of the computational qubits are identical for each number of
corrections.

Clearly, the randomized computational qubits disturb the ability of the drive to perform a
subsequent rotation but the perturbation is corrected by the ancilla qubits. With increasing
number of corrections, the purity of the state indeed approaches unity after the initial
disruption. The gate fidelity is also improved, but does not quite reach its initial value.
The restoring effect is also visible in Fig. 8.3b: the further the state is thrown off from the
equilibrium, the stronger the following corrections are. Apparently, no single deviation is
large enough to break the drive state completely before it is refreshed.

Finally, the ratio of corrections per gate operation is studied in Fig. 8.4 using α =
√

25.
We observe that without any corrections, the gate fidelity decays rapidly but even a single
correction per gate operation is enough to keep the fidelity mostly above 90%. With 9
corrections, the gate fidelity remains above 93%.

These results show that ancilla qubits can be used to refresh the drive, hence allowing it
to implement high-fidelity not gates indefinitely. For the physical realization, there are two
obstacles. The circuit architecture has to be designed such that the drive state is guided
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to interact with the desired qubits sequentially. Another challenge is the preparation of
the ancilla qubits in the superposition state. Preparing the ancilla qubits increases the
complexity of the system and requires additional energy. Fortunately, the preparation need
not be very precise. As Fig. 8.1 shows, it is enough that the ancilla qubit is relatively close
to the optimal for the protocol to work.
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9 Discussion

A large-scale quantum computer, capable of solving complex problems of practical interest,
requires millions, if not hundreds of millions of physical qubits [18]. Controlling each qubit
individually with high precision requires a lot of power to be dissipated at the operation
temperature of the computer, and hence it is important to investigate all possibilities of
mitigating the energy consumption in qubit control . In this thesis, we have studied two
options: the optimization of the resonant drive state for minimal photon number needed to
implement the X and Y rotation gates in the Jaynes–Cummings model, and the possibility
of recycling the drive state using ancillary qubits to refresh the state.

In Ch. 5, we developed a method to solve the drive state that maximizes the gate fidelity
of a given quantum operation and in Ch. 6, this method was applied to the not gate. The
optimal state that maximizes the gate fidelity was found to be a superposition of slightly
squeezed coherent states of opposite phase. These optimal drive states also define an upper
bound for the maximum gate fidelity for a given mean number of photons in the pulse.
The upper bound was found to approach unity inversely proportionally to the mean photon
number. Similar results were obtained for the Pauli Y gate. The optimal states balance
between two error sources: the uncertainty of the driving energy and the entanglement.
The coherent state, typically used to model a classical state of light, was found to produce
gate errors twice as large compared to the lower bound. The average state fidelities for the
optimal and coherent drive states are nearly equal. Since the optimal drive states guarantee
higher fidelity than the coherent states with the same average number of photons, they can
also be used to achieve the same level of fidelity with fewer photons. This way, the optimal
states may be used to reduce the energy needed for quantum computing.

Achieving and observing the upper bound should be possible with existing technology,
since the coherent superposition of microwave pulses has been demonstrated in microwave
cavity wave-guides [39, 27]. The practical question is whether it is worth the effort to use
the optimal states. The answer depends on the experimental setup and on how accurately
such states can be produced. If producing the squeezed superpositions requires a lot more
energy or is prone to errors, the benefits of optimization may be too small. Nevertheless, an
experimental demonstration of exceeding the coherent drive state in terms of gate fidelity
would be of great fundamental value. Optionally, the coherent superposition could be
replaced with a statistical mixture, which has an identical effect in the limit of many photons.

In the future, one may generalize the results of this thesis to the case of non-resonant,
dispersive interaction. In the resonant case assumed in this thesis, the optimization method
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of Ch. 5 only finds the optimal drive states for gates that rotate the qubit state about
an axis lying in the xy-plane. Using the more general non-resonant system might allow
optimization of other single-qubit gates, such as the Hadamard gate.

A different approach to energy-efficient quantum computing was considered in Ch. 8
where we investigated a refreshing protocol that allows a single drive state to implement
multiple not operations. In our scheme, the drive pulse is guided to interact with qubits
sequentially. Some of the qubits are computational qubits used in the actual quantum
computing, while the rest are ancillary qubits designed to steer the drive towards its desired
state. We found that if the ancilla qubits are prepared in a specifically chosen state, their
interaction with the drive state has two restoring effects: the drive becomes more pure
and hence less entangled with the previous qubits, and the mean photon number is driven
towards a value set by the protocol. The latter feature is especially interesting since it does
not depend on the history of the drive state. For example, if the drive has lost some amount
of photons—to qubits or possibly even by dissipation—that amount can be added using the
ancilla qubits. Furthermore, the desired drive state could be crafted even if the state is not
initially a coherent state.

With enough corrective operations between the computational operations, the same
drive state can be used indefinitely, maintaining its ability to perform high-fidelity gates.
A drawback of this method is that the ancilla qubits themselves must be prepared in a
superposition of the ground and excited states. Again, the loss of precision, energy, and
computation time due to preparing the ancilla qubits should be smaller than the benefit
achieved by the refreshing protocol. One option worth studying is a system of multiple
refreshing pulses running in parallel, each pulse preparing the ancilla qubits needed for the
adjacent pulse. While increasing the complexity of the system, this method might still cost
less energy per computational flip than controlling each qubit individually.
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A Finding the worst-case qubit for the not gate

In Sec. 6.1, we find the most optimal drive state for the not gate and for the qubit state
that minimizes the fidelity, Fmin = F (zw). Here, we show that with certain reasonable
restrictions, this worst-case qubit corresponds to zw = ±ir with r ≈ 1/

√
2.

For K̂=̂

(
0 1

1 0

)
, the fidelity function reads

F (z, σ0, t) =
∑
k

∣∣∣∣∣
1∑

mn=0

Γkmnck+n−m

∣∣∣∣∣
2

, (A.1)

with the matrix Γ is given by

Γk =

 Ckz∗
√

1− |z|2 −iSk |z|2

−iSk+1
(
1− |z|2

)
Ck+1z

√
1− |z|2

 . (A.2)

First, we show that for this gate, the complex number zw lies on the imaginary axis. Using
Eqs. (A.1) and (A.2) and writing z = reiϕ, we observe that F ∝ |Γnm|2 has only terms
proportional to e±2iϕ, e±iϕ, and constant terms. In its domain ϕ ∈ [0, 2π], e±2iϕ has 2 cycles
and e±iϕ has one. Thus, for a fixed r, F has a maximum of 2 sine-like periods and can have
at most 4 critical points. Since ϕ is periodic, there are no more than 2 minima.

With certain assumptions, the locations of these minima are fixed to ±ir. The derivative
of F is given by

∂ϕF =
∑
k

{
c∗k
√

1− r2
(
izCk − iz∗Ck+1

)}∑
nm

Γkmnck+m−n + c.c.

= 2
√

1− r2
∑
k

Im

{∑
nm

ck+m−nc
∗
kΓ

k
mn

(
z∗Ck+1 − zCk

)}
.

At points z = ±ir, the matrix Γ becomes purely imaginary and we can separate the matrix
elements from {cj}. Evaluating the derivative yields

∂ϕF |z=±ir = 2r
√

1− r2
∑
k

Im

{∑
nm

ck+m−nc
∗
kΓ

k
mn

(
∓iCk+1 ∓ iCk

)}
= ∓2r

√
1− r2

∑
k

(
Ck+1 + Ck

) (
iΓk10Im {ck+1c

∗
k}+ iΓk01Im {ck−1c

∗
k}
)
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= ∓2r
√

1− r2
∑
k

{(
Ck+1 + Ck

) (
1− r2

)
Sk −

(
Ck+2 + Ck+1

)
r2Sk+1

}
Im {ck+1c

∗
k} .

This is zero for all r if Im {ck+1c
∗
k} = 0. That is, the points z = ±ir are always critical

points if {cj} are real, even, or odd. To make progress, we continue with the assumption
that {cj} are real. To confirm that z = ±ir are indeed the two minima, we must show that
∂2
ϕF > 0. The second derivative is given by

∂2
ϕF
∣∣
z=±ir = 8

(
r2 − r4

)∑
k

CkCk+1 |ck|2

∓2r
(
1− r2

)3/2
∑
k

ck+1ck
[
Sk(Ck − Ck+1) + Sk+1(Ck+1 − Ck+2)

]
.(A.3)

Let us study the behavior of the factor CkCk+1 = cos
(
gt
√
k
)

cos
(
gt
√
k + 1

)
in the first

term. The zeros of this expression come in pairs {k+
n , k−n } such that

k+
n =

π2(1 + 2n)2

4(gt)2
, k−n = k+

n − 1, n ∈ N.

Each pair is separated by unity, but the separation of subsequent pairs increases, k+
n −k+

n−1 ∝
n. Since CkCk+1 is positive in the regions ]k+

n , k
−
n+1[ and negative in the regions ]k−n , k

+
n [,

we can conclude that CkCk+1 is positive for most k. This holds at least for gt ≤ π/2.
Equation (A.3) is of the form a∓ b , and by the above consideration it can be concluded

that a > 0. If z = ±ir were both maximum points, we would obtain ∂2
ϕF (±ir) = a ∓ b <

0 ⇒ 2a < 0, i.e., a contradiction. Therefore at least one of the points ±ir is a minimum
point.

In summary, we found that there are no more than 2 minima, and at least z = ir or
z = −ir is a minimum. Thus zw lie on the imaginary axis, provided that {cj} are real.
Additionally, we need to show that the minimum is at r = 1/

√
2. Unfortunately, the

derivative ∂F (±ir)/∂r is not independent of the {cj} amplitudes. It is approximately

∂F (±ir)/∂r ≈ 4
∑
k

[
r3
(
Skck−1

)2
+
(
r3 − r

) (
Sk+1ck+1

)2 −
(
2r3 − r

)
SkSk+1ck+1ck−1

]
,

where we have neglected terms proportional to cos
(
gt
√
k + 1

)
− cos

(
gt
√
k
)
because their

contribution is small compared to that of the other terms. Solving for the zero of this

53



B APPROXIMATE UPPER BOUND OF THE GATE FIDELITY

expression yields

r =

√
1

1 + h
, where h =

∑
c2
k

(
Sk+1

)2 − ck−1ck+1S
kSk+1∑

c2
k (Sk)2 − ck−1ck+1SkSk+1

.

Thus h ≈ 1 for typical sets of {ck}. We conclude that the worst-case qubit value is zw ≈
±i/
√

2, assuming the coefficients cj are real and that t ≤ π/2g.

B Approximate upper bound of the gate fidelity

In Sec. 7.1, we compute the upper bound of the minimum fidelity for the not gate. This is
carried out by inserting the approximate optimal drive coefficients [from Eq. (6.8)],

c̃n(α) =
√

2
(
2πe−2s

)−1/4
α−1/2 exp

[
−e2s

4

(n
α
− α

)2
]

cos2(πn/2), (B.1)

into

Fb(n) =
1

2
+

1

2

∞∑
n=0

{
c̃n+1c̃n−1 sin

(
π

2

√
n

n

)
sin

(
π

2

√
n+ 1

n

)

−c̃2
n cos

(
π

2

√
n+ 1

n

)
cos

(
π

2

√
n

n

)}
. (B.2)

Here, we outline how this expression can be approximated to the first order in n −1 in the
limit n→∞ . Denoting the vanishing quantity by ε = α−1 =

√
n
−1
, Eq. (B.2) assumes the

form

Fb(ε) =
1

2
+

1

2

∑
n

{
c̃n+1c̃n−1 sin

(π
2

√
nε
)

sin
(π

2

√
n+ 1ε

)
− c̃2

n cos
(π

2

√
n+ 1ε

)
cos
(π

2

√
nε
)}

.

Inserting here the coefficients from Eq. (B.1) leads to

Fb(ε) =
1

2
+

εes√
2π

(I1 + I2) , (B.3)

where I1 and I2 are given by

I1 =
∑
n

exp

{
−e2s

4

[
(n+ 1)ε− ε−1

]
2

}
exp

{
−e2s

4

[
(n− 1)ε− ε−1

]
2

}
× cos4

[π
2

(n+ 1)
]

sin
(π

2

√
nε
)

sin
(π

2

√
n+ 1ε

)
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and

I2 = −
∑
n

exp

[
−e2s

2

(
nε− ε−1

)
2

]
cos4 (πn/2) cos

(π
2

√
n+ 1ε

)
cos
(π

2

√
nε
)
.

The cos4 factors in I1 and I2 cause the summations to have only odd and even terms,
respectively. Hence we can change the summation variables such that

I1 =
∞∑
m=0

exp

(
−e2s

4

{[
(2m+ 2)ε− ε−1

]
2 + (2mε− ε−1)2

})
sin
(π

2

√
2m+ 1ε

)
sin
(π

2

√
2m+ 2ε

)
and

I2 = −
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m=0

exp

[
−e2s

2

(
2mε− ε−1

)
2

]
cos
(π

2

√
2m+ 1ε

)
cos
(π

2

√
2mε

)
.

These expressions cannot be expanded in Taylor series around the point ε = 0 because
the exponential factors contain divergent arguments of ε−1. This is solved by changing the
variables to

x = 2mε− ε−1 ⇔ m =
x+ ε−1

2ε
.

Furthermore, we change the summation into an integral. This is justified in the limit
n → ∞, where the functions are rather smooth and have support on a region much wider
than unity. The summations are replaced by

∑
m →

´
dm→

´
dx/(2ε) and the bounds by

[0,∞]→ [−ε−1,∞]→ [−∞,∞]. The integrals

I1 = exp
(
−e2sε2

) ˆ ∞
−∞
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[
−e2s

(
1

2
x2 + εx

)]
sin
(π

2

√
xε+ 1 + ε2
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sin
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2

√
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) dx

2ε
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ˆ ∞
−∞
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(
−e2s

2
x2

)
cos
(π

2

√
xε+ 1 + ε2

)
cos
(π

2

√
xε+ 1

) dx

2ε

can be computed by expanding the integrands about ε = 0 and applying textbook formulas
for the resulting Gaussian integrals. Thus we obtain

I1 =
√

2πe−s
(

1

2ε
− 8 + e−4sπ2

32e−2s
e2sε

)
+O(ε3)

and

I2 = −
√

2πe−s
e−2sπ2

32
ε+O(ε3).
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Inserting these into Eq. (B.3) results in

Fb =
1

2
+

εes√
2π

(I1 + I2) = 1− 4e2s + e−2sπ2

16
ε2 +O(ε4)

= 1− 4e2s + e−2sπ2

16n
+O(n −2), (B.4)

which is the upper bound for the not gate fidelity given in the main text.
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