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Kumpulan tiedekirjasto

In this master’s thesis we develop homological algebra using category theory. We develop basic
properties of abelian categories, triangulated categories, derived categories, derived functors, and
t-structures. At the end of most of the chapters there is a short section for notes which guide the
reader to further results in the literature.

Chapter 1 consists of a brief introduction to category theory. We define categories, functors,
natural transformations, limits, colimits, pullbacks, pushouts, products, coproducts, equalizers,
coequalizers, and adjoints, and prove a few basic results about categories like Yoneda’s lemma,
criterion for a functor to be an equivalence, and criterion for adjunction.

In chapter 2 we develop basics about additive and abelian categories. Examples of abelian
categories are the category of abelian groups and the category of R-modules over any commutative
ring R. Every abelian category is additive, but an additive category does not need to be abelian.
In this chapter we also introduce complexes over an additive category, some basic diagram chasing
results, and the homotopy category. Some well known results that are proven in this chapter are
the five lemma, the snake lemma and functoriality of the long exact sequence associated to a short
exact sequence of complexes over an abelian category.

In chapter 3 we introduce a method, called localization of categories, to invert a class of mor-
phisms in a category. We give a universal property which characterizes the localization up to unique
isomorphism. If the class of morphisms one wants to localize is a localizing class, then we can use
the formalism of roofs and coroofs to represent the morphisms in the localization. Using this for-
malism we prove that the localization of an additive category with respect to a localizing class is
an additive category.

In chapter 4 we develop basic properties of triangulated categories, which are also additive
categories. We prove basic properties of triangulated categories in this chapter and show that the
homotopy category of an abelian category is a triangulated category.

Chapter 5 consists of an introduction to derived categories. Derived categories are special kind
of triangulated categories which can be constructed from abelian categories. If A is an abelian
category and C(A) is the category of complexes over A, then the derived category of A is the
category C(A)[S−1], where S is the class consisting of quasi-isomorphisms in C(A). In this chapter
we prove that this category is a triangulated category.

In chapter 6 we introduce right and left derived functors, which are functors between derived
categories obtained from functors between abelian categories. We show existence of right derived
functors and state the results needed to show existence of left derived functors. At the end of the
chapter we give examples of right and left derived functors.

In chapter 7 we introduce t-structures. T-structures allow one to do cohomology on triangulated
categories with values in the core of a t-structure. At the end of the chapter we give an example of
a t-structure on the bounded derived category of an abelian category.
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Preface

In this master’s thesis we develop homological algebra from category theory point of view. At the end of most
of the chapters there are some notes which guide the reader to further results in the literature. We develop the
basics of abelian categories, triangulated categories and derived categories. Main results are that derived category
of an abelian category is a triangulated category, left exact functors between abelian categories induce right derived
functors between derived categories, and that one can do cohomology on triangulated category by using t-structures.
For category theory we follow [Bor94a, Bor94b], for homological algebra [GM03], and for t-structures we follow both
[HTT08] and [GM03].

The author originally intended to do his master’s thesis on `-adic sheaves to gain some understanding of the
technical machinery used to prove the Weil conjecture. While sketching the results needed to prove the Weil
conjectures, it became clear that this topic was too difficult for the author. Therefore the plan changed to write
about homological algebra and the derived category of coherent sheaves on a curve. Due to lack of time and
knowledge about algebraic geometry, the part about coherent sheaves on a curve was too much. Hence this thesis
is only about homological algebra. I hope that the amount of details in this thesis would be valuable for a reader
who wishes to understand basics of homological algebra.

iii



Introduction

In this master’s thesis we develop homological algebra by using category theory. Here is a short summary of the
results of each chapter.

Chapter 1 gives a short introduction to category theory. It is shown how categories naturally arise when one
considers collections of all various well-known mathematical objects. We prove well known results like the Yoneda’s
lemma, characterize when a functor is an equivalence of categories, and prove some results about limits and adjoints
that we will need in the later sections. For a comprehensive introduction to category theory see the books [Bor94a]
and [Bor94b].

Chapter 2 follows the book [Bor94b] to develop basics of the theory of abelian categories. First, in section 2.1
we introduce additive categories and in section 2.2 we define abelian categories, which turn out to be also additive
categories, as shown in section 2.3, theorem 2.3.3. Then in section 2.4 we introduce the formalism of pseudo-
elements (In [ML78] these are called members). This formalism allows one to use element style arguments in
abelian categories to prove properties about morphisms. In section 2.5 we define the category of complexes, prove
basic results about cohomology of a complex, and prove that the category of complexes over an additive category
is an additive category, lemma 2.5.6, and that the category of complexes over an abelian category is an abelian
category, theorem 2.5.7. Section 2.6 is devoted for important results about diagrams like 5-lemma, lemma 2.6.1,
Snake lemma, corollary 2.6.4, and Functorial long exact sequence, theorem 2.6.6, in abelian categories and in the
category of complexes over an abelian category. The last section 2.7 of this chapter studies the homotopy category
of an additive category and an abelian category. This category is obtained from the category of complexes by using
an equivalence relation on morphisms. Homotopy category will be important in the study of the derived category
of an abelian category.

In chapter 3 we give a method to invert a class of morphisms in a category. This method, called localization of a
category, is given in section 3.1 togerher with a universal property theorem 3.1.3 which characterizes the localization
up to unique isomorphism of categories. Then in section 3.2 we introduce the formalism of roofs and coroofs, which
are used to describe morphisms in the localized category when the class of inverted morphisms is a localizing class
3.2.1. In particular, localization of a category with respect to a localizing class preserves additive categories, by
proposition 3.2.10, so that the localizing functor is additive, and in some cases the localizing functor preserves
full subcategories, see proposition 3.2.7. In general, localization of a category is not well-defined, as shown by the
example 5.2.2, because the collection of morphisms between two objects in the resulting ”category” is not a set
but a class. To justify the use of localization in the construction of derived category, lemma 5.1.9 shows that the
derived category of R-modules is well-defined. Further results about the existence of the localization of a category
may be found for example at [Wei95] and [Nee01].

Chapter 4 is concerned on triangulated categories. In section 4.1 we define triangulated categories and prove
basic properties about triangulated categories, like corollary 4.1.6, an analog of 5-lemma for triangulated categories.
The main result of section 4.2 is that the homotopy category of an abelian category is a triangulated category, see
theorem 4.2.5. Then in section 4.3 we show that localization of a triangulated category is a triangulated category
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when the class of inverted morphisms is a localizing class compatible with triangulation.
Chapter 5 is devoted for derived categories. By definition 5.1.1 the derived category is the localization of the

category of complexes over an abelian category along the class consisting of quasi-isomorphisms. The main result of
section 5.1 is that the derived category is isomorphic to the localization of the homotopy category of the underlying
abelian category with respect to the quasi-isomorphisms, and thus is a triangulated category. See theorem 5.1.8. To
give an example of a derived category in section 5.2 we compute the derived category of finite dimensional vector
spaces over a field.

In chapter 6 we develop the theory of right derived functors. We state the similar results for left derived
functors. A right derived functor is an exact functor, in the sense of triangulated categories, between derived
categories obtained from a left exact functor between the underlying abelian categories. The existence of this
functor is proved in theorem 6.1.14 when we are given an adapted class of objects for a left exact functor. To give
an example of a right derived functor, in section 6.2 we construct the derived functor RMor.

In the last chapter 7 we develop t-structures on triangulated categories. This structure gives one a way to
obtain an abelian category from a triangulated category. Indeed, the core of a t-structure is an abelian category
by theorem 7.3.2. Theorem 7.3.4 shows that one can do cohomology on a triangulated category with a t-structure,
with values in the core. To give an example of a t-structure, in section 7.4 we define a standard t-structure on the
bounded derived category of an abelian category.

2



Chapter 1

Introduction to categories

In this chapter we give a short introduction to basics of category theory. One could use category theory as
foundations of mathematics, as shown in [MLM92, VI.10], but we use the Neumann-Bernays-Gödel (NBD) axiom
system as foundation [Jec13, p.70]. The reason is that we want to be able to define the category of all sets. It
is well-known that Russel’s paradox implies that these do not form a set. The way to avoid this is to use classes,
offered by the chosen axiom system. Alternatively one can use the axiom of universes + ZFC to overcome the
same problem. See [Bor94a, 1.1] for a comparison of these approaches. In particular, NBD is an extension of
Zermelo-Fraenkel set theory with the axiom of choice so that the set theory in the NBD axiom system is the one
the reader is hopefully used to. For a comprehensive treatment of set theory see [Jec13].

1.1 Definitions and notation

Let us begin with the definition of a category.

Definition 1.1.1 (Category). A category C consists of a class of objects Ob C, a class of morphisms Mor C which
associates to every pair of elements X,Y P Ob C a set MorCpX,Y q, also denoted by CpX,Y q, and three maps
d, c : Mor C Ñ Mor C, and ˝ called domain, codomain, and composition, such that the following conditions hold

C 1 For any f P MorCpX,Y q, we define c and d by

dpfq “ X and cpfq “ Y.

The composition ˝ is a map defined from the class
ď

X,Y,ZPOb C
MorCpY, Zq ˆMorCpX,Y q

to Mor C, such that for any morphisms f P MorCpX,Y q and g P MorCpY, Zq the image of pg, fq is contained
in MorCpX,Zq. For any two morphisms f P MorCpX,Y q and g P MorCpY,Zq we write g ˝ f , or gf , for
˝pg, fq.

C 2 For any X,Y, Z,W P Ob C, f P MorCpX,Y q, g P MorCpY, Zq, and h P MorCpZ,W q the composition map
satisfies

h ˝ pg ˝ fq “ ph ˝ gq ˝ f.

For this reason we usually omit brackets for composition of morphisms.
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C 3 For any object X P Ob C there exist a morphism IdX P MorCpX,Xq such that for any Y P Ob C and
f P MorCpX,Y q we have

f ˝ IdX “ f and IdY ˝f “ f.

If Ob C is a set, then the category C is said to be small.

The elements of Ob C are called the objects of the category C and the elements of Mor C are called the morphisms
of C. One can easily verify that for any category C the opposite category Cop, obtained by defining Ob Cop “ Ob C
and MorCoppX,Y q :“ MorCpY,Xq for all objects X and Y , is a category.

Let C and D be categories. We say that C is a subcategory of D if Ob C Ă ObD and for any X,Y P Ob C we
have MorCpX,Y q Ă MorDpX,Y q.

Example 1.1.2. Here are some examples of categories. We leave it for the reader to verify that these are categories.

(i) The category of sets Set consists of all the sets as objects and for any sets X and Y we let MorSetpX,Y q to
consist of all functions from X to Y .

(ii) The category of abelian groups Ab consists of all abelian groups and for any abelian groups A and B the set
MorAbpA,Bq consists of all the group homomorphisms from A to B.

(iii) The category of commutative rings CRing is the category where the objects are commutative rings and
MorCRingpR,Sq is the set of all ring homomorphisms from R to S for any commutative rings R and S.

(iv) Fix a commutative ring R. The category of R-modules RMod consists of all R-modules and the set
MorRModpM,Nq consists of all R-module homomorphisms from M to N for any R-modules M and N .

(v) The category of topological spaces Top consists of topological spaces and continuous maps between them.

(vi) Fix a topological space X. Denote by ToppXq the category where objects are the open subsets of X and
morphisms are inclusions, that is, if U and V are open subsets such that U Ă V , then the set MorToppXqpU, V q
consists of one element and otherwise MorToppXqpU, V q is an empty set. It is easy to see that this is a
subcategory of Top.

For any mathematical objects one usually wants to consider maps which preserve the structure of the object.
For categories such a map is called a functor.

Definition 1.1.3 (Functor). A functor F : C Ñ D from a category C to a category D consists of two maps
Ob C Ñ ObD and Mor C Ñ MorD, both denoted by F , such that for any object X P Ob C, F pIdXq “ IdF pXq and
for any two morphisms f, g P Mor C, such that gf is defined, we have F pgfq “ F pgqF pfq. One can easily check that
composition of two functors is a functor.

Let F : C Ñ D be a functor. If for any objects X,Y P Ob C the map F : MorCpX,Y q Ñ MorDpF pXq, F pY qq is
injective (resp. surjective, resp. bijective), then F is called faithful (resp. full, resp. fully faithful). A subcategory
C of D is called full if the inclusion functor is full.

For a category C we denote by IdC the functor which is an identity both on objects and morphisms.

Example 1.1.4. Here are some examples of functors. The verification of these being functors is left to the reader.

(i) The category of small categories Cat consists of all small categories and the set of morphisms between two
small categories consists of all functors between the categories.
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(ii) Let C be a category. For any object X P Ob C we define a functor MorCpX,´q : C Ñ Set, called the
representable functor of X, which maps an object Y of C to MorCpX,Y q. If f : Y Ñ Z is a morphism in C,
then MorCpX,´qpfq : MorCpX,Y q Ñ MorCpX,Zq is given by composition with f , i.e., ψ ÞÑ f ˝ ψ. One can
check that this defines a functor.

An object X in a category C is initial if for any object Y of C there exists a unique morphism from X to Y .
If for any object Y there exists a unique morphism from Y to X, then the object X is terminal. An object both
initial and terminal is a zero object. If a category has a zero object, we call the composite X Ñ 0 Ñ Y the zero
morphism from X to Y .

A morphism f : X Ñ Y in a category C is a monomorphism if for any two morphisms g1, g2 : Z Ñ X such
that fg1 “ fg2 we have g1 “ g2. The morphism f is an epimorphism if for any two morphism g1, g2 : Y Ñ Z with
g1f “ g2f we have g1 “ g2. A morphism f : X Ñ Y is an isomorphism if there exists a morphism g : Y Ñ X
such that gf “ IdX and fg “ IdY . One can easily show that an isomorphism is both a monomorphism and an
epimorphism.

Functors can be viewed as morphisms of categories. To understand morphisms of categories better we define
morphisms of morphisms of categories which can be thought of as some kind of homotopies between morphisms. In
category theory such morphisms are called natural transformations.

Definition 1.1.5 (Natural transformation). A natural transformation τ : F Ñ G of functors F,G : C Ñ D consists
of a morphism τpDq : F pDq Ñ GpDq for any object D of D such that for any morphism f : X Ñ Y of C the diagram

F pXq GpXq

F pY q GpY q

τpXq

F pfq Gpfq

τpY q

commutes.

Let F,G : C Ñ D be functors. We say that the functors F and G are isomorphic, written F – G, if there exists
a natural transformation τ : F Ñ G such that for every object X P C the morphism τpXq : F pXq Ñ GpXq is an
isomorphism in D.

Example 1.1.6. Here are some examples of natural transformations.

(i) Let C and D be objects in a category C and let f : C Ñ D be a morphism in C. Then the morphism f induces
a natural transformation between the representable functors MorCpD,´q and MorCpC,´q, see example 1.1.4
(ii), denoted by ´ ˝ f , which maps a morphism φ : D Ñ X to φ ˝ f : C Ñ X. Indeed, for any morphism
g : X Ñ Y we have

pMorCpC,´qpgq ˝ p´ ˝ fqpXqqpφq “ g ˝ φ ˝ f “ pp´ ˝ fqpY q ˝MorCpD,´qpgqqpφq,

so ´ ˝ f is a natural transformation.

(ii) For any two categories C and D, we can define the category of functors FunpC,Dq, also denoted CD, from C
to D. Morphisms in this category are natural transformations of functors.

(iii) Let X be a topological space and ToppXq the category defined in example 1.1.2 (vi). The category
FunpToppXqop,Setq (resp. FunpToppXqop,Abq, resp. FunpToppXqop,CRingq, resp. FunpToppXqop,
RModq) is called the category of presheaves of sets (resp. abelian groups, resp. commutative rings, resp.
R-modules) on X.

5



Next we prove a well-known result which identifies natural transformations from a representable functor to a
functor F with a set defined by F .

Theorem 1.1.7 (Yoneda’s lemma). Let C be a category, X an object of C, and MorCpX,´q the representable
functor (ii). For any functor F : C Ñ Set we have a bijection

θF,X : NatpCpX,´q, F q Ñ F pXq,

where NatpCpX,´q, F q denotes the class of natural transformations from CpX,´q to F .

Proof. For any natural transformation σ : CpX,´q Ñ F , define θF,Xpσq “ σpXqpIdXq.
For any x P F pXq we define a natural transformation τpxq : CpX,´q Ñ F as follows. For any object Y P C, let

τpxqpY q : CpX,Y q Ñ F pY q, be the map f ÞÑ F pfqpxq. Then for any morphism g : Y Ñ Z P Mor C the following
diagram

CpX,Y q F pY q

CpX,Zq F pZq

τpxqpY q

g˝ F pgq

τpxqpZq

commutes. This shows that τpxq is a natural transformation.
It suffices to show that τpxq is the inverse of θF,X . For any x P F pXq we have

θF,Xpτpxqq “ τpxqpXqpIdXq “ F pIdXqpxq “ x

and

τpθF,XpσqqpY qpfq “ τpσpXqpIdXqqpY qpfq “ pF pfqσpXqqpIdXq “ σpY qpfq,

where the last equality follows from the following commutative diagram

CpX,Xq F pXq

CpX,Y q F pY q

σpXq

f˝ F pfq

σpY q

applied to IdX . Hence θF,X is bijective.

By using Yoneda’s lemma we can easily identify isomorphic representable functors.

Corollary 1.1.8. Let C be a category and X,Y P Ob C. Then F : MorCpX,´q Ñ MorCpY,´q, given by some
morphism f : Y Ñ X, by theorem 1.1.7, is an isomorphism if and only if f is an isomorphism.

Proof. ñ: Suppose that F is an isomorphism. Let g “ pF pY qq´1pIdY q : X Ñ Y be a morphism in C. Then
g ˝ f “ IdY . Let G : MorCpY,´q Ñ MorCpX,´q be the natural transformation induced by the morphism g like in
theorem 1.1.7. Now, let φ “ pGpXqq´1pIdXq : Y Ñ X. We have φ ˝ g “ IdX . Now φ “ φ ˝ IdY “ φ ˝ g ˝ f “
IdX ˝f “ f . Hence f ˝ g “ IdX and f is an isomorphism.
ð: Suppose that f : Y Ñ X is an isomorphism. Then for any object Z of C, the map F pZq is injective because

for any morphism h : X Ñ Z, h ˝ f ˝ f´1 “ h. To see that F pZq is surjective, let ψ : Y Ñ Z be any morphism of
C. Then the morphism ψf´1 is mapped to ψ by F pZq. This completes the proof.

6



Definition 1.1.9 (Equivalence). A functor F : C Ñ D is an equivalence of categories if there exists a functor
G : D Ñ C such that GF – IdC and FG – IdC .

A functor F : C Ñ D is said to be essentially surjective if for any object X of D there exists some object Y of
C such that F pY q – X.

Theorem 1.1.10 (Criteria for equivalence). A functor F : C Ñ D is an equivalence if and only if it is fully faithful
and essentially surjective.

Proof. ñ: Suppose F is an equivalence of categories. By definition there exist a functor G : D Ñ C such that
τ1 : GF – IdC and τ2 : FG – IdD. For any object X P D, the morphism τ2pXq : FGpXq Ñ X is an isomorphisms,
so F is essentially surjective.

To show that F is faithful, let f, g : X Ñ Y be two morphisms in C such that F pfq “ F pgq. We have the
following commutative diagram

X pGF qpXq X

Y pGF qpY q Y

f

τ1pXq

pGF qpfq g

τ1pXq

τ1pY q

τ1pY q

so f “ τ1pY q
´1 ˝ pGF qpfq ˝ τ1pXq “ τ1pY q

´1 ˝ pGF qpgq ˝ τ1pXq “ g. Hence F is faithful. Similarly one shows that
G is faithful.

Let g : F pXq Ñ F pY q be a morphism in D. The following diagram commutes

GF pXq X GF pXq

GF pY q Y GF pY q

τ1pXq

Gpgq f

τ1pXq

GF pfq

τ1pY q

τ1pY q

where f “ τ1pY q ˝Gpgq ˝ τ1pXq
´1. Since τpXq and τpY q are isomorphisms, we have Gpgq “ GF pfq. Because G is

faithful, we obtain g “ F pfq. This shows that F is full.
ð: Let F be fully faithful and essentially surjective. We define a functor G : D Ñ C as follows: for any object

Y of D fix an isomorphism εY : Y Ñ FX and an object X of C. Define GpY q “ X. For any morphism g : Y1 Ñ Y2

of D there exists the unique morphism fg : X1 Ñ X2 in C, where the objects X1 and X2 are the associated fixed
objects of Y1 and Y2, which satisfies the equation ε´1

Y2
˝ F pfgq ˝ εY1 “ g. We define Gpgq “ fg.

Clearly GpIdY q “ Gpε´1
Y ˝ F pIdXq ˝ εY q “ IdX , so G preserves identity morphisms. Let g : Y1 Ñ Y2 and

h : Y2 Ñ Y3 be morphisms in D and X1, X2, and X3 the corresponding fixed objects of C, respectively. Then

Gph ˝ gq “ Gpε´1
Y3
˝ F pfh ˝ fgq ˝ ε

´1
Y1
q

“ fh ˝ fg

“ Gpε´1
Y3
˝ F pfhq ˝ εY2

q ˝Gpε´1
Y2
˝ F pfgq ˝ εY1

q

“ Gphq ˝Gpgq.

This shows that G respects composition.
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It remains to show that FG – IdD and GF – IdC . Commutativity of

FGpY1q Y1

FGpY2q Y2

ε´1
Y1

FGpgq g

ε´1
Y2

(1.1)

is clear from the equation εY2
˝ FGpgq ˝ ε´1

Y1
“ g, which follows from the definition of the functor G. This shows

that FG – IdD. To show that GF – IdC , note that MorCpGF pXq, Xq – MorDpFGF pXq, F pXqq for any object X
because F is fully faithful. Since FG – IdD the objects GF pXq and X are isomorphic. Let ηpXq : GF pXq Ñ X be
the unique morphism such that F pηpXqq “ ε´1

F pXq. Since F is fully faithful, commutativity of

GF pX1q X1

GF pX2q X2

ηpX1q

GF pfq f

ηpX2q

follows from commutativity of

FGF pX1q F pX1q

FGF pX2q F pX2q

ε´1
F pX1q

FGF pfq F pfq

ε´1
F pX2q

Commutativity of the latter diagram follows from commutativity of (1.1). This shows that GF – IdC .

Example 1.1.11 (Example of equivalence). The above theorem shows that the inclusion functor of a full subcat-
egory D of a category C is an equivalence of categories if and only if every object of C is isomorphic to some object
of D.

1.2 Limits

In the study of categories, the most important constructions are limits and colimits. To define limits and colimits
we need universal objects.

Definition 1.2.1 (Universal object). Let F : J Ñ C be a functor and X an object of C. A universal object
from X to F , if it exists, is a pair pY P Ob J, f : X Ñ F pY q P MorCpX,F pY qqq such that for any other pair
pZ P Ob J, g : X Ñ F pZq P MorCpX,F pZqqq there exists a unique morphism h : Y Ñ Z in J such that the following
diagram commutes

X F pY q

F pZq

f

g
F phq

Dually, a universal object from F to X, if it exists, is a pair pY P Ob J, f : F pY q Ñ Xq such that for any other
pair pZ P Ob J, g : F pZq Ñ Xq there exists a unique morphism h : Z Ñ Y in J such that the following diagram
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commutes

F pY q X

F pZq

f

F phq
g

The important thing about universal objects is that they are unique up to unique isomorphism. This means the
following. Suppose F : J Ñ C is a functor, X P Ob C, and pY, f : X Ñ F pY qq and pZ, g : X Ñ F pZqq are universal
objects from X to F . Then by definition there exist unique morphisms h1 : Y Ñ Z and h2 : Z Ñ Y making the
following diagrams commutative

X F pY q

F pZq

f

g
F ph1q

X F pZq

F pY q

g

f
F ph2q

By the uniqueness property F ph2q˝F ph1q “ IdF pY q and F ph1q˝F ph2q “ IdF pZq. In particular, the morphisms F ph1q

and F ph2q are unique. Thus we say that the universal objects from X to F are unique up to unique isomorphism.
Similarly for universal objects from F to X. The following lemma shows that the universal objects are unique up
to unique isomorphism.

Lemma 1.2.2. Let F : J Ñ C be a faithful functor, X an object of C, and pY, f : X Ñ F pY qq and pY 1, f 1 :
X Ñ F pY 1qq universal objects from X to F . Then there exists a unique isomorphism g : F pY q Ñ F pY 1q such that
gf “ f 1. Similarly, the universal object from F to X is unique up to unique isomorphism.

Proof. By definition of universal object we can find unique morphisms h : Y Ñ Y 1 and h1 : Y 1 Ñ Y such that
fF phq “ f 1 and f 1F ph1q “ f . Now f 1F phh1q “ f 1 “ f 1F pIdXq and fF ph1hq “ f “ fF pIdXq. By uniqueness of the
factorization, we have hh1 “ IdY 1 and h1h “ IdY . This shows that the universal objects from X to F are unique up
to unique isomorphism.

Let pY, f : F pY q Ñ Xq and pY 1, f 1 : F pY 1q Ñ Xq be two universal objects from F to X. By definition of
universal object there exist unique morphisms h : Y Ñ Y 1 and h1 : Y 1 Ñ Y such that fF ph1q “ f 1 and f 1F phq “ f .
Again by uniqueness of factorization h1h “ IdY and hh1 “ IdY 1 . Hence the universal objects from F to X are
unique up to unique isomorphism.

Let C and J be categories. The functor

∆J : C Ñ CJ

which sends an object C of C to the constant functor ∆JpCq : J Ñ C, j ÞÑ C, pj Ñ j1q ÞÑ IdC , is called the diagonal
functor. Denote by ∆J the full subcategory of CJ consisting of all diagonal functors. Let F : J Ñ C be a functor
and I : ∆J Ñ CJ the inclusion functor. A natural transformation τ : ∆JpCq Ñ F is a cone on the diagram F with
vertex C. A universal cone on F is a universal object from I to F . In other words, the pair p∆JpCq, τ : ∆JpCq Ñ F q
is a universal cone if for any other pair p∆JpC

1q, τ 1 : ∆JpC
1q Ñ F q there exists a unique morphism C 1 Ñ C such

9



that for any morphism φ : j Ñ j1 of J the following diagram is commutative

F pjq

C 1 C

F pj1q

F pφq

τ 1pjq

τ 1pj1q

τpjq

τpj1q

A cocone on F with vertex C, if it exists, is a natural transformation τ : F Ñ ∆JpCq and a universal cocone is
a universal object from F to I. That is, the pair p∆JpCq, τ : F Ñ ∆JpCqq is a universal cocone if for any other
pair p∆JpC

1q, τ 1 : F Ñ ∆JpC
1qq there exists a unique morphism C Ñ C 1 such that for any morphism φ : j Ñ j1 of

J the following diagram is commutative

F pjq

C C 1

F pj1q

F pφq

τpjq

τ 1pjq

τpj1q

τ 1pj1q

Definition 1.2.3 (Limit, Colimit). Let C and J be a categories and F : J Ñ C a functor. If the universal cone
(resp. universal cocone) on the diagram F exists, it is the limit (resp. colimit) of F and denoted lim

ÐÝjPJ
F (resp.

lim
ÝÑjPJ

F ). If the category J is small, the universal cone (resp. universal cocone) is the small limit (resp. small

colimit) of F .

In particular, since the universal object is unique up to isomorphism by 1.2.2 limits and colimits are unique up
to unique isomorphism when they exist.

Example 1.2.4 (Constructions by limits and colimits). Here are some examples of important constructions created
by limits and colimits.

Product and coproduct Let C ba a category, J a discrete category, that is, MorJ pj, j1q “ H for j ‰ j1, and
F : J Ñ C a functor. The limit (resp. colimit) object of this functor is called the product (resp. coproduct)
of the objects F pjq, j P J , and is written

ś

jPJ F pjq (resp.
š

jPJ F pjq).

Pushout and pullback Let C be a category, J a category consisting of three objects 1, 2 and 3 and two nontrivial
morphisms a : 1 Ñ 2 and b : 3 Ñ 2, and let F : J Ñ C be a functor. A limit object together with the
morphisms to F1 and F3 is the pullback of F paq and F pbq. Dually, the limit of F : Iop Ñ C is called the
pushout of F paq and F pbq.

Equalizer and coequalizer Let C be a category, J be a category consisting of two objects 1 and 2 and two
nontrivial morphisms a, b : 1 Ñ 2, and F : J Ñ C. The equalizer (resp. the coequalizer) of the morphisms
F paq and F pbq is the limit (resp. colimit) object of the functor F .

In particular, equalizers are monomorphisms and dually coequalizers are epimorphisms. Indeed, if e : E Ñ X
is the equalizer of the pair f, g : X Ñ Y and ex “ ey, then fex “ gey and by universal property there exists
a unique morphism u such that eu “ ex “ ey. Thus, we must have x “ y. Similarly for coequalizers.
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Kernel and cokernel Let C be a category, suppose C has a zero object, and let f be a morphism in C. We define the
kernel (resp. cokernel) of f to be the equalizer (resp. coequalizer) of the morphisms f and 0. In particular,
kernels are monomorphisms and cokernels are epimorphisms, because equalizers are monomorphisms and
coequalizers are epimorphisms.

The definition for equalizers allows us to define sheaves.

Example 1.2.5 (Sheaves). Let X be a topological space. A functor F : ToppXqop Ñ Set is called a presheaf
of sets. By changing the target category, one obtains presheaves of abelian groups, R-modules, and commutative
rings. The presheaf F is said to be a sheaf if for any open subset U of X and for any covering tUiuiPI of U by open
subsets, the following diagram

F pUq
ś

iPI F pUiq
ś

i,jPI F pUi X Ujq
φi

ψj

is an equalizer.
The notion of a sheaf and presheaf can be generalized to Grothendieck topologies. See [MLM92, III] for

Grothendieck topologies.

The following proposition gives a criterion for existence of finite products.

Proposition 1.2.6. A category C which has the terminal object and products for all pairs of objects, has all finite
products.

Proof. We prove the statement by induction. A product of one object c of C is given by the identity morphism
Idc : c Ñ c. Indeed, let c P Ob C, J be the subcategory of C consisting of just c and Idc, and let I : J Ñ C be the
inclusion functor. Then for any morphism f : dÑ c the following diagram is commutative

c

d c

c

Idc

f

f

f
Idc

Idc

This shows that pc, Idcq is the product of c.
Let c1, . . . , cn P Ob C and suppose C has the product c1

ś

. . .
ś

cn´1. By assumption, the product pc1
ś

. . .
ś

cn´1q
ś

cn exists. Let φi : d Ñ ci be a family of morphisms in C. Then there exists a unique morphism
ψ : dÑ c1

ś

. . .
ś

cn´1 such that piψ “ φi. Hence, there exists a unique morphism ε : dÑ pc1
ś

. . .
ś

cn´1q
ś

cn
such that p1ε “ ψ and p2ε “ φn. This shows that C has the product pc1

ś

. . .
ś

cn´1q
ś

cn where the projections
are given by

#

pi “ pip1 1 ď i ď n´ 1

pn “ p2 otherwise

The following proposition will be used in the theory of abelian categories. We say that a category is finite if the
set of all objects is finite and the set of morphisms between any two object is also finite.
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Proposition 1.2.7. Let C be a category. The following conditions are equivalent

(i) C is finitely complete, that is, every functor I Ñ C, from a finite category I, has a limit.

(ii) C has a terminal object, equalizers of all pairs of morphisms with the same domain and codomain, and all
products between any pair of objects.

(iii) C has a terminal object and pullbacks.

Proof. piq ñ piiq : Terminal object is the limit of an empty category. Products and equalizers are limits by definition.
piiq ñ piq : Consider the following finite products

˜

ź

jPJ

F pjq, ppjqjPJ

¸

and

¨

˚

˚

˝

ź

j,j1POb J

f :jÑj1PMorJ pj,j1q

F pcpfqq, pp1cpfqq

˛

‹

‹

‚

. (1.2)

We let α, β :
ś

jPJ F pjq Ñ
ś

jÑj1PJ F pj
1q to be the unique morphisms such that

p1cpfqα “ pcpfq and p1cpfqβ “ F pfqpj ,

for every j, j1 P Ob J and f P MorJpj, j
1q. We show that pL, ppj lqjPJq defines the limit of F , where pL, lq is the

equalizer of the pair pα, βq.
For any morphisms f : j Ñ j1 of J , the equalities

F pfqpj l “ p1cpfqβl “ p1cpfqαl “ pj1 l

show that pL, ppj lqjPJq defines a cone of F . To show that it is the universal cone, let pM, pqjqjPJq be another pair
which defines cone of F . By the universal property of products there exists a unique morphism q1 such that pjq

1 “ qj
for all j P Ob J . For any morphism f : j Ñ j1 in J we have

p1cpfqαq
1 “ pj1q

1 “ qj1 “ F pfqqj “ F pfqpjq
1 “ p1cpfqβq

1.

This shows that αq1 “ βq1 by the uniquness of the second product of (1.2). Hence there exists a unique factorization
q : M Ñ L such that lq “ q1 and we have pj lq “ pjq

1 “ qj . It remains to show that the morphism q is unique with
this property. Suppose pj q̄ “ qj for some morphism q̄ and all objects j of J . Hence

p1j lq “ pjq
1 “ qj “ pj q̄ “ p1j lq̄,

so lq “ lq̄. The equality q̄ “ q follows from the fact that l is a monomorphism.
piiq ñ piiiq : Let f : X Ñ Z and g : Y Ñ Z be morphisms in C. Take the product X

ś

Y and consider the
equalizer

E X
ś

Y Ze
fp1

gp2
.

We show that pE, p1e, p2eq is the pullback of f and g. Suppose φ1 : D Ñ X and φ2 : D Ñ Y are morphisms
such that fφ1 “ gφ2. By universal property of products, there is a unique morphism ψ : D Ñ X

ś

Y such that
p1ψ “ φ1 and p2ψ “ φ2. Hence fp1ψ “ gp2ψ, so by the universal property of the equalizer there exists a unique
morphism δ : D Ñ E with ψ “ eδ. This shows that C has pullbacks.
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piiiq ñ piiq : Let X, Y be any objects of C. The pullback of X Ñ T , Y Ñ T gives the product of X and Y ,
where T is the terminal object of C. Indeed, let pZ,Z Ñ X,Z Ñ Y q be the pullback of X Ñ T and Y Ñ T . For
any object W and morphisms W Ñ X and W Ñ Y we have

W Ñ X Ñ T “W Ñ Y Ñ T,

because morphisms to terminal objects are unique. Thus, by definition of pullback, there exists a unique morphism
W Ñ Z such that

W Ñ X “W Ñ Z Ñ X and W Ñ Y “W Ñ Z Ñ Y.

This shows that Z is the product of X and Y .
To show that C has equalizers of all pairs of morphisms, let f, g : X Ñ Y be morphisms in C. Let pE, e :

E Ñ X,E Ñ Y q be the pullback of the morphisms pf, gq : X Ñ Y
ś

Y and ∆Y : Y Ñ Y
ś

Y . Here pf, gq is the
unique morphisms given by the definition of product associated to the morphisms f and g and ∆Y is the unique
morphism given by the definition of product associated to the morphisms IdY and IdY . We show that the morphism
e : E Ñ X is the equalizer of f and g. Let h : Z Ñ X be any morphism such that fh “ gh. Now

#

p1∆Y fh “ fh “ p1pf, gqh

p2∆Y fh “ fh “ gh “ p2pf, gqh

implies, by uniqueness of morphisms from Z to Y
ś

Y , that ∆Y fh “ pf, gqh. Hence by the definition of pullback
there exists a unique morphism φ : Z Ñ E such that eφ “ x. This shows that pE, e : E Ñ Xq is the equalizer of f
and g.

Proposition 1.2.8. Let C be a category. The pullback of a monomorphism is a monomorphism. Dually, the
pushout of an epimorphism is an epimorphism.

Proof. Consider the following pullback diagram in C

W X

Y Z

g1

f 1 f

g

and suppose that g is a monomorphism. Let u, v : Q Ñ W be morphisms such that g1u “ g1v. Put g2 “ g1u and
f2 “ f 1u. Now fg2 “ gf2 and

#

g2 “ g1u

f2 “ g1u

#

g2 “ g1v

gf2 “ fg2 “ fg1u “ fg1v “ gf 1v

so by the uniqueness property of pullback, u “ v. Hence g1 is a monomorphism.
The dual follows from this argument applied to Cop.

1.3 Adjoints

For the rest of this chapter we study adjunctions. In particular, we show that adjunctions are unique up to unique
isomorphism, and we give a criterion to prove that two functors are adjunctions, which means that one functor is
left adjoint to other functor and the other is right adjoint to the first functor. We follow [Bor94a, 3.1]. Let us start
by a definition of adjoints.
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Definition 1.3.1 (Adjoint). A functor F : C Ñ D is left adjoint to a functor G : D Ñ C if there exists a natural
transformation η : IdC Ñ GF such that for all objects C of C the pair pF pCq, ηpCqq is the universal object from C
to G. This means that for any morphism f : C Ñ GpDq in C there exists a unique morphism h : F pCq Ñ D in D
such that the following diagram is commutative

C GF pCq

GpDq

ηpCq

f
Gphq

A functor G : D Ñ C is right adjoint to a functor F : C Ñ D if there exists a natural transformation ε : FGÑ IdD
such that for all D P ObD the pair pGpDq, εpDqq is the universal object from F to D. That is, for any morphism
f : F pCq Ñ D in D there exists a unique morphism h : C Ñ GpDq in C such that the following diagram is
commutative

FGpDq D

F pCq

εpDq

F phq
f

The following lemma shows that the left and right adjoints are unique up to unique isomorphism.

Lemma 1.3.2. Let F : C Ñ D be a functor and G,G1 : D Ñ C right adjoints to F with φ, φ1 the isomorphisms on
the set of morphisms. Then G – G1. Similarly, if F, F 1 : C Ñ D are left adjoints to G, then F – F 1.

Proof. Let ε : FGÑ IdD and ε1 : FG1 Ñ IdD be natural transformations such that for any object D P D the pairs
pGpDq, εpDqq and pG1pDq, ε1pDqq are universal objects from F to D. By definition of universal object, there exist
unique morphisms h : GpDq Ñ G1pDq and h1 : G1pDq Ñ GpDq such that hh1 “ IdG1pDq and h1h “ IdGpDq. These
morphisms show that G – G1.

Similarly, let η : IdC Ñ GF and η1 : IdC Ñ GF 1 be natural transformations such that for any object C of C
pF pCq, ηCq and pF 1pCq, η1pCqq are universal objects from C to G. By definition there exists unique morphisms
h : F pCq Ñ F 1pCq and h1 : F 1pCq Ñ F pCq such that hh1 “ IdF pCq and h1h “ IdF 1pCq. These morphisms show that
the functors F and F 1 are isomorphic.

The following lemma gives a relation of left and right adjoint of categories and their opposite categories. We
denote by fop, F op, and τop the natural morphisms, functors, and natural transformations, respectively, in the
corresponding opposite categories. Note that pfopqop “ f , pF opqop “ F , and pτopqop “ τ .

Lemma 1.3.3. A functor F : C Ñ D is the left adjoint of G : D Ñ C if and only if F op : Cop Ñ Dop is the right
adjoint of Gop : Dop Ñ Cop.

Proof. ñ: Suppose that F is the left adjoint of G. Let η : IdC Ñ GF be the natural transformation such that for
any object C of C the pair pF pCq, ηpCqq is the universal object from C to G. Thus for any morphism f : C Ñ GpDq
there exists a unique morphism h : GF pCq Ñ GpDq such that the following diagram is commutative in the dual
category

GopF oppCq C

GoppDq

ηoppCq

hop
fop
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This shows that pF oppCq, ηoppCqq is the universal object from Gop to C. Hence F op is the right adjoint of Gop.
ð: Let F op be the right adjoint of Gop. Then there exists a natural transformation εop : F opGop Ñ IdC

such that for all objects C of C the pair pF oppCq, εoppCqq is a universal object from Gop to C. Thus for any
morphism fop : GoppDq Ñ C there exists a unique morphism hop : D Ñ F oppCq such that the following diagram is
commutative in the dual category

C GF pCq

GpDq

εpCq

f
Gphq

This shows that the pair F pCq, εpCqq is a universal object from C to G. Therefore F is the left adjoint to G.

We will use later the following theorem in chapter 7 to the theory of t-structures to prove that abstract truncations
are adjoints to inclusion functors.

Theorem 1.3.4. Let F : C Ñ D and G : D Ñ C be functors. Then the following conditions are equivalent.

(i) F is left adjoint to G.

(ii) There exists natural transformations η : IdC Ñ GF and ε : FG Ñ IdD, called the counit and unit, such that
the following diagrams are commutative

G GFG

G

ηG

IdG
Gε

F FGF

F

Fη

IdF
εF (1.3)

(iii) For any objects C P Ob C and D P D there exists a bijection φC,D : MorDpF pCq, Dq Ñ MorCpC,GpDqq such
that for any morphisms f : C 1 Ñ C of C and any morphism g : D Ñ D1 of D the following diagram is
commutative

MorDpF pCq, Dq MorCpC,GpDqq

MorDpF pC 1q, D1q MorCpC 1, GpD1qq

φC,D

g˝´˝F pfq Gpgq˝´˝f

φC1,D1

(1.4)

Here pg ˝ ´ ˝ F pfqqphq “ ghF pfq and pGpgq ˝ ´ ˝ fqphq “ Gpgqhf .

(iv) G is right adjoint to F .

Proof. piq ñ piiq : The natural transformation η : IdC Ñ GF is given by the definition of left adjoint, so let us
construct the natural transformation ε. Consider the universal object pFGpDq, ηpGpDqqq from GpDq to G. Let
εpDq : FGpDq Ñ D be the unique morphism given by the definition of universal object such that the following
diagram is commutative

GpDq GFGpDq

GpDq

ηpGpDqq

IdGpDq
GpεpDqq
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To show that ε is a natural transformation, let d : D Ñ D1 be a morphism in D. Then

GpεpD1q ˝ FGpdqq ˝ ηpGpDqq “ GpεpD1qq ˝GFGpdq ˝ ηpGpDqq “ GpεpD1qq ˝ ηpGpD1qq ˝Gpdq “ Gpdq,

and

Gpd ˝ εpDqq ˝ ηpGpDqq “ Gpdq ˝GpεpDqq ˝ ηpGpDqq “ Dpdq.

By uniqueness of the factorization of the universal object εpD1q ˝ FGpdq “ d ˝ εpDq. This shows that ε is a natural
transformation.

To show the commutativity of the second triangle of (1.3), let C P Ob C and pGF pCq, ηpCqq the universal object
from F pCq to F . Then

GpεpF pCqq ˝ FηpCqq ˝ ηpCq “ GεpF pCqq ˝GFηpCq ˝ ηpCq

“ ηpCq “ GpIdF pCqq ˝ ηpCq.

By uniquness of the factorization of universal object, εpGpDqq ˝ GηpDq “ IdF pCq. Hence the second triangle is
commutative.
piiq ñ piiiq : Given a morphism d : F pCq Ñ D, we define φC,Dpdq to be the composite Gpdq ˝ ηpCq. For a

morphism c : C Ñ GpDq we define τC,Dpcq to be the composite εpDq ˝ F pcq. We have

pτC,D ˝ φC,Dqpdq “ τC,DpGpdq ˝ ηpCqq “ εpD1q ˝ F pGpdq ˝ ηpCqq “ εpD1q ˝ FGpdq ˝ F pηpCqq

“ d ˝ εpF pCqq ˝ F pηpCqq “ d,

and

pφC,D ˝ τC,Dqpcq “ φC,DpεpDq ˝ F pcqq “ GpεpDq ˝ F pcqq ˝ ηpCq “ GpεpDqq ˝GF pcq ˝ ηpCq

“ GpεpDqq ˝ ηpC 1q ˝ c “ c,

so the maps τC,D and φC,D are mutual inverses. This shows that φC,D is bijective for all C P Ob C and D P ObD.
To show that the diagram (1.4) is commutative, let f : C 1 Ñ C and g : D Ñ D1 be morphisms in C and D,
respectively. Let d : F pCq Ñ D P MorDpF pCq, Dq. Then

ppGpgq ˝ ´ ˝ fq ˝ φC,Dqpdq “ pGpgq ˝ ´ ˝ fqpGpdq ˝ ηpCqq “ Gpgq ˝Gpdq ˝ ηpCq ˝ f

“ Gpgq ˝Gpdq ˝GF pfq ˝ ηpC 1q,

and

pφC1,D1 ˝ pg ˝ ´ ˝ F pfqqqpdq “ φD1,C1pg ˝ d ˝ F pfqq “ Gpg ˝ d ˝ F pfqq ˝ ηpC 1q

“ Gpgq ˝Gpdq ˝GF pfq ˝ ηpC 1q.

This shows the commutativity of the diagram.
piiiq ñ piq : First note that for any object C P Ob C the morphism φC,F pCqpIdCq : C Ñ GF pCq defines a natural

transformation by commutativity of the diagram (1.4). It suffices to show that for any object C of C the pair
pF pCq, φC,CpIdCqq is a universal object from C to G. Let f : C Ñ GpDq be a morphism in D and let g : F pCq Ñ D
be the morphism τC,Dpfq. Now

ppGpgq ˝ ´ ˝ IdCq ˝ φC,F pCqqpIdF pCqq “ pGpgq ˝ ´ ˝ IdCq ˝ φC,F pCqpIdF pCqq “ pGpgq ˝ φC,F pCqqpIdF pCqq

“ pφC,D ˝ gqpIdF pCqq “ pφC,D ˝ pg ˝ ´ ˝ IdF pCqqqpIdF pCqq,
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so the pair is the universal object. To show uniqueness of g, let g1 : F pCq Ñ D be a morphism such that
pGpg1q ˝ φC,F pCqqpIdF pCqq “ f . Then

φC,Dpg
1q “ φC,Dppg

1 ˝ ´ ˝ IdF pCqqpIdF pCqqq

“ pGpg1q ˝ ´ ˝ IdCqpφC,F pCqpIdF pCqq

“ Gpg1q ˝ φC,F pCqpIdF pCqq

“ f “ φC,Dpgq,

where the second equality follows from commutativity of the diagram (1.4). Since φC,D is bijection, this shows that
g “ g1.
pivq ô piiiq : Suppose G is the right adjoint of F . By lemma 1.3.3 Gop is the left adjoint of F op. By (iii) the

following diagram is commutative for all morphisms gop : D1 Ñ D and fop : C Ñ C 1

DoppGoppDq, Cq CoppD,F oppCqq

DoppGoppD1q, C 1q CoppD1, F oppC 1qq

φD,C

f˝´˝Goppgopq F oppfopq˝´˝gop

φD1,C1

Taking the dual we obtain the diagram (1.4).
Conversely, suppose that (iii) holds. For any morphisms g : D Ñ D1 and f : C 1 Ñ C consider the corresponding

diagram of (1.4) in the dual category

MorDoppGoppDq, Cq Mor CoppD,F oppCqq

MorDoppGoppD1q, C 1q Mor CoppD1, F oppC 1qq

φopD,C

Goppgopq˝´˝fop gop˝´˝F oppfopq

φop
D1,C1

Since piiiq ñ piq, Gop is the left adjoint of F op. By lemma 1.3.3 G is the right adjoint of F .

The following example is basic adjunction in commutative algebra.

Example 1.3.5 (Adjunction in RMod). Let R be a commutative ring. One can show that in the category RMod
the the functor N b ´ : RMod Ñ RMod is left adjoint to the functor MorRp´, Nq : RMod Ñ RMod. This
means that for all R-modules M and P the bijections

MorRModpM bR N,P q – MorRModpM,MorRModpP,Nqq

are natural in both M and P so that any diagram of the form (1.4) commutes. Actually, since the category RMod
is R-linear, meaning that all sets of morphisms admit a natural R-module structure, these bijections between sets
of morphisms are isomorphisms of R-modules. For more details, see [Bor94a, Example 3.1.6.e].

17



Chapter 2

Abelian categories

In this chapter we introduce the main mathematical objects to study in this thesis, additive and abelian categories.
Abelian categories can be seen as categorical generalization of the categories of R-modules, because every small
abelian category admits a full, faithful, and exact embedding to RMod, for some commutative ring R [Bor94b,
Theorem 1.14.9]. Thus one can use intuition from the category of R-modules to study abelian categories. Every
abelian category is additive, by theorem 2.3.3, but not every additive category is abelian.

2.1 Additive categories

Let us start with the definitions of preadditive and additive categories.

Definition 2.1.1 (Preadditive and additive categories). A preadditive category A is a category such that for any
X,Y P ObA the set MorApX,Y q has a structure of an abelian group, and for any morphisms f1, f2 : X Ñ Y and
g1, g2 : Y Ñ Z in A we have

pg1 ` g2qpf1 ` f2q “ g1f1 ` g1f2 ` g2f1 ` g2f2.

We say that a preadditive category A is additive if it has a zero object, denoted by 0, and biproducts, that is, for
any X,Y P ObA there exists an object X ‘ Y and morphisms i1 : X Ñ X ‘ Y , p1 : X ‘ Y Ñ X, i2 : Y Ñ X ‘ Y ,
and p2 : X ‘ Y Ñ Y such that the following equalities hold

p1i1 “ IdX , p2i2 “ IdY , p1i2 “ 0, p2i1 “ 0, i1p1 ` i2p2 “ IdX‘Y ,

and for any object Z and any morphisms f : X Ñ Z and g : Y Ñ Z there exist a unique morphism f‘g : X‘Y Ñ Z
such that the following diagram is commutative

Z

X X ‘ Y Y

f

i1

f‘g

p1 p2

g
i2

One can easily verify that the morphism f ‘ g is given by fp1 ` gp2.

Example 2.1.2 (Preadditive and additive categories). Let us give a few examples concerning preadditive and
additive categories.
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(i) The category of groups is not preadditive. The reason is that there is no natural way to define abelian category
structure on the set of morphisms. For details, see [Bor94b, Example 1.2.9.b].

(ii) Consider the full subcategory C of CRing consisting of the object Z. Clearly MorCpZ,Zq “ Z and this set has
a natural structure of an abelian group given by sum of ring homomorphisms. For any ring homomorphisms
f1, f2, g1, g2 : ZÑ Z one has

pf1 ` f2qpg1 ` g2q “ f1g1 ` f1g2 ` f2g1 ` f2g2.

Hence the category C is preadditive.

On the other hand, this category is not additive. Indeed, it does not have the zero object because MorCpZ,Zq
consists of more than one morphism. Also, C does not have biproducts. Indeed, suppose pZ, i1, i2, p1, p2q is
the biproduct of Z and Z. From the identities p1i1 “ IdZ and p2i2 “ IdZ it follows that i1 and i2 send the
identity element 1 of Z to ´1 or 1, because multiplications by 1 and ´1 are the only automorphisms of Z.
Let 2 : Z Ñ Z and 3 : Z Ñ Z be the multiplications by 2 and 3. Then there cannot be a morphism h such
that the following diagram would commute

Z

Z Z Zi1

2
h

i2

3

because h would need to map the element 1 to (2 or ´2) and (3 or ´3). Hence the category C is only
preadditive.

(iii) Let us show that it is not enough that a preadditive category to have a zero object to be additive. Consider
the full subcategry C of CRing consisting of the objects 0 and Z. Clearly 0 cannot be the biproduct of Z and
Z, so the argument of the previous example (ii) shows that the the biproduct of Z and Z does not exist in C.

(iv) For only this example, to keep the argument readable, we abuse introduced notation and write in and pn for
the inclusion and projection of the nth component of biproduct and not care in which order the biproduct is
formed.

In this example we show that there exists only one finite additive category, up to equivalence of categories, the
category having only the zero object. Clearly the category having only the zero object is additive. Suppose
that A is an additive category, and let X be a nonzero object of A. Then MorApX,Xq ě 2 because this set
must contain at least the zero morphism and the identity morphism. Here it cannot be the case that IdX
equals the zero morphism because otherwise X would be isomorphic to zero object and hence a zero object.
This contradicts the assumption that X is not a zero object.

Let n ě 2 and let f : ‘ni“1X Ñ ‘ni“1X be a nonzero morphism. This means that fij ‰ 0 for some 1 ď j ď n,

because f “ fpi1p1 ` . . .` inpnq. The morphisms fpi1p1 ` . . .` inpnq, fpi1p1 ` . . .` ˆijpj ` . . .` in`1pn`1q :
‘
n`1
1 X Ñ ‘n1X are different. Indeed, we have

fpi1p1 ` . . .` inpnqij “ fij ‰ 0 “ fpi1p1 ` . . .` ˆijpj ` . . .` in`1pn`1qij .

Hence

#pMorAp‘
n`1
1 X,‘n1Xqq ě 2 ¨#pMorAp‘

n
1X,‘

n
1Xqq ´ 1.
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For any two distinct morphisms φ, φ1 : ‘n`1
1 X Ñ ‘n1X, we have pjφ ‰ pjφ

1, for some 1 ď j ď n, and the
morphisms pi1p1 ` . . . ` inpnqφ, pi1p1 ` . . . ` inpnqφ

1 : ‘n`1
1 X Ñ ‘

n`1
1 X are not equal because pjpi1p1 `

. . . inpnqφ “ pjφ ‰ pjφ
1 “ pi1p1 ` . . .` inpnqφ

1. Therefore

#pMorAp‘
n`1
1 X,‘n`1

1 Xqq ě #pMorAp‘
n`1
1 X,‘n1Xqq.

Combining the above inequalities we get

#pMorAp‘
n`1
1 X,‘n`1

1 Xqq ą #pMorAp‘
n
1X,‘

n
1Xqq. (2.1)

Since A is finite we can choose m to be the smallest positive integer such that ‘mi“1X “ ‘ni“1X for some
positive integer n ă m. By induction, the inequality (2.1) now says

#pMorAp‘
m
i“1X,‘

m
i“1Xqq ą #pMorAp‘

n
i“1X,‘

n
i“1Xqq.

This is a contradiction. Thus a finite additive category A cannot contain a nonzero object.

The following proposition shows that in a preadditive category, the biproduct of two objects is both the product
and the coproduct of the objects.

Proposition 2.1.3. Let A be a preadditive category and let A and B be objects of A. Then A has the biproduct of
A and B if and only if it has the product and the coproduct of A and B.

Proof. Let A‘B be the biproduct of A and B together with the morphisms i1, p1, i2, and p2 like in definition 2.1.1.
First we show that A has the product of A and B. Let C P ObA, and let f : C Ñ A and g : C Ñ B be
morphisms in A. Then i1f ` i2g is a morphism to A ‘ B such that p1pi1f ` i2gq “ f and p2pi1f ` i2gq “ g. To
show the uniqueness of this morphism, let h : C Ñ A ‘ B be a morphism such that p1h “ f and p2h “ g. Then
h “ pi1p1 ` i2p2qh “ i1f ` i2g. This shows that A has A

ś

B.
To show that A has the coproduct of A and B, let D be an object of A and let f : A Ñ D and g : B Ñ D

be morphisms in A. Now, fp1 ` gp2 is a morphism such that f “ pfp1 ` gp2qi1 and g “ pfp1 ` gp2qi2. To
show uniqueness of this morphism, let h : A ‘ B Ñ D be a morphism such that hi1 “ f and hi2 “ g. Now
h “ hpi1p1 ` i2p2q “ fp1 ` gp2. Therefore A has A

š

B.
Conversely, let A

ś

B be the product of A and B together with morphisms p1 : A
ś

B Ñ A and p2 : A
ś

B Ñ B.
The identity morphism IdA : A Ñ A gives rise to a unique morphism i1 : A Ñ A

ś

B such that p1i1 “ IdA and
p2i1 “ 0. Similarly, the identity morphism IdB : B Ñ B gives a unique morpism i2 : B Ñ A‘B such that p1i2 “ 0
and p2i2 “ IdB . Now

#

p1pi1p1 ` i2p2q “ p1,

p2pi1p1 ` i2p2q “ p2

and

#

p1 IdA
ś

B “ p1,

p2 IdA
ś

B “ p2

and by the universal property of product i1p1 ` i2p2 “ IdA
ś

B . Hence pA
ś

B, i1, i2, p1, p2q is the coproduct of A
and B. This completes the proof.

A functor which preserves the structure of an additive category is called an additive functor.

Definition 2.1.4 (Additive functor). Let F : A Ñ B be a functor between additive categories. If for all objects
A1, A2 of A the map

MorApA1, A2q Ñ MorBpF pA1q, F pA2qq, f ÞÑ F pfq

is a group homomorphism, then F is additive.
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The following proposition gives a characterization of an additive functor by biproducts.

Proposition 2.1.5. A functor F : AÑ B between additive categories is additive if and only if preserves biproducts,
that is, if pA‘B, i1, i2, p1, p2q is a biproduct in A, then pF pA‘Bq, F pi1q, F pi2q, F pp1q, F pp2qq is a biproduct in B.
In particular, an additive functor preserves the zero object.

Proof. ñ: Let F be additive and let pA‘ B, i1, i2, p1, p2q be a biproduct in A. Now, F pp1i1q “ IdF pAq, F pp2i1q “
IdF pbq, F pp1i2q “ 0, F pp2i1q “ 0, and IdF pA‘Bq “ F pi1p1 ` i2p2q “ F pi1qF pp1q ` F pi2qF pp2q. Indeed, to see that
F pp1i2q “ F pi2p1q “ 0 it suffices to show that F p0q is the zero object in B. Since

MorAp0A, 0Aq Ñ MorBpF p0Aq, F p0Aqq

is a group homomorphism, F pId0q factors through the zero object of B. Thus there exist morphisms f : F p0q Ñ 0
and g : 0 Ñ F p0q, which are unique, such that gf “ IdF p0q. Now gf “ Id0 by uniqueness of the morphism from the
zero object to itself. Hence F p0q is isomorphic to the zero object in B and is itself the zero object.

To see that pF pA ‘ Bq, F pi1q, F pi2q, F pp1q, F pp2qq is the biproduct of F pAq and F pBq in B it suffices to show
that it is isomorphic to the object of the biproduct pF pAq‘F pBq, i1, i2, p1, p2q. By the definition of biproduct there
exists a unique morphism h : F pA‘Bq Ñ F pAq ‘ F pBq such that p1h “ F pp1q and p2h “ F pp2q. Now

IdF pA‘Bq “ F pi1qF pp1q ` F pi2qF pp2q “ F pi1qp1h` F pi2qp2h “ pF pi1qp1 ` F pi2qp2qh

and

IdF pAq‘F pBq “ i1p1 ` i2p2 “ i1 IdF pAq p1 ` i2 IdF pBq p2 “ i1F pp1qF pi1qp1 ` i2F pp2qF pi2qp2

“ i1p1hF pi1qp1 ` i2p2hF pi2qp2 “ hF pi1qp1 ` hF pi2qp2 “ hpF pi1qp1 ` F pi2qp2q.

This shows that h is an isomorphism and that F pA ‘ Bq is the biproduct of F pAq and F pBq. Hence F preserves
biproducts.
ð: First we show that F preserves the zero object. By assumption pF p0 ‘ 0q, F pi1q, F pi2q, F pp1q, F pp2qq is

the biproduct of F p0q and F p0q in B. Since 0 is the zero object in A, F pi1q “ F pi2q and F pp1q “ F pp2q. Let
f1, f2 : B Ñ F p0q and g1, g2 : F p0q Ñ C be morphisms in B, and let h1 : B Ñ F p0‘ 0q and h2 : F p0‘ 0q Ñ C be
the unique morphisms such that F pp1qh1 “ f1, F pp2qh1 “ f2, h2F pi1q “ g1, and h2F pi2q “ g2. Now

f1 ´ f2 “ F pp1qh1 ´ F pp2qh1 “ pF pp1q ´ F pp2qqh1 “ 0

and

g1 ´ g2 “ h2F pi1q ´ h2F pi2q “ h2pF pi1q ´ F pi2qq “ 0.

Hence f1 “ f2 and g1 “ g2. This shows that F preserves the zero object.
It remains to show that F preserves difference of two morphisms. Let f, g : A1 Ñ A2 be morphisms in A. From

F pf ´ gq “ F ppp1 ´ p2qpi1f ` i2gqq “ F pp1 ´ p2qF pi1f ` i2gq “ F pp1 ´ p2qpF pi1qF pfq ` F pi2qF pgqq,

we see that it is enough to show that F preserves the difference p1 ´ p2. Now

F pp1 ´ p2qF pi1q “ F ppp1 ´ p2qi1q “ F pIdA1
q “ IdF pA1q “ pF pp1q ´ F pp2qqF pi1q “ IdA2

and

F pp1 ´ p2qF pi2q “ F ppp1 ´ p2qi2q “ F pIdA2
q “ IdF pA2q “ pF pp1q ´ F pp2qqF pi2q “ ´ IdA2

,

so by the universal property of the biproduct F pp1 ´ p2q “ F pp1q ´ F pp2q. This completes the proof.
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Example 2.1.6 (Additive representable functor). Let us give an example how to construct additive functors on
an additive category. Suppose we have an additive category A. Then for any object A P ObA we can consider
the representable functor MorApA,´q, item (ii). Let us show that this is an additive functor. Fix two morphisms
f, g : X Ñ Y . Then for any morphism h : AÑ X we have

MorApA,´qpf ´ gqphq “ pf ´ gqphq “ MorApA,´qpfqphq ´MorApA,´qpgqphq.

This shows that the functor MorApA,´q is additive.

We conclude this section by an additive version of Yoneda’s lemma 1.1.7. This is a special case of a more general
version, the enriched Yoneda’s lemma [Bor94b, Theorem 6.3.5].

Proposition 2.1.7 (Additive Yoneda’s lemma). Let A be an additive category and F : A Ñ Ab an additive
functor. For any object A of A we have an isomorphism of abelian groups

θF,A : NatpMorApA,´q, F q Ñ F pAq,

which is naural in both A and F . This means that for any morphism φ : A Ñ A1 in A and for any natural
transformation η : F Ñ G the following diagrams are commutative

NatpMorApA,´q, F q F pAq

NatpMorApA1,´q, F q F pA1q

θF,A

´˝p´˝φq F pφq

θF,A1

NatpMorApA,´q, F q F pAq

NatpMorApA,´q, Gq GpAq

θF,A

η˝´ ηpAq

θG,A

.

Proof. Let α : ApA,´q Ñ F be a natural transformation and define θF,Apαq “ αpAqpIdAq. Conversely, for any
element a P F pAq we assign a natural transformation

τpaqpBq : MorApA,Bq Ñ F pBq, τpaqpBqpfq “ F pfqpaq.

Here the morphism τpaqpBq is a group homomorphism because F is an additive functor. By the proof of theo-
rem 1.1.7 this is map is bijective, hence isomorphism of abelian groups.

To see that this map is natural in A and F , let φ : A Ñ A1 be a morphism in A, η : F Ñ G a natural
transformation, and let Ψ P NatpMorpA,´q, F q. Then

pF pφq ˝ θF,AqpΨq “ F pφqpΨpAqpIdAqq “ ΨpA1qpφq

“ θF,A1pΨ ˝ p´ ˝ φqq “ pθF,A1 ˝ p´ ˝ φqqpΨq,

where the second equality follows from the fact that Ψ is a natural transformation, so the first diagram is commu-
tative. Also

pηpAq ˝ θF,AqpΨq “ ηpAqpΨpAqpIdAqq “ θG,Apη ˝Ψq

“ pθG,A ˝ pη ˝ ´qqpΨq,

so the second diagram is also commutative.
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2.2 Abelian categories

In this section we introduce abelian categories and develop some of the most elementary properties about them.
These are the image factorization theorem 2.2.10 and the fact that abelian categories is additive by theorem 2.3.3.

Definition 2.2.1. A category A is abelian if the following conditions hold.

AB 1 A has the zero object.

AB 2 Every pair of objects of A has the product and coproduct.

AB 3 Every morphism of A has the kernel and the cokernel.

AB 4 Every monomorphism is the kernel of some morphism of A and every epimorphism is the cokernel of some
morphism of A.

Remark 2.2.2. From the definition of an abelian category it is clear that the opposite category of an abelian category
is an abelian category. This allows us to prove results about abelian categories by duality. More precisely, if we
give some proof about an abelian category A only using the axioms of the abelian category, then the same proof
applies for Aop. Since limit (resp. colimit) in A corresponds to colimit (resp. limit) in Aop, constructions using
limits and colimits have also their dual version in A.

Proposition 2.1.3 shows that the condition AB2 can be replaced by the condition that A has all biproducts.
Proposition 1.2.6 implies that an abelian category has all finite products, and by duality all finite coproducts.

First, let us note that, in an abelian category a morphism which is both a monomorphism and an epimorphism,
is an isomorphism. Indeed, let f : X Ñ Y be a morphism which is a monomorphism and an epimorphism. Then
by AB4 f is the kernel of some morphism g : Y Ñ Z, so gf “ 0. Since f is an epimorphism, we get g “ 0. Now
g IdY “ 0, so there exists a unique morphism h1 : Y Ñ X such that fh1 “ IdY . By duality there exists a unique
morphism h2 : Y Ñ X such that h2f “ IdX . Putting these together yields

h1 “ ph2gqh1 “ h2pgh1q “ h2.

This shows that f is an isomorphism.

Example 2.2.3. The categories Ab, and RMod are abelian categories. Moreover, we will see that every abelian
category has all finite limits and finite colimits 2.2.5, but the category RMod has more. It has all small limits and
all small colimits, [Bor94b, Example 1.4.6a].

Let A be an abelian category and consider an object A of A. The monomorphisms in A with codomain the
object A are called the subobjects under the following equivalence relation: let f : X Ñ A and g : Y Ñ A be
monomorphisms. They are equivalent as subobjects if there exists an isomorphism h : X Ñ Y such that f “ gh.
Since g is a monomorphism, one sees that the morphism h is unique.

Lemma 2.2.4. An abelian category A has the pullback of two subobjects of any object.

Proof. Let a, b be two monomorphisms with equal codomains, and fix morphisms f and g so that a “ ker f and
b “ ker g by AB4. Denote by k the morphism of kerpf, gq. Now, fk “ p1pf, gqk “ 0, so there exists a unique
morphism a1 such that k “ aa1. Similarly, from gk “ p2pf, gqk “ 0, we get a unique morphism b1 with k “ bb1. We
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have the following commutative diagram

B1 C A1

A

X X
ś

Y Y

b
b1

k

a1

a

f
pf,gq

g

p1
p2

We prove that pC, a1, b1q is the pullback of a and b.
Let u, v be morphisms with the same domain such that au “ bv. Then fbv “ fau “ gbv “ gau “ 0, so by

uniqueness of the product we have that pf, gqbv “ pf, gqau “ 0. Hence there exists a unique morphism w such that
kw “ bv “ au. Since a and b are monomorphisms, by commutativity we have v “ b1w and u “ a1w. Uniqueness of
w follows from commutativity and the fact that k is a monomorphism.

The following lemma shows that all constructions like equalizers, coequalizers, pullbacks and pushouts con-
structed by finite limits and finite colimits exist in abelian categories.

Lemma 2.2.5. An abelian category A is finitely complete and finitely cocomplete.

Proof. By duality for abelian categories, it suffices to show that A is finitely complete. By proposition 1.2.6 A has
finite products, and by proposition 1.2.7 it remains to show that A has equalizers for all pairs of parallel morphisms.

Let f, g : A Ñ B be morphisms. Now pIdA, fq and pIdA, gq are monomorphisms, so by lemma 2.2.4, they have
a pullback pP, u, vq. From

#

u “ p1pIdA, fqu “ p1pIdA, gqv “ v

fu “ p2pIdA, fqu “ p2pIdA, gqv “ gv,

one gets that fu “ gu. Suppose fx “ gx for some morphism x. Then pIdA, fqx “ pIdA, gqx, by the uniqueness
property of the product. Hence, by the uniqueness property of the pullback P there exists a unique morphism y
such that uy “ x “ vy. This shows that pP, u, vq is the equalizer of f and g.

In a general category, a morphism with kernel 0 need not be a monomorphism, but in abelian categories vanishing
of the kernel implies that the morphism is a monomorphism.

Lemma 2.2.6. Let A be an abelian category. A morphism f is a monomorphism (resp. an epimorphism) if and
only if ker f “ 0 (resp. coker f “ 0).

Proof. By duality it suffices to prove that f is a monomorphism if and only if ker f “ 0. Suppose f : X Ñ Y is a
monomorphism. If fg “ 0, for some morphism g, then g “ 0. Thus 0 is the kernel of f .

Conversely, let ker f “ 0. Let u, v be morphisms such that fu “ fv. Let q be the coequalizer of u and v and m
the unique morphism such that f “ mq. Since a coequalizer is an epimorphism, q “ cokerw for some morphism w.
Let k be the kernel of f . From fw “ mqw “ 0 we get a unique morphism n such that kn “ w. Thus w “ 0 because
ker f “ 0. The morphism q is an isomorphism because the cokernel of the zero morphism is an isomorphism. Thus
qu “ qv implies u “ v which shows that f is a monomorphism.

To prove factorization of morphisms in abelian categories, we introduce strong epimorphisms. We will see that
in an abelian category every epimorphism is strong.
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Definition 2.2.7 (Strong and regular epimorphisms). An epimorphism f : AÑ B is strong if for every commutative
square

A B

C D

f

g g1
h

f 1

where f 1 is a monomorphism, there exists a unique morphism h : B Ñ C making the diagram commutative.
An epimorphism is said regular if it is the coequalizer of some pair of morphisms.

Lemma 2.2.8. A regular epimorphism is a strong epimorphism.

Proof. Let f be the coequalizer of a, b : AÑ B such that the following diagram is commutative

A B C

X Y

a,b f

g g1
h

f 1

where f 1 is a monomorphism. By commutativity g1fa “ f 1ga and g1fb “ f 1gb. Since f 1 is a monomorphism,
we get ga “ gb. Hence there exists a unique morphism h such that fh “ g. Since f is an epimorphism, by
commutativity g1 “ f 1h. From the fact f 1 is a monomorphism, the morphism h is unique. This shows that f is a
strong epimorphism.

Since all epimorphisms in an abelian category are regular by AB4, the above lemma implies that all epimorphisms
in an abelian category are strong.

Lemma 2.2.9. Let f “ ip for some strong epimorphism p and some monomorphism i. This factorization is unique
up to unique isomorphism, more precisely, if ip “ i1p1 where p1 is a strong epimorphism and i1 is a monomorphism,
then there exists a unique isomorphism h such that p “ hp1 and i1 “ ih.

Proof. Let f “ ip “ i1p1, with p and p1 strong epimorphisms, and i and i1 monomorphisms. By definition of strong
epimorphism there exist unique morphisms h and h1 such that hi “ i1, h1i1 “ i, hp “ p1, and h1p1 “ p. By uniqueness
hh1 “ Id and h1h “ Id. Thus h is an isomorphism.

We are ready to prove the epimorphism monomorphism factorization of morphisms in an abelian category.
Define the image of a morphism f to be kerpcoker fq and the coimage of a morphism f to be cokerpker fq.

Theorem 2.2.10 (Factorization of morphisms). Let A be an abelian category. Every morphism f : X Ñ Y in
A can be factorized uniquely, up to unique isomorphism, as f “ me, where e is an epimorphism and m is a
monomorphism. In particular, we have f “ ip, where i “ kerpcoker fq and e “ cokerpker fq.

Moreover, if we have the following commutative diagram

X1 X2 X3

Y1 Y2 Y3

e1

f

m1

h g

e2 m2

where e1 and e2 are epimorphisms and m1 and m2 are monomorphisms, then there exists a unique morphism h
which makes the diagram commutative.
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Proof. Factorization: Fix notation by the following diagram

X Y

ker f Coim f Im f coker f

f

f2 f4f1

g

f3 (2.2)

Since ff1 “ 0, there exists a unique morphism φ such that f “ φf2. Now f4φf2 “ f4f “ 0, and f2 is an
epimorphism, so f4φ “ 0. Thus there exists a unique morphism g such that f “ φf2 “ f4gf2.

To show that g is an isomorphism it suffices to show that g is an epimorphism and a monomorphism. Let v be
a morphism such that f3gv “ 0 and let q be the cokernel of v. Hence there exists a unique morphism r such
that rq “ f3g. Now qf2 is an epimorphism, so by AB4 there exists a morphism u such that qf2 “ cokeru.
From fu “ f3gf2u “ rqf2u “ 0 one obtains that u “ f1l for some unique morphism l. Next, f2u “ f2f1l “ 0,
so f2 “ sqf2 for some unique morphism s and sq “ Id by the fact that f2 is an epimorphism. From this it
follows that q is a monomorphism, so qv “ 0 implies v “ 0. This shows that f3g is a monomorphism. But
f3 as a kernel is a monomorphism, so g is a monomorphism. Dually one gets that g is an epimorphism and
hence an isomorphism.

Lemma 2.2.9 implies that the factorization is unique up to unique isomorphism.

Morphism between factorizations: Since all epimorphisms in an abelian category are strong, by definition of
strong epimorphism there exists a unique morphism h making the following diagram commutative.

X1 X2

Y2 Y3

e1

e2f gm1
h

m2

The following are useful corollaries of the above result.

Corollary 2.2.11. In an abelian category A, every monomorphism (resp. epimorphism) is the kernel of its cokernel
(resp. cokernel of its kernel).

Proof. Let f : AÑ B be a monomorphism. By theorem 2.2.10 we have f “ kerpcokerpfqqe for some epimorphism e.
Since f is a monomorphism, e is a monomorphism, and hence an isomorphism. Thus f is the kernel of its cokernel.
By duality one obtains that an epimorphism is the cokernel of its kernel.

Corollary 2.2.12. Let A be an abelian category and f “ me a morphism of A where m is a monomorphism and
e is an epimorphism. Then ker f – ker e and coker f – cokerm.

Proof. By duality it suffices to show that ker f – ker e. Let k1 : ker f Ñ f and k2 : ker eÑ e be the corresponding
morphisms. Then fk1 “ 0 implies ek1 “ 0 and ek2 “ 0 implies fk2 “ 0. From the universal properties if follows
that ker f – ker e.

The rest of this section is devoted for a quick introduction to exact sequences in abelian categories.
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Definition 2.2.13 (Exact sequence). Let A be an abelian category. A sequence of objects and morphisms of the
form

. . . Xi´1 Xi Xi`1 . . .
φi´2 φi´1 φi φi`1

is an exact sequence if Imφi´1 – kerφi, where Imφi´1 “ kerpcokerφi´1q, for all i P Z.
In case an exact sequence consists of at most 3 consecutive nonzero objects the sequence is called a short exact

sequence. In this case we do not write all the 0 objects but only

0 A B C 0
f g

.

We have the following useful criterion for exact sequences

Proposition 2.2.14. Let A be an abelian category. Then

(i) 0 Ñ A
f
Ñ B is an exact sequence if and only if f is a monomorphism.

(ii) B
f
Ñ AÑ 0 is an exact sequence if and only if f is an epimorphism.

(iii) 0 Ñ A
f
Ñ B

g
Ñ C is an exact sequence if and only if f “ ker g.

(iv) C
g
Ñ B

f
Ñ AÑ 0 is an exact sequence if and only if f “ coker g.

Proof. Let us prove (i). The morphism 0 Ñ A is a monomorphism because 0 is the terminal object in A. Hence by
corollary 2.2.11, the morphism 0 Ñ A is image of itself. Thus by exactness ker f “ 0. By corollary 2.2.11 it follows
that f is a monomorphism. Conversely, if f is a monomorphism, then by corollary 2.2.11 0 Ñ A is its kernel. Thus
the sequence is exact. By duality (ii) is also proven.

The statement of (iii) is a direct consequence of (i) and corollary 2.2.11. By duality (iv) holds.

The following lemma will be used later in derived functors.

Lemma 2.2.15. Consider the following diagram in an abelian category A.

X Y Z

kerpcoker fq kerpcoker gq

f

e1

g

e2m1 m2 .

Then pf, gq is exact if and only if pm1, e2q is exact. If this is true, we have the following short exact sequence

0 ker g Y kerpcoker gq 0
m1 e2 .

Proof. Follows from 2.2.14, 2.2.12, and 2.2.6.

Definition 2.2.16 (Split short exact sequence). Let A be an abelian category. We say that a short exact sequence

0 X Y Z 0
f g

splits, or that it is a split short exact sequence, if there exist morphisms i : Y Ñ X and j : Z Ñ Y such that
if “ IdX and gj “ IdZ .
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Example 2.2.17. Not every short exact sequence splits. Consider the following short exact sequence

0 Z{2Z Z{4Z Z{2Z 0
f g

in the category Ab, where fp1q “ 2 and gp1q “ 1. The only nonzero morphism from Z{2Z to Z{4Z sends 1 to 2, so
there cannot be a morphism j : Z{2ZÑ Z{4Z with gj “ IdZ{2Z.

Definition 2.2.18 (Semisimple). An abelian category A where all the short exact sequences split is called semisim-
ple.

Example 2.2.19. The category of finite dimensional vector spaces over a field is semisimple.

2.3 An abelian category is additive

In this section we follow [Bor94b, Section 1.6] to prove that an abelian category is additive. This result is inter-
esting in the sense that in the definition of abelian category 2.2.1 we didn’t touch the set of morphisms between
objects directly. Nevertheless, this definition gives the sets of morphisms between objects the structure of abelian
groups, that is, MorpX,Y q is an abelian group for any objects X and Y , which are compatible with composition of
morphisms. This means that for any morphisms f, g : X Ñ Y and h, k : Y Ñ Z we have hpf ` gq “ hf ` hg and
ph` kqf “ hf ` kf .

Lemma 2.3.1. Let A be an abelian category. For any object A of A the cokernel q : AˆAÑ Q of ∆ : AÑ AˆA,
the unique morphism induced by the morphisms IdA and IdA, has the property that Q – A.

Proof. Denote by r : A Ñ Q the composite qpIdA, 0q. We prove that r is an isomorphism. Fix notation by the
following commutative diagram

A

A AˆA Q

A A

pIdA,0q
r

∆

IdAIdA
p1

p2

q .

We have ∆ “ kerpcokerp∆qq “ kerpqq by corollary 2.2.11 because ∆ is a monomorphism. From p1pIdA, 0q “
IdA “ p2p0, IdAq it follows that p1 and p2 are epimorphisms and pIdA, 0q and p0, IdAq are monomorphisms. Let
v : V Ñ AˆA be a morphism such that p2v “ 0. Now

#

p1pIdA, 0qp1v “ p1v

p2pIdA, 0qp1v “ 0

#

p1v “ p1v

p2v “ 0

so by the universal property of product, pIdA, 0qp1v “ v. The factorization p1v : V Ñ A is unique, because pIdA, 0q
is a monomorphism. This shows that pIdA, 0q : AÑ AˆA is the kernel of p2.

Similarly, if p1v “ 0, then from

#

p1p0, IdAqp2v “ 0

p2p0, IdAqp2v “ p2v

#

p1v “ 0

p2v “ p2v
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the universal property gives p0, IdAqp2v “ v. The factorization p2v : V Ñ A is unique because p0, IdAq is a
monomorphism, hence p0, IdAq “ ker p1. Since p1 and p2 are epimorphisms, by corollary 2.2.11 p2 “ cokerpIdA, 0q
and p1 “ cokerp0, IdAq.

To show that r is a monomorphism, let x : X Ñ A be a morphism such that rx “ 0. Since ∆ “ ker q,
we obtain a morphism y : X Ñ A such that pIdA, 0qx “ ∆y. From y “ p2∆y “ p2pIdA, 0qx “ 0, we get
0 “ y “ p1∆y “ p1pIdA, 0qx “ x. By 2.2.6, this shows that r is a monomorphism.

To show that r is an epimorphism, let x : Q Ñ X be a morphism such that xr “ 0. Since p2 “ cokerpIdA, 0q,
we obtain a morphism y : A Ñ X such that yp2 “ xq. From y “ yp2∆ “ xq∆ “ 0, one gets xq “ 0, and
thus x “ 0, because q is an epimorphism. Therefore r is an epimorphism, by 2.2.6, and we conclude that r is an
isomorphism.

Let us introduce the sum of morphisms for an abelian category A. Denote by q the cokernel of the diagonal
morphism ∆ : AÑ AˆA and write σA for the composite r´1q, where r is the composite qpIdA, 0q as in lemma 2.3.1.
The composite

B AˆA A
pf,gq σA

is denoted by f ´g. We define f `g “ f ´p0´gq and show that this definition makes an abelian category additive.
To do that, we need the following lemma.

Lemma 2.3.2. Let A be an abelian category and keep the notation above. For a morphism f : B Ñ A in A, we
have f ˝ σB “ σA ˝ pf ˆ fq.

Proof. Fix notation by the following commutative diagram

B A

B ˆB AˆA

B B A A

f

∆B ∆A

fˆf

σB σA

IdB

pIdB ,0q

g

IdA

pIdA,0q

where the morphism g : B Ñ A is the unique morphism such that gσb “ σApf ˆ fq given by the cokernel property
of σB . It suffices to show that f “ g.

Now qpIdA 0q “ r, so σApIdA, 0q “ r´1qpIdA, 0q “ IdA. Similarly σBpIdB , 0q “ IdB . From

#

p1pf ˆ fqpIdB , 0q “ f

p2pf ˆ fqpIdB , 0q “ 0

#

p1pIdA, 0qf “ f

p2pIdA, 0qf “ 0

the universal property for product implies pf ˆ fqpIdB , 0q “ pIdA, 0qf . Putting these together we get

g “ gσBpIdB , 0q “ σApf ˆ fqpIdB 0q “ σApIdA, 0qf “ f.

We are ready to prove that an abelian category is additive.

Theorem 2.3.3. An abelian category A is additive.
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Proof. Let A,B,C be any objects in A, and f : C Ñ B a morphism in A.

MorApA,Bq abelian: Let a, b, c, d : C Ñ A be any morphisms in A. By lemma 2.3.2 for p1 : A ˆ A Ñ A and
p2 : AˆAÑ A we have the following commutative diagrams

pAˆAq ˆ pAˆAq AˆA

AˆA A

p1ˆp1

σAˆA σA

p1

pAˆAq ˆ pAˆAq AˆA

AˆA A

p2ˆp2

σAˆA σA

p2

Now, by commutativity

#

p1ppa, bq ´ pc, dqq “ p1σAˆAppa, bq, pc, dqq “ σApp1 ˆ p1qppa, bq, pc, dqq “ σApa, cq

p2ppa, bq ´ pc, dqq “ p2ppa, bq, pc, dqqσAˆA “ σApp1 ˆ p1qppa, bq, pc, dqq “ σApb, dq

Since
#

p1ppa´ cq, pb´ dqq “ a´ c “ σApa, cq

p2ppa´ cq, pb´ dqq “ b´ d “ σApb, dq

by uniqueness we have

pa, bq ´ pc, dq “ pa´ c, b´ dq.

Lemma 2.3.2 applied to σA : AˆAÑ A, we get the following commutative diagram

pAˆAq ˆ pAˆAq AˆA

AˆA A

σAˆσA

σAˆA σA

σA

Now

pa´ cq ´ pb´ dq “ σAppa´ cq, pb´ dqq

“ σAppa, bq ´ pc, dqq

“ σAσAˆAppa, bq, pc, dqq

“ σApσA ˆ σAqppa, bq, pc, dqq

“ σApσApa, bq, σApc, dqq

“ σAppa´ bq, pc´ dqq

“ pa´ bq ´ pc´ dq,

where the equality pσA ˆ σAqppa, bq, pc, dqq “ pσApa, bq, σApc, dqq follows from the universal property of the
product. Indeed, suppose we have a morphism φ : Y Ñ Z and morphisms x, y : X Ñ Y . Then

#

p1pφx, φyq “ φx

p2pφx, φyq “ φy
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and from commutativity of the following diagram

X Y Z

X ˆX Y ˆ Y Z ˆ Z

X Y Z

x φ

px,yq

p1

p2

φˆφ

p1

p2

p1

p2

y φ

we get that
#

p1pφˆ φqpx, yq “ φx

p2pφˆ φqpx, yq “ φy.

Hence pφˆ φqpx, yq “ pφx, φyq. Denoting B by x, Aˆ A by Y and Z, σA by φ, and a and b by x and y one
gets the claimed equality.

We are ready to verify the axioms of an abelian group for MorApB,Aq.

Zero element The zero element of MorApB,Aq is naturally the zero morphism 0 : B Ñ A. From the identity
σApIdA, 0q “ IdA proved in lemma 2.3.2 and pa, 0q “ pIdA, 0qa we get a´ 0 “ a.

Inverse From the identity σA∆A “ 0, proved in lemma 2.3.2, and pa, aq “ ∆Aa we have

a´ a “ σApa, aq “ 0.

Therefore

p0´ aq ` a “ p0´ aq ´ p0´ aq “ p0´ 0q ´ pa´ aq “ 0.

Commutativity From the identities

p0´ bq ´ c “ p0´ bq ´ pc´ 0q “ p0´ cq ´ pb´ 0q “ p0´ cq ´ b

and

0´ p0´ dq “ pd´ dq ´ p0´ dq “ pd´ 0q ´ pd´ dq “ pd´ 0q ´ 0 “ d

we get

b` c “ b´ p0´ cq “ p0´ p0´ bqq ´ p0´ cq “ p0´ 0q ´ pp0´ bq ´ cq

“ p0´ 0q ´ pp0´ cq ´ bq “ p0´ p0´ cqq ´ p0´ bq “ c´ p0´ bq

“ c` b.

Associativity Finally, by using the following 5 identities

b` p0´ cq “ b´ p0´ p0´ cqq “ b´ c,

b` p0´ bq “ b´ b “ 0,

0´ pc´ dq “ p0´ 0q ´ pc´ dq “ p0´ cq ´ p0´ dq “ p0´ cq ` d

0´ pc` dq “ 0´ pc´ p0´ dqq “ p0´ cq ` p0´ dq “ p0´ cq ´ d,

pa´ bq ` d “ pa´ bq ´ p0´ dq “ pa´ 0q ´ pb´ dq “ a´ pb´ dq,
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we get

pa` bq ` d “ pa´ p0´ bqq ` d “ a´ pp0´ bq ´ dq “ a´ pp0´ bq ´ p0´ p0´ dqq

“ a´ pp0´ 0q ´ pb´ p0´ dqqq “ a´ p0´ pb` dqq “ a` pb` dq.

Composition: To show that addition is bilinear with respect to composition of morphisms, let x : X Ñ C and
y : AÑ Y be morphisms in A. Now

pa´ bqx “ σApa, bqx “ σApax, bxq “ ax´ bx

and by lemma 2.3.2 we have

ypa´ bq “ yσApa, bq “ σY py ˆ yqpa, bq “ σY pya, ybq “ ya´ yb.

This shows that addition is bilinear under composition of morphisms.

By proposition 2.1.3, A has the biproduct of A and B. Since A,B,C, and f were arbitrary, we have proven that A
is an additive category.

Corollary 2.3.4. Let A be an abelian category and let f : A Ñ B and g : A Ñ C be morphisms. The following
sequence

A B ‘ C W 0
i1f´i2g c

is exact, where c : B‘C ÑW is the coequalizer of i1f and i2g. In particular, the coequalizer W here is the pushout
of f and g by the dual version of the proof of proposition 1.2.7.

Proof. The morphism c is an epimorphism because it is a coequalizer. By proposition 2.2.14 it suffices to show
that c is the cokernel of i1f ´ i2g. But the coequalizer W of i1f and i2g is also the cokernel of i1f ´ i2g. Indeed,
if d : B ‘ C Ñ W 1 is a morphism such that di1f “ di2g, equivalently dpi1f ´ i2gq “ 0, then there is a unique
morphism e such that ec “ d. Thus the sequence is exact.

Corollary 2.3.5. Let A be an abelian category. Then every pushout square is a pullback square. Moreover, pushout
of a monomorphism is a monomorphism and pullback of an epimorphism is an epimorphism.

Proof. By duality, it suffices to show that pushout of a monomorphism is a monomorphism, because pushout squares
correspond to pullback squares and monomorphisms to epimorphisms in the opposite category.

Let f : X Ñ Y be a monomorphism and g : X Ñ Z a morphism. Consider the following commutative diagram

X Y

Y ‘ Z

Z W

f

i2g´i1f

g

i1

ci2

where c : Y ‘ Z Ñ W is the cokernel of i2g ´ i1f . Then pW, ci1 : Y Ñ W, ci2 : Z Ñ W q is the pushout of f and g
by the proof of 1.2.7.

Let us show that i2g ´ i1f is a monomorphism. Let x : D Ñ X be a morphism such that pi2g ´ i1fqx “ 0.
Now 0 “ p1pi2g ´ i1fqx “ ´fx, so x “ 0 by the fact that f is a monomorphism. This shows that i2g ´ i1f is a
monomorphism. By 2.2.11 we have i2g ´ i1f “ ker c.
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To show that ci2 is a monomorphism, let y : D Ñ Y be a morphism such that ci2y “ 0. Then there exists a
unique morphism φ : D Ñ X such that pi2g ´ i1fqφ “ i2y. Now ´fφ “ p1pi2g ´ i1fqφ “ p1i2y “ 0, so φ “ 0 by
the fact that f is a monomorphism. From i1y “ pi2g ´ i1fqφ “ 0, we get y “ 0, because i2 is a monomorphism.
This shows that ci2 is a monomorphism.

It remains to show that a pushout square is a pullback square. Keep the notation of the diagram and let
y : D Ñ Y and z : D Ñ Z be morphisms such that ci1y “ ci2z. Let q : Y Ñ V be the cokernel of f . Now
qf “ 0g “ 0, so there is a unique morphism r such that rci1 “ q and rci2 “ 0. From qy “ rci1y “ rci2z “ 0, we
get that there is a unique morphism x such that fx “ y, because f “ ker q. Now ci2z “ ci1y “ ci1fx “ ci2gx, so
z “ gx by the fact that ci2 is a monomorphism. Uniqueness of the morphism x follows from the fact that f is a
monomorphism. This shows that pX, f, gq is the pullback of pW, ci1, ci2q.

2.4 Formalism of pseudo-elements

We introduce the formalism of pseudo-elements for abelian categories following [Bor94b, Chapter 1, Section 9] and
[ML78, Chapter VIII]. This formalism allows us to reason about morphisms of abelian categories similarly as one
reasons of morphisms of abelian groups by using elements. We will use this formalism to prove exactness of some
sequences.

Definition 2.4.1 (Pseudo-element). Let A be an abelian category. A pseudo-element a of A P ObA, written
a P˚ A, is a morphism with codomain A. Two pseudo-elements a : X Ñ A, a1 : X 1 Ñ A of A are pseudo-equal,
written a “˚ a1, if there exist epimorphisms p : Y Ñ X and p1 : Y Ñ X 1 such that ap “ a1p1.

A pseudo-image under a morphism f : A Ñ B of a pseudo-element a P˚ A is the composite fa, also denoted
fpaq. The following proposition proves some basic facts about pseudo-elements.

Proposition 2.4.2. Let f : AÑ B, g : B Ñ C be morphisms in an abelian cateogry A.

(i) pseudo-equality is an equivalence relation.

(ii) a “˚ b implies fpaq “˚ fpbq.

(iii) fpgpaqq “˚ pfgqpaq for a P˚ A.

(iv) There is an equivalence class of pseudo-elements of A consisting of zero morphisms with codomain A. In
particular, a “˚ 0 if and only if a “ 0.

Proof. (i) Obviously pseudo-equality is reflexive and symmetric. Let a, b, c P˚ A, so that au1 “ bu2 and bv1 “ cv2

for some epimorphisms u1, u2, v1 and v2. Consider the following pullback diagram

Z1 Y1

Y2 X2

u12

v11 u2

v1

By corollary 2.3.5 u12 and v11 are epimorphisms and au1u
1
2 “ bu2u

1
2 “ bv1v

1
1 “ cv2v

1
1. Hence a “˚ b.

(ii) Obvious from definition.

(iii) Obvious from definition.
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(iv) Suppose a P˚ A and a “˚ 0. Then av “ 0 for some epimorphism v, so a “ 0. Conversely, if a : X Ñ A
b : Y Ñ A are zero morphisms, then p1 : X‘Y Ñ X and p2 : X‘Y Ñ Y are epimorphisms and ap1 “ 0 “ bp2.
Hence, any two zero morphisms with codomain A are pseudo-equal.

Next we prove some diagram chasing results for pseudo-elements.

Proposition 2.4.3. Let A be an abelian category.

(i) f : AÑ B is the zero morphism if and only if fpaq “ 0 for all a P˚ A.

(ii) f : AÑ B is a monomorphism if and only if fpaq “˚ fpa1q implies a “˚ a1 for all a, a1 P˚ A.

(iii) f : AÑ B is an epimorphism if and only if for all b P˚ B there exist a P˚ A such that fpaq “˚ b.

(iv) A short exact sequence

A B C
f g

is exact if and only if for every a P˚ A we have gpfpaqq “ 0 and for every b P˚ B with gpbq “ 0 there exists a
pseudo-element a1 P˚ A such that fpaq “˚ b.

(v) For f : A Ñ B and a, a1 P˚ A with fpaq “˚ fpa1q there exists a2 P˚ A such that fpa2q “ 0 and for all
g : AÑ C condition gpa1q “ 0 implies gpa2q “˚ gpaq.

(vi) Let

D B

A C

f 1

g1 g

f

be a pullback diagram in A and let a : A1 Ñ A and b : B1 Ñ B be pseudo-elements such that fpaq “˚ gpaq.
Then there is a pseudo-element d P˚ D, unique up to pseudo-equality, such that g1pdq “˚ a and f 1pdq “˚ b.

Proof. (i) Clear from the definition of pseudo-element and proposition 2.4.2

(ii) Clear from the definition of monomorphism.

(iii) Suppose f is an epimorphism and let b P˚ B. Take the pullback of f and b so that fa “ bp, where p is
an epimorphism by corollary 2.3.5. This shows that fpaq “˚ b. Conversely, suppose that for every pseudo-
element b P˚ B there exists a pseudo-element a P˚ A such that for some epimorphisms p and q we have
fap “ bq. Let x be a morphism such that xf “ 0. Since IdB is a pseudo-element of B we have fa1p “ q for
some pseudo-element a1 of A and some epimorphisms p and q. This implies that fa1p is an epimorphism and
hence fa1 is an epimorphism. Now xfa1 “ 0, so x “ 0. Thus f is an epimorphism.

(iv) Suppose that

A B C
f g

(2.3)

is an exact sequence and let f “ em be the factorization given by theorem 2.2.10. Since gf “ 0, we have
gfpaq “ 0 for all pseudo-elements a of A. Let b P˚ B such that gb “ 0. Then there exists a unique morphism
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c such that mc “ b because by exactness m “ ker g. By taking the pullback of e and c, we obtain a the
following commutative diagram

Y X

A I B C

q

a c b

e m g

where a and q are epimorphisms by corollary 2.3.5. By commutativity fa “ qb, so fpaq “˚ b.

Conversely, to show that (2.3) is exact, let f “ me be the epimorphism monomorphism factorization of f . It
suffices to show that m “ ker g. Now gf “ 0, so gm “ 0 because e is an epimorphism. If b is a morphism
with gb “ 0, then there exists a pseudo-element a P˚ A such that fap “ bq for some epimorphisms p and q.
Consider the following pullback square

Y X

P B

j

c b

m

The morphism j is a monomorphism by proposition 1.2.8. Since bq “ meap, there exists a unique morphism
z such that jz “ q and cz “ eap. The morphism q is an epimorphism, and thus j is an epimorphism. Hence
j is an isomorphism, and b “ mcj´1. This shows that m is the kernel of g, because cj´1 is unique by the fact
that m is a monomorphism.

(v) Let a, a1 P˚ A such that fap “ fa1q for some epimorphisms p and q. Let a2 “ ap ´ a1q. Clearly fpa2q “ 0,
and for all g : AÑ C with ga1q2 “ 0, for some epimorphism q2, we have ga2q2 “ gaq2, so gpa2q “˚ gpaq.

(vi) Let a P˚ A, a : A1 Ñ A, and b P˚ B, b : B1 Ñ B such that fap “ gbq for some epimorphisms p and q. Then
there exists a unique morphism d such that g1d “ ap and f 1d “ bq. Now d P˚ D, D1 Ñ D is a pseudo-element
such that f 1pdq “˚ b and g1pdq “˚ a.

To show uniqueness of the pseudo-element d up to pseudo-equality, let d1 : D2 Ñ D be another such pseudo-
element. We can assume that g1d1 “ ap1 and f 1d1 “ bq1 for some epimorphisms p1 and q1. By taking the
following pullbacks and using corollary 2.3.5

W1 D1

D2 A1

p

p1

W2 D1

D2 B1

q

q1

W3 W1

W2 D1

we get that all the morphisms in the above diagrams are epimorphisms and

W3 ÑW1 Ñ D1 Ñ B1 Ñ B “W3 ÑW2 Ñ D2 Ñ B1 Ñ B

W3 ÑW2 Ñ D1 Ñ A1 Ñ A “W3 ÑW2 Ñ D2 Ñ A1 Ñ A,

so by uniqueness of pullback W3 ÑW1 Ñ D1 Ñ D “W3 ÑW1 Ñ D2 Ñ D. Hence d “˚ d1.

Remark 2.4.4. Note that pseudo-elements cannot be used to prove equality of morphisms in general. Let a P˚ A be
a pseudo-element not pseudo-equal to 0. Then a “˚ ´a, but as a morphism a` a need not be equal to 0. Indeed,

the morphism Z 2
Ñ Z in the category of Z-modules is not equal to Z ´2

Ñ Z.
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2.5 Category of complexes

In this section we construct a new category from an additive category, the category of complexes. The objects of
this category are sequences of objects of the underlying category connected with differentials. It turns out that the
category of complexes over an additive category is additive and the category of complexes over an abelian category
is abelian, see lemma 2.5.6 and theorem 2.5.7. The language of complexes allows us to define cohomology, which is
central in homological algebra.

Definition 2.5.1 (Category of complexes). For any additive category A we can construct the category of (cochain)
complexes CpAq. The objects of CpAq are sequences A‚ “ pAi, diA‚ : Ai Ñ Ai`1qiPZ, where Ai are objects of A and
diA‚ : Ai Ñ Ai`1 are morphisms of A, called differentials, such that di`1

A‚ d
i
A‚ “ 0 for all i. A morphism of complexes

f : A‚ Ñ B‚ is a sequence of morphisms f i : Ai Ñ Bi in A, i P Z, such that the following diagram is commutative

. . . Ai´1 Ai Ai`1 . . .

. . . Bi´1 Bi Bi`1 . . .

di´2
A‚

di´1
A‚

fi´1

diA‚

fi

di`1
A‚

fi`1

di´2
B‚

di´1
B‚ diB‚ di`1

B‚

We denote by C`pAq (resp. C´pAq, resp. CbpAq) the full subcategory of CpAq consisting of objects X P CpAq
such that for some n P N, Xi “ 0 for all i ă ´n (resp. i ą n, resp. i ă ´n and i ą n).

The construction of cochain complexes can be expressed also in terms of functors. Let I be a category where
objects are the elements of Z Y t˚u. Suppose ˚ is the zero object in I, and for any i P Z, there exists a morphism
i Ñ i ` 1 such that i Ñ i ` 1 Ñ i ` 2 “ i Ñ ˚ Ñ i ` 2. Then a complex over an additive category A is a functor
F : I Ñ A which preserves the zero object. A morphism of complexes F : I Ñ A and G : I Ñ A is a natural
transformation F Ñ G.

Definition 2.5.2 (Cohomology complex). Let CpAq be the category of chain complexes over an abelian category.
Let X‚ P ObCpAq and consider the commutative diagram

coker di´1
X‚

Xi´1 Xi Xi`1

ker diX‚

bi

di´1
X‚

ai

diX‚

φi2

φi1

(2.4)

where existence of morphisms ai and bi follows from the universal property of kernel and cokernel and the equation
diX‚d

i´1
X‚ “ 0. The i-th cohomology of X‚ is the object

HipX‚q “ coker ai – ker bi

and the cohomology complex of X‚ is the complex

H‚pX‚q : . . . Hi´1pX‚q HipX‚q Hi`1pX‚q . . .0 0 0 0 .
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We need to verify that the above definition is well-defined, that is coker ai – ker bi. Let di´1
X‚ “ m1e1 and

diX‚ “ m2e2 be the factorizations given by theorem 2.2.10. We get the following commutative diagram where the
morphisms a1 and b1 are obtained from equations m2e2m1 “ 0 and e2m1e1 “ 0.

coker di´1
X‚

Xi´1 Y i´1 Xi Y i Xi`1

ker diX‚

bib1

e1

ai

m1

a1

e2

φi2

m2

φi1

From m1 “ φi1a
1 and e2 “ b1φi2 we get that a1 is a monomorphism and b1 is an epimorphism. By corollary 2.2.12

coker a1 “ coker ai and ker b1 “ ker bi. Thus it suffices to show that coker a1 – ker b1.
We show that a1 is the kernel of φi2φ

i
1. Let ψ be a morphism such that φi2φ

i
1ψ “ 0. By corollaries 2.2.11

and 2.2.12 m1 “ kerpcokerm1q “ kerφi2, so there exists a unique morphism h such that m1h “ φi1a
1h “ φi1ψ. Now

φi1 is a monomorphism, so a1h “ ψ. The morphism h is unique because a1 is a monomorphism. This shows that
a1 is the kernel of φi2φ

i
1. Similarly one shows that b1 is the cokernel of φi2φ

i
1. Putting these together and using

theorem 2.2.10 we get

coker ai “ coker a1 “ cokerpkerφi2φ
i
1q – kerpcokerφi2φ

i
1q “ ker b1 “ ker bi.

This shows that cohomology is well-defined.
We prove an alternative characterization for cohomology which will be used to obtain a long exact sequence

from a short exact sequence of complexes.

Lemma 2.5.3. For any complex X‚ there exists a unique morphism h such that the following diagram

Xi coker di´1
X‚

ker di`1
X‚ Xi`1

φi1

φi2
h

ψi1

ψi2

(2.5)

is commutative. Here ψi1φ
i
1 “ ψi2φ

i
2 “ diX‚ , φ

i
1 is an epimorphism, and ψi2 is a monomorphism. Moreover,

HipX‚q – kerh and Hi`1pX‚q – cokerh.

Proof. Construction of h: From di`1
X‚ ψ

i
1φ
i
1 “ di`1

X‚ d
i
X‚ “ 0 we get di`1

X‚ ψ
i
1 “ 0, because φi1 is an epimorphism.

Hence, there exists a unique morphism h : coker di´1
X‚ Ñ ker di`1

X‚ such that ψi1 “ ψi2h. Now ψi2φ
i
2 “ ψi1φ

i
1 “

ψi2hφ
i
1 and φi2 “ hφi1 by the fact that ψi2 is a monomorphism. This shows that the resulting diagram is

commutative.

HipX‚q – kerh: Let α1 : kerh Ñ coker di´1
X‚ be the kernel of h and α2 : HipX‚q Ñ coker di´1

X‚ the kernel of
φi1 : coker di´1

X‚ Ñ Xi`1. Now hα2 “ 0, because ψi2 is a monomorphism, and ψi1α1 “ ψi2hα1 “ 0. Thus there
exist unique morphisms γ1 : kerh Ñ HipX‚q and γ2 : HipX‚q Ñ kerh such that α2γ1 “ α1 and α1γ2 “ α2.
Hence α1 “ γ2γ1α1, so γ2γ1 “ Idkerh, and α2 “ γ1γ2α2, so γ1γ2 “ IdHipX‚q. This shows that HipX‚q – kerh.

Hi`1pX‚q – cokerh: Let β1 : ker di`1
X‚ Ñ cokerh be the cokernel of h and β2 : ker di`1

X
‚ Ñ Hi`1pX‚q be the

cokernel of Xi Ñ ker di`1
X‚ . Now β2hφ

i
1 “ β2φ

i
2 “ 0, so β2h “ 0, by the fact that φi1 is an epimorphism, and
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β1φ
i
2 “ β1hφ

i
1 “ 0. Therefore there exist unique morphisms γ1 : cokerh Ñ Hi`1pX‚q and γ2 : Hi`1pX‚q Ñ

cokerh such that γ1γ2β2 “ β2 and γ2γ1β1 “ β1, so γ1γ2 “ IdHi`1pX‚q and γ2γ1 “ Idcokerh.

For any morphism f : X‚ Ñ Y ‚ of complexes over an abelian category, we have an induced morphism of
complexes Hipfq : HipXq Ñ HipY q for all i. Indeed,

ker diX Ñ Xi Ñ Y i Ñ Y i`1 “ ker diX Ñ Xi Ñ Xi`1 Ñ Y i`1 “ 0,

so there exists a unique morphism ker f i : ker diX Ñ ker diY such that the following diagram is commutative

ker diX ker diY

Xi Y i

ker fi

fi

(2.6)

By commutativity

Xi´1 Ñ ker diX Ñ ker diY Ñ Y i “ Xi´1 Ñ ker diX Ñ Xi Ñ Y i

“ Xi´1 Ñ Xi Ñ Y i

“ Xi´1 Ñ Y i´1 Ñ Y i

“ Xi´1 Ñ Y i´1 Ñ ker diY Ñ Y i.

The morphism ker diY Ñ Y i is a monomorphism, so we have

Xi´1 Ñ ker diX Ñ ker diY “ Xi´1 Ñ Y i´1 Ñ ker diY . (2.7)

Therefore

Xi´1
1 Ñ ker diX Ñ ker diY Ñ HipY q “ Xi´1 Ñ Y i´1 Ñ ker di Ñ HipY q “ 0,

and by the cokernel property for HipXq there exists a unique morphism Hipfq : HipXq Ñ HipY q such that the
following diagram is commutative

ker diX ker diY

HipX‚q HipY ‚q

ker fi

Hipfq

(2.8)

By fixing kernels and cokernels of each morphism, this allows us to define a functor CpAq Ñ CpAq which maps
a complex to its cohomology complex and morphisms to induced morphisms. This functor is called the cohomology
functor. Indeed, by using the property that the morphisms ker f i and Hipfq in the commutative diagrams (2.6)
and (2.8) are unique it is easy to see that this map preserves identity morphisms and composition of morphisms.
We have proved the following proposition.

Proposition 2.5.4. Let A be an abelian category. There exists a functor H‚ : CpAq Ñ CpAq which sends a
complex X‚ to the cohomology complex H‚pX‚q and a morphism f : X‚ Ñ Y ‚ to the induced morphism H‚pfq :
H‚pX‚q Ñ H‚pY ‚q.
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The following proposition gives an alternative characterization of the pseudo-elements of i-th cohomology of a
complex.

Proposition 2.5.5. Let X‚ P ObCpAq where A is an abelian category. The pseudo-elements of HipX‚q are
in natural one-to-one correspondence with pseudo-elements x P˚ Xi such that diX‚pxq “ 0 under the following
equivalence relation „: for x : Y1 Ñ Xi, y : Y2 Ñ Xi P˚ Xi we have x „ y if and only if there exist epimorphisms
e1 : V Ñ Y1 and e2 : V Ñ Y2 such that xe1 ´ ye2 “ di´1

X‚ z for some pseudo-element z P˚ Xi´1.
This one-to-one correspondence ψ is given for a pseudo-element x : U Ñ Xi such that diX‚x “ 0 by first taking

the unique morphism x1 : U Ñ ker diX‚ such that the following diagram commutes

U Xi

ker diX‚

x1

x

φi1

and then we let ψpxq to be the composite of x1 followed by the morphism γ : ker diX‚ Ñ HipX‚q, the cokernel of the
morphism ai : Xi´1 Ñ ker diX‚ constructed in the diagram (2.4).

Proof. Fix notation by the following commutative diagram

Xi´1 Xi

ker diX‚

HipX‚q

di´1
X‚

ai
φi1

γ

First we need to verify that the map ψ is well-defined. Let x, y P˚ Xi be pseudo-elements such that diX‚x “ diX‚y “ 0
and xe1´ye2 “ di´1

X‚ z for some pseudo-element z of Xi´1 and epimorphisms e1 and e2. By definition of kernel there
exist unique morphisms x1 and y1 such that φi1x

1 “ x and φi1y
1 “ y. Since φi1px

1e1 ´ y1e2q “ di´1
X‚ z “ φi1a

iz, and
x1e1 ´ y

1e2 is the unique morphism with this property, we have x1e1 ´ y
1e2 “ aiz, because φi1 is a monomorphism.

Now γaiz “ 0, by the fact that γ is the cokernel of ai, and we find that γx1e1 “ γy1e2. This shows that ψpxq “˚ ψpyq
and ψ is well-defined.

To show that every pseudo-element of HipX‚q is an image of a pseudo-element of Xi, let w P˚ HipX‚q. By 2.4.3
(iii) there exists y P˚ ker diX‚ such that φi1pyq “

˚ w. Then φi1pyq is a pseudo-element of Xi such that diX‚pφ
i
1pyqq “ 0.

By construction of ψ, φi1pyq is sent to a pseudo-element of ker di´1
X‚ pseudo-equal to y. Thus ψ is surjective.

It remains to show that ψ is injective. Let x, y P˚ Xi be pseudo-elements which are mapped to pseudo-equal
pseudo-elements of HipX‚q. We have to show that xe1 ´ ye2 “ di´1

X‚ z for some pseudo-element z of Xi´1 and
some epimorphisms e1 and e2. Let x1 and y1 be the unique morphisms such that φi1x

1 “ x and φi1y
1 “ y. By

assumption γx1p1 “ γy1p2 for some epimorphisms p1 and p2. Now γpx1p1 ´ y1p2q “ 0 and by 2.4.3 (iv) there
exists a pseudo-element z1 of Xi´1 such that aizq1 “ px1p1 ´ y1p2qq2 for some epimorphisms q1 and q2. Now
di´1
X‚ pz

1q1q “ φi1px
1p1 ´ y

1p2qq2 “ xp1q2 ´ yp2q2. Hence we can take z “ z1q1. This shows that ψ is injective.

Lemma 2.5.6. If A is an additive category, then CpAq is additive.
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Proof. Abelian group: Let f, g : K‚ Ñ L‚ be two morphisms in CpAq. The following diagram commutes

. . . Ai´1 Ai ai`2 . . .

. . . Bi´1 Bi Bi`1 . . .

di´2
A‚

di´1
A‚

fi´1
`gi´1

diA‚

fi`gi

di`1
A‚

fi`1
`gi`1

di´2
B‚

di´i
B‚ diB‚ di`1

B‚

so f ` g :“ pf i ` giqiPZ is a morphism of complexes. If α, β : L‚ ÑM‚ are two morphisms in CpAq we have

ppf ` gq ˝ pα` βqqi “ pf i ` giq ˝ pαi ` βiq

“ pf i ˝ αiq ` pf i ˝ βiq ` pgi ˝ αiq ` pgi ˝ βiq

“ pf ˝ αqi ` pf ˝ βqi ` pg ˝ αqi ` pg ˝ βqi.

This shows that addition is bilinear with respect to composition.

Zero object: Clearly the complex p0A, 0iAqiPZ is the zero complex in CpAq.
Biproduct: To construct the biproduct in CpAq, let A‚, B‚ P ObCpAq be objects in CpAq. For any i P Z, let

pA‘Bqi “ Ai‘Bi and let the differential diA‚‘B‚ to be the unique morphism i1d
i
A‚p1` i2d

i
B‚p2 which makes

the following diagram commutative

Ai`1 ‘Bi`1

Ai Ai ‘Bi Bi

i1d
i
A‚

i1

diA‚‘B‚

i2d
i
B‚

i2

Since di`1
A‚ d

i
A‚ “ di`1

B‚ d
i
B‚ “ 0, we have di`1

A‚‘B‚d
i
A‚‘B‚ “ 0. Hence pA‚ ‘B‚, dA‚‘B‚q is a complex.

We define i1 : A‚ Ñ A‚ ‘ B‚, pi1q
i :“ i1 : Ai Ñ Ai ‘ Bi, i2 : B‚ Ñ A‚ ‘ B‚, pi2q

i :“ i2 : Bi Ñ Ai ‘ Bi,
p1 : A‚ ‘B‚ Ñ A‚, pp1q

i :“ p1 : Ai ‘Bi Ñ Ai, and p2 : A‚ ‘B‚ Ñ B‚, pp2q
i :“ p2 : Ai ‘Bi Ñ Bi. One can

easily check that these are morphisms in CpAq satisfying the following formulas

p1i1 “ IdA‚ , p2i2 “ IdB‚ , p1i2 “ 0, p2i1 “ 0, p1i1 ` p2i2 “ IdA‚‘B‚ .

Let C‚ P CpAq be a complex and f : A‚ Ñ C‚ and g : B‚ Ñ C‚ be morphisms of complexes. Then
h‚ “

 

f ip1 ` g
ip2

(

iPZ is the unique morphism from A‚‘B‚ to C‚ making the following diagram commutative

C‚

A‚ A‚ ‘B‚ B‚

f

i1

h
g

i2

Indeed, the fact that h‚ is a morphism follows from the equations

hi`1diA‚‘B‚ “ pf
i`1p1 ` g

i`1p2qpi1d
i
A‚p1 ` i2d

i
B‚p2q

“ pf i`1diA‚p1 ` g
i`1diB‚p2q

“ diC‚pf
i`1p1 ` g

i`1p2q “ diC‚h
i.

Uniqueness of the morphism h‚ follows from uniqueness of each of the hi. This shows that CpAq has biproducts.
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Theorem 2.5.7. Let A be an abelian category. Then CpAq is abelian.

Proof. Zero object: Clearly the complex

. . . 0 0 . . .0 0 0

is the zero object in CpAq.

Product: Since every abelian category is additive, by theorem 2.3.3, by lemma 2.5.6 the category CpAq is additive.
By proposition 2.1.3, CpAq has the product and coproduct of each pair of objects because it has the biproduct
of each pair of objects.

Kernel: By duality it suffices to show that every morphism has the kernel. Consider a morphism f : K‚ Ñ L‚ of
complexes. Let ker f denote the complex

. . . ker f i´1 ker f i ker f i`1 . . .
di´2
ker f di´1

ker f diker f di`1
ker f

where diker f is the unique morphism making the following diagram commutative

ker f i ker f i`1

Ki Ki`1

Li Li`1

diker f

γi γi`1

diK‚

fi fi`1

diL‚

The equation di`1
ker fd

i
ker f “ 0 follows from commutativity, di`1

K‚ d
i
K‚ “ 0, and the fact that ker f i Ñ Ki is a

monomorphism.

Now, given any morphism g : M‚ Ñ K‚ such that fg “ 0, there exist unique morphisms φi : M i Ñ ker f i

such that γiφi “ gi. It remains to verify that these φi define a morphisms of complexes. Now

γi`1φi`1diM‚ “ gi`1diM‚ “ diK‚g
i “ diK‚γ

iφi “ γi`1diker fφ
i,

so by the fact that γi`1 is a monomorphism φ commutes with differentials. This shows that the complex ker f
satisfies the universal property for kernel of f in CpAq.

Monomorphism is kernel: By duality it suffices to show that every monomorphism is the kernel of some mor-
phism. Let f : K‚ Ñ L‚ be a monomorphism. Then each f i is a monomorphism. Let γ : L‚ Ñ coker f
be the cokernel of f . By the construction of coker f in CpAq, γi is the cokernel of f i. By corollary 2.2.11,
f i “ ker γi. By construction of kernels in CpAq this shows that f is the kernel of its cokernel.

2.6 Diagram lemmas

In this section we prove two well-known and important results of homological algebra for abelian catetories. The
5-lemma and the snake lemma. These results allow us to associate long exact sequences to short exact sequences of
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complexes over an abelian category, in a functorial way. Later we prove analogous results for triangulated categories
and the homotopy categories, respectively. We mainly follow [Bor94b, 1.10].

We begin by proving the 5-lemma.

Lemma 2.6.1 (5-lemma). Given a commutative diagram

A1 B1 C1 D1 E1

A2 B2 C2 D2 E2

a1

f1 f2

b1

f3

c1

f4

d1

f5

a2 b2 c2 d2

such that the rows are exact and f1, f2, f4, f5 are isomorphisms, then f3 is an isomorphism.

Proof. By duality if suffices to prove that f3 is a monomorphism. We use 2.4.3 (ii). Let x P˚ C1 be a pseudo-element
such that f3pxq “ 0. We have

0 “ pc2f3qpxq “ pf4c1qpxq.

Thus c1pxq “ 0 because f4 is monomorphism. By 2.4.3 (iv) there exists y P˚ B1 such that b1pyq “
˚ x. From

0 “ pf3b1qpyq “ pb2f2qpyq

and 2.4.3 (iv) we get z P˚ A2 such that a2pzq “
˚ f2pyq. Now f1 is an epimorphism, so by 2.4.3 (iv) there exists

z1 P˚ A1 such that f1pz
1q “˚ z and by commutativity and the fact that f2 is a monomorphism a1pz

1q “˚ y. Now
by 2.4.3 (iv)

x “˚ pb1qpyq “
˚ pb1a1qpz

1q “ 0.

This shows that f3 is a monomorphism.

To give a proof of the snake lemma, we need the following lemma.

Lemma 2.6.2. Let A be an abelian category. Consider a pullback (resp. pushout) diagram

A B

K C D

f 1

g1 gk1

k f

¨

˚

˚

˝

resp.

A B L

C D

f 1

g1 g

l

f

l1

˛

‹

‹

‚

of f and g (resp. f 1 and g1), where k “ ker f (resp. l “ coker f 1). Then k “ g1k1 (resp. l “ l1g), where k1 “ ker f 1

(resp. l1 “ coker f).

Proof. By duality it is enough to prove the claim about the pullback diagram. Consider the morphisms k : K Ñ C
and 0 : K Ñ B. By the pullback property there exists a unique morphism k1 such that g1k1 “ k and f 1k1 “ 0.
To show that k1 is the kernel of f 1, let h be a morphism such that f 1h “ 0. Commutativity of the diagram gives
that fg1h “ 0, so there exists a unique morphism j such that g1k1j “ kj “ g1h. Uniqueness of the pullback gives
k1j “ h. This shows that k1 is the kernel of f 1.

We are ready to prove a restricted version of the snake lemma.
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Theorem 2.6.3 (Restricted Snake lemma). Let A be an abelian category and

0 A1 B1 C1 0

0 A2 B2 C2 0

m

f

e

g h

p n

a commutative diagram in A with exact rows. Then we have an exact sequence

0 ker f ker g kerh coker f coker g cokerh 0
f̃1 g̃1 δ̃ f̃2 g̃2

. (2.9)

Proof. Construction of f̃1, g̃1, f̃2, and g̃2: Fix notation by the following commutative diagram

ker f ker g kerh

0 A1 B1 C1 0

0 A2 B2 C2 0

coker f coker g cokerh

f̃1

k1

g̃1

k2 k3

m

f

e

g h

p

c1

n

c2 c3

f̃2 g̃2

(2.10)

The composite ker f Ñ A1 Ñ B1 Ñ B2 is the zero morphism by commutativity, so we obtain a unique
morphism f̃1 : ker f Ñ ker g such that k2f̃1 “ mk1. The composite A1 Ñ A2 Ñ B2 Ñ coker g is the zero
morphism by commutativity, so there exists a unique morphism f̃2 : coker f Ñ coker g such that f̃2c1 “ c2p.
Similarly we obtain the unique morphisms g̃1 and g̃2 making the diagram commutative.

Existence of δ̃: Consider the diagram

X1 kerh

0 A1 B1 C1 0

0 A2 B2 C2 0

coker f X2

e1

k1 k

m

f

s

e

g h

p

u

n

u1

p1

s1

(2.11)

where X1 is the pullback of e and k and X2 is the pushout of p and u. From lemma 2.6.2 it follows that e1 is
the cokernel of s and p1 is the kernel of s1. Now

A1 Ñ X1 Ñ B1 Ñ B2 Ñ X2 “ 0

by commutativity, so there exists a unique morphism φ : kerhÑ X2 such that

X1 Ñ kerhÑ X2 “ X1 Ñ B1 Ñ B2 Ñ X2. (2.12)
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By commutativity and the fact that e1 is an epimorphism

kerhÑ X2 Ñ C2 “ 0,

so there exists a unique morphism δ̃ : kerhÑ coker f such that

kerhÑ coker f Ñ X2 “ kerhÑ X2.

δ̃ on pseudo-elements: Consider the following diagram of pseudo-elements

x P˚ kerh

y epyq “˚ kpxq

z gpyq 0

upzq

(2.13)

where existence of y follows from 2.4.3 (iii), because e is an epimorphism, and existence of z follows from 2.4.3
(iv), because gpyq is mapped to zero.

We show that δ̃pxq “˚ upzq. Since X1 is the pullback of k and e, by 2.4.3 (vi) there exists a pseudo-element
x0 P

˚ X1 such that k1px0q “
˚ y and e1px0q “

˚ x. Now

p1δ̃pxq “˚ φpxq “˚ u1gk1px0q “
˚ u1ppzq “˚ p1upzq.

The morphism p1 is a monomorphism by lemma 2.6.2, so by 2.4.3 (ii) we have that δ̃pxq “˚ upzq.

Exactness at ker f : We need to show that f̃1 is a monomorphism. But this follows from the equality

k2f̃1 “ mk1,

because k2,m, and k1 are monomorphisms.

Exactness at ker g: We use 2.4.3 (iv). By commutativity and the fact that k3 is a monomorphism, g̃1f̃1 is the zero
morphism. Let x P˚ ker g such that g̃1pxq “ 0. Now, ek2pxq “ 0, so by exactness of the second row, there exists
a pseudo-element a1 P

˚ A1 such that mpa1q “
˚ k2pxq. We have fpa1q “ 0 because ppfpa1qq “

˚ gpk2pxqq “ 0
and p is a monomorphism. Thus, there exists a pseudo-element y P˚ ker f such that k1pyq “

˚ a1. Since k2 is
a monomorphism, f̃1pyq “

˚ x.

Exactness at kerh: We use 2.4.3 (iv). Let w P˚ ker g. Now gk2pwq “
˚ 0, and by 2.4.3 (ii) 0 P˚ A2 is the

unique pseudo-element, up to pseudo-equality, with pseudo-image gk2pwq. From the diagram (2.13) we get
δ̃g̃1pwq “

˚ c1p0q “ 0.

Next, let x P˚ kerh such that δ̃pxq “ 0. By the diagram (2.13) and exactness of the sequence

A1 A2 coker f 0
f c1
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there exists a1 P
˚ A1 such that fpa1q “

˚ z. By commutativity gmpa1q “
˚ gpyq and by exactness of the second

row empa1q “
˚ 0. Thus, from 2.4.3 (v) there exists b1 P

˚ B1 such that gpb1q “ 0 and epb1q “
˚ epyq “˚ k3pxq.

Since in the diagram (2.13) the choice of the pseudo-element y mapping to k3pxq was arbitrary, we can choose
y to be b1. Finally, from exactness of

0 ker g B1 B2
k2 g

by 2.4.3 (iv) we get a pseudo-element w P˚ ker g such that k2pwq “
˚ b1. By commutativity k3g̃2pwq “

˚ k3pxq
and 2.4.3 (ii) applied to k3 we get g̃2pwq “

˚ x. This shows that the sequence is exact at kerh.

Exactness at coker f : We use 2.4.3 (iv). Let x P˚ kerh. From the diagram (2.13) and commutativity, we see that
f̃2pδ̃pxqq “

˚ c2pgpyqq “
˚ 0, because c2g “ 0.

Let x1 P˚ coker f such that f̃2px
1q “˚ 0. By 2.4.3 (iii) there exists z P˚ A2 with c1pzq “

˚ x1. From
commutativity of the diagram (2.11) and exactness of

B1 B2 coker g 0
g c2

we get a pseudo-element y P˚ B1 such that gpb1q “
˚ ppzq. Now ngpb1q “

˚ 0 by exactness of the third row, so
from the exact sequence

0 kerh C1 C2
k3 h

we get a pseudo-element x P˚ kerh with k3pxq “
˚ epyq. The choices of z, y, and x fit into the diagram (2.13),

showing that δ̃pxq “˚ x1. This shows that the sequence is exact at coker f .

Exactness at coker g: We use 2.4.3 (iv). By commutativity g̃2f̃2 “ 0. Let x P˚ coker g such that g̃2pxq “ 0. By
2.4.3 (iii) there exists b2 P

˚ B2 such that c2pb2q “
˚ x. By exactness of the following sequence

C1 C2 cokerh 0h c3 ,

there exists c1 P
˚ C1 with hpc1q “ npb2q. By 2.4.3 (iii) there exists b1 P

˚ B1 such that epb1q “
˚ c1. By

commutativity, ngpb1q “
˚ npb2q “

˚ c2. By 2.4.3 (v), there exists b12 P
˚ B2 such that npb12q “ 0 and c2pb

1
2q “

˚ x.
By exactness of the third row, there is a2 P

˚ A2 such that ppa1q “
˚ b12. Therefore c1pa2q P

˚ coker f is the
pseudo-element which is mapped to x. This shows exactness at coker g.

Exactness at cokerh: It suffices to show that g̃2 is an epimorphism. By commutativity

g̃2c2 “ c3n

where c2, c3, and n are epimorphisms. Hence g̃2 is an epimorphism.

To see that the morphism δ̃ in (2.9) is not in general the zero morphism, consider the following morphism of
short exact sequences over Ab.

0 0 Z Z 0

0 Z Z Z{2Z 0

Id

Id

2
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We see that in (2.9) the last morphisms between kernels 0 – kerpZ Id
Ñ Zq Ñ kerpZ Ñ Z{2q – 2Z – Z is not

surjective and Z – cokerp0 Ñ Zq Ñ cokerpZ Id
Ñ Zq – 0 is not injective. In this case the sequence (2.9) is exact when

δ̃ “ IdZ, which is not the zero morphism. If one embeddes this diagram to complexes over Ab in degree 0, one gets
that also in this case the morphism δ̃, now between complexes, is not the zero morphism.

We wish to apply the previous result to certain kernel and cokernel sequences. But these are not short exact
sequences as the above argument shows. Therefore we need to generalize theorem 2.6.3 to the following

Corollary 2.6.4 (Snake lemma). Let A be an abelian category. Given a diagram

A1 B1 C1 0

0 A2 B2 C2

m

f

e

g h

p n

with exact rows, there exists a morphism δ : kerhÑ coker f such that the following sequence is an exact sequence

ker f ker g kerh coker f coker g cokerh
f̃1 g̃1 δ f̃2 g̃2

.

Proof. Consider the following commutative diagram

ker f ker g kerh

A1 A11 B1 C1 0

0 A2 B2 B12 C2

coker f coker g cokerh

α β

f g h

τ φ

where the objects A11 and B12 are given by theorem 2.2.10 applied to the morphisms A1 Ñ B1 and B2 Ñ C2. By
theorem 2.2.10 we get unique morphisms A11 Ñ A2 and C1 Ñ B12 which keep the diagram commutative. Let X 11 be
the kernel of C1 Ñ B12 and X 12 the cokernel of A11 Ñ B2. It is not hard to see that we obtain factorizations β “ β2β1

and τ “ τ2τ1 through the kernel X 11 and the cokernel X 12. Let us denote by X1 the pullback of the morphisms η and
e and by X2 the pushout of the morphisms p and A2 Ñ X 12. We have obtained the following commutative diagram

X1 X 11 kerh

A1 A11 B1 C1 0

0 A2 B2 B12 C2

ker f X 12 X2

β2

η
ε

e

hγ
p η2

(2.14)
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The dashed morphisms exist by lemma 2.6.2 and are the kernel and the cokernel of X1 Ñ X 11 and X 12 Ñ X2,
respectively. From this diagram we obtain the following commutative diagram

X1 X 11

0 A11 B1 C1 0

0 A2 B2 B12 0

X 12 X2

By applying theorem 2.6.3 we obtain the morphism δ̃ : X 11 Ñ X 12. We show that the morphism β2 : X 11 Ñ kerh is
an epimorphism, and by duality that τ1 : coker f Ñ X 12 is a monomorphism, so that we can define the map δ to be
the composite τ´1

1 δ̃β´1
2 .

Let c P˚ kerh, pη2γεqpcq “
˚ phεqpcq “˚ 0 so that pγεqpcq “ 0 by 2.4.3 (ii) since η2 is a monomorphism.

Since η is the kernel of γ, by 2.4.3 (iv), there exists u P˚ X 11 such that ηpuq “˚ εpcq. Finally, by commutativity
pεβ2qpuq “

˚ ηpuq “˚ εpcq, thus β2puq “
˚ c by 2.4.3 (ii), because ε is a monomorphism. This shows that β2 is an

epimorpism and thus an isomorphism. By duality, the morphism τ1 is also an isomorphism.

Lemma 2.6.5. Consider a morphism f : X‚ Ñ Y ‚ of two complexes over an abelian category. Then the diagram

coker di´1
X‚ coker di´1

Y ‚

ker di`1
X‚ ker di`1

Y ‚

f̃2

φ1 φ2

f̃1

(2.15)

is commutative for all i P Z, where the morphisms φ1 and φ2 are from the diagram (2.5) and the morphisms f̃1 and
f̃2 are from the diagram (2.10).

Proof. Recall that the morphisms φ1, φ2, f̃1 and f̃2 are the unique morphisms which make the following diagrams
commutative

Xi Y i

coker di´1
X‚ coker di´1

Y ‚
f̃1

ker di`1
X‚ ker di`1

Y ‚

Xi`1 Y i`1

f̃2

Xi coker di´1
X‚

ker di`1
X‚ Xi`1

φ1

Y i coker di´1
Y ‚

ker di`1
Y ‚ Y i`1

φ2
,
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where the lower two diagrams are of the from (2.5). By the fact that f is a morphism of complexes and commutativity
of the above diagrams, we have

Xi Ñ coker di´1
X‚ Ñ ker di`1

X‚ Ñ ker di`1
Y ‚ Ñ Y i`1

“ Xi Ñ coker di´1
X‚ Ñ ker di`1

X‚ Ñ Xi`1 Ñ Y i`1

“ Xi Ñ Xi`1 Ñ Y i`1

“ Xi Ñ Y i Ñ Y i`1

“ Xi Ñ Y i Ñ coker di´1
Y ‚ Ñ ker di`1

Y ‚ Ñ Y i`1

“ Xi Ñ coker di´1
X‚ Ñ coker di´1

Y ‚ Ñ ker di`1
Y ‚ Ñ Y i`1

Since Xi Ñ coker di´1
X‚ is an epimorphism, and ker di`1

Y ‚ Ñ Y i`1 is a monomorphism, these can be cancelled out in
the equation. Thus we obtain that the diagram (2.15) is commutative.

Next we prove the main theorem of this section which assings to every short exact sequence of complexes over
an abelian category A a long exact sequence over A in a functorial way.

Theorem 2.6.6 (Functorial long exact sequence). Let A be an abelian category. For any short exact sequence of
objects in CpAq

0 X‚ Y ‚ Z‚ 0
f g

we have a long exact sequence

. . . HipY ‚q HipZ‚q Hi`1pX‚q Hi`1pY ‚q . . .
Hipfq Hipgq δi Hi`1

pfq Hi`1
pgq

. (2.16)

This long exact sequence is functorial in the sense that given a morphism of two short exact sequences

0 X‚1 Y ‚1 Z‚1 0

0 X‚2 Y ‚2 Z‚2 0

f1

h1

g1

h2 h3

f2 g2

(2.17)

we have a morphism of complexes

. . . HipY ‚1 q HipZ‚1 q Hi`1pX‚1 q Hi`1pY ‚1 q . . .

. . . HipY ‚2 q HipZ‚2 q Hi`1pX‚2 q Hi`1pY2q . . .

Hipg1q

Hiph2q

δ1

Hiph3q

Hi`1
pf1q

Hiph1q Hiph2q

Hipg2q δ2 Hi`1
pf2q

Proof. By theorem 2.6.3 and lemma 2.6.5 we have following commutative diagram with exact rows

coker di´1
X‚ coker di´1

Y ‚ coker di´1
Z‚ 0

0 ker di`1
X‚ ker di`1

Y ‚ ker di`1
Z‚

f̃2

φ1

g̃2

φ2 φ3

f̃1 g̃1
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for all i P Z. By lemma 2.5.3 and corollary 2.6.4 we get long exact sequence (2.16).
Let us show that the long exact sequence is functorial. By definition of a functor and proposition 2.5.4, the

following diagrams are commutative for all i P Z

HipX‚1 q HipY ‚1 q

HipX‚2 q HipY ‚2 q

Hipf1q

Hiph1q Hiph2q

Hipf2q

HipY ‚1 q HipZ‚1 q

HipY ‚2 q HipZ‚2 q

Hipg1q

Hiph2q Hiph3q

Hipg2q

(2.18)

It remais to show that the following diagram is commutative for all i

HipZ‚1 q Hi`1pX‚1 q

HipZ‚2 q Hi`1pX‚1 q

δi1

Hiph3q Hi`1
ph1q

δi2

(2.19)

By construction of δ1 and δ2 in corollary 2.6.4, we need to show that the following diagram is commutative

HipZ‚1 q W1 W2 Hi`1pX‚1 q

HipZ‚2 q W̃1 W̃2 Hi`1pX‚1 q

β´1
2

Hiph3q

δ̃1 τ´1
1

Hi`1
ph1q

δi2 δ̃2 τ´1
1

(2.20)

Recall from the proof of corollary 2.6.4, the morphisms δ̃1 and δ̃2 are constructed from the following commutative
diagrams

X1 W1

0 A1 coker di´1
Y1

coker di´1
Z1

0

0 ker di`1
X1

ker di`1
Y1

C2 0

W2 X2

(2.21)

X̃1 W̃1

0 Ã1 coker di´1
Y2

coker di´1
Z2

0

0 ker di`1
X2

ker di`1
Y2

C̃2 0

W̃2 X̃2

(2.22)
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Since h1 and h3 are morphisms of complexes and by theorem 2.2.10, the following diagrams are commutative

ker di`1
Y1

C2 ker di`1
Z1

ker di`1
Y2

C̃2 ker di`1
Z2

coker di´1
X1

A1 coker di´1
Y1

coker di´1
X2

Ã1 coker di´1
Y2

By the proof of corollary 2.6.4 W1 Ñ coker di´1
Z1

and W̃1 Ñ coker di´1
Z2

are the kernels of coker di´1
Z1

Ñ C2 and

coker di´1
Z2

Ñ C̃2 and the morphisms ker di`1
X1

Ñ W̃1 and ker di`1
X2

Ñ W̃2 are cokernels of A1 Ñ ker di`1
X1

and

Ã1 Ñ ker di`1
X2

. By commutativity and the kernel property, there exists unique morphisms W1 Ñ W̃1 and W2 Ñ W̃2

such that the following diagrams are commutative

W1 W̃1

coker di´1
Z1

coker di´1
Z2

ker di`1
X1

ker di`1
X2

W2 W̃2

(2.23)

We need to show that the following cubes commute

X1 W1

X̃1 W̃1

coker di´1
Y1

coker di´1
Z1

coker di´1
Y2

coker di´1
Z2

ker di`1
X1

ker di`1
Y1

ker di`1
X2

ker di`1
Y2

W2 X2

W̃2 X̃2

(2.24)

We see that both of the commutative diagrams (2.23) are embedded in both of the above cubes. Commutativity of
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the following squares

ker di`1
X1

ker di`1
Y1

ker di`1
X2

ker di`1
Y2

coker di´1
Y1

coker di´1
Z1

coker di´1
Y2

coker di´1
Z2

follow from the equations

ker di`1
X1

Ñ ker di`1
Y1

Ñ ker di`1
Y2

Ñ Y i`1
2 “ ker di`1

X1
Ñ Xi`1

1 Ñ Y i`1
1 Ñ Y i`1

2

“ ker di`1
X1

Ñ Xi`1
1 Ñ Xi`1

2 Ñ Y i`1
2

“ ker di`1
X1

Ñ ker di`1
X2

Ñ ker di`1
Y2

Ñ Y i`1
2

and

Y i1 Ñ coker di´1
Y1

Ñ coker di´1
Z1

Ñ coker di´1
Z2

“ Y i1 Ñ Zi1 Ñ Zi2 Ñ coker di´1
Z2

“ Y i1 Ñ Y i2 Ñ Zi2 Ñ coker di´1
Z2

“ Y i1 Ñ coker di´1
Y1

Ñ coker di´1
Y2

Ñ coker di´1
Z2

because ker di`1
Y2

Ñ Y i`1
2 is a monomorphism and Y i1 Ñ coker di´1

Y1
is an epimorphism. The squares

X1 W1

coker di´1
Y1

coker di´1
Z1

X̃1 W̃1

coker di´1
Y2

coker di´1
Z2

are commutative because they are pullback squares. Similarly, the squares

ker di`1
X1

ker di`1
Y1

W2 X2

ker di`1
X2

ker di`1
Y2

W̃2 X̃2

are commutative since they are pushout squares. From the following identities

X1 Ñ coker di´1
Y1

Ñ coker di´1
Y2

Ñ coker di´1
Z2

“ X1 Ñ coker di´1
Y1

Ñ coker di´1
Z1

Ñ coker di´1
Z2

“ X1 ÑW1 Ñ coker di´1
Z1

Ñ coker di´1
Z2

“ X1 ÑW1 Ñ W̃1 Ñ coker di´1
Z2

and

ker di`1
X1

ÑW2 Ñ W̃2 Ñ X̃2

“ ker di`1
X1

Ñ ker di`1
X2

Ñ W̃2 Ñ X̃2

“ ker di`1
X1

Ñ ker di`1
X2

Ñ ker di`1
Y2

Ñ X̃2

“ ker di`1
X1

Ñ ker di`1
Y1

Ñ ker di`1
Y2

Ñ X̃2
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and the pullback and pushout universality of X̃1 and X̃2, we obtain unique morphisms X1 Ñ X̃1 and X2 Ñ X̃2

which make the remaining squares commutative.
Putting these together the left and right squares of the following diagram are commutative.

X1 coker di´1
Y1

ker di`1
Y1

X2

X̃1 coker di´1
Y2

ker di`1
Y2

X̃2

(2.25)

The middle square commutes by lemma 2.6.5, and so the diagram is commutative. Finally, from bottom square of the
cube (2.24), commutativity of the right square of (2.23), definition of Hi`1ph3q, and the fact that W2 – Hi`1pX‚1 q
and W1 – Hi`1pX‚2 q (as shown in corollary 2.6.4), we have the following commutative diagrams

X1 W1 HipZ‚1 q

X̃1 W̃1 HipZ‚2 q

–

–

Hi`1pX‚1 q W2 X2

Hi`1pX‚2 q W̃2 X̃2

–

–

(2.26)

We have the following equalities

X1 Ñ HipZ‚1 q ÑW1 ÑW2 Ñ Hi`1pX‚1 q Ñ Hi`1pX‚2 q Ñ X̃2

“ X1 ÑW1 ÑW2 Ñ X2 Ñ X̃2 (2.26)

“ X1 Ñ coker di´1
Y1

Ñ ker di`1
Y1

Ñ X2 Ñ X̃2 (2.21)

“ X1 Ñ X̃1 Ñ coker di´1
Y2

Ñ ker di`1
Y2

Ñ X̃2 (2.25)

“ X1 Ñ X̃1 Ñ W̃1 Ñ W̃2 Ñ X̃2 (2.22)

“ X1 Ñ HipZ‚1 q Ñ HipZ‚2 q Ñ W̃1 Ñ W̃2 Ñ Hi`1pX‚2 q Ñ X̃2. (2.26)

The morphism X1 Ñ HipZ‚1 q is an epimorphism and Hi`1pX‚2 q Ñ X2 is a monomorphism, so these can be cancelled
out. Therefore we obtain commutativity of the diagram (2.20). This finishes the proof.

2.7 Homotopy category

In this section we introduce the homotopy category over an additive category, which is the quotient of the category of
complexes over an additive category by homotopies between morphisms. In particular, it is an additive category by
proposition 2.7.12. This category is used to prove that the derived category of an abelian category is a triangulated
category. The reason we need it is that the class of quasi-isomorphisms in the homotopy category of an abelian
category forms a localizing class, see definition 3.2.1, which is not true in general for the class of quasi-isomorphisms
in the category of complexes over an abelian category.

Definition 2.7.1 (Quasi-isomorphism). Let A be an abelian category and X‚, Y ‚ P ObCpAq. A morphism
f : X‚ Ñ Y ‚ is a quasi-isomorphsm if for all i P Z the induced morphism Hipfq : HipX‚q Ñ HipY ‚q between the
i-th cohomology of X‚ and Y ‚ is an isomorphism.

Definition 2.7.2 (Homotopy of morphisms). Let A be an additive category and f : X‚ Ñ Y ‚ a morphism in
CpAq. We define f to be null-homotopic if there exists a family of morphisms hi : Xi Ñ Y i´1 in A such that
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f i “ di´1
Y ‚ h

i ` hi`1diX‚ for all i P Z. Two morphisms f, g : X‚ Ñ Y ‚ in CpAq are defined to be homotopic, denoted
f „ g, if f ´ g is null-homotopic.

Lemma 2.7.3. Let A be an additive category.

(a) For any objects X‚, Y ‚ of CpAq, and any collection hi : Ki Ñ Li´1 of morphisms in A, hi`1diX‚ ` di´1
Y ‚ h

i :
Ki Ñ Li is a morphism of complexes.

(b) For any complexes X‚ and Y ‚ over A, the subset IX‚,Y ‚ Ă MorApX‚, Y ‚q consisting of morphisms of the
form hi`1diX‚ ` di´1

Y ‚ h
i, where hi : Xi Ñ Y i´1 is any family of morphisms in A, is an abelian group and

stable under composition of morphisms. This means that for any morphisms h1 : Z‚ Ñ X‚, h2 : Y ‚ Ñ W ‚,
and i P IX‚,Y ‚ , we have ih1 P IZ‚,Y ‚ and h2i P IX‚,W ‚ .

(c) Suppose A is an abelian category and let f, g : X‚ Ñ Y ‚ be morphisms in CpAq. If f i´gi “ hi`1diX‚`d
i´1
Y ‚ h

i,
for some family of morphisms hi : Xi Ñ Y i´1, then Hipfq – Hipgq for all i P Z.

Proof. (a) For any i P Z we have

diY ‚ph
i`1diX‚ ` d

i´1
Y ‚ h

iq “ diY ‚h
i`1diX‚ “ pd

i
Y ‚h

i`1 ` hi`2di`1
X‚ qd

i
X‚ ,

so hi`1diX‚ ` d
i´1
Y ‚ h

i is a morphism of complexes.

(b) For two families hi1, h
i
2 : Xi Ñ Y i´1 of morphisms, we have

pdi´1
Y ‚ h

i
1 ` h

i`1
1 di´1

X‚ q ` pd
i´1
Y ‚ h

i
2 ` h

i`1
2 di´1

X‚ q “ di´1
Y ‚ ph

i
1 ` h

i
2q ` ph

i`1
1 ` hi`1

2 qdi´1
X‚ .

From this it is easy to see that the class of morphisms IX‚,Y ‚ has the structure of an abelian group.

Let h1 : Z‚ Ñ X‚ and h2 : Y ‚ ÑW ‚ be morphisms of complexes. Now

phi`1diX‚ ` d
i´1
Y ‚ h

iqhi1 “ ph
i`1hi`1

1 qdiZ‚ ` d
i´1
Y ‚ ph

ihi1q

and

hi2pd
i´1
Y ‚ h

i ` hi`1diX‚q “ di´1
W ‚ ph

i´1
2 hiq ` phi2h

i`1qdiX‚ .

so the classes IX‚,Y ‚ are closed under composition of morphisms.

(c) By the universal property used to define the induces morphisms between cohomology groups, one can verify
that Hipf ´ gq – Hipfq ´Hipgq. Hence, to show that Hipfq – Hipgq, it is enough to show that Hipdi´1

Y ‚ h
i `

hi`1diX‚q – 0.

By definition of the cohomology complex definition 2.5.2, 2.4.3 (i), and proposition 2.5.5 it suffices to show
that for any pseudo-element a P˚ Xi such that diX‚paq “ 0 we have pdi´1

Y ‚ h
i`hi`1diX‚qpaq “

˚ di´1
Y ‚ pbq for some

pseudo-element b P˚ Y i´1. Now

pdi´1
Y ‚ h

i ` hi`1diX‚qpaq “ pd
i´1
Y ‚ h

iqpaq ` phi`1diX‚qpaq “
˚ pdi´1

L‚ h
iqpaq,

because phi`1diX‚qpaq “ 0 by assumption on the pseudo-element a. Therefore we can choose b “ hia.
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Definition 2.7.4 (Translation). Let A be an additive category. Define a functor T : CpAq Ñ CpAq as follows. For
an object X‚ P CpAq, let T pXq, denoted also by Xr1s, to be the complex

T pXqi “ Xi`1, T pdiX‚q
i “ ´di`1

X‚ .

For a morphism f : X‚ Ñ Y ‚, let T pfqi “ f i`1. This is also denoted by f r1s. Clearly this defines a functor, which
is an isomorphism on CpAq, where the inverse T´1 is given by translation to other direction.

For any positive integer n P Z we denote by X‚rns and by f rns the functor T applied n times to object X‚ and
to morphism f . For a negative n, X‚rns and f rns denotes T´1 applied ´n times.

The reader can verify that the translation functor defined above for the category CpAq, also works for the
category KpAq, because homotopies are translated to homotopies.

Definition 2.7.5 (Mapping cone). Let A be an additive category, and f : X‚ Ñ Y ‚ a morphism of complexes in
CpAq. We define the mapping cone Cpfq of f to be the complex Cpfq “ X‚r1s ‘ Y ‚ with differential

diCpfq “ ´i1d
i`1
X‚ p1 ` i2f

i`1p1 ` i2d
i
Y ‚p2.

The following shows that this is indeed a differential

di`1
Cpfqd

i
Cpfq “ p´i1d

i`2
X‚ p1 ` i2f

i`2p1 ` i2d
i`1
Y ‚ p2qp´i1d

i`1
X‚ p1 ` i2f

i`1p1 ` i2d
i
Y ‚p2q

“ ´i2f
i`2diX‚p2 ` i2d

i`1
Y ‚ f

i`1p2

“ 0.

Similarly one defines mapping cones inKpAq. We have the following important short exact sequence of complexes
for mapping cones.

Lemma 2.7.6. Let A be an abelian category. For a morphism f : X‚ Ñ Y ‚ in CpAq, the sequence

0 Y ‚ Cpfq X‚r1s 0
i2 p1

is a short exact sequence.

Proof. Clearly i2 is a monomorphism and p2 is an epimorphism. Since p1i2 “ 0, by 2.4.3 (iv) it suffices to show
that for any a P˚ Cpfq with p1a “ 0, there exists a pseudo element of Y ‚ mapping to a. Now IdCpfq “ i1p1 ` i2p2,
so a “ i2p2a. Hence the pseudo element p2a P

˚ Y ‚ maps to a. This shows that the sequence is exact.
To show that i2 and p1 are morphisms of complexes, we have to show that they commute with differentials.

Now

i2d
i
Y ‚ “ p´i1d

i`1
X‚ p1 ` i2f

i`1p1 ` i2d
i
Y ‚p2qi2 “ diCpfqi2

which shows that i2 commutes with differentials. From

p1d
i
Cpfq “ ´d

i`1
X‚ p1 “ diX‚r1sp1

we see that p1 commutes with differentials.
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Definition 2.7.7 (Mapping cylinder). Let A be an additive category and let f : X‚ Ñ Y ‚ be a morphism of
complexes in CpAq. We define the mapping cylinder Cylpfq of f to be the complex Cylpfq “ X‚ ‘ Cpfq with
differential

diCylpfq “ i1d
i
X‚ ´ i1p1p2 ` i2d

i
Cpfqp2 “ i1d

i
X‚p1 ´ i1p1p2 ´ i2i1d

i`1
X‚ p1p2 ` i2i2f

i`1p1p2 ` i2i2d
i
Y ‚p2p2.

The following shows that this is a differential

di`1
Cylpfqd

i
Cylpfq “ pi1d

i`1
X‚ p1 ´ i1p1p2 ´ i2i1d

i`2
X‚ p1p2 ` i2i2f

i`2p1p2 ` i2i2d
i`1
Y ‚ p2p2q

pi1d
i
X‚p1 ´ i1p1p2 ´ i2i1d

i`1
X‚ p1p2 ` i2i2f

i`1p1p2 ` i2i2d
i
Y ‚p2p2q

“ i1d
i`1
X‚ p1p2 ´ i1d

i`1
X‚ p1p2 ´ i2i2f

i`2di`1
X‚ p2p2 ` i2i2d

i`1
Y ‚ f

i`1p2p2

“ 0.

Similarly one defines mapping cylinders in KpAq. For mapping cylinders we have the following important short
exact sequence

Lemma 2.7.8. Let A be an abelian category. For a morphism f : X‚ Ñ Y ‚ in CpAq, the sequence

0 X‚ Cylpfq Cpfq 0
i1 p2

is a short exact sequence.

Proof. First, let us verify that the morphisms are morphisms of complexes. From

i1d
i
X‚ “ pi1d

i
X‚p1 ` i1p2 ´ i2i1d

i`1
X‚ p1p2 ` i2i2f

i`1p1p2 ` i2i2d
i
Y ‚p2p2qi1 “ diCylpfqi1

and

p2d
i
Cylpfq “ ´i1d

i`1
X‚ p1p2 ` i2f

i`1p1p2 ` i2d
i
Y ‚p2p2 “ diCpfqp2,

we see that i1 and p2 commute with differentials.
Next, we verify that the sequences is exact. Clearly i1 is a monomorphism and p2 is an epimorphism. Since

p2i1 “ 0, by 2.4.3 (iv) it suffices to show that for a P˚ Cylpfq such that p2a “ 0 there exists a pseudo-element of
X‚ mapping to a. Since a “ IdCylpfq a “ pi1p1 ` i2p2qa “ i1p1a, the pseudo-element p1a maps to a. Hence the
short sequence is exact.

The following lemma captures the main properties of mapping cone and mapping cylinder of a morphism.

Lemma 2.7.9. Let A be an abelian category. For any morphism f : X‚ Ñ Y ‚ there exists the following commutative
diagram in CpAq with exact rows

0 Y ‚ Cpfq X‚r1s 0

0 X‚ Cylpfq Cpfq 0

X‚ Y ‚

i2

α

p1

i1 p2

β

f

,

where αi “ i2i2 and βi “ fp1 ` p2p2 are quasi-isomorphisms, βα “ IdL and αβ is homotopic to IdCylpfq.
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Proof. From lemmas 2.7.6 and 2.7.8 it follows that the rows are exact. Now βi1 “ pf ip1 ` p2p2qi1 “ f i and
i2 “ p2i2i2 “ p2α, so both of the squares in the diagram are commutative. From

αi`1diY ‚ “ i2i2d
i
Y ‚ “ diCylpfqα

i

and

βi`1diCylpfq “ f i`1diX‚p1 ´ f
i`1p1p2 ` f

i`1p1p2 ` d
i
Y ‚p2p2

“ diY ‚f
ip1 ` dY ‚p2p2

“ diY ‚β
i

it follows that α and β are morphisms of complexes.
Let χi : Cylpfqi Ñ Cylpfqi´1, χi “ ´i2i1p1. Now βiαi “ pf ip1 ` p2p2qi2i2 “ IdY ‚ and

αiβi “ i2i2pf
ip1 ` p2p2q,

di´1
Cylpfqχ

i “ i1p1 ` i2i1d
i
X‚p1 ´ i2i2f

ip1,

χi`1diCylpfq “ ´i2i1d
i
X‚p1 ` i2i1p1p2,

so

IdCylpfqi ´pαβq
i “ i1p1 ` i2i1p1p2 ´ i2i2f

ip1

“ di´1
Cylpfqχ

i ` χi`1diCylpfq.

This shows that αβ is homotopic to IdCylpfq.

Lemma 2.7.10. The relation of homotopy is an equivalence relation and respects composition of morphisms.

Proof. Let f, g, k : X‚ Ñ Y ‚ be morphisms of complexes. Clearly f „ f , because χi “ 0 satisfies f ´ f “
di´1
Y ‚ χ

i ` χi`1diX‚ . If f „ g and χi : Xi Ñ Y i´1 are the morphisms which define the homotopy, then ´χi are
morphisms which show that g „ f . Suppose f „ g and g „ k and let χi1 : Xi Ñ Y i´1 and χi2 : Xi Ñ Y i´1 be the
families of morphisms which show that f „ g and g „ k, respectively. The family χi1`χ

i
2 shows that f „ k. Hence

homotopy is an equivalence relation.
To show that homotopy respects composition, let f1, f2 : X‚ Ñ Y ‚ and g1, g2 : Y ‚ Ñ Z‚ be morphisms in CpAq

such that f1 „ f2 and g1 „ g2. We show that g1f1 „ g2f2. Let pχiq : Xi Ñ Y i´1 be a set of morphisms such that
pf1 ´ f2q

i “ di´1
L‚ χ

i ` χi`1diK‚ for all i. Then

gi1pf1 ´ f2q
i “ gi1d

i´1
Y ‚ χ

i ` gi1χ
i`1diX‚ “ di´1

Z‚ pg
i´1
1 χiq ` pgi1χ

i`1qdiX‚

so g1f1 „ g1f2. If pχiq : Y i Ñ Zi´1 is a set of morphisms such that pg1 ´ g2q
i “ di´1

Z‚ χ
i ` χi`1diY ‚ , then

pg1 ´ g2q
if i2 “ di´1

Z‚ χ
if i2 ` χ

i`1diY ‚f
i
2 “ di´1

Z‚ pχ
if i2q ` pχ

i`1f i`1
2 qdiX‚

so g1f2 „ g2f2. By transitivity, we get g1f1 „ g2f2.

Definition 2.7.11 (Homotopy category). We define the homotopy category KpAq of an additive category A to be a
quotient category of CpAq obtained by identifying morphisms which are homotopic. Precisely, ObKpAq “ ObCpAq,
and for any objects X,Y P KpAq we define

MorKpAqpX
‚, Y ‚q “ MorCpAqpX

‚, Y ‚q{ „,
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where „ is the homotopy relation. By lemma 2.7.10 this definition is well-defined.
Similarly one defines the categories K˚pAq, ˚ “ `,´, b, by using the categories C˚pAq, see definition 2.5.1, and

the homotopy relation. Note that the categories K˚pAq, ˚ “ `,´, b, are full subcategories of KpAq, because C˚pAq
are full subcategories of CpAq by definition.

In case the category A is an abelian category, we still have cohomology complexes for KpAq, because by
lemma 2.7.3 (c), homotopic morphisms induce the same maps on cohomology. Precisely this means that the
cohomology functor H‚ : CpAq Ñ CpAq factors through the homotopy category KpAq. We can compute the
cohomology complex of an object of KpAq by choosing a representative and then compute its cohomology in CpAq.
By abuse of notation, we denote this cohomology functor also by H‚ : KpAq Ñ CpAq.

The following proposition shows that the homotopy category of an additive category is additive.

Proposition 2.7.12. For any additive category A the category KpAq is additive. Since K˚pAq, ˚ “ `,´, b, are
full subcategories of KpAq it follows that these are also additive.

Proof. From lemma 2.7.3 we see that the sets of morphisms in KpAq are abelian groups and composition of
morphisms respects addition. Hence it follows that the zero object and the biproduct of any two objects are the
same as in CpAq.

To see that the morphism from the biproduct is unique, consider two morphisms f, g : X ‘ Y Ñ Z such that
fi1 „ gi1 and fi2 „ gi2. Then f ´ g „ pf ´ gqpi1p1 ` i2p2q „ pfi1 ´ gi1qp1 ` pfi2 ´ gi2qp2 „ 0. Hence f and g are
homotopic. Therefore KpAq is an additive category.

2.8 Notes

Instead of developing homological algebra using only the language of category theory, one can assume the Freyd
embedding, [Bor94b, Theorem 1.14.9], and use the category RMod to develop the theory. In particular, this allows
one to use elements in the proofs. Since this approach hides how one uses universal properties to construct and
identify morphisms, we decided not to take this approach. Also, the categories K˚pAq and D˚pAq, see chapter 5,
and arbitrary triangulated category, see chapter 4, are not abelian categories in general, see 4.2.7, so later we are
forced to use universal properties anyway.
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Chapter 3

Localization of a category

In this chapter we introduce Gabriel-Zismann localization of categories. Localization produces a new category with
the same objects and inverses are added to a given class of morphisms. Set theoretically this has the problem
that morphisms between two objects in localization may not form a set but a class. We discuss this problem in
remark 3.1.2.

Unfortunately the morphisms in the localization are described in a way which is hard to work with. To overcome
this, we specialize to a special kind of classes, localizing classes. In this case the morphisms in the localization can
be more easily understood by using the formalism of roofs. In particular, the class of quasi-isomorphisms form a
localizing class in the homotopy category of an abelian category, but not necessarily in the category of complexes
over it. We will see that this is important in proving that the derived category of an abelian category is a triangulated
category.

3.1 Gabriel-Zisman localization

The following construction of a category ignores set theoretical problems, that is, the class of morphisms is not
necessarily a set, by enlarging the definition of a category to include this case. Later we show that in the cases we
are interested in the classes of morphisms are actually sets.

Construction 3.1.1. Let C be a category and S a class of morphisms in C. We construct the category CrS´1s which
is the localization of C by the class of morphisms S. Let Ob CrS´1s “ Ob C. For any objects X,Y P Ob CrS´1s, let

MpX,Y q “ MorCpX,Y q
ž

pS XMorCpY,Xqq

where
š

is the disjoint union of sets. The first component consists of the morphisms from X to Y in C and the second
component denotes formal inverses to morphisms in S. This means that we denote an element s P pSXMorCpY,Xqq
by s´1 PMpX,Y q, and set Domps´1q “ X and Codps´1q “ Y . Extend the composition of C by defining

s´1s “ IdY and ss´1 “ IdX .
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Finally, for any X,Y P Ob CrS´1s, let

MorCrS´1spX,Y q “

¨

˚

˚

˚

˚

˚

˝

ď

nPN´t0u
X“X1,...,Xn`1“Y POb CrS´1

s

fiPMpXi,Xi`1q1ďiăn

pf1, . . . , fnq

˛

‹

‹

‹

‹

‹

‚

{ „

where „ is the equivalence relation determined by the following conditions:
For n P N´ t0u, X1, . . . , Xn`1 P Ob CrS´1s, and fi, gi PMpXi, Xi`1q for 1 ď i ă n

(i) pf1, . . . , fnq „ pg1, . . . , gnq if fi “ gi in C for all 1 ď i ă n.

(ii) pf1, . . . , fj , fj`1, . . . , fnq „ pf1, . . . , fj`1fj , . . . , fnq for 1 ď j ă n if one of the following conditions holds

(a) fj , fj`1 R S

(b) fj P S, fj`1 “ f´1
j

(c) fj`1 P S and fj “ f´1
j`1.

For any element pf1, . . . , fnq P MorCrS´1s we set Domppf1, . . . , fnqq “ Dompf1q and Codppf1, . . . , fnqq “ Codpfnq.
For any two elements pf1, . . . , fnq P MorCrS´1spX,Y q and pg1, . . . , gmq P MorCrS´1spY,Zq, composition is given by
pf1, . . . , fnq ˝ pg1, . . . , gmq “ pf1, . . . , fn, g1, . . . , gmq.

By assuming that MorCrS´1spX,Y q is a set for all objects X,Y P CrS´1s, one can easily verify that CrS´1s is a
category. The construction shows that there exists a natural localization functor QS : C Ñ CrS´1s which is identity
on objects and sends a morphism f to pfq.

From the construction we see that isomorphisms in CrS´1s are given by sequences consisting of isomorphisms in
C together with morphisms in S and their formal inverses. This can be shown by induction on length of a sequence.

Remark 3.1.2 (Set theoretical problems). As mentioned in the introduction of this chapter, it is not clear that the
morphisms in the localized category form a set. Lemma 3.2.6 gives one criterion for the existence of localization.
From now on, if not otherwise stated, we assume that the localization exists by extending in this case the definition
of the category to include the case when the collection of morphisms between two objects is a class. This technique
is also used to show that the derived category of RMod exists.

If one uses universes, then one can choose a universe large enough to contain the class of objects as a set. In
the case of a small category, localization always exists, see lemma 3.2.6.

Theorem 3.1.3. Let C be a category and S a class of morphisms in C. If F : C Ñ D is a functor which send
all morphisms in S to isomorphisms, then there exists a unique functor G : CrS´1s Ñ D such that the following
diagram commutes

C CrS´1s

D

QS

F
G

Proof. Set GpXq “ F pXq for any object X P Ob C “ Ob CrS´1s, Gppf1, . . . fnqq “ F pfnq . . . F pf1q for any
pf1, . . . , fnq P Mor CrS´1s. These choices are forced to make the above diagram commutative. Thus we see that G
is the unique functor which makes the diagram commutative.
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3.2 Localizing class

In this section we introduce a formalism of roofs. This formalism can be applied when the class of morphisms to
invert is a localizing class.

Definition 3.2.1 (Localizing class). A class S of morphisms of C is a localizing class if it satisfies the following
conditions

LS 1 For any object X P C, IdX P S, and if f, g P S so that gf is defined, then gf P S.

LS 2 Consider the following diagrams

X Y

Z

t1

f1
Y

Z W

g1

s1

where s1, t1 P S and f1, g1 are morphisms in C. We can complete thess diagrams to commutative diagrams

X Y

Z X 1

t1

f1

t2

f2

W 1 Y

Z W

g2

s2

g1

s1

where t2, s2 P S.

LS 3 Let f, g : X Ñ Y be morphisms. Then there is a morphism s P S so that sf “ sg if and only if ft “ gt
for some t P S.

Suppose S is a localizing class of morphisms in C. Then the morphisms in CrS´1s can be described by the
formalism of roofs. An S-roof representing a morphism from X to Y in C, denoted by ps, fq, is a diagram

X

Y Z

s

f

where s P S and f P Mor C. When the localizing class S is understood we simply write roof. We say that two roofs
ps, fq and pt, gq are equivalent, denoted ps, fq „ pt, gq, if there exists a commutative diagram of the form

X3

X 1 X2

X Y

t1
s1

s
f

t

g
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where st1 P S. A composition of two roofs ps, fq and pt, gq is a commutative diagram of the form

X3

X 1 X2

X Y Z

s1
t1

s
f

t

g

where pss1, gt1q is a roof.

Lemma 3.2.2. The relation „ for roofs is an equivalence relation.

Proof. The relation „ is obviously reflexive and symmetric by the definition of „. Let pu : Z1 Ñ X, f : Z1 Ñ

Y q, pv : Z2 Ñ X, g : Z2 Ñ Y q and pw : Z3 Ñ X,h : Z3 Ñ Y q be roofs such that pu, fq „ pv, gq and pv, gq „ pw, hq.
Let these relations be given by the following diagram

W1 W2

Z1 Z2 Z3

X Y

s
k

t

l

u
f

v

g

w h

By LS 2 we obtain a commutative diagram

W3 W2

W1 X

k1

t1 vt

vk

By LS 3 there exists a morphism W ÑW3 in S such that

W ÑW3 ÑW1 Ñ Z2 “W ÑW3 ÑW2 Ñ Z2.

We have

W ÑW3 ÑW1 Ñ Z1 Ñ X “W ÑW3 ÑW1 Ñ Z2 Ñ X

“W ÑW3 ÑW2 Ñ Z2 Ñ X

“W ÑW3 ÑW2 Ñ Z3 Ñ X

and

W ÑW3 ÑW1 Ñ Z1 Ñ Y “W ÑW3 ÑW1 Ñ Z2 Ñ Y

“W ÑW3 ÑW2 Ñ Z2 Ñ Y

“W ÑW3 ÑW2 Ñ Z3 Ñ Y

so pu, fq „ pw, hq.
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Lemma 3.2.3. Composition of roofs is well-defined, i.e., composition of roofs does not depend on the choice of
representatives.

Proof. Let

W1

X1 X2

X Y

u1
f1
u2

f2

W2

Y1 Y2

Y Z

v1
g1
v2

g2

be two equivalences of roofs. By LS 2 the composite of the roofs pu2, f2q and pv1, g1q can be represented by the
following diagram

W3

X2 Y1

X Y Z

u2

f2
v1

g1

By LS 2 we obtain the following commutative squares

V1 W3

W1 X

V2 W2

W3 Y

By LS 3 we get morpisms U1 Ñ V1 and U2 Ñ V2 in S such that

U1 Ñ V1 ÑW1 Ñ X2 “ U1 Ñ V1 ÑW3 Ñ X2

and

U2 Ñ V2 ÑW2 Ñ Y1 “ U2 Ñ V2 ÑW3 Ñ Y1

Therefore we have the following diagram

U1 U2

V1 V2

W1 W3 W2

X1 X2 Y1 Y2

X Y Z

u1 f1
u2

f2
v1

g1
v2 g2
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Now

U1 Ñ V1 ÑW1 Ñ X1 Ñ Y “ U1 Ñ V1 ÑW1 Ñ X2 Ñ Y

“ U1 Ñ V1 ÑW3 Ñ X2 Ñ Y

“ U1 Ñ V1 ÑW3 Ñ Y1 Ñ Y,

and

U2 Ñ V2 ÑW2 Ñ Y2 Ñ Y “ U2 Ñ V2 ÑW2 Ñ Y1 Ñ Y

“ U2 Ñ V2 ÑW3 Ñ Y1 Ñ Y

“ U2 Ñ V2 ÑW3 Ñ X2 Ñ Y

so pv1, g1q ˝ pu1, f1q „ pv1, g1q ˝ pu2, f2q and pv1, g1q ˝ pu2, f2q „ pv2, g2q ˝ pu2, f2q. Since „ is an equivalence relation
by lemma 3.2.2, we conclude that pv1, g1q ˝ pu1, f1q „ pv2, g2q ˝ pu2, f2q and hence composite does not depend on the
chosen representatives.

The above theorems show that the category consisting of objects of C and morphisms given by S-roofs is a
well-defined category. Call this the category of S-roofs in C and denote it by C̃S . The following theorem shows that
this category is isomorphic to localization of C by S.

Theorem 3.2.4. Let C be a category, S a localizing class in C, C̃S the category of S-roofs in C, and F : C Ñ C̃S
the functor which is identity on objects and sends a morphism f : X Ñ Y to the morphism represented by the roof
pIdX , fq. If D is a category and G : C Ñ D is a functor such that Gpfq is invertible in D for any f P S, then there
exists a unique functor Q : C̃S Ñ D such that Q ˝ F “ G.

Proof. Let D be a category and G : C Ñ D a functor such that Gpfq is invertible for any f P S. Define the functor
Q : C̃S Ñ D as follows. Let QpXq “ GpXq for any object X. For a morphism represented by a roof ps, fq we define

Qpps, fqq “ GpfqpGpsqq´1. (3.1)

To show uniqueness of this definition, let Q1 be a functor such that G “ Q1 ˝F and let s : Y Ñ X be any morphism
in S. The reader can easily verify that we have the following relations of roofs pIdX , sq „ ps, IdY q, pIdY , sq ˝
ps, IdY q „ pIdX , IdXq, and ps, IdY q˝pIdY , sq „ pIdY , IdY q. Using these relations, we have IdGpXq “ Q1ppIdX , IdXqq “
Q1ppIdY , sq˝ps, IdY qq “ Gpsq˝Q1ppIdX , sqq and IdGpY q “ Q1pIdY , IdY q “ Q1pps, IdY q˝pIdY , sqq “ Q1ppIdX , sqq˝Gpsq.

Hence Q1ps, IdXq “ Gpsq´1. Now for a roof ps : Y Ñ Z, f : Y Ñ Zq we have ps, fqp̃ IdY , fq ˝ ps, IdY q, so
Q1pps, fqq “ Q1ppIdY , fqq ˝ Q

1pps, IdY qq “ GpfqGpsq´1. This justifies the definition (3.1) and shows that if Q is a
functor, then it is unique.

First, let us verify that the image of a morphism does not depend on the choice of a representative. Let pu1, f1q

and pu2, f2q be two equivalent roofs, equivalence is given by

W

Z1 Z2

X Y

v

g

u1
f1
u2

f2
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Now

Qppu1, f1qq “ Gpf1qGpu1q
´1

“ Gpf1vqGpu1vq
´1

“ Gpf2gqGpu2gq
´1

“ Gpf2qGpu2q
´1

“ Qppu2, f2qq,

so the map on morphisms is well-defined.
Clearly QppidX , idXqq “ IdF pxq, so to show that Q is a functor it remains to show that it respects composition

of morphisms. Let pu, fq and pv, gq be two roofs with the composite given by a roof

W

Z1 Z2

X Y Z

w
h

u

f

v

g

Now

Gpuq´1 “ GpwqGpuwq´1

and from fw “ vh we get

Gphq “ Gpvq´1GpfqGpwq.

Therefore

Qppv, gq ˝ pu, fqq “ Qppuw, ghqq

“ GpgqGphqGpuwq´1

“ GpgqGpvq´1GpfqGpwqGpuwq´1

“ GpgqGpvq´1GpfqGpuq´1

“ Qppv, gqqQppu, fqq.

This completes the proof.

In particular, the above theorem together with theorem 3.1.3 implies that Q : C̃S Ñ CrS´1s is the unique
isomorphism of categories which makes the following diagram commutative

C C̃S

CrS´1s

QS

F

Q
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The proof of theorem 3.1.3 shows that the inverse of Q is given by sending pgq to the roof pIdDompgq, gq, if g is not a
formal inverse of a morphism in S, and if g “ s´1, then Q´1ppgqq “ ps, IdDompsqq. By abuse of notation, from now

on we assume that CrS´1s equals C̃S when S is a localizing class, if not otherwise stated.
Next we give a criterion for existence of localization in our universe of set theory. We follow [Wei95]. Alternatively

one can choose a universe large enough so that the category one considers becomes small, see [Bor94a, Section 1.1],
and then apply the lemma below to show existence of localization.

Definition 3.2.5 (Locally small localizing class). Let C be a category and S a localizing class of C. Then S is locally
small if for any object X of C there exists a set of morphisms SX contained in S, all having codomain X, such that
for any morphism X1 Ñ X there exists a morphism X2 Ñ X1 in C such that the composite X2 Ñ X1 Ñ X is in
SX .

It is not hard to see that if C is a small category, then all localizing classes are small. Indeed, one can take SX
to be the set of all morphisms of C with codomain X. Then the lemma below shows that the localization exists.
We will later use the lemma below to prove the existence of the derived category of RMod.

Lemma 3.2.6. Let C be a category and S a locally small localizing class. Then the category CrS´1s exists.

Proof. Fix any two objects X and Y of CrS´1s. It suffices to show that MorCrS´1spX,Y q is a set, that is, the class
of S-roofs from X to Y is a set. First we note that since S is locally small, for any morphism from X to Y there
exists a roof ps : Z Ñ X, f : Z Ñ Y q, which represents the morphism, such that the morphism s : Z Ñ X is in SX .
Indeed, if ps1 : X 1 Ñ X, f 1 : X 1 Ñ Y q is any roof representing some morphism from X to Y , then by definition of
locally small localizing class there exists a morphism s : Z Ñ X 1 such that s1s : Z Ñ X is a morphism in SX . Then
the following diagram is commutative

Z

X 1 Z

X Y

s
IdZ

s1
f 1

s1s

f 1s

This shows that the roofs ps1s, f 1sq and ps1, f 1q represent the same morphism. Hence we have a surjection from the
class of all tuples ps : Z Ñ X, f : Z Ñ Y q, with s a morphism in SX , to MorCrS´1spX,Y q. It suffices to show that
this class is a set, which follows from the following equation

tps, fq | s : Z Ñ X P SX , f P MorCpZ, Y qu “
ď

s:ZÑXPSX

ď

fPMorCpZ,Y q

ps, fq,

where the right hand side is a set because SX is a set and for any morphism Z Ñ X of SX MorCpZ, Y q is a set.
This shows that MorCrS´1spX,Y q is a set and so localization exists.

The following proposition shows that localization preserves full subcategories under some conditions.

Proposition 3.2.7. Let C be a category, S a localizing class in C, and B a full subcategory of C. Suppose that
SB “ S X B is a localizing class in B. If either of the following two conditions hold

(i) For any morphism s P S with codomain in ObB, there exists a morphisms f of C with domain in ObB such
that sf P S.
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(ii) For any morphism s P S with domain in ObB, there exists a morphism f of C with codomain in ObB such
that fs P S.

then BrS´1
B s is a full subcategory of CrS´1s.

Proof. Let I : B Ñ C be the inclusion functor. Suppose that the condition (i) holds. We have to show that for any
X,Y P ObB, the map

IS : MorBrS´1
B s
pX,Y q Ñ MorCrS´1spIpXq, IpY qq (3.2)

is bijective, where IS is the unique functor given by theorem 3.1.3. This functor makes the following diagram
commutative

B C

BrS´1
B s CrS´1s

I

QB QC

IS

To show that the map (3.2) is injective, let psf , fq and psg, gq be two roofs in C with domain and codomain in
B representing the same morphism. Suppose the equivalence is given by the following diagram

W

Z1 Z2

X Y

t1

t1

sf

f

sg

g

By the condition (i), there exists a morphism φ : V Ñ W with V P ObB such that sf t1φ P S. Now sf t1φ P SB
and gt2φ P MorBpV, Y q, because B is a full subcategory of C. These morphisms give the equivalence of the roofs in
BrS´1

B s. Thus the map (3.2) is injective.
To show that the map (3.2) is surjective, let

Z

X Y

sf

f

be a roof which represents a morphism of CrS´1s with domain and codomain in B. Again by the condition (i) we
obtain a morphism φ : V Ñ Z such that V P B, and sfφ P SB. By the fact that B is a full subcategory of C we
get fφ P MorBpV, Y q. This completes the proof. If condition (ii) holds, the proposition can be proved similarly by
using the formalism of coroofs and 3.2.9; see definition below.

Later, in chapter 6, we will need the formalism of coroofs. Let C be a category and S a localizing class for C. A
coroof is a diagram of the form

X Y

Z

f

s
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where s P S, is denoted by ps, fq_, and in this case we say that it is a coroof from X to Y . Two coroofs ps, fq_ and
pt, gq_ are equivalent if there exists a commutative diagram of the form

X Y

Z1 Z2

W

f s
g t

s1

t1

where t1t P S. Let „_ denote this relation. Composition of two coroofs ps, fq_ and pt, gq_ is a commutative diagram
of the form

X Z Y

Z1 Z2

W

f

t

g

s

t1

s1

where s1s is in S.

Lemma 3.2.8 (Equivalence of coroofs). The relation „_ of coroofs is an equivalence relation and it respects
composition of morphisms.

Proof. Similar to proofs of lemmas 3.2.2 and 3.2.3.

Let us denote by C̃_S the category consisting of the objects of C, morphisms are coroofs, and composition of
morphisms is composition of coroofs. The following proposition shows that localization of a category along a
localizing class is isomorphic to the category of coroofs.

Proposition 3.2.9. The categories C̃S and C̃_S are isomorphic.

Proof. Let us define a functor F : C̃S Ñ C̃_S as follows: The map on objects is the identity. Let a morphism φ from
X to Y be represented by a roof

Z1

X Y

s

f

By LS 2, we obtain the following diagram with s1 P S

X Y

Z

f 1

s1

This is a coroof from X to Y , which represents some morphism ψ : X Ñ Y in C̃_S . Define F pφq “ ψ.
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First we verify that F is well-defined. Suppose

Z3

Z1 Z2

X Y

s1
t1

s

f

t

g

is an equivalence of roofs ps, fq and pt, gq. By LS 2 we get the following commutative diagrams

Z3 Y

X V1

ss1

gt1

Z1 Y

X V2

Y V1

V2 V3

with Y Ñ V1, Y Ñ V2, V2 Ñ V3 P S. Now

Z3 Ñ Z1 Ñ X Ñ V1 Ñ V3 “ Z3 Ñ Z2 Ñ Y Ñ V1 Ñ V3

“ Z3 Ñ Z2 Ñ Y Ñ V2 Ñ V3

“ Z3 Ñ Z1 Ñ Y Ñ V2 Ñ V3

“ Z3 Ñ Z1 Ñ X Ñ V2 Ñ V3.

Since the composite X Ñ V2 Ñ V3 is in S by LS 1, by LS 3 there exists a morphism V3 Ñ V4 P S such that

X Ñ V1 Ñ V3 Ñ V4 “ X Ñ V2 Ñ V3 Ñ V4.

Therefore the following diagram

X Y

V1 V2

V4

shows that the coroofs corresponding to the roofs ps, fq and pt, gq, respectively, represent the same morphisms in
C̃_S . This shows that F is well-defined. Using similar arguments one defines a functor G : C̃_S Ñ C̃S , which is
identity on objects and maps coroofs to roofs by using LS 2. Let us show that G is the inverse of F .

On objects G ˝ F and IdC̃S clearly coincide. To show that G ˝ F is identity on morphisms, let

Z1

X Y

s1

f1

Z2

X Y

s2

f2
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be a roof and its image in G ˝ F . We show that these represent the same morphism in C̃S . By definition of F and
G, we have the following commutative diagram

Z1 Z2

X Y

V1

By LS 2 we get the following commutative square

Z3 Z1

Z2 X

where Z3 Ñ Z1 P S. Now

Z3 Ñ Z1 Ñ Y Ñ V1 “ Z3 Ñ Z1 Ñ X Ñ V1

“ Z3 Ñ Z2 Ñ X Ñ V1

“ Z3 Ñ Z2 Ñ Y Ñ V1,

so by LS 3 we get a morphism Z4 Ñ Z3 in S, so that the following diagram is an equivalence of roofs

Z4

Z1 Z2

X Y

This shows that G ˝ F “ IdC̃S . Similarly one shows that F ˝G “ IdC̃_S
. Therefore F is an isomorphism.

The following proposition shows that in some cases localization of an additive category is an additive category
and the localizing functor is an additive functor.

Proposition 3.2.10. Let A be an additive category, S is a localizing class, and Q : A Ñ ArS´1s the localizing
functor. Then ArS´1s is an additive category, and Q is an additive functor.

Proof. Zero object: Let us first verify that ArS´1s is an additive category. Consider the zero object 0 in A. If
p0, f1q, p0, f2q are two roofs representing some morphisms from 0 to X, then the following diagram shows that
these represent the same morphism.

0

Z1 Z2

0 X

0

0

0

f1

0

f2
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This shows that 0 is the initial object in ArS´1s. Let ps1, 0q and ps2, 0q be two roofs which represent some
morphisms from X to 0. By LS 2 on obtains the following commutative diagram

W Z1

Z2 X

t1

t2 s1

s2

with t1 P S. By LS 1 we have t1s1 P S and the following diagram

W

Z1 Z2

X 0

t1

t2

s1
0

s2
0

shows that the roofs represent the same morphism. This shows that 0 is also the terminal object in ArS´1s,
and hence the zero object in ArS´1s.

Abelian group MorArS´1spX,Y q: Next, let us define the abelian group structure on the set of morphisms between
objects. Let

Z1

X Y

s1

f1

Z2

X Y

s2

f2

represent two morphisms between objects of ArS´1s. By LS 2 we can complete Z1 Ñ X Ð Z2 to the following
commutative square

W Z1

Z2 X

t1

t2 s1

s2

with t1 P S. By LS 1, s1t1 P S. Clearly the following two roofs

W

X Y
s1t1

f1t1

W

X Y
s1t1

f2t2 (3.3)

represent the same morphisms as ps1, fq and ps2, gq, respectively. From now on we will similarly change any
two roofs with the same domain to roofs with the same top without mentioning it. We define the sum of
the morphisms represented by the roofs ps, fq and pt, gq, respectively, to be the morphism represented by the
following roof

W

X Y
s1t1

f1t1`f2t2
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To see that this definition is well-defined, that is, it does not depend on the choices made in the definition of
sum, denote the roofs (3.3) by ps, f1q and ps, f2q, and let

V

X Y
s1

f 11

V

X Y
s1

f 12

be roofs such that ps, f1q „ ps
1, f 11q and ps, f2q „ ps

1, f 12q. We have the following commutative diagrams

U1

W V

X Y

s1

f1

s11

f 11

U2

W V

X Y

s2

f2

s12

f 12

(3.4)

Complete the composites U1 Ñ W Ñ X and U2 Ñ W Ñ X to a square, by LS 2, with U Ñ U1 in S. From
the equation

U Ñ U1 ÑW Ñ X “ U Ñ U2 ÑW Ñ X

and using the fact that s : W Ñ X P S, by LS 3, we get a morphism U 1 Ñ U such that

U 1 Ñ U Ñ U1 ÑW “ U 1 Ñ U Ñ U2 ÑW.

Since addition is bilinear in A we see by using the commutativity of the diagrams (3.4) that the following
diagram represents equality of the additions

U 1

U

U1 U2

W V

X Y

s
f1`f2 f 11`f

1
2

s1

Therefore addition is well-defined. Using the additive group structure of A one can easily show that this
definition gives an abelian group structure on MorArS´1spX,Y q.

Bilinear composition: Let us show that pps1, f1q ` ps1, f2qqps2, gq “ ps1, f1qps2, gq ` ps1, f2qps2, gq. Let

U

X Y

s1

f1

U

X Y

s1

f2

V

Y Z

s2

g1
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be roofs, representing some morphisms. We have to show that

pps1, f1q ` ps1, f2qqps2, gq “ ps1, f1qps2, gq ` ps1, f2qps2, gq. (3.5)

The left-hand side of the equation (3.5) is represented by the following commutative diagram

V1

U V

X Y Z

s1

f1`f2
s2

g

(3.6)

The right-hand side of the equation (3.5) is the morphism which is the sum of the morphisms represented by
the following two roofs

V2

U V

X Y Z

s1

f1
s2

g

V3

U V

X Y Z

s1

f2
s2

g

(3.7)

By LS 2 we obtain the following commutative square

V4 V2

V3 X

Since U Ñ X is in S, by LS 3 we get a morphism V5 Ñ V4, contained in S, such that

V5 Ñ V4 Ñ V2 Ñ U “ V5 Ñ V4 Ñ V3 Ñ U. (3.8)

Again, by LS 2 we get the following commutative diagram

V6 V5

V1 X

and by LS 3 we find a morphism V7 Ñ V6 such that

V7 Ñ V6 Ñ V5 Ñ V4 Ñ V3 Ñ U “ V7 Ñ V1 Ñ U. (3.9)
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Now we have the following equalities

V7 Ñ V6 Ñ V5 Ñ V4 Ñ V2 Ñ V Ñ Y ` V7 Ñ V6 Ñ V5 Ñ V4 Ñ V3 Ñ V Ñ Y

“ V7 Ñ V6 Ñ V5 Ñ V4 Ñ V2 Ñ U Ñ Y ` V7 Ñ V6 Ñ V5 Ñ V4 Ñ V3 Ñ U Ñ Y (3.7)

“ pV7 Ñ V6 Ñ V5 Ñ V4 Ñ V2 Ñ Uq ˝ pU
f1
Ñ Y ` U

f2
Ñ Y q (3.8)

“ V7 Ñ V1 Ñ U
f1`f2
Ñ Y (3.9)

“ V7 Ñ V1 Ñ V Ñ Y (3.6).

Since V Ñ Y is a morphism in S, by LS 3 we obtain a morphism V8 Ñ V7 such that

V8 Ñ V7 Ñ V6 Ñ V5 Ñ V4 Ñ V2 Ñ V ` V8 Ñ V7 Ñ V6 Ñ V5 Ñ V4 Ñ V3 Ñ V “ V8 Ñ V1 Ñ V.

Denote by k the composite V1 Ñ V Ñ Z, by k1 the following sum

V7 Ñ V6 Ñ V5 Ñ V4 Ñ V2 Ñ V ` V7 Ñ V6 Ñ V5 Ñ V4 Ñ V3 Ñ V,

and by s3 composite V7 Ñ V6 Ñ V5 Ñ V4 Ñ V2 Ñ X. Then commutativity of the following diagram shows
that the equation (3.5) holds

V8

V1 V7

X Z

s1

k
s3

k1

Similary one shows that φpψ1`ψ2q “ φψ1`φψ2 for any morphisms φ, φ1, and φ2 in ArS´1s. Hence we have
shown that addition in ArS´1s is bilinear under composition of morphisms.

Q additive: Recall that the localizing functor Q is identity on objects and sends a morphism f : X Ñ Y of A to
pIdX , fq. By definition of addition in ArS´1s it is clear that Qpf ` gq “ pIdX , f ` gq “ pIdX , fq ` pIdX , gq “
Qpfq `Qpgq for any morphisms f, g : X Ñ Y of A. This shows that Q is an additive functor.

3.3 Notes

If the reader interested in formal mathematics, he may want to take look at [Sim06], where the Gabriel-Zisman
localization is formalized for small categories by using Coq proof assistant.
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Chapter 4

Triangulated categories

In this chapter we introduce triangulated categories and show that KpAq has a structure of a triangulated category.
We prove that localization of a triangulated category with respect to a localizing class, which respects triangulation,
is a triangulated category. Both of these results are needed in the next chapter to prove that derived category is
triangulated.

4.1 Triangulated categories

Definition 4.1.1 (Translation functor). A translation functor is an additive automorphism of an additive category.
Let T : C Ñ C be a translation functor. For any object X of C we denote by Xrns, n P Z, n ą 0, the object obtained
iterating n times the functor T . More precisely

Xrns “ T ˝ . . . ˝ T
looooomooooon

n

pXq.

If n is negative, by Xrns we mean the object obtained by iterating ´n times the functor T ´1. For n “ 0 we get
the identity functor on C. We use the same notation also for morphisms.

Definition 4.1.2 (Triangle). A triangle in an additive category C together with a translation functor T : C Ñ C
consists of three objects X,Y, Z and three morphisms u : X Ñ Y , v : Y Ñ Z, and w : Z Ñ Xr1s. A triangle is
denoted by pX,Y, Z, u, v, wq, or just pX,Y, Zq if the morphisms are understood from the context.

A morphism pf, g, hq : pX,Y, Z, u, v, wq Ñ pX 1, Y 1, Z 1, u1, v1, w1q between triangles is a commutative diagram of
the form

X Y Z Xr1s

X 1 Y 1 Z 1 X 1r1s

u

f

v

g

w

h fr1s

u1 v1 w1

It is easy to see that a morphism pf, g, hq of triangles is an isomorphism if and only if f, g, and h are isomorphisms.

Definition 4.1.3 (Triangulated category). An additive category D together with a translation functor T : D Ñ D
and a collection of triangles, called distinguished triangles (also known as exact triangles), is a triangulated category
if it satisfies the following conditions:
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TR 1 (Trivial triangle) For any X P ObD, the triangle pX,X, 0, IdX , 0, 0q is distinguished.

TR 2 (Isomorphic triangles) Any triangle which is isomorphic to a distinguished triangle is distinguished.

TR 3 (Rotation) A triangle pX,Y, Z, u, v, wq is distinguished if and only if pY, Z,Xr1s, v, w,´ur1sq is a distin-
guished triangle.

TR 4 (Cone) For any morphism u : X Ñ Y in D, there exists a distinguished triangle pX,Y, Z, u, v, wq in D,
not necessarily unique, and we call Z the mapping cone of u.

TR 5 (Extension) Given morphisms f : X Ñ X 1, g : Y Ñ Y 1, and two distinguished triangles pX,Y, Z, u, v, wq
and pX 1, Y 1, Z 1, u1, v1, w1q such that the left square in the diagram

X Y Z Xr1s

X 1 Y 1 Z 1 X 1r1s

u

f

v

g

w

h fr1s

u1 v1 w1

commutes, then the diagram can be completed to a morphism of triangles. Note that the morphism h
does not need to be unique.

TR 6 (Octahedral) Any upper cap diagram

X 1 Z

Y

Z 1 X

r1s

r1s

ö

d

r1s

d

ö

can be completed to a octahedron diagram

Y

X 1 Z

Z 1 X

Y 1

such that the two composites from Y to Y 1 agree, and the two composites from Y 1 to Y agree, and the
lower cap of the octahedron diagram is of the form

X 1 Z

Y 1

Z 1 X

r1s

r1s

d

ö

r1s

ö

d
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Note that in the upper and lower cap we use d to mean distinguished triangle and ö to mean a commutative
triangle.

According to [GM03, IV.1.2.b], TR6 is equivalent, modulo other axioms, that lower cap can be completed to an
upper cap. We will later, in the theory of t-structures, need completion of lower cap to an upper cap, so we have
provided a proof of this in appendix (A.1).

We prove some useful elementary results of triangulated categories which show that triangulated categories and
abelian categories have some similar properties, when one thinks of distinguished triangles as short exact sequences.

Lemma 4.1.4. For any distinguished triangle pX,Y, Z, u, v, wq in a triangulated category D, we have vu “ 0.

Proof. Consider the following diagram

X X 0 Xr1s

X Y Z Xr1s

IdX

u

0

0

0

u v w

where the first row is a distinguished triangle by TR1. By TR5 the above diagram is a morphism of distinguished
triangles, so commutativity of middle square shows that vu “ 0.

Proposition 4.1.5. Let D be a triangulated category and

X Y Z Xr1su v w

a distinguished triangle in D. For any object T of D we have the following long exact sequences

. . . MorDpT,Xrisq MorDpT, Y risq MorDpT,Zrisq MorDpT,Xri` 1sq . . .
w˚ri´1s u˚ris v˚ris w˚ris u˚ri`1s

. . . MorDpZris, T q MorDpY ris, T q MorDpXris, T q MorDpZri´ 1s, T q . . .
w˚ri`1s v˚ris u˚ris w˚ris v˚ri´1s

Proof. By TR3, it suffices to show that the following sequences are exact

MorDpT,Xq MorDpT, Y q MorDpT,Zq
u˚ v˚

MorDpZ, T q MorDpY, T q MorDpX,T q
v˚ u˚

By Lemma 4.1.4 Imu˚ Ă ker v˚ and Im v˚ Ă keru˚. Let φ P MorDpT, Y q and ψ P MorDpY, T q such that vφ “ 0
and ψu “ 0. By TR5 we have the following morphisms of distinguished triangles

T 0 T r1s T r1s

Y Z Xr1s Y r1s

φ gr1s

´ IdT r1s

φr1s

v w ´ur1s

X Y Z Xr1s

0 T T 0

u v

ψ h

w

IdT

Here g is obtained by first taking g1 : T r1s Ñ Xr1s by TR5, and then using the fact that translation is an
automorphism, so there exists a unique morphism g : T Ñ X such that gr1s “ g1. Now ug “ φ and hv “ ψ, shows
that the sequences are exact.
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The following corollary can be thought to be the 5-lemma (see lemma 2.6.1) for triangulated categories.

Corollary 4.1.6. Let D be a triangulated category and

X1 Y1 Z1 X1r1s

X2 Y2 Z2 X2r1s

f

u

g

v

h

w

fr1s

u1 v1 w1

a morphism of distinguished triangles. If f and g are isomorphisms, then so is h.

Proof. By proposition 4.1.5 we have the following commutative diagram with exact rows

MorDpT,X1q MorDpT, Y1q MorDpT,Z1q MorDpT,X1r1sq MorDpT, Y1r1sq

MorDpT,X2q MorDpT, Y2q MorDpT,Z2q MorDpT,X2r1sq MorDpT, Y2r1sq

u˚

f˚

v˚

g˚

w˚

h˚

ur1s˚

f˚r1s g˚r1s

u1˚ v1˚ w1˚ u1r1s˚

Since f˚ and g˚ are isomorphisms, so are f˚r1s and g˚r1s. By lemma 2.6.1 h˚ is an isomorphism. Thus when
T “ Z2 we have hφ “ IdZ2 for some φ : Z2 Ñ Z1. Similarly, by Lemma 4.1.5, we get the following commutative
diagram with exact rows

MorDpY2r1s, T q MorDpX2r1s, T q MorDpZ2, T q MorDpY2, T q MorDpX2, T q

MorDpY1r1s, T q MorDpX1r1s, T q MorDpZ1, T q MorDpY1, T q MorDpX1, T q

v˚r1s

g˚r1s

w˚

f˚r1s

v˚

h˚

u˚

g˚ f˚

v1˚r1s w1˚ v1˚ u1˚

Again, by Lemma 2.6.1 h˚ is an isomorphism, and when T “ Z1 we get a morphism ψ such that ψh “ IdZ1
. Now

φ “ ψhφ “ ψ, so h is an isomorphism.

We have seen that a triangulated category satisfies some properties similar to an abelian category. Therefore it
is natural to ask when a triangulated category is an abelian category? The following proposition shows that the
overlap is not large, it consists of semisimple abelian categories.

Proposition 4.1.7. A triangulated category D which is an abelian category is semisimple.

Proof. Let

0 X Y Z 0
f g

(4.1)

be a short exact sequence in D. By TR3 and TR4, we obtain the following distinguished triangles

C1r´1s X Y C1
u1 f v1 Y Z C2 Y r1s

g v2 u2

Since f is a monomorphism, and g is an epimorphism, u1 “ v2 “ 0 by Lemma 4.1.4. By application of TR1 and
TR3, we obtain the following morphisms of distinguished triangles

X Y C1 Xr1s

X X 0 Xr1s

f v1

φ1

0

0

0 0

Z Z 0 Zr1s

Y Z C2 Y r1s

φ2

0 0

0 φ2r1s

g 0 v1

Commutativity implies that gφ2 “ IdZ and φ1f “ IdX . Thus the short exact sequence (4.1) splits.
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4.2 KpAq is triangulated

In this section A denotes an abelian category if not otherwise mentioned.

Definition 4.2.1. A distinguished triangle in the category KpAq is a triangle isomorphic to a triangle of the form

X‚ Cylpfq Cpfq X‚r1s
i1 p2 p1

for some morphism f : X‚ Ñ Y ‚ of KpAq.
To prove that KpAq is triangulated, we need a few lemmas about the structure of distinguished triangles in

KpAq. The following lemma shows that for any morphism f : X‚ Ñ Y ‚ in KpAq, pX‚, Y ‚, Cpfq, f, i2, p1q is a
distinguished triangle.

Lemma 4.2.2. For any morphism f : X‚ Ñ Y ‚ in KpAq, we have an isomorphism

X‚ Y ‚ Cpfq X‚r1s

X‚ Cylpfq Cpfq X‚r1s

f

α

i2 p1

i1 p2 p1

of triangles in KpAq, where α “ i2i2. In particular, all the distinguished triangles in KpAq are isomorphic to a
distinguished triangle of the form of the upper row.

Proof. By Lemma 2.7.9 the morphism α is an isomorphism in KpAq. It remains to verify that the left square is
commutative in KpAq. Let χi : Xi Ñ Cylpfqi´1 be the morphism i2i1. Now

χi`1diX‚ ` d
i´1
Cylpfqχ

i “ i2i1d
i
X‚ ` pi1d

i´1
X‚ p1 ´ i1p1p2 ` i2d

i´1
Cpfqp2qpi2i1q

“ i2i1d
i
X‚ ´ i1 ´ i2i1d

i
X‚ ` i2i2f

i

“ αf i ´ i1,

which shows that the left square commutes in KpAq. Hence the diagram is an isomorphism of triangles. By
definition 4.2.1 all the distinguished triangles in KpAq are isomorphic to a triangle of the form of the bottom row,
we conclude that they are also isomorphic to some distinguished triangle of the form of the upper row.

Definition 4.2.3 (Semi-split triangles). A short exact sequence

0 X‚ Y ‚ Z‚ 0
f g

in CpAq is semi-split if for all i the short exact sequence

0 Xi Y i Zi 0
fi gi

splits.
We say that a distinguished triangle pX,Y, Z, u, v, wq in KpAq comes from a semi-split short exact sequence if

there exists a semi-split short exact sequence

0 X 1‚ Y 1‚ Z 1‚ 0
f g

in CpAq and an isomorphism of triangles pX 1, Y 1, Z 1, f, g, hq – pX,Y, Z, u, v, wq in KpAq for some morphism h :
Z 1 Ñ X 1r1s.
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Let

0 X‚ Y ‚ Z‚ 0
f g

(4.2)

be a semi-split short exact sequence in CpAq. We show that this short exact sequence is isomorphic to a semi-split
short exact sequence

0 X‚ X‚ ‘ Z‚ Z‚ 0
i1 p2

(4.3)

where the differential of X‚ ‘ Z‚ is of the form

diX‚‘Z‚ “ i1d
i
X‚p1 ` i1ψp2 ` i2d

i
Y ‚p2 (4.4)

for some morphism of complexes ψ : Z‚ Ñ X‚r1s.
Fix a splitting pji1 : Y i Ñ Xi, ji2 : Zi Ñ Y iq for (4.2). For any i consider the following diagram

0 Xi Y i Zi 0

0 Xi Xi ‘ Zi Zi 0

fi gi

φi

i1 p2

where φi “ i1j
i
1 ` i2g

i. Then φif i “ i1 and p2φ
i “ gi, so the diagram is commutative. By lemma 2.6.1 φ is an

isomorphism. Define
diX‚‘Z‚ “ φi`1diY ‚pφ

iq´1.

Since diY ‚ is a differential, so is diX‚‘Z‚ . Clearly φ is a morphism of complexes. From

diX‚‘Z‚i1 “ φi`1diY ‚pφ
iq´1φif i “ φi`1diY ‚f

i “ φi`1f i`1diX‚ “ i1d
i
X‚ (4.5)

and

p2d
i
X‚‘Z‚ “ gi`1pφi`1q´1φi`1diY ‚pφ

iq´1 “ gi`1diY ‚pφ
iq´1 “ di`1

Z‚ g
ipφiq´1 “ di`1

Z‚ p2 (4.6)

we see that i1 : X‚ Ñ X‚ ‘ Z‚ and p2 : X‚ ‘ Z‚ Ñ Z‚ are morphisms of complexes, so that (4.3) is a semi-split
short exact sequence with splitting pp1, i2q.

Now,

diX‚‘Z‚ “ pi1p1 ` i2p2qd
i
X‚‘Z‚pi1p1 ` i2p2q

“ i1p1d
i
X‚‘Z‚i1p1 ` i1p1d

i
X‚‘Z‚i2p2 ` i2p2d

i
X‚‘Z‚i1p1 ` i2p2d

i
X‚‘Z‚i2p2

“ i1p1i1d
i
X‚p1 ` i1pp1d

i
X‚‘Z‚i2qp2 ` i2d

i
Z‚p2i1p1 ` i2d

i
Z‚p2i1p2

“ i1d
i
X‚p1 ` i1pp1d

i
X‚‘Z‚i2qp2 ` i2d

i
Z‚p2.

To see that pp1d
i
X‚‘Z‚i2q : Z‚ Ñ X‚r1s is a morphism of complexes, we have to show that

p1d
i`1
X‚‘Z‚i2d

i
Z‚ “ ´d

i`1
X‚ p1d

i
X‚‘Z‚i2.

Since i1 is a monomorphism and p2 is an epimorphism, this follows from the following

i1pp1d
i`1
X‚‘Z‚i2d

i
Z‚ ` d

i`1
X‚ p1d

i
X‚‘Z‚i2qp2 “ i1p1d

i`1
X‚‘Z‚d

i
X‚‘Z‚ ` d

i`1
X‚‘Z‚d

i
X‚‘Z‚i2p2 “ 0,
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where we used the identities (4.5) and (4.6) and the fact that dX‚‘Z‚ is a differential. From this we conclude that
(4.2) is isomorphic to (4.3) with the differential of the form (4.4).

Conversely, it is easy to show that for any morphism of complexes ψ : Z‚ Ñ X‚r1s the short exact sequence
(4.3) with differential of the form (4.4) is a semi-split short exact sequence of complexes.

By the definition of distinguished triangles in KpAq every distinguished triangle is isomorphic to a distinguished
triangle which comes from a semi-split short exact sequence in CpAq. Conversely, the following lemma shows that
every semi-split exact sequence in CpAq can be completed to a distinguished triangle in KpAq. It implies that there
is a bijective correspondence between distinguished triangles in KpAq and semi-split short exact sequences in CpAq.
Proposition 4.2.4. For any semi-split short exact sequence

0 X‚ Y ‚ Z‚ 0
f g

in CpAq there is a distinguished triangle

X‚ Y ‚ Z‚ X‚r1s
f g ´ψ

in KpAq, where ψ : Z‚ Ñ X‚r1s is the morphism which occurs at the differential of Y ‚ (see (4.4) and discussion
above).

Proof. By the discussion above, we have the following isomorphism of semi-split exact sequences

0 X‚ Y ‚ Z‚ 0

0 X‚ X‚ ‘ Z‚ Z‚ 0

f g

φ

i1 p2

Therefore we have an isomorphism of triangles

X‚ Y ‚ Z‚ X‚r1s

X‚ X‚ ‘ Z‚ Z‚ Xr1s

f g

φ

´ψ

i1 p2 ´ψ

(4.7)

By TR2 it suffices to show that the lower triangle of (4.7) is distinguished.
Recall that

diX‚‘Z‚ “ i1d
i
X‚p1 ` i1ψ

ip2 ` i2d
i
Z‚p2.

By lemma 4.2.2 it suffices to show that

X‚ X‚ ‘ Z‚ Z‚ X‚r1s

X‚ X‚ ‘ Z‚ Cpi1q X‚r1s

i1 p2 ´ψ

ε

i1 i2 p1

is an isomorphism of triangles, where εi “ ´i1ψ
i ` i2i2. The following shows that ε is a morphism of complexes

εi`1diZ‚ “ ´i1ψ
i`1diZ‚ ` i2i2d

i
Z‚

“ i1d
i`1
X‚ ψ

i ´ i2i1ψ
i ` i2i1d

i
X‚p1i2 ` i2i1ψ

i ` i2i2d
i
Z‚

“ p´i1d
i`1
X‚ p1 ` i2i1p1 ` i2d

i
X‚‘Y ‚p2qp´i1ψ

i ` i2i2q

“ diCpi1qε
i.
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It is easy to see that the left and right squares commute. To show that the middle square commutes, let
χi : Xi ‘ Zi Ñ Cpi1q

i´1 be the morphism i1p1. Now

i2 ´ ε
ip2 “ i2 ´ p´i1ψ

ip2 ` i2i2p2q

“ i1ψ
ip2 ` i2pi1p1 ` i2p2q ´ i2i2p2

“ i2ψ
ip2 ` i2i1p1

and

χi`1diX‚‘Z‚ ` d
i´1
Cpi1q

χi “ i1p1pi1d
i
X‚p1 ` i1ψ

ip2 ` i2d
i
Z‚p2q ` p´i1d

i
X‚p1 ` i2i1p1 ` i2d

i´1
X‚‘Z‚p2qi1p1

“ i1d
i
X‚p1 ` i1ψ

ip2 ´ i1d
i
X‚p1 ` i2i1p1

“ i1ψ
ip2 ` i2i1p1.

Thus the middle square commutes in KpAq.
Finally, to show that ε is an isomorphism with inverse p2p2, let χi : Cpi1q

i Ñ Cpi1q
i´1 be the morphism i1p1p2.

Then p2p2ε
i “ IdZi ,

IdCpi1q´ε
ip2p2 “ i1p1 ` i2pi1p1 ` i2p2qp2 ´ p´i1ψ

i ` i2i2qp2p2

“ i1p1 ` i2i1p1p2 ` i1ψ
ip2p2,

and

χi`1diCpi1q ` d
i´1
Cpi1q

χi “ χi`1p´i1d
i`1
X‚ p1 ` i2i1p1 ` i2d

i
X‚‘Z‚p2q ` p´i1d

i
X‚p1 ` i2i1p1 ` i2d

i´1
X‚‘Z‚p2qχ

i

“ i1p1 ` i1d
i
X‚p1p2 ` i1ψ

ip2p2 ´ i1d
i
X‚p1p2 ` i2i1p1p2

“ i1p1 ` i1ψ
ip2p2 ` i2i1p1p2.

This shows that ε is an isomorphism, p2p2 being the inverse of ε.

We are ready to prove the main result of this section.

Theorem 4.2.5. Let A be an abelian category. The category KpAq is a triangulated category.

Proof. TR1 Fix X‚ P ObKpAq and consider the diagram

X‚ X‚ 0 X‚r1s

X‚ X‚ CpidXq X‚r1s

IdX 0 0

0

IdX i2 p2

We show that this diagram is an isomorphism of triangles, that is, the diagram commutes up to homotopy.
Clearly, the left and right squares are commutative. To show that the middle square is commutative up to
homotopy, let χi : Xi Ñ CpIdXq

i´1 be the map i1. We have

i2 “ i1d
i
X‚ ` p´i1d

i
X‚p1 ` i2p1 ` i2d

i´1
X‚ p2qi1

“ χi`1diX‚ ` d
i´1
CpIdXq

χi.

This shows that pX‚, X‚, 0, IdX , 0, 0q is a distinguished triangle in KpAq.
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TR2 Any triangle isomorphic to a distinguished triangle in KpAq is distinguished by definition 4.2.1.

TR3 ñ: Let ppX 1q‚, pY 1q‚, pZ 1q‚, u1, v1, w1q be a distinguished triangle. By lemma 4.2.2 this triangle is isomorphic to
some distinguished triangle pX‚, Y ‚, Cpfq, f, i2, p1q. Since rotation to left preserves isomorphisms of triangles
it suffices to show that pY ‚, Cpfq, X‚r1s, i2, p1,´f r1sq is a distinguished triangle. This follows from TR2 if we
show that the following diagram is an isomorphism of triangles

Y ‚ Cpfq X‚r1s Y ‚r1s

Y ‚ Cpfq Cpi2q Y ‚r1s

i2 p1 ´fr1s

θ

i2 i2 p1

(4.8)

where θi “ ´i1f
i`1 ` i2i1, and the bottom row is a distinguished triangle by Lemma 4.2.2.

Let us verify that θ is a morphism of complexes. From

θi`1diX‚r1s “ i1f
i`2di`1

X‚ ´ i2i1d
i`1
X‚

and

diCpi2qθ
i “ p´i1d

i`1
Y ‚ p1 ` i2i2p1 ` i2d

i
Cpfqp2qp´i1f

i`1 ` i2i1q

“ i1d
i`1
Y ‚ f

i`1 ´ i2i2f
i`1 ´ i2i1d

i`1
X‚ ` i2i2f

i`1

“ i1f
i`2di`1

X‚ ´ i2i1d
i`1
X‚

one sees that θ is a morphism of complexes.

One can easily see that the left and right squares of the diagram (4.8) are commutative. To show that the
middle square is commutative, let χi : Cpfqi Ñ Cpi2q

i´1, χi “ i1p2 for all i. Now

i2 ´ θp1 “ pi2i1p1 ` i2i2p2q ´ p´i1f
i`1 ` i2i1qp1

“ i2i2p2 ` i1f
i`1p1

and

di´1
Cpi2q

χi ` χi`1diCpfq “ p´i1d
i
Y ‚p1 ` i2i2p1 ` i1d

i´1
Cpfqp2qpi1p2q

` pi1p2qp´i1d
i`1
X‚ p1 ` i2f

i`1p1 ` i2d
i
Y ‚p2q

“ ´i1d
i
Y ‚p2 ` i2i2p2 ` i1f

i`1p1 ` i1d
i
Y ‚p2

“ i2i2p2 ` i1f
i`1p1.

Thus the middle square is commutative in KpAq.
Finally, we show that θ is an isomorphism with inverse p1p2. Let χi : Cpi2q

i Ñ Cpi2q
i´1 be the morphism

i1p2p2. Now p1p2θ
i “ IdX‚r1s,

IdCpi2qi ´θ
ip1p2 “ i1p1 ` i2pi1p1 ` i2p2qp2 ´ p´i1f

i`1 ` i2i1qp1p2

“ i1f
i`1p1p2 ` i1p1 ` i2i2p2p2,
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and

χi`1diCpi2q ` d
i´1
Cpi2q

χi “ pi1p2p2qp´i1d
i`1
Y ‚ p1 ` i2i2p1 ` i2d

i
Cpfqp2q

` p´i1d
i
Y ‚p1 ` i2i2p1 ` i2d

i´1
Cpfqp2qpi1p2p2q

“ i1p1 ` i1f
i`1p1p1 ` i1d

i
Y ‚p2p2 `´i1d

i
Y ‚p2p2 ` i2i2p2p2

“ i1f
i`1p1p1 ` i1p1 ` i2i2p2p2.

This shows that θ is an isomorphism.

ð: Conversely, suppose ppY 1q‚, pZ 1q‚, pX 1q‚r1s, v1, w1,´u1r1sq is a distinguished triangle. By Lemma 4.2.2
this triangle is isomorphic to a triangle of the form pX‚, Y ‚, Cpfq, f, i2, p1q. Since rotation to right preserves
isomorphisms of triangles, it suffices to show that pCpfqr´1s, X‚, Y ‚,´p1r´1s, f, i2q is a distinguished triangle.
We do this by using TR2 and showing that the following diagram

Cpfqr´1s X‚ Cp´p1r´1sq Cpfq

Cpfqr´1s X‚ Y ‚ Cpfq

´p1r´1s i2 p1

θ

´p1r´1s f i2

(4.9)

is an isomorphism of triangles, where the top row is a distinguished triangle by Lemma 4.2.2 and the morphism
θ : Z Ñ Cpuq is defined to be θi “ f ip2 ` p2p1.

The fact that θ is a morphism follows from

θi`1diCp´p1r´1sq “ pf
i`1p2 ` p2p1qp´i1d

i`1
Cpfqr´1sp1 ´ i2p1p1 ` i2d

i
X‚p2q

“ ´f i`1p1p1 ` f
i`1diXp2 ` p2pi2f

i`1p1 ` i2d
i
Y ‚p2qp1

“ ´f i`1p1p1 ` f
i`1diX‚p2 ` f

i`1p1p1 ` d
i
Y ‚p2p1

“ diY ‚pf
ip2 ` p2p1q

“ diY ‚θ
i.

Clearly the left and middle squares of (4.9) are commutative. To show that the right square is commutative,
it suffices to show that i2f is homotopic to 0, because i2pf

ip2 ` p2p1q ´ p1 “ i2f
ip2. Let χi : Xi Ñ Cpfq be

χi “ i1. Then

χi`1diX‚ ` d
i´1
Cpfqχ

i “ i1d
i
X‚ ´ i1d

i
X‚ ` i2f

i “ i2f
i

shows that the right square commutes.

It remains to show that θ is an isomorphism with inverse given by i1i2. Clearly θi1i2 “ IdY . We have to show
that i1i2θ´IdCp´p1r´1sq “ i1i2f

ip2´i1i1p1p1´i2p2 is homotopic to 0. We know already that i2f
i is homotopic

to 0 so it remains to show that ´i1i1p1p1 ´ i2p2 is homotopic to 0. Let χi : Cip´p1r´1sq Ñ Ci´1p´p1r´1sq
be i1i1p2. Then

χi`1diCp´p1r´1sq ` d
i´1
Cp´p1r´1sqχ

i “ ´i1i1p1p1 ` i1i1d
i´1
X p2 ´ i1i1d

i´1
X p2 ´ i2p2

“ ´i1i1p1p1 ´ i2p2.
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TR4 Let f : X‚ Ñ Y ‚ be a morphism in CpAq which represents a morphism X‚ Ñ Y ‚ in KpAq. By lemma 4.2.2

X‚ Y ‚ Cpfq X‚r1s
f i2 p1

is a distinguished triangle in KpAq.

TR5 By lemma 4.2.2 it suffices to consider the following commutative diagram

X‚1 Y ‚1 Cpu1q X‚1 r1s

X‚2 Y ‚2 Cpu2q X‚2 r1s

u1

f

i2

g

p1

h fr1s

u2 i2 p1

By letting hi “ i1f
i`1p1` i2g

ip2, one can easily verify that the diagram commutes. The following shows that
h is a morphism of complexes

diCpu2q
hi “ p´i1d

i`1
X‚2

p1 ` i2u
i`1
2 p1 ` i2d

i
Y ‚2
p2qpi1f

i`1p1 ` i2g
ip2q

“ ´i1d
i`1
X‚2

f i`1p1 ` i2u
i`1
2 f i`1p1 ` i2d

i
Y ‚2
gip2

“ ´i1f
i`2di`1

X‚1
p1 ` i2g

i`1ui`1
1 p1 ` i2g

i`1diY ‚1 p2

“ pi1f
i`2p1 ` i2g

i`1p2qp´i1d
i`1
X‚1

p1 ` i2u
i`1
1 p1 ` i2d

i
Y ‚1
p2q

“ hi`1diCpu1q

This proves TR5.

TR6 Fix an upper cap diagram

X‚2 Z‚1

Y ‚1

Z‚2 X‚1

r1s

r1s

ö

d

r1s

d

ö (4.10)

Denote the morphism Z‚2 Ñ X‚1 r1s by ´f . By Proposition 4.2.4 all distinguished triangles in KpAq come from
semi-split exact sequences and by discussion before Proposition 4.2.4, the distinguished triangle pX1, Y1, Z1q

is isomorphic to a distinguished triangle

X‚1 X‚1 ‘ Z
‚
2 Z‚2 X‚1 r1s

i1 p2 ´f

where the differential of X‚1 ‘ Z
‚
2 is given by

diX‚‘Z‚ “ i1d
i
X‚p2 ` i1f

ip2 ` i2d
i
Z‚p2.

Let us denote the morphism X‚2 Ñ pX‚1 ‘ Z
‚
2 qr1s by ´i1g ´ i2h. Then the distinguished triangle pY1, Z1, X2q

is isomorphic to

X‚1 ‘ Z
‚
2 pX‚1 ‘ Z

‚
2 q ‘X

‚
2 X‚2 pX‚1 ‘ Z

‚
2 qr1s

i1 p2 ´i1g´i2h
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where the differential of pX‚1 ‘ Z
‚
2 q ‘X

‚
2 is given by

dipX‚‘Z‚q‘X‚2 “ i1d
i
pX‚‘Z‚qp2 ` i1pi1g

i ` i2h
iqp2 ` i2d

i
X‚p2.

By commutativity the morphism X‚2 Ñ Z‚2 r1s is ´h. Then the upper cap (4.10) is isomorphic to the following
upper cap

X‚2 pX‚1 ‘ Z
‚
2 q ‘X

‚
2

X‚1 ‘ Z
‚
2

Z‚2 X‚1

r1s

r1s

ö

d

r1s

d

ö (4.11)

It suffices to prove TR6 for this upper cap, because by using the isomorphism, one also obtains a lower cap
for the original upper cap.

Let us construct a lower cap

X‚2 pX‚1 ‘ Z
‚
2 q ‘X

‚
2

Z‚2 ‘X
‚
2

Z‚2 X‚1

r1s

r1s

d

ö

r1s

ö

d (4.12)

where

diZ‚2‘X‚2 “ i1d
i
Z‚2
p1 ` i1h

ip2 ` i2d
i
X‚2
p2.

By Proposition 4.2.4, the triangle pZ‚2 , Z
‚
2 ‘X

‚
2 , X

‚
2 q is a distinguished triangle. Let Z‚2 ‘X

‚
2 Ñ X‚1 r1s be the

morphism ´fp1 ´ gp2. Now, an easy verification shows that

ppX‚1 ‘ Z
‚
2 q ‘X

‚
2 , i1i1, p1p1, i1i2p1 ` i2p2, i1p2p1 ` i2p2q (4.13)

is a biproduct of X‚1 and Z‚2 ‘X
‚
2 . By proposition 4.2.4, to show that

X‚1 pX‚1 ‘ Z
‚
2 q ‘X

‚
2 Z‚2 ‘X

‚
2 X‚1 r1s

i1i1 i1p2p1`i2p2 ´gp2´fp1
(4.14)

is a distinguished triangle, we need to show that the differential of pX‚1 ‘ Z
‚
2 q ‘X

‚
2 is of the form (4.4), with

inclusions and projections of the biproduct (4.13), where ψ “ gp2 ` fp1. We have

dipX‚1‘Z‚2 q‘X‚2 “ i1d
i
X‚1‘Z

‚
2
p1 ` i1pi1g ` i2hqp2 ` i2d

i
X‚2
p2

“ i1pi1d
i
X‚p1 ` i1fp2 ` i2d

i
Z‚2
p2qp1 ` i1pi1g ` i2hqp2 ` i2d

i
X‚2
p2

“ i1i1d
i
X‚1
p1p1 ` i1i1pgp2 ` fp1qpi1p2p1 ` i2p2q ` i1i2d

i
Z‚2
p2p1 ` i1i2h

ip2 ` i2d
i
X‚2
p2

“ i1i1d
i
X‚1
p1p1 ` i1i1pgp2 ` fp1qpi1p2p1 ` i2p2q`

pi1i2p1 ` i2p2qpi1d
i
Z‚2
p1 ` i1h

ip2 ` i2d
i
X‚2
p2qpi1p2p1 ` i2p2q

“ i1i1d
i
X‚1
p1p1 ` i1i1pgp2 ` fp1qpi1p2p1 ` i2p2q ` pi1i2p1 ` i2p2qd

i
Z‚2‘X

‚
2
pi1p2p1 ` i2p2q.
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This shows that (4.14) is a distinguished triangle.

It remains to verify that the two morphisms from X‚1 ‘Z
‚
2 to Z‚2 ‘X

‚
2 and the two morphisms from Z‚2 ‘X

‚
2

to X‚1 ‘ Z
‚
2 are equal in (4.12). Clearly the composite

X‚1 ‘ Z
‚
2
i1
Ñ pX‚1 ‘ Z

‚
2 q ‘X

‚
2
i1p2p1`p2
Ñ Z‚2 ‘X

‚
2

equals the composite

X‚1 ‘ Z
‚
2
p2
Ñ Z‚2

i1
Ñ Z‚2 ‘X

‚
2 ,

so the two morphisms from X‚1 ‘ Z
‚
2 to Z‚2 ‘X

‚
2 are equal.

To show that the two morphisms from Z‚2 ‘X
‚
2 to pX‚1 ‘Z

‚
2 qr1s are equal, let χi : Zi2‘X

i
2 Ñ Xi

1‘Z
i
2 be the

morphism i2p1. Now, the composite Z‚2 ‘X
‚
2 Ñ X‚1 r1s Ñ pX‚1 ‘ Z

‚
2 qr1s is given by i1p´f

ip1 ´ g
ip2q and the

composite Z‚2 ‘X
‚
2 Ñ X‚2 Ñ pX‚1 ‘Z

‚
2 qr1s is given by p´i1g

i ´ i2h
iqp2. The difference of these morphisms is

´i1f
ip1 ` i2h

ip2. Since

χi`1diZ‚2‘X‚2 ` d
i´1
pX‚1‘Z

‚
2 qr1s

χi “ pi2p1qpi1d
i
Z‚2
p1 ` i1h

ip2 ` i2d
i
X‚2
p2q ` p´i1d

i
X‚1
´ i1f

ip2 ´ i2d
i
Z‚2
p2qpi2p1q

“ i1d
i
Z‚2
p1 ` i2h

ip2 ´ i1f
ip2 ´ i2d

i
Z‚2
p2

“ ´i1f
ip1 ` i2h

ip2,

we see that these morphisms are homotopic, hence equal. This completes the proof.

Suppose R is a full additive subcategory of A. Recall the definition of K˚pRq, ˚ “ H,`,´, b in definition 2.7.11.
From the definition we see that K˚pRq is a full additive subcategory of K˚pAq. We define the distinguished triangles
of K˚pRq, for ˚ “ H,`,´, b, to be the distinguished triangles of KpAq where all the objects are contained in K˚pRq.
Note that the categories K˚pRq contain all the cones and cylinders of their morphisms. The above argument shows
that these categories are also triangulated.

Corollary 4.2.6. Let A be an abelian category and R a full subcategory of A such that R is an additive subcategory.
Then the categories K˚pRq, ˚ “ H,`,´, b, are well-defined and triangulated. In particular, the categories KpAq˚,
˚ “ `,´, b are triangulated.

Proof. In the proof theorem 4.2.5, we used biproducts and mapping cones to produce new objects in the category
KpAq. By assumption K˚pRq are closed under taking these, so the proof theorem 4.2.5 works also for these
categories.

The following example shows that the category KpAbq is not abelian.

Example 4.2.7 (KpAbq not abelian). Suppose KpAbq is abelian, then by theorem 4.2.5 and proposition 4.1.7 it
must be semisimple. Consider the following exact sequence of complexes

0 pZ{2qr0s pZ{4qr0s pZ{2qr0s 0
f g

(4.15)

Where the only nonzero objects are at index zero and the morphisms f and g are from example 2.2.17. These are
complexes with all differentials zero morphisms, so any two morphisms between them are equal in KpAbq if and
only if they are equal in CpAbq. In particular, in example 2.2.17 we have seen that the morphisms in index 0 do
not split. This implies that KpAbq is not an abelian category.
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The following example shows that the cone is not functorial in KpAbq.

Example 4.2.8 (Cone not functorial). Consider the homotopy category KpAbq of abelian groups Ab. Let us
denote by Z the complex with zero differentials where the object at the index 0 is the group of integers and the
others are zero objects. By TR1 and TR3 we have the following diagram where both rows are distinguished triangles.

Zr´1s 0 Z Z

0 Z Z 0

h

An easy observation shows that the diagram commutes even in CpAbq for any group homomorphism h : Z Ñ Z.
Such a group homomorphism is completely determined by the image of 1 and it can be sent to any integer. Thus
there are infinitely many h making the diagram commutative. Since the complexes in consideration are trivial
outside index 0 these morphisms represent different morphisms in KpAbq. This shows that the morphism h in the
axiom TR5 indeed need not be unique.

4.3 Localization of a triangulated category

Definition 4.3.1. Let D be a triangulated category, T the associated translation functor, and S a localizing class
for D. We say that S is compatible with triangulation if the following conditions hold:

CT 1 For any morphism f in D we have f P S if and only if T pfq P S.

CT 2 In the condition TR5 for D, if f, g P S, then h P S.

If S is a localizing class which is compatible with triangulation in a triangulated category D, with translation
functor T , we define a translation functor TS : DrS´1s Ñ DrS´1s on DrS´1s as follows: for any object X of DrS´1s,
let TSpXq “ T pXq. For any morphism f : X Ñ Y P MorDrS´1spX,Y q, represented by a roof ps1, f1q, let TSpfq be
the morphism represented by the roof pT ps1q, T pf1qq. By Proposition 3.2.10 DrS´1s is an additive category. By
using the formalism of roofs and the fact that T is additive one sees that the functor TS is additive. The inverse of
TS is given by the functor T ´1

S which on objects is T ´1 and sends a roof ps, tq to pT ´1psq, T ´1ptqq. Since T ´1 is
additive, so is T ´1

S . Therefore TS is an additive automorphism, a translation functor, as in definition 4.1.1.
We say that a triangle in DrS´1s is a distinguished triangle if it is isomorphic to the image of a distinguished

triangle of D under the localization functor QS : D Ñ DrS´1s.

Theorem 4.3.2. Let D be a triangulated category, T the associated translation functor, and S a localizing class
for D, compatible with triangulation. Then DrS´1s is a triangulated category with the translation functor TS and
distinguished triangles described above.

Proof. TR1 Since pX,X, 0, IdX , 0, 0q is a distinguished triangle in D, it is distinguished in DrS´1s.

TR2 True by definition of distinguished triangles in DrS´1s.

TR3 Since TR3 is true in D, and a distinguished triangle in DrS´1s is isomorphic to image of a distinguished
triangle of D, the definition of TS implies that TR3 holds in DrS´1s.
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TR4 Let u : X Ñ Y be a morphism in DrS´1s and let X
s
Ð Z

u1
Ñ Y be a roof representing the morphism u. By

TR4 for D, we can complete u1 to a distinguished triangle

Z Y U Zr1su1 v w

in D. Now

Z Y U Zr1s

X Y U Xr1s

u1

s

v

IdY

w

IdU sr1s

u v sr1sw

is an isomorphism of triangles in DrS´1s, because s is an isomorphism in DrS´1s. Hence u can be completed
to a distinguished triangle in DS .

TR5 Let f : X Ñ X 1, g : Y Ñ Y 1 be morphisms in DrS´1s and let 41 “ pX,Y, Z, u, v, wq and 42 “

pX 1, Y 1, Z 1, u1, v1, w1q be two distinguished triangles in DrS´1s such that the following diagram is commu-
tative in DrS´1s.

X Y Z Xr1s

X 1 Y 1 Z 1 X 1r1s

f

u

g

v w

fr1s

u1 v1 w1

To prove TR5 for DrS´1s, by the definition of distinguished triangles in DrS´1s, we may assume that 41 and
42 are images of distinguished triangles of D. Let psf , f̃q and psg, g̃q be roofs representing f and g. It suffices

to construct the morphisms sh and h̃ in the following diagram

X2 Y 2 Z2 X2r1s

X Y Z Xr1s

X 1 Y 1 Z 1 X 1r1s

u2

sf

v2

sg

w2

sh sr1s

u

f

v

g

w

h fr1s

f̃

u1

g̃

v1

h̃

w1

f̃r1s

(4.16)

where arrows u2, v2 and w2 are arbitrary morphisms, such that all the front and back squares are commutative.
We do this in steps

Step1 First we show that by changing the roof representing f , we obtain the morphism u2 so that the back
and front squares of the left square of (4.16) are commutative in D.

By LS 2 we get the following commutative diagram

X̃ Y 2

X2 Y

u2

t sg

usf
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such that t P S. The roof psf t, f̃ tq represents the same morphism as psf , f̃q. The back square

X̃ Y 2

X Y

u2

sf t sg

u

commutes in D and the front square

X̃ Y 2

X 1 Y 1

u2

f̃ t g̃

u1

is commutative in DS , because

u1f̃ tpsf tq
´1 “ u1f “ gu “ g̃u2psf tq

´1

and psf tq
´1 is an isomorphism. Hence, there exists an equivalence of roofs

W

X̃ X̃

X̃ Y 1

q

q

IdX̃

g̃u2

IdX̃

u1f̃ t

By commutativity
g̃u2q “ u1f̃ tq.

Now both of the following squares, the front and back squares, respectively, are commutative in D.

W Y 2

X Y

u2q

sf tq sg

u

W Y 2

X 1 Y 1

u2q

f̃tq g̃

u1

Finally, to keep the notation of the diagram (4.16), we let X2 to denote W , sf to denote sf tq, f̃ to

denote the morphism f̃ tq, and u2 to denote u2q.

Step2 By TR4 for D we can complete u2 : X2 Ñ Y 2 to a distinguished triangle and by TR5 we get morphisms
sh and h̃ such that the following diagrams are morphisms of distinguished triangles in D

X2 Y 2 Z2 X2r1s

X Y Z Xr1s

u2

sf

v2

sg

w2

sh sf r1s

u v w
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X2 Y 2 Z2 X2r1s

X 1 Y 1 Z 1 X 1r1s

u2

f̃

v2

g̃

w2

h̃ sgr1s

u1 v1 w1

Since sf , sg P S, by CT2 we have sh P S. Let h be the morphism in DrS´1s represented by the roof

psh, h̃q. Then one can easily check that pf, g, hq is a morphism of distinguished triangles in DrS´1s. This
completes the proof of TR5.

TR6 Let
X 1 Z

Y

Z 1 X

r1s

r1s g

ö

d

r1s

d f

ö (4.17)

be an upper cap in DrS´1s. Let psf , f̃q and psg, g̃q be roofs representing f and g, respectively, and let the
composite gf be represented by the following commutative diagram

W

V1 V2

X Y Z

v1

v2

sf

f̃

sg

g̃

We have

f “

W

X Y

sfv1

sgv2 g “

V2

Y Z

sg

g̃ gf “

W

X Z

sfv1

g̃v2

We want to show that in DrS´1s the upper cap (4.17) is isomorphic to the following upper cap

X̃ Z

V2

Z̃ W

r1s

r1s g̃

ö

d

r1s

d v2

ö (4.18)

Here, the distinguished triangles pW,V2, Z̃q and pV2, Z, W̃ q in D are obtained by applying TR4 to the mor-
phisms v2 : W Ñ Y and g̃ : V2 Ñ Z. The morphisms W Ñ Z and X̃ Ñ Z̃ are the obvious composites.
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By item TR5 we get the following morphisms of distinguished triangles in DrS´1s.

W V2 Z̃ W r1s

X Y Z 1 Xr1s

sfv1

v2

sg r1 psfv1qr1s

f

V2 Z X̃ V2r1s

Y Z X 1 Y r1s

g̃

sg r2 sgr1s

g

By CT2, r1, r2 P S. This shows that the upper caps (4.17) and (4.18) are isomorphic in DrS´1s. By TR6 for
D we can complete (4.18) to the following lower cap

X̃ Z

Y 1

Z̃ W

r1s

ba

er1s

d

ö

c

r1s

ö

d

Now
X 1 Z

Y 1

Z 1 X

r1s

b1a1

e1r1s

d

ö

c1

r1s

ö

d

is a lower cap for (4.17) in DrS´1s, where a1 “ r2a, b1 “ b, c1 “ cr´1
1 , and e1r1s “ psfv1qr1speqr1s. Indeed, the

fact that the triangles pZ 1, Y 1, X 1q and pX,Z,W q are distinguished follows by using TR2 and the following
isomorphisms of distinguished triangles

Z̃ Y 1 X̃ Z̃r1s

Z 1 Y 1 X 1 Z 1r1s

c

r1

a

r2 r1

c1 a1

W Z Y 1 W r1s

X Z Y 1 Xr1s

g̃v2

sfv1

b er1s

psfv1qr1s

gf b1 e1r1s

One easily checks that the composites a1b1 and e1r1sc1 equal the morphisms Z Ñ X 1 and Z 1 Ñ X of the upper
cap (4.17), respectively. Equality of the two morphisms from Y 1 to Y and two morphisms from Y to Y 1 follows
from direct computation. This finishes the proof.

4.4 Notes

The reason why triangulated categories are important is the fact that they appear in many branches of mathematics.
The following list of triangulated categories is taken mainly from [Orl], with references added.
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Representation theory The category DpRModq, the derived category of R-modules, is used in representation
theory, see [Zim14]. As we will see in the next chapter this is a triangulated category.

Topology Stable model category is a triangulated category, see [Hov07, Chapter 7]. Model categories are an
abstract machinery to do homotopy theory on categories. We will not discuss these categories in this thesis,
since these triangulated categories do not come from abelian categories.

Motives The category of mixed motives is triangulated, see [MVW11].

Algebraic geometry The category of coherent sheaves, see [Huy06], and the category of Q`-adic sheaves, see
[Fu11], are abelian categories and these categories give rise to derived categories.

Symplectic geometry The derived Fukaya category, see [ABA`09] and [Sei08]. These categories are actually
A8-categories, but one can extract a triangulated category from such a category. See also [Por] for connection
with the derived category of coherent sheaves.

Mathematical physics Dirichlet branes in string theory, see [ABA`09].

Algebraic analysis In algebraic analysis the whole theory uses triangulated categories, see for example [KS90].
For a short introduction, see [HTR10, p.371].

Now, as said in [Orl], the structure of a triangulated category allows us to compare categories of different mathemat-
ical objects as triangulated categories. The above triangulated categories are examples of algebraic and topological
triangulated categories, see [HTR10, p.389], for definitions and introduction. Not all triangulated categories are
abelian or topological, for an example see [MSS07]. In this thesis we only discuss the algebraic triangulated cate-
gories.

A standard reference for abstract theory of triangulated categories is [Nee01]. It has to be mentioned that
triangulated categories suffer from some problems like nonfunctoriality of cone. For other known problems, see
[Ber11, 2.2 (a)-(d)] and [Kaw13, p.279]. Differential graded categories (usually written DG-categories) and A8-
categories are well-known structures to solve some of the problems of triangulated categories. For DG-categories
see [Ber11] and for A8-categories see [BLM08].
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Chapter 5

Derived categories

In this chapter we define the derived category of an abelian category, and show that it admits a structure of a
triangulated category. One of the reasons why we are interested in derived categories is that not all important
functors between abelian categories are exact. For example MorRModpM,´q and M bR ´ need not be exact. The
formalism of derived categories and derived functors allows one to construct derived counterparts of these functors
which are exact functors between triangulated categories.

5.1 Derived category

First we give the definition of derived category which allows us to prove some basic results about derived categories.
Then we start proving that a derived category is triangulated, see theorem 5.1.8.

Definition 5.1.1 (Derived category). Let A be an abelian category and let S be the class consisting of quasi-
isomorphisms in CpAq. The category CpAqrS´1s is the derived category of A and is denoted by DpAq. The
categories C˚pAqrS´1s, ˚ “ `,´, b is the bounded below (resp. bounded above, resp. bounded) derived category
of A, where S is the class consisting of quasi-isomorphisms in C˚pAq, ˚ “ `,´, b, and is denoted by D˚pAq,
˚ “ `,´, b.

Recall construction 3.1.1 for the objects and morphism of the derived category and the universal property,
theorem 3.1.3, of the derived category. Let H‚ : C˚pAq Ñ C˚pAq be the cohomology functor presented in propo-
sition 2.5.4. By definition of quasi-isomorphisms, H‚ sends quasi-isomorphisms to isomorphisms. Thus, by theo-
rem 3.1.3, the cohomology functor factors though D˚pAq. This shows that we have a cohomology functor on derived
category. By abuse of notation, we denote this functor also by H‚.

We define distinguished triangles on D˚pAq ˚ “ H,`,´, b to be triangles isomorphic to triangles of the form

X‚ Cylpfq Cpfq X‚r1s
i1 p2 p1

where f : X Ñ Y is some morphism in C˚pAq, ˚ “ H,`,´, b. We need a few results before we can prove that the
derived category of A is isomorphic to the localization of the homotopy category of A along quasi-isomorphisms.
We start with a lemma, which shows that all short exact sequences in CpAq can be completed to a distinguished
triangle in DpAq.
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Lemma 5.1.2. An exact sequence

0 X‚ Y ‚ Z‚ 0
f g

(5.1)

in CpAq is quasi-isomorphic to the following exact sequence of Lemma 2.7.8

0 X‚ Cylpfq Cpfq 0
i1 p2

(5.2)

Proof. Consider the diagram

0 X‚ Cylpfq Cpfq 0

0 X‚ Y ‚ Z‚ 0

i1

β

p2

γ

f g

where βi “ f ip1 ` p2p2 and γi “ gip2. From Lemma 2.7.9 we get that β is a quasi-isomorphism and that the left
hand square commutes. The following shows that γ is a morphism of complexes

γi`1diCpfq “ gi`1f i`1p1 ` g
i`1diY ‚p2 “ diZ‚g

ip2 “ diZ‚γ
i,

and the following that the right hand square is commutative

γip2 “ gip2p2 “ gipf ip1 ` p2p2q “ giβi.

It remains to show that γ is a quasi-isomorphism. Since p2 and gβ are epimorphisms of complexes, so is γ.
Hence, we can consider the following short exact sequence in CpAq

0 ker γ Cpfq Z‚ 0u γ

We show that ker γ is quasi-isomorphic to 0, so that Hipker γq “ 0. Using this and the long exact sequence of
theorem 2.6.6 associated to the above short exact sequence we get the following long exact sequence

. . . HipCpfqq HipZ‚q Hi`1pker γq Hi`1pCpfqq . . .
Hipuq Hipγq δi Hipuq Hi`1

pγq

Thus if Hipker γq “ 0 for all i, then γ is a quasi-isomorphism.
Let us construct the kernel of γ. By exactness of the short exact sequence (5.1) and the universal property of

kernel we have

pker γqi “ kerpXi`1 ‘ Y i
gip2
Ñ Ziq

– kerpXi`1 0
Ñ Ziq ‘ kerpY i

gi

Ñ Ziq

– Xi`1 ‘Xi.

Let K‚ be the complex where Ki “ Xi`1‘Xi and diK‚ “ ´i1d
i`1
X‚ p1` i2p1` i2d

i
X‚p2. It is easy to see that this is

indeed a complex. Let u : K‚ Ñ Cpfq be the morphism ui “ i1p1 ` i2f
ip2. The following computation shows that
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u is indeed a morphisms of complexes

ui`1diK‚ “ pi1p1 ` i2f
i`1p2qp´i1d

i`1
X‚ p1 ` i2p1 ` i2d

i
X‚p2q

“ ´i1d
i
X‚p1 ` i2f

i`1p1 ` i2f
i`1diX‚p2

“ ´i1d
i
X‚p1 ` i2f

i`1p1 ` i2d
i
Y ‚f

ip2

“ p´i1d
i
X‚p1 ` i2f

i`1p1 ` i2d
i
Y ‚p2qpi1p1 ` i2f

ip2q

“ diCpfqu
i.

To show that the pair pK‚, uq is the kernel of γ, we need to show that it satisfies the universal property of
kernel. A direct computation shows that γu “ 0. Let φ : W ‚ Ñ Cpfq be any morphism such that γφ “ 0. Since f
is the kernel of g, there exists a unique morphism ψ : W ‚ Ñ X‚ such that fψ “ p2φ. In particular, by construction
of kernels in the category of complexes, see the proof of Theorem 2.5.7, for all i P Z, φi : W i Ñ Xi is the unique
morphism given by the kernel property of f i. Now, for all i P Z, we have the following commutative diagram

Xi`1 Xi`1

W i Ki Cpfqi Zi

Xi Y i

IdXi`1

i1 i1 0p1φ
i

i1p1φ
i
`i2ψ

i

ψi

ui gip2

i2

fi

i2
gi

A direct computation and commutativity of the above diagram shows that uipi1p1φ
i ` i2ψ

iq “ φi. Now

pi1p1φ
i`1 ` i2ψ

i`1qdiW ‚ “ i1p1d
i
Cpfqφ

i ` i2d
i
X‚ψ

i

“ i1p1p´i1d
i`1
X‚ p1 ` i2f

i`1p1 ` i2d
i
Y ‚p2qφ

i ` i2d
i
X‚ψ

i

“ ´i1d
i`1
X‚ p1φ

i ` i2d
i
X‚ψ

i

“ p´i1d
i`1
X‚ p1 ` i2p1 ` i2d

i
X‚p2qpi1p1φ

i ` i2ψ
iq

“ diK‚pi1p1φ
i ` i2ψ

iq

shows that pi1p1φ
i ` i2ψ

iq is a morphism of complexes. Uniqueness of this morphism follows from uniqueness of
p1φ

i and ψi. Hence we have shown that pK‚, uq is the kernel of γ.
To show that K‚ is quasi-isomorphic to 0, let χi : Ki`1 Ñ Ki be the family of morphisms i1p2. Then

χi`1diK‚ ` d
i´1
K‚ χ

i “ i1p2p´i1d
i`1
X‚ p1 ` i2p1 ` i2d

i
X‚p2q ` p´i1d

i
X‚p1 ` i2p1 ` i2d

i´1
X‚ p2qi1p2

“ i1p1 ` i1d
i
X‚p2 ´ i1d

i
X‚p2 ` i2p2

“ IdK‚ .

This shows that the identity morphism IdK‚ is homotopic to 0. By lemma 2.7.3, HipIdK‚q “ 0 for all i. Hence the
induced morphism 0 : H‚pK‚q Ñ H‚p0‚q “ 0‚ is an isomorphism. This shows that γ is a quasi-isomorphism and
finishes the proof.

The following theorem is a version of theorem 2.6.6 for derived categories.
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Theorem 5.1.3. A distinguished triangle

X‚ Y ‚ Z‚ X‚r1su v w

in D˚pAq, ˚ “ H,`,´, b induces a long exact sequence

. . . HipX‚q HipY ‚q HipZ‚q Hi`1pX‚q . . .
Hi´1

pwq Hipuq Hipvq Hipwq Hi`1
puq

(5.3)

Moreover, this long exact sequence is functorial in the sense that if

X Y Z Xr1s

X 1 Y 1 Z 1 X 1r1s

u

f

v

g

w

h fr1s

u1 v1 w1

is a morphism of distinguished triangles, then we have the following commutative diagram with exact rows

. . . HipY ‚q HipZ‚q Hi`1pX‚q Hi`1pY ‚q . . .

. . . HipY 1‚q HipZ 1‚q Hi`1pX 1‚q Hi`1pY 1‚q . . .

Hipuq Hipvq

Hipgq

Hipwq

Hiphq

Hi`1
puq

Hi`1
pfq

Hi`1
pvq

Hi`1
pgq

Hipu1q Hipv1q Hipw1q Hi`1
pu1q Hi`1

pv1q

Proof. We will prove the theorem for DpAq, but the same proof works for all the D˚pAq because these contain
cones and cylinders of morphisms.

By lemma 5.1.2 and definition of distinguished triangles in DpAq, we have the following commutative diagram

X‚ Y ‚ Z‚ X‚r1s

X‚ Cylpuq Cpuq X‚r1s

u v w

i1 p2 p1

(5.4)

where the vertical morphisms are isomorphisms. Thus for all i P Z we have the following commutative diagram

HipX‚q HipY ‚q HipZ‚q Hi`1pX‚q

HipX‚q HipCylpuqq HipCpuqq Hi`1pX‚q

Hipuq

–

Hipvq

–

Hipwq

– –

Hipi1q Hipp2q Hipp1q

If the statement holds for the lower distinguished triangle in the diagram (5.4), then it also holds for the upper
distinguished triangle by using the isomorphism.

By lemma 2.7.8 the following is a short exact sequence

0 X‚ Cylpuq Cpuq 0
i1 p2

(5.5)

By theorem 2.6.6 for abelian categories, we have a long exact sequence

. . . HipCylpuqq HipCpuqq Hi`1pX‚q Hi`1pCylpuqq . . .
Hipi1q Hipp2q δi Hi`1

pi1q Hi`1
pp2q
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We will show that Hipp1q “ ´δ
i, which implies the exactness of (5.3).

Recall from (2.6) and (2.8) and lemma 2.6.5 that we have the following commutative diagrams which uniquely
determine the morphisms ker p2, coker p2, Hipp2q

Cylpuqi`1 Cpuqi`1

ker di`1
Cylpuq ker di`1

Cpuq

HipCylpuqq HipCpuqq

p2

ker p2

Hipp2q

Cylpuqi Cpuqi

coker di´1
Cylpuq coker di´1

Cpuq

HipCylpuqq HipCpuqq

p2

coker p2

Hipp2q

coker di´1
Cylpuq coker di´1

Cpuq

ker di`1
Cylpuq ker di`1

Cpuq

Similar commutative diagrams hold for the morphism i1 : X‚ Ñ Cylpuq‚. By (2.4) and lemma 2.5.3 the following
diagrams are commutative

coker di´1
Cpuq

Cpuqi Cpuqi`1

Cpuqi`1

coker di´1
Cpuq ker di`1

Cpuq

and we have similar commutative diagrams for Cylpuqi`1 and Xi`1. We have the following commutative diagram

Hi´1pX‚q Hi´1pCylpuqq Hi´1pCpuqq

ker diCpuq

coker di´1
X‚ coker di´1

Cylpuq coker di´1
Cpuq

Xi Cylpuqi Cpuqi

ker di`1
X‚ ker di`1

Cylpuq ker di`1
Cpuq

Xi`1 Cylpuqi`1 Cpuqi`1

HipX‚q HipCylpuqq HipCpuqq

(5.6)

By commutativity

ker diCpuq Ñ Cpuqi Ñ coker di´1
Cpuq Ñ ker di`1

Cpuq Ñ Cpuqi`1 “ ker diCpuq Ñ Cpuqi Ñ Cpuqi`1 “ 0
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and since ker di`1
Cpuq Ñ Cpuqi`1 is a monomorphism, and Hi´1pCpuqq Ñ coker di´1

Cpuq is the kernel of coker di´1
Cpuq Ñ

ker di`1
Cpuq, the morphism ker diCpuq Ñ Hi´1pCpuqq is the unique morphism such that

ker diCpuq Ñ HipCpuqq Ñ coker di´1
Cpuq “ ker diCpuq Ñ Cpuqi Ñ coker di´1

Cpuq.

A simple computation shows that

Cpuqi
i2
Ñ Cylpuqi

diCylpuq
Ñ Cylpuqi`1 p1

Ñ Xi`1 “ ´p1.

By commutativity of the diagram (5.6)

ker diCpuq
´ ker p1
Ñ ker diX‚ Ñ Xi`1

“ ker diCpuq Ñ Cpuqi Ñ Cylpuqi Ñ Cylpuqi`1 Ñ Xi`1

“ ker diCpuq Ñ HipCpuqq Ñ coker di´1
Cpuq Ñ coker di´1

Cylpuq Ñ ker di`1
Cylpuq Ñ ker di`1

X‚ Ñ Xi`1.

Since ker di`1
X‚ Ñ Xi`1 is a monomorphism, we have

kerp´p1q “ ker diCpuq Ñ HipCpuqq Ñ coker di´1
Cpuq Ñ coker di´1

Cylpuq Ñ ker di`1
Cylpuq Ñ ker di`1

X‚ . (5.7)

From the proof of the snake lemma, corollary 2.6.4, we obtain the following commutative diagram

ker diCpuq

X1 X 11 HipCpuqq

coker di´1
X‚ A11 coker di´1

Cylpuq coker di´1
Cpuq 0

0 ker di`1
X‚ ker di`1

Cylpuq B12 ker di`1
Cpuq

Hi`1pX‚q X 12 X2

β2

η
ε

h
γ

η2

τ1

(5.8)

where the morphism ker diCpuq Ñ X1 is the unique morphism obtained by using the universality of the pullback X1

and satisfies the following equalities

#

ker diCpuq Ñ X1 Ñ X 11 “ ker diCpuq Ñ HipCpuqq Ñ X 11

ker diCpuq Ñ X1 Ñ coker di´1
Cylpuq “ ker diCpuq Ñ HipCpuqq Ñ coker di´1

Cpuq Ñ coker di´1
Cylpuq

Recall from the proof of corollary 2.6.4 that we have the following equality

X1 Ñ X 11 Ñ X2 “ X1 Ñ coker di´1
Cylpuq Ñ ker di`1

Cylpuq Ñ X2.
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Using the equalities and diagrams we have introduced, one obtains the following equalities

ker diCpuq
kerp´p1q
Ñ ker di`1

X‚ Ñ Hi`1pX‚q Ñ X 12 Ñ X2

“ ker diCpuq Ñ HipCpuqq Ñ coker di´1
Cpuq Ñ coker di´1

Cylpuq

Ñ ker di`1
Cylpuq Ñ ker di`1

X‚ Ñ Hi`1pX‚q Ñ X 12 Ñ X2

(5.7)

“ ker diCpuq Ñ X1 Ñ coker di´1
Cylpuq Ñ ker di`1

Cylpuq Ñ X2 (5.8)

“ ker diCpuq Ñ HipCpuqq Ñ Hi`1pX‚q Ñ X 12 Ñ X2 (5.8)

The composite Hi`1pX‚q Ñ X 12 Ñ X2 is a monomorphism, so

ker diCpuq
kerp´p1q
Ñ ker di`1

X‚ Ñ Hi`1pX‚q “ ker diCpuq Ñ HipCpuqq
δi
Ñ Hi`1pX‚q.

The morphism Hip´p1q is the unique morphism which satisfies this equation. Hence Hipp1q “ ´δ
i.

To show that this long exact sequence is functorial, it suffices to show functoriality for distinguished triangles
of the form in definition 4.2.1. Let

X Cylpuq Cpuq Xr1s

X 1 Cylpu1q Cpu1q X 1r1s

i1

f

p2

g

p1

h fr1s

i1 p2 p1

be a morphism of distinguished triangles in D˚pAq. Since the cohomology functor H‚ factors through D˚pAq, the
following diagram is commutative.

. . . HipCylpuqq HipCpuqq Hi`1pXq Hi`1pCylpuqq . . .

. . . HipCylpu1qq HipCpu1qq Hi`1pX 1q Hi`1pCylpu1qq . . .

Hipi1q Hipp2q

Hipgq

Hipp1q

Hiphq

Hi`1
pi1q

Hipfq

Hi`1
pp2q

Hipgq

Hipi1q Hipp2q Hipp1q Hi`1
pi1q Hi`1

pp2q

This completes the proof.

We are ready to prove that the derived category of an abelian category A can be obtained from the homotopy
category of A, up to isomorphism.

Theorem 5.1.4. For an abelian category A we have an isomorphism of categories G : D˚pAq –
Ñ KpAq˚rS´1s,

˚ “ H,`,´, b, where S is the class of quasi-isomorphisms in K˚pAq, ˚ “ H,`,´, b.
Proof. Construction of G: The composite

CpAq KpAq KpAqrS´1s
QS

sends quasi-isomorphsims to isomorphisms and is the identity map on objects. By theorem 3.1.3 there exists
a unique functor G making the following diagram commutative

CpAq DpAq

KpAq KpAqrS´1s

QT

G

QS

(5.9)
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By construction 3.1.1 the localizing functor QT : CpAq Ñ DpAq, where T is the class of quasi-isomorphisms
in CpAq, is identity on objects. Hence, by commutativity, G is identity on objects.

To see how G is defined on morphisms, note that

Gppf1, . . . , fnqq “ Gppfnqq ˝ . . . ˝Gppf1qq,

where pf1, . . . , fnq is an arbitrary morphism in DpAq. By commutativity, we must have

Gppfjqq “

#

pfjq , if fj ‰ s´1

ps´1q , if fj “ s´1

for any j “ 1, . . . , n. This determines G on morphisms.

G is surjective on morphisms: To show that G is surjective on morphisms, it suffices to show that for any string
ppf1qq of length 1 in KpAqrS´1s there exists a string ppg1qq of length 1 in DpAq such that

Gppg1qq “ ppf1qq.

If f1 is a morphism of KpAq there exists a morphism f 11 of CpAq which represents this morphism and by
commutativity we get pG ˝ QT qpf

1
1q “ Gppf 11qq “ pf1q. If f1 “ s´1 for some quasi-isomorphism s in KpAq,

then we choose a morphism s1 in CpAq, which also is a quasi-isomorphism by Lemma 2.7.3 (c), because it is
homotopic to s. Now, by definition of G, Gpps1qq “ pf1q. This shows that G is surjective on morphisms.

G is injective on morphisms: To show that G is injective on morphisms, le us make a few important notes.
Since any functor preserve isomorphisms, and isomorphisms are both monomorphisms and epimorphisms, we
see that for any two parallel morphisms f and g in CpAq all the following equations hold

Gppt1, fqq “ Gppt1, gqq Gppt´1
1 , fqq “ Gppt´1

1 , gqq Gppf, t2qq “ Gppg, t2qq Gppf, t´1
2 qq “ Gppg, t´1

2 qq,

for any quasi-isomorphisms t1 and t2 of CpAq, if and only if pfq “ pgq in KpAq. By using the equivalence
relation on strings in DpAq, it is easy to see that any string is equivalent to a composition of strings of the
form in the above equations. Hence it suffices to show that QT maps homotopic morphisms to same morphism
in DpAq, that is

f „ g in CpAq ñ ppfqq “ ppgqq in DpAq.

Let f, g : X‚ Ñ Y ‚ be two parallel homotopic morphisms in CpAq and let χi : Xi Ñ Y i´1 be a homotopy
between them. Define cpχq : Cpfq Ñ Cpgq and cylpχq : Cylpfq Ñ Cylpgq by

cpχq “ i1p1 ` i2p2 ` i2χ
i`1p1

cylpχq “ i1p1 ` i2i1p1p2 ` i2i2p2p2 ` i2i2χ
i`1p1p2

These are morphisms of complexes since they commute with differentials. Indeed, from

cpχqi`1diCpfq “ pi1p1 ` i2p2 ` i2χ
i`2p1qp´i1d

i`1
X‚ p1 ` i2f

i`1p1 ` i2d
i
Y ‚p2q

“ ´i1d
i`1
X‚ p1 ` i2f

i`1p1 ` i2d
i
Y ‚p2 ´ i2χ

i`2di`1
X‚ p2
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and

diCpgqcpχq
i “ p´i1d

i`1
X‚ p1 ` i2g

i`1p1 ` i2d
i
Y ‚p2qpi1p1 ` i2p2 ` i2χ

i`1p1q

“ ´i1d
i`1
X‚ p1 ` i1g

i`1p2 ` i2d
i
Y ‚p2 ` i2d

i
Y ‚χ

i`1p1

we get

cpχqi`1diCpfq ´ d
i
cpgqcpχq

i “ i2f
i`1p1 ´ i2g

i`1p1 ´ i2χ
i`2di`1

X‚ p2 ´ i2d
i
Y ‚χ

i`1p1

“ i2χ
i`1di`1

X‚ p2 ` i2d
i
Y ‚χ

i`1p1 ´ i2χ
i`2di`1

X‚ p2 ´ i2d
i
Y ‚χ

i`1p1

“ 0.

Similarly, from

cylpχqi`1diCylpfq “ pi1p1 ` i2i1p1p2 ` i2i2p2p2 ` i2i2χ
i`2p1p2q

pi1d
i
X‚p1 ´ i1p1p2 ´ i2i1d

i`1
X‚ p1p2 ` i2i2f

i`1p1p2 ` i2i2d
i
Y ‚p2p2q

“ i1d
i
X‚p1 ´ i1p1p2 ´ i2i1d

i`1
X‚ p1p2 ` i2i2f

i`1p1p2 ` i2i2d
i
Y ‚p2p2 ´ i2i2χ

i`2di`2
X‚ p1p2

and

diCylpgqcylpχq
i “ pi1d

i
X‚p1 ´ i1p1p2 ´ i2i1d

i`1
X‚ p1p2 ` i2i2g

i`1p1p2 ` i2i2d
i
Y ‚p2p2q

pi1p1 ` i2i1p1p2 ` i2i2p2p2 ` i2i2χ
i`1p1p2q

“ i1d
i
X‚p1 ´ i1p1p2 ´ i2i1d

i`1
X‚ p1p2 ` i2i2g

i`1p1p2 ` i2i2d
i
Y ‚p2p2 ` i2i2d

i
Y ‚χ

i`1p1p2

we get

cylpχqi`1diCylpfq ´ d
i
Cylpgqcylpχq

i

“ i2i2f
i`1p1p2 ´ i2i2g

i`1p1p2 ´ i2i2χ
i`2di`2

X‚ p1p2 ´ i2i2d
i
Y ‚χ

i`1p1p2

“ i2i2χ
i`2di`1

X‚ p1p2 ` i2i2d
i
Y ‚χ

i`1p1p2 ´ i2i2χ
i`2di`1

X‚ p2p2 ´ i2i2d
i
Y ‚χ

i`1p1p2

“ 0

so cylpχq is a morphism.

Consider the commutative diagram

0 Y ‚ Cpfq X‚r1s 0

0 Y ‚ Cpgq X‚r1s 0

i2 p1

cpχq

i2 p1

Applying theorem 2.6.6 to the above morphism of short exact sequences, we get for all i the following com-
mutative diagram with exact rows

Hi´1pX‚q HipY ‚q HipCpfqq HipX‚q Hi`1pY ‚q

Hi´1pX‚q HipY ‚q HipCpgqq HipX‚q Hi`1pY ‚q

δi´1 Hipi2q Hipp1q

Hipcphqq

δi

δi´1 Hipi2q Hipp1q δi
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By lemma 2.6.1, Hipcpχqq is an isomorphism for all i, so the morphism cpχq is a quasi-isomorphism.

Similarly, the commutative diagram

0 X‚ Cylpfq Cpfq 0

0 X‚ Cylpgq Cpgq 0

i1 p2

cylpχq cpχq

i1 p2

gives rise to a morphism of the associated long exact sequences, and by applying the 5-lemma, we get that
Hipcylpχqq is an isomorphism for all i. Hence cylpχq is a quasi-isomorphism.

Consider the following diagram

Y ‚

X‚ Cylpfq

X‚ Cylpgq

Y ‚

αf
f

i1

cylpχq

i1

g
βg

(5.10)

where the morphisms αf “ i2i2, βg “ gip1 ` p2p2, are the quasi-isomorphisms from lemma 2.7.9 such that
βfαf “ IdY ‚ and αfβf is homotopic to IdCylpfq. In CpAq we have αfβf ‰ IdCylpfq, but the images in DpAq
are equal. Indeed, we have QT pαf q “ QT pβf q

´1QT pβfαf q “ QT pβf q
´1, so

QT pαfβf q “ QT pβf q
´1QT pβf q “ IdQT pCylpfqq .

Clearly QT pβf q “ QT pαf q
´1. Similar equations hold for the morphisms αg and βg.

Now, from commutativity in Lemma 2.7.9, it follows that QT pi1q “ QT pαf qQT pβf qQpi1q “ QT pαf qQT pfq, so
the upper triangle in the diagram (5.10) is commutative. A simple computation shows that the middle square
and the lower triangle of (5.10) are commutative in CpAq, hence also in DpAq. From

pβgcylpχqαf q
i “ pgip1 ` p2p2qcylpχqi2i2 “ IdY i

we conclude that

Qpgq “ QpfqQpβgcylphqαf q “ Qpfq.

This completes the proof.

The theorem gives us a criterion for a morphism to by a quasi-isomorphism by studying its mapping cone.

Corollary 5.1.5. A morphism f : X Ñ Y in CpAq is a quasi-isomorphism if and only if Cpfq is exact, that is the
cohomology of Cpfq is the zero complex.
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Proof. By the proof of the previous theorem, homotopic morphisms in CpAq are mapped to the same morphism in
DpAq. Therefore, by the proof of Lemma 4.2.2

X Y Cpfq Xr1s
f i2 p1

is a distinguished triangle in DpAq. By theorem 5.1.3 we have the long exact sequence

. . . Hi´1pCpfqq HipXq HipY q HipCpfqq . . .
Hi´1

pp1q Hipfq Hipi2q Hipp1q

associated to the distinguished triangle. From assumption and exactness it follows that that HipCpfqq “ 0 for all
i P Z. Therefore Cpfq is exact.

Conversely, suppose Cpfq is exact. From the same long exact sequence it follows that Hipfq is an isomorphism
for all i. Thus f is a quasi-isomorphism.

Next, we want to show that the localization of the homotopy category of A admits the formalism of roofs. To
show this, we need to show that the quasi-isomorphisms in KpAq form a localizing class.

Proposition 5.1.6. Let A be an abelian category. Then the family of quasi-isomorphisms in the category KpAq is
a localizing class compatible with the triangulation of KpAq.

Proof. (LS 1): For any object X‚ P KpAq the identity morphism IdX‚ : X‚ Ñ X‚ induces identity morphism
HipIdX‚q : HipX‚q Ñ HipX‚q for all i, and so the identity morphisms are quasi-isomorphisms.

Let f : X‚ Ñ Y ‚ and g : Y ‚ Ñ Z‚ be quasi-isomorphisms. For any i P Z, we have Hipfq : HipX‚q – HipY ‚q
and Hipgq : HipY ‚q – HipZ‚q. Hence Hipgfq “ HipgqHipfq : HipX‚q – HipZ‚q for all i, and thus gf is a
quasi-isomorphism.

(LS 2): Step 1: Let

X‚ Y ‚

Z‚

f

g

be a diagram in A where f is a quasi-isomorphism. Consider the following diagram

Cpfqr´1s X‚ Y ‚ Cpfq

Cpfqr´1s Z‚ Cp´gp1q Cpfq

´p1 f

g

i2

h

´gp1 i2 p1

where both of the rows are distinguished triangles in KpAq by Lemma 4.2.2 and the morphism h is given
by TR5 for KpAq. Since f is a quasi-isomorphism, Cpfq is exact by Corollary 5.1.5. By lemma 4.2.2
the bottom triangle in the previous diagram is distinguished in DpAq. Thus, by theorem 5.1.3 applied
to the bottom distinguished triangle and the fact that homotopic maps in CpAq are mapped to equal
morphisms in DpAq, we get the following long exact sequence

. . . HipCpfqr´1sq HipZ‚q HipCpgp1qq HipCpfqr´1sq . . .
Hi´1

pp1q Hipgp1q Hipi2q Hipp1q Hi`1
pp1q
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By exactness i2 is a quasi-isomorphism. Thus we have obtained the following commutative square

X‚ Y ‚

Z‚ Cp´gp1q

f

g h

i2

Step 2: Let

Z‚

X‚ Y ‚

g

f

be a diagram in KpAq with f a quasi-isomorphism. Consider the following diagram

Cpi2gqr´1s Z‚ Cpfq Cpi2gq

X‚ Y ‚ Cpfq X‚r1s

´p1r´1s

h

i2g

g

i2

hr1s

f i2 p1

where both of the rows are distinguished triangles in KpAq and the morphism h is given by TR5 for
KpAq. Now

Z‚ Cpfq Cpi2gq Z‚r1s
i2g i2 p1

is a distinguished triangle in DpAq by Lemma 4.2.2 and the fact that homotopies in CpAq map to equal
morphism in DpAq. Thus by Theorem 5.1.3 we have the following long exact sequence

. . . Hi´1pCpfqq Hi´1pCpi2gqr´1sq HipZ‚q HipCpfqq . . .
Hi´1

pgp1q Hi´1
pi2q Hi´1

pp1q Hipi2gq Hipi2q

Since f is a quasi-isomorphism, Cpfq is exact by Lemma 5.1.5, so from exactness it follows that ´p1r´1s
is a quasi-isomorphism. Hence we have obtained the following commutative diagram in KpAq

Cpi2gqr´1s Z‚

X‚ Y ‚

´p1r´1s

h g

f

(LS 3): Since the category KpAq is additive, this condition is equivalent to following: for any morphism f : X‚ Ñ
Y ‚ in KpAq, there exists a quasi-isomorphism s : X̄‚ Ñ X‚ such that fs “ 0 if and only if there exists a
quasi-isomorphism t : Y ‚ Ñ Ȳ ‚ such that tf “ 0.

ñ: Let s : Y ‚ Ñ Ȳ ‚ be a quasi-isomorphism such that sf “ 0. Let hi : Xi Ñ Ȳ i´1 be the homotopy between
sf and the zero morphism. Consider the following commutative diagram

Cpgqr´1s X‚ Cpsqr´1s Cpgq

Y ‚

Ȳ ‚

´p1r´1s g

f

i2

p1

s
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where gi : Xi Ñ Cpsqr´1si is the morphism i1f
i ´ i2h

i. From

gi`1diX‚ “ i1f
i`1diX‚ ´ i2h

i`1diX‚

“ i1d
i
Y ‚f

i ´ i2h
i`1diX‚

“ i1d
i
Y ‚f

i ´ i2d
i´1
Ȳ ‚

hi ´ i2h
i`1diX‚ ` i2d

i´1
Ȳ ‚

hi

“ i1d
i
Y ‚f

i ´ i2s
if i ` i2d

i´1
Ȳ ‚

hi

“ pi1d
i
Y ‚p1 ´ i2s

ip1 ´ i2d
i´1
Ȳ ‚

p2qpi1f
i ´ i2h

iq

“ diCpsqr´1sg
i

we see that g is a morphism. The row in the diagram is a distinguished triangle by lemma 4.2.2. Therefore, from
lemma 4.1.4 we get that gp´p1r´1sq “ 0, so fp´p1r´1sq “ 0. Since s is a quasi-isomorphism, HipCpsqq “ 0,
for all i, by Corollary 5.1.5. From the definition of translation and cohomology, HipCpsqq “ Hi`1pCpsqr´1sq.
Therefore, from the long exact sequence

. . . Hi´1pCpsqr´1sq Hi´1pCpgqq HipX‚q HipCpsqr´1sq . . .
Hi´1

pgq Hi´1
pi2q Hipp1q Hipgq Hipi2q

associated to the distinguished triangle

X‚ Cpsqr´1s Cpgq X‚r1s
g i2 p2

we get that ´p1r´1s is a quasi-isomorphism. Thus we can take t “ ´p1r´1s.

ð: Let t : X̄‚ Ñ X‚ be a quasi-isomorphism such that ft is homotopic to 0 and let hi : X̄‚ Ñ Y ‚ be a set of
morphisms such that f iti “ hi`1di

X̄‚
` di´1

Y ‚ h
i for all i. Consider the following commutative diagram

X̄‚

X‚

Cpgqr´1s Cptq Y ‚ Cpgq

t

i2
f

´p1r´1s g i2

where the row is a distinguished triangle and gi “ f ip2 ` h
i`1p1. Then

gi`1diCptq “ pf
i`1p2 ` h

i`2p1qp´i1d
i`1
X̄‚

p1 ` i2t
i`1p1 ` i2d

i
X‚p2q

“ f i`1ti`1p1 ` f
i`1diX‚p2 ´ h

i`2di`1
X̄‚

p1

“ diY ‚f
ip2 ` d

i
Y ‚h

i`1p1

“ diY ‚g
i

shows that g is a morphism of complexes. Now, i2f “ i2gi2 “ 0, because i2g “ 0 by Lemma 4.1.4. Since t is
a quasi-isomorphism, HipCptqq “ 0 for all i. From the long exact sequence

. . . HipCptqq HipY ‚q Hi`1pCpgqq Hi`1pCptqq . . .
Hi´1

pp1q Hipgq Hipi2q Hi`1
pp1q Hi`1

pgq
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associated to the distinguished triangle in the diagram

Cptq Y ‚ Cpgq Cptqr1s
g i2 p1

we get that Hipi2q is an isomorphism for all i. Thus i2 is a quasi-isomorphism, and we can choose s “ i2.

The above proposition also proves the following after a simple observation

Corollary 5.1.7. The class S consisting of quasi-isomorphisms in K˚pAq, ˚ “ `,´, b, is a localizing class.

Proof. The proof of proposition 5.1.6 works for these categories also, because the mapping cone of a morphism of
K˚pAq, is contained in K˚pAq.

Finally we are able to prove that derived categories are triangulated.

Theorem 5.1.8. The category D˚pAq, ˚ “ H,`,´, b, is a triangulated category.

Proof. By Theorem 5.1.4 D˚pAq is isomorphic to K˚pAqrS´1s, where S is the class consisting of quasi-isomorphisms
in K˚pAq. Since K˚pAq is a triangulated category, Theorem 4.2.5, by Theorem 4.3.2 it suffices to show that S is
compatible with triangulation.

Let f be a quasi-isomorphism. Now Hipf r1sq “ Hi`1pfq, so Hipf r1sq is an isomorphism. Thus CT1 holds for
S.

To prove property CT2 for S, consider the following morphism of distinguished triangles in K˚pAq

X Y Z Xr1s

X 1 Y 1 Z 1 X 1r1s

u

f

v

g

w

h fr1s

u1 v1 w1

where f and g are quasi-isomorphisms. By functoriality of the long exact sequence for distinguished triangles,
theorem 5.1.3, we obtain for all i P Z the following commutative diagram with exact rows

HipXq HipY q HipZq Hi`1pXq Hi`1pY q

HipX 1q HipY 1q HipZ 1q Hi`1pX 1q Hi`1pY 1q

Hipuq

Hipfq

Hipvq

Hipgq

Hipwq

Hiphq

Hi`1
puq

Hi`1
pfq Hi`1

pgq

Hipu1q Hipv1q Hipw1q Hi`1
pu1q

Now Hipfq, Hipgq, Hi`1pfq, and Hi`1pgq are isomorphisms, because f and g are quasi-isomorphisms, so by Lemma
2.6.1 Hiphq is an isomorphism. Therefore h is a quasi-isomorphism, and S satisfies CT2.

Let us show that the derived category DpRModq exists, when the underlying class of the ring R is a set. One
can also show that the derived categories of sheaves and presheaves of R-modules exists. The following lemma is
from [Wei95, Proposition 10.4.4].

Lemma 5.1.9. The category D˚pRModq, ˚ “ H,`,´, b exists.
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Proof. We prove the claim for DpRModq. The other cases are proved similarly. By lemma 3.2.6 it suffices to show
that the class of quasi-isomorphisms is locally small, see definition 3.2.5. In the following we use results about
cardinals. For introduction to cardinals see [Jec13, Chapter 3].

Let R be a ring and consider an object X‚ P RMod. Fix a cardinal k which is greater than the cardinality of
R and any of Xi. We call a complex Y ‚ of R-modules k-petite, if |Y i| ă k for all i. One can see that the class of
isomorphism classes of k-petite complexes is a set. Therefore, for the complex X‚, we can choose the set SX‚ by
axiom of choice by picking one morphism from each of the isomorphism classes of quasi-isomorphisms s : Y ‚ Ñ X‚

with codomain X‚, such that Y ‚ is k-petite.
Now, given a quasi-isomorphism Z‚ Ñ X‚, it suffices to show that Z‚ contains a k-petite subcomplex W ‚

quasi-isomorphic to X‚. Clearly |HipX‚q| ă k for all i P Z. For any i P Z and any xj P H
ipX‚q choose an element

zij P Z
i such that the image of zij in HipX‚q is xj . Let W ‚

0 be the complex where each W i is a submodule of Zi

generated by all the objects zij . Then |W i| ă k for each i and with the induced differential, this is a subcomplex of

X‚ such that f0 : HipW ‚q Ñ HipX‚q is surjective for all i.
By induction we can enlarge W ‚

n to a subcomplex W ‚
n`1 such that kernel of fn : H‚pW ‚

nq Ñ H‚pX‚q vanishes in

H‚pW ‚
1`1q. Indeed, for all win,j P pkerfnq

i, choose an element zi´1
n,j P Z

i´1 such that diZ‚pz
i´1
n,j q “ win,j . Let W i

n`1

be the submodule of Zi generated by the elements of W i
n and the elements win,j . With the induced differential it is

easy to see that W ‚
n`1 is a k-petite subcomplex of Z‚ such that fn`1 : H‚pW ‚

n`1q Ñ H‚pX‚q is surjective and the
kernel of fn vanishes on H‚pW ‚

n`1q. The union W ‚ “ YnW
‚
n is a subcomplex of Z‚ and we have

H‚pW ‚q – lim
ÝÑ
n

H‚pW ‚
nq – H‚pX‚q.

This can be seen by noting that if w P H‚pW ‚q is mapped to 0 in H‚pX‚q, then w P H‚pW ‚
nq for some n and by

construction w vanishes in H‚pW ‚
n`1q. Thus by definition of direct limit (colimit), we have that w represent the

zero element in H‚pW ‚q. This completes the proof, because the choice of X‚ and the quasi-isomorphism Z‚ Ñ X‚

were arbitrary.

In the following we study the relationship of the underlying abelian category and the corresponding derived
category. The following proposition shows that the derived category contains a subcategory which is equivalent to
the original abelian category. We use notation Aris to denote the complex such that pArisqj “ 0 for i ‰ j and
pArisqi “ A.

Proposition 5.1.10. Let A be an abelian category, D˚pAq, ˚ “ H,`,´, b, the derived category of A, and F : AÑ
K˚pAq the inclusion functor which maps A to Ar0s. Then the composite functor G :“ pQ˝F q : AÑ D˚pAq induces
an equivalence of categories between A and the full subcategory C of D˚pAq, consisting of complexes X‚ P ObD˚pAq
such that HipX‚q “ 0 for i ‰ 0.

Proof. First, let us show that the functor F : A Ñ K˚pAq, which sends an object A to the complex Ar0s, is fully
faithful. Indeed, clearly the only homotopy between Ar0s and Br0s is the zero homotopy, i.e., all the χi : pAr0sqi Ñ
pBr0sqi´1 are 0 morphisms. This implies that F is faithful. The fact that F is full follows from the fact that any
morphism φ from Ar0s to Br0s is determined by φ0. Thus F is fully faithful.

By Theorem 1.1.10 it suffices to show that Q ˝ F is fully faithful.

Q ˝ F fully faithful: To show that Q ˝ F is fully faithful, fix two objects A,B P A. We have to show that the
following map

pQ ˝ F q : MorApA,Bq Ñ MorD˚pAqpAr0s, Br0sq
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is bijective. We show this by constructing an inverse for this map. Clearly H0pAr0sq – A and H0pBr0sq – B.
Let φ1 : H0pAr0sq Ñ A and φ2 : H0pBr0sq Ñ B be isomorphisms. We claim that the map ψ :“ φ2˝H

0p´q˝φ´1
1

is the inverse of the above map. Let f : A Ñ B be a morphism. To see that pψ ˝ pQ ˝ F qqpfq “ f , note
that we can choose ker d0

Ar0s “ A and ker d0
Br0s “ B so that the cohomology functor is given by the following

commutative diagram

H0pAr0sq H0pBr0sq

A B

Ar0s0 “ A Br0s0 “ B

H0
pQpF pfqqq“H0

pF pfqq

φ´1
1

F pfq

φ´1
2

f

Here we have abused notation and written H0 for the cohomology functor for both K˚pAq Ñ A and D˚pAq Ñ
A. Recall that the cohomology functor factors through D˚pAq so that we indeed have H0 ˝Q “ H0.

It remains to show that ppQ ˝ F q ˝ ψqpgq “ g, where g is a morphism of C represented by the following roof

Z‚

Ar0s Br0s

s

f
(5.11)

A direct computation shows that the morphism ppQ ˝ F q ˝ ψqpgq is represented by the following roof

Ar0s

Ar0s Br0s

IdAr0s

φ2H
0
pfqH0

psq´1φ´1
1 (5.12)

We show that this roof represents the same morphism as the one above. Let V ‚ be the complex defined as
follows

V i “

$

’

&

’

%

Zi , i ă 0

ker d0
Z‚ , i “ 0

0 , i ą 0

diV ‚ “

$

’

&

’

%

diZ‚ , i ă ´1

β , i “ ´1

0 , i ą ´1

(5.13)

where β is the unique morphism such that the following diagram commutes

Z´1 Z0

ker d0
Z‚

β

d´1
Z‚

α (5.14)

Let i : V ‚ Ñ Z‚ be the natural inclusion morphism, where i0 “ α and let h : V ‚ Ñ Ar0s be the natural
morphism h0 :“ ker s0 : ker d0

Z‚ Ñ ker d0
Ar0s “ Ar0s0 “ A. Both morphisms i and h are easily seen to
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be quasi-isomorphisms. Then the following commutative diagram shows the equivalence of the roofs (5.11)
and (5.12).

V ‚

Z‚ Ar0s

Ar0s Br0s

i

h

s
f

IdAr0s

φ2H
0
pfqH0

psq´1φ´1
1

Indeed, commutativity follows from commutativity of the following diagram

B H0pBr0sq H0pZ‚q H0pAr0sq A

B ker d0
Br0s “ B ker d0

Z‚ ker d0
Ar0s “ A A

B Br0s0 “ B Z0 Ar0s0 “ A A

φ2 H0
pfq

H0
psq φ1

φ´1
2

ker f0

ker s0

α

φ´1
1

f0

s0

Q ˝ F is essentially surjective: Let Z‚ P Ob C be any object and let V ‚ be the complex (5.13). Denote by
i : V ‚ Ñ Z‚ the natural inclusion morphism, which is a quasi-isomorphism, and let h : V ‚ Ñ pH0pV ‚qqr0s be
the morphism given by h0 : V 0 “ ker d0

V ‚ Ñ ker d0
pH0pV ‚qqr0s “ H0pV ‚q, given by diagram of the form (5.14).

This morphism is clearly a quasi-isomorphism. Then

ih´1 : H0pV ‚qr0s Ñ Z‚

is an isomorphism in D˚pAq. This shows that Q ˝ F is essentially surjective and completes the proof.

In proposition 4.2.4 we have seen that the distinguished triangles in K˚pAq come from semi-split short exact
sequences. In the case of derived categories, the distinguished triangles come from all short exact sequences.

Proposition 5.1.11. Given a short exact sequence

0 X‚ Y ‚ Z‚ 0
f g

(5.15)

in C˚pAq, there exists a morphism h : Z‚ Ñ X‚r1s such that

X‚ Y ‚ Z‚ X‚r1s
f g h

is a distinguished triangle in D˚pAq. Conversely, any distinguished triangle in D˚pAq is isomorphic to a distin-
guished triangle pX‚, Y ‚, Z‚, f, g, hq in D˚pAq such that

0 X‚ Y ‚ Z‚ 0
f g

is an exact sequence in C˚pAq.
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Proof. By lemma 5.1.2, every short exact sequence of the form (5.15) in C˚pAq is quasi-isomorphic to a short exact
sequence

0 X‚ Cylpfq Cpfq 0
i1 p2

(5.16)

and by definition pX‚, Cylpfq, Cpfq, i1, p2, p1q is a distinguished triangle in D˚pAq.
Conversely, by definition, the distinguished triangles of D˚pAq are isomorphic to pX‚, Cylpfq, Cpfq, i1, p2, p1q.

Now (5.16) is exact in C˚pAq. This finishes the proof.

5.2 Examples

As an example we study the derived category of finite dimensional vector spaces over a field.

Example 5.2.1 (Dpkvectq). Let kvect be the category of finite dimensional vector spaces over a field k. It is well
known to be a semisimple abelian category. This implies that for any morphism f : V1 Ñ V2 of finite dimensional
k-vector spaces we have V1 – kerpfq ‘ Impfq and V2 – V2{ Impfq ‘ Impfq. Hence any complex X‚ in Cpkvectq is
isomorphic to a complex of the form

Y ‚ : . . . Im di´2
X‚ ‘ pker di´1

X‚ { Im di´1
X‚ q ‘ Im di´1

X‚ Im di´1
X‚ ‘ pker diX‚{ Im di´1

X‚ q ‘ Im diX‚ . . .
i1p3 i1p3 i1p3

Consider the complex

Z‚ : . . . pker di´1
X‚ { Im di´1

X‚ q pker diX‚{ Im di´1
X‚ q . . .0 0 0

We show that the morphism p2 : Y ‚ Ñ Z‚ is an isomorphism in KpQ-vectq with inverse given by i2 : Z‚ Ñ Y ‚.
By definition of biproduct p2i2 “ IdZ‚ . We show that the morphism i2p2 : Y ‚ Ñ Y ‚ is homotopic to IdY ‚ . Let
χi : Y i Ñ Y i´1 be the morphism χi “ i3p1. Then IdY i ´i2p2 “ i1p1` i3p3 “ i1p3i3p1` i3p1i1p3, which shows that
IdY ‚ „ i2p2. Thus Y ‚, and hence X‚, is isomorphic to the complex Z‚ in Kpkvectq. Since H‚pZ‚q – Z‚ it is easy
to see that the all the quasi-isomorphisms are already invertible in Kpkvectq. Thus Kpkvectq – Dpkvectq, and
Dpkvectq is equivalent to the full abelian subcategory of Cpkvectq consisting of complexes with zero differentials.

In the above example the derived category turned out to be an abelian category. This is because kvect is
semisimple. Furthermore, the derived category DpAq is an abelian category if an only if A is semisimple, [GM03,
Exercise IV.1.1]. We have already seen in example 2.2.17 that Ab is not semisimple. Thus the derived category of
an abelian category is not in general an abelian category.

The idea following example is taken from [HTR10, p.191 4.15]. In particular, it gives an example where local-
ization of a category is not a category.

Example 5.2.2 (Derived category not a category). In this example we show that the derived category of an abelian
category is not necessarily a category because the collection of morphisms may fail to be a set. This also shows
that localization of categories is not well-defined in general, if one does not use the axiom of strongly inaccessible
cardinals.

Let U denote the class of all small cardinals and let A be the category of all finite dimensional pZ{2qrU s-
Z{2-bimodules, where the dimension is taken as Z{2 vector space. One can verify that this category is an abelian
category. We show that DpAq is not a category by deriving a contradiction when assuming its existence.

Suppose that DpAq is a category. For any small cardinal λ, let Vλ be the pZ{2qrU s-Z{2-bimodule Z{2 ‘ Z{2
with the action

α.pz1, z2q “

#

pz2, 0q α “ λ

p0, 0q α ‰ λ
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Consider the following two morphisms in CpAq

. . . 0 Z{2 Vλ 0 . . .

. . . 0 0 Z{2 0 . . .

i1

p2

and

. . . 0 Z{2 Vλ 0 . . .

. . . 0 Z{2 0 0 . . .

i1

IdZ{2

where the morphisms i1 are differentials at index 0, the first morphism is a quasi-isomorphism and the bimodules
Z{2 have trivial action of pZ{2qrU s. Denote the first morphism by sλ and the second by fλ. Denote the domain
complex of sλ by Z‚λ, the codomain complex by X‚ and the codomain complex of the morphism fλ by Y ‚ “ X‚r1s.

Consider morphisms from X‚ to Y ‚. For any small cardinal λ the following roof represents such a morphism

Z‚λ

X‚ Y ‚
sλ

fλ

We show that for two different cardinals α ‰ λ the corresponding roofs represent different morphisms, so that
MorDpAqpX

‚, Y ‚q cannot be a set, because the class of all small cardinals is not a set.
Let α ‰ λ be different small cardinals. If the corresponding roofs would be equal, we would have a commutative

diagram of the form in KpAq

W ‚

Z‚λ Z‚α

X‚ Y ‚

s1λ

s1α

sλ

fλ
sα

fα

Now sλs
1
λ : W ‚ Ñ X‚ is a quasi-isomorphism, and H0pX‚q “ Z{2, so W 0 must be nonzero. By definition of a

morphism of pZ{2qrU s-Z{2-bimodules, for a nonzero element w PW 0 we have

ps1λq
0pλ.pwqq “ λ.pps1λq

0pwqq ‰ 0

ps1αq
0pλ.pwqq “ λ.pps1αq

0pwqq “ 0.

This shows that the image of λ.w under H0psλs
1
λq : H0pW ‚q Ñ H0pX‚q is zero, but the image of λ.w under

H0psαs
1
αq : H0pW ‚q Ñ H0pX‚q is nonzero. Hence the diagram cannot be commutative in KpAq.
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5.3 Notes

Derived categories were initially developed by Grothendieck and Verdier to generalize Serre duality to relative case.
In this it was needed that the direct image functor f˚ to have a right adjoint, which is impossible in the category
of schemes over a field k, because f˚ is not right exact. When one passes to the derived category, the functor f˚
induces a derived functor between derived categories, see the next chapter, which preserves distinguished triangles
and this functor has a right adjoint.

We have already noted that triangulated categories arise in many branches of mathematics, see section 4.4. This
allows one to study connections between different branches of mathematics, by using the formalism of triangulated
categories. In some sense, homological mirror symmetry can be seen to be an example of such connection.
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Chapter 6

Derived functors

In this chapter we introduce right and left derived functors. We prove the existence of right derived functors and
state the corresponding results for left derived functors. A right (resp. left) derived functor is an exact functor
between derived categories which satisfies a certain universal property and is obtained from a left (resp. right) exact
functor between the underlying abelian categories. This construction agrees with the classical derived functors. At
the end of this chapter we give examples of derived functors.

Classically, to form the ith right derived functor RiF (resp. left derived functor LiF ) of a left (resp. right) exact
functor F : A Ñ B, the idea is to assign an injective (resp. projective) resolution to each object of A, apply the
functor F pointwise to this resolution, and then take the ith cohomology of the resulting complex. Here we generalize
this idea and construct the right (resp. left) derived functor by using an adapted class R of objects of A, with respect
to the functor F , and then we take RF (resp. LF ) to be the composite of an inverse of K`pRqrS´1

R s Ñ D`pAq
(resp. K´pRqrS´1

R s Ñ D´pAq) given by the universal property of localization of categories, followed by the unique
functor K`pRqrS´1

R s Ñ D`pBq (resp. K´pRqrS´1
R s Ñ D´pBq) given by the universal property of localization of

categories.

K`pAq K`pRq K`pBq

D`pAq K`pRqrS´1
R s D`pBq

QA

K`pF˝Iq

K`pIq

QR QB

RF

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

resp.

K´pAq K´pRq K´pBq

D´pAq K´pRqrS´1
R s D´pBq

QA

K´pF˝Iq

K´pIq

QR QB

LF

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Note that in this chapter, as in the diagrams above, we occasionally abuse notation and identify the categories
K˚pAqrS´1s and D˚pAq, ˚ “ H,`,´, b, where A is an abelian category and S is the class of quasi-isomorphisms
in K˚pAq. This identification is justified by the fact that it is easier to manipulate morphisms by using roofs and
coroofs than strings of morphisms, and that these categories are isomorphic by theorem 5.1.4 and all the properties
we are interested in are true in isomorphic categories. If one is not satisfied with this approach, one can add the
isomorphism G, or its inverse G´1, of theorem 5.1.4 to appropriate places. In particular in most of the places where
one might want add G or G´1, the resulting functors are uniquely determined by theorem 3.1.3.
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6.1 Construction of derived functors

We have defined exact sequences, but we have not defined exact (resp. left exact, resp. right exact) functors. These
functors are important because one can view derived functors as a kind of machinery to measure how much a left
(resp. right) exact functor fails to be exact. Let us define these.

Definition 6.1.1 (Exact functor). Let F : A Ñ B be an additive functor between abelian categories. If for any
short exact sequence

0 X Y Z 0
f g

(6.1)

in A, the sequence

0 F pXq F pY q F pZq 0
F pfq F pgq

is exact, then F is said to be exact. Similarly, if for any short exact sequence (6.1) the following sequence is exact

0 F pXq F pY q F pZq
F pfq F pgq

then F is left exact. Dually, if for any short exact sequence (6.1) the sequence

F pXq F pY q F pZq 0
F pfq F pgq

is exact, then F is right exact.

Consider an additive functor F : A Ñ B between abelian categories. This induces a functor C˚pF q, ˚ “
H,`,´, b, between the abelian categories C˚pAq and C˚pBq, by pointwise application of F . The functor C˚pF q
maps homotopies to homotopies. Indeed, if f ´ g “ dY ‚χ` χdX‚ , then

C˚pF qpf ´ gq “ pF pdi´1
Y ‚ qF pχ

iq ` F pχi`1qF pdiX‚qqiPZ.

Thus it induces an additive functor K˚pF q : K˚pAq Ñ K˚pBq.
We say that a complex in C˚pAq (or K˚pAq) is exact, if the cohomology complex is the zero complex.

Definition 6.1.2 (Adapted class). Let F : AÑ B be a left (resp. right) exact functor between abelian categories.
A class of objects R Ă ObA containing the zero object and stable under biproducts is said to be adapted to F
if any object A of A is a subobject (resp. quotient) of an object of R and C`pF q (resp. C´pF q) preserves exact
complexes from C`pRq (resp. C´pRq).

More precisely, a class of objects R is adapted to a left exact functor when it contains the zero object and
satisfies the following properties

AC 1 For any R1, R2 P R, we have R1 ‘R2 P R.

AC 2 For any object X P A, there exists a monomorphism X Ñ R with R P R.

AC 3 For any exact complex R‚ P C`pRq, C`pF qpR‚q is an exact complex.

By abuse of notation, we will write R also for the full subcategory of A consisting of the objects of R. Also,
the category K˚pRq is the full subcategory of K˚pAq consisting of all complexes X‚ such that Xi P R for all i.

Lemma 6.1.3. Let F : A Ñ B be a left exact functor of abelian categories, R a class of objects adapted to F ,
and SR the class of quasi-isomorphisms in K`pRq. Then SR is a localizing class of morphisms and the category
K`pRq is a triangulated category.

114



Proof. By corollary 5.1.7 the class of quasi-isomorphisms is a localizing class in K`pAq. The same proof works for
K`pRq because R is stable under direct sums, so mapping cones of any morphism is contained in K`pRq. The
inclusion K`pRq Ñ K`pAq induces a triangulated category structure on K`pRq and one can easily verify the
axioms of triangulated category for K`pRq using the axioms for K`pAq and corollary 4.1.6.

We also have the dual version.

Lemma 6.1.4. Let F : AÑ B be a right exact functor of abelian categories, R a class of objects adapted to F , and
SR the class of quasi-isomorphisms in K´pRq. Then SR is a localizing class and K´pRq is a triangulated category.

Lemma 6.1.5. Let F : AÑ B be an additive exact functor between abelian categories. Then C˚pF q (resp. K˚pF q),
˚ “ H,`,´, b, preserves exact complexes.

Proof. Let X‚ be an exact complex in C˚pAq. The functor C˚F maps the following diagram of lemma 2.2.15

Xi´1 Xi Xi`1

0 ker diX‚ ker di`1
X‚ 0

di´1
X‚

ei´1

diX‚

eimi´1 mi

to the following diagram

F pXi´1q F pXiq Xi`1

0 F pker diX‚q F pker di`1
X‚ q 0

F pdi´1
X‚
q

F pei´1
q

F pdiX‚ q

F peiqF pmi´1
q F pmiq

By lemma 2.2.15 it suffices to show that pF pmi´1q, F peiqq is an exact sequence. But this follows from the fact that
F is exact.

Lemma 6.1.6. Let F : AÑ B be a left exact functor of abelian categories and R a class of objects adapted to F .
For any complex X‚ P K`pAq there is a quasi-isomorphism t : X‚ Ñ R‚ with R‚ P K`pRq.
Proof. Construction of R‚ and t: By application of the translation functor for X‚ we may assume that X‚ is of

the form

. . . 0 0 X0 X1 X2 . . .
d0X‚ d1X‚ d2X‚

By assumption, we can find a monomorphism t0 : X0 Ñ R0. Take the pushout of d0
X‚ and t0 to get the

following commutative diagram

X0 X1

R0 Y 0

d0X‚

t0 j0

i0

where i0 is a monomorphism by corollary 2.3.5. Choose a monomorphism k0 : Y 0 Ñ R1, by AC2, and define
d0
R‚ “ k0i0 and t1 “ k0j0. We have obtained the following commutative diagram with exact rows

0 X0 X1

0 R0 R1

d0X‚

t0 t1

d0R‚

115



Suppose that we have already chosen the objects R0, . . . , Rn´1 and differentials between them. Then we can
obtain the following commutative diagram

Xn´1 Xn

Rn´1 coker dn´2
R‚ Y n´1 Rn

dn´1
X‚

tn´1 jn´1

a b kn´1

(6.2)

by taking the pushout Y n´1 of the morphisms atn´1 and dn´1
X‚ and then the monomorphism kn´1 : Y n´1 Ñ

Rn, by AC2, for some object Rn of R. Let dn´1
R‚ “ kn´1ba and tn “ kn´1jn´1. By induction we have obtained

a complex R‚ and a morphism of complexes t : X‚ Ñ R‚.

Hiptq is an isomorphism: Since A is an abelian category, to show that Hiptq are isomorphisms for all i, it suffices
to check that Hiptq are monomorphisms and epimorphisms. Recall from proposition 2.5.5 that the pseudo-
elements of HipX‚q are in one-to-one correspondence with the equivalence classes of pseudo-elements of Xi

which are sent to the zero-morphism by diX‚ modulo the relation x1 : Y1 Ñ Xi „ x2 : Y2 Ñ Xi if and
only if there exists epimorphisms h1 : V Ñ Y1 and h2 : V Ñ Y2 and a morphism k : V Ñ Xi´1 such that
x1h1 ´ x2h2 “ diX‚k.

Hiptq is an epimorphism: Let us use proposition 2.5.5 to show that Hiptq is an epimorphism. Let r P˚ Ri such
that diR‚h “ 0. Since ki is a monomorphism, by proposition 2.4.3 (ii) we get pci1aqprq “ 0, where c is the
morphism coker di´1

R‚ ‘X
i Ñ Y i like in corollary 2.3.4. By corollary 2.3.4 the following sequence is exact

Xi coker di´1
R‚ ‘X

i`1 Y i 0
i1at

i
´i2d

i
X‚ c (6.3)

By proposition 2.4.3 (iv) there exists a pseudo-element x P˚ Xi such that pi1at
i ´ i2d

i
X‚qpxq “

˚ pi1aqprq.
Hence atixv “ aru for some epimorphisms u : AÑ Xi and v : AÑ Ri. We have the following diagram

A

Ri´1 Ri coker di´1
R‚

tixvru

di´1
R‚ a

The row is exact by proposition 2.2.14, so by proposition 2.4.3 (iv) there exists a pseudo-element r1 P˚ Ri´1

such that di´1
R‚ r

1 “˚ tixv´ru. Therefore for some epimorphisms w1 and w2 we have di´1
R‚ r

‚w1 “ tixvw2´ruw2.
By the equivalence relation of proposition 2.5.5 this means that tix and r represent the same pseudo-element
in HipR‚q. This shows by proposition 2.4.3 (iii) that HipR‚q is an epimorphism.

Hiptq is a monomorphism: We use proposition 2.5.5. By proposition 2.4.3 (ii) it suffices to show that a pseudo-
element of HipX‚q which is mapped by Hiptq to 0 P˚ HipR‚q is pseudo-equal to 0. Let x P˚ Xi correspond
to a pseudo-element x1 P˚ HipX‚q such that Hiptqpx1q “˚ 0. By commutativity of the following diagram

Xi ker di´1
X‚ HipX‚q

Ri ker di´1
R‚ HipR‚q

ti ker ti Hiptq
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and the correspondence of the pseudo-elements of Ri with HipR‚q given by proposition 2.5.5, we get that
tix P˚ Ri corresponds to the pseudo-element 0 P˚ HipR‚q. Therefore there exists an epimorphism v and
morphism u such that di´1

R‚ u “ tixv. Since the morphism ki´1 in (6.2) is a monomorphism, we have ci1au “
ci2xv. By corollary 2.3.5 the pushout and pullback diagrams coincide, so there exists a unique morphism φ
such that di´1

X‚ φ “ xv. Therefore x corresponds to 0 P˚ HipX‚q by proposition 2.5.5. This completes the
proof.

Similarly one proves similar lemma for right exact functors.

Lemma 6.1.7. Let F : AÑ B be a right exact functor of abelian categories and R a class of objects adapted to F .
For any complex X‚ P K`pAq there is a quasi-isomorphism t : R‚ Ñ X‚ with R‚ P K`pRq.

The following proposition is important in the construction of the right derived functor.

Proposition 6.1.8. Let F : AÑ B be a left exact functor of abelian categories, R a class of objects adapted to F ,
and SR the class of quasi-isomorphisms in K`pRq. The canonical functor

D`pISRq : K`pRqrS´1
R s Ñ D`pAq

is an equivalence of categories and commutes with the translation functor.

Proof. By theorem 5.1.4 we have an isomorphism of categories G´1 : K`pAqrS´1s Ñ D`pAq, where S is the class
of quasi-isomorphisms in K`pAq. We let D`pISRq “ G´1 ˝D`pIq, where D`pIq is the unique morphism, obtained
by theorem 3.1.3, such that the following diagram is commutative

K`pRq K`pAq

K`pRqrS´1
R s K`pAqrS´1s

K`pIq

QR QA

D`pIq

Thus it suffices to show that D`pIq is an equivalence of categories. By commutativity D`pIq is identity on objects
and morphisms. By theorem 1.1.10 we have to show that D`pIq is fully faithful and essentially surjective. By
lemma 6.1.6, any object of K`pAq is quasi-isomorphic to an object of K`pRq. Thus D`pIq is essentially surjective.
The lemma 6.1.6 show that the condition (ii) of proposition 3.2.7 holds, so K`pRqrS´1

R s is a full subcategory of
K`pAqrS´1s. Hence the functor D`pIq is fully faithful.

The inclusion functor I commutes with the translation functor. We know that the localization functor QA, and
thus QSR , commute with the traslation functor. Therefore, the functor D`pISRq commutes with the translation
functor.

The following is a version of the above proposition for right exact functors.

Proposition 6.1.9. Let F : A Ñ B be a right exact functor of abelian categories, R a class of objects adapted to
F , and SR the class of quasi-isomorphisms in K´pRq. The canonical functor

D´pISRq : K´pRqrS´1
R s Ñ D´pAq

is an equivalence of categories and commutes with the translation functor.

The following shows that an inverse for the equivalence in proposition 6.1.8 also commutes with translations.
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Corollary 6.1.10. Let D`pISRq : K`pRqrS´1
R s Ñ D`pAq be the functor in proposition 6.1.8. There exists a

functor Φ : D`pAq Ñ K`pRqrS´1
R s such that

IdK`pRqrS´1
R s
“ Φ ˝D`pISRq, D`pISRq ˝ Φ – IdD`pAq

and the functor Φ commutes with the translation functor.

Proof. First we construct Φ on objects. Let Φp0‚q “ 0‚. For any object A‚ ‰ 0‚ of D`pAq such that A‚ R
ObK`pRqrS´1

R s, A0 ‰ 0 and Ai “ 0 for i ă 0, fix by lemma 6.1.6 a quasi-isomorphism qA‚ : A‚ Ñ R‚ to some
object R‚ P K`pRqrS´1

R s. For any R‚ P K`pRqrS´1
R s, let qR‚ “ IdR‚ . In general, for an object A‚ ‰ 0‚ of D`pAq,

let n P Z such that An ‰ 0 and Ai “ 0 for i ă n. Then, we define qA‚ “ qA‚r´nsrns.
For any object A‚ P D`pAq define ΦpA‚q “ CodpqA‚q. We see that this definition implies that Φ commutes

with the translation functors on objects. Indeed, let A‚ P D`pAq and n P Z such that An ‰ 0 and Ai “ 0 for i ă n.
Then

ΦpA‚r1sq “ CodpqA‚r1sq “ CodpqA‚r1sr´n´1sqrn` 1s “ CodpqA‚r´nsqrnsr1s “ ΦpA‚qr1s.

To define the map on morphisms of the functor Φ, let f : A‚1 Ñ A‚2 be a morphism in D`pAq. Let Φpfq “
qA‚2fpqA‚1q

´1. Since the subcategory K`pRqrS´1
R s is a full subcategory of D`pAq this is well defined. A simple

computation shows that Φ is a functor such that IdK`pRqrS´1
R s

“ Φ ˝D`pISRq. To see that IdD`pAq is isomorphic

to D`pISRq ˝ Φ, let τ : IdD`pAq Ñ D`pISRq ˝ Φ be the natural transformation which sends an object A‚ to qA‚ .
Then for any morphism ps, fq : A‚1 Ñ A‚2 the following square commutes

A‚1 CodpqA‚1q

A‚2 CodpqA‚2q

qA‚1

ps,fq Ψps,fq“qA‚2
˝ps,fq˝pqA‚1

q
´1

qA‚2

This shows that τ is an isomorphism of functors and finishes the proof.

A similar corollary holds for right exact functors.

Corollary 6.1.11. Let D`pISRq : K´pRqrS´1
R s Ñ D´pAq be the functor in proposition 6.1.9. There exists a

functor Φ : D´pAq Ñ K´pRqrS´1
R s such that

IdK´pRqrS´1
R s
“ Φ ˝D´pISRq, D´pISRq ˝ Φ – IdD´pAq

and the functor Φ commutes with the translation functor.

Lemma 6.1.12. Let F : A Ñ B be an additive functor between abelian categories and R a full subcategory of A
stable under biproducts such that the functor K˚pF ˝ Iq “ K˚pF q ˝K˚pIq : K˚pRq Ñ K˚pAq Ñ K˚pBq preserves
exact complexes, where I : RÑ A is the inclusion functor. Then K˚pF q˝K˚pIq preserves mapping cones, mapping
cylinders, and quasi-isomorphisms. Moreover, F ˝ I induces an exact functor D˚pF ˝ Iq : K˚pRqrS´1

R s Ñ D˚pBq.

Proof. Let f : X‚ Ñ Y ‚ be a representative of a morphism of K˚pRq. Since F ˝ I is additive, by proposition 2.1.5
it preserves biproducts. A direct computation shows that

K˚pF ˝ IqpdiCpfqq “ i1pF ˝ Iqpd
i`1
X‚ qp1 ` i2pF ˝ Iqpf

i`1qp1 ` i2pF ˝ Iqpd
i
Y ‚qp2
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and

K˚pF ˝ IqpCpfqq “ K˚pF ˝ IqpX‚r1s ‘ Y ‚q

“ pK˚pF ˝ IqpX‚r1sqq ‘ pK˚pF ˝ IqY ‚q

“ pK˚pF qX‚qr1s ‘ pK˚pF ˝ IqY ‚q

“ CpK˚pF ˝ Iqpfqq,

so F ˝ I preserves the mapping cones. Similarly, from

K˚pF ˝ IqpdiCylpfqq “ i1pF ˝ Iqpd
i
X‚qp1 ´ i1p1p2

´ i2i1pF ˝ Iqpd
i`1
X‚ qp1p2 ` i2i2pF ˝ Iqpf

i`1qp1p2 ` i2i2pF ˝ Iqpd
i
Y ‚qp2p2.

and

K˚pF ˝ IqpCylpfqq “ K˚pF ˝ IqpX‚ ‘ Cpfqq

“ pK˚pF ˝ IqpX‚qq ‘ pK˚pF ˝ IqCpfqq

“ pK˚pF ˝ IqpX‚qq ‘ CpK˚pF ˝ Iqpfqq

“ CylpK˚pF ˝ Iqpfqq

we see that K˚pF ˝ Iq preserves cylinders. To see that K˚pF ˝ Iq preserves quasi-isomorhisms, let f be a quasi-
isomorphism in R. Then by lemma 6.1.6 applied in K˚pAq, Cpfq is an exact complex, so K˚pF ˝ IqpCpfqq “
CpK˚pF ˝ Iqpfqq is exact by assumption. Therefore lemma 6.1.6 shows that K˚pF ˝ Iqpfq is a quasi-isomorphism.

Since K˚pF ˝ Iq preserves quasi-isomorphisms, by theorem 3.1.3 we have the following commutative diagram

K˚pRq K˚pBq

K˚pRqrS´1
R s D˚pBq

K˚pF˝Iq

QSR QB

D˚pF˝Iq

(6.4)

where SR is the class of quasi-isomorphisms in K˚pRq. The functor K˚pF ˝ Iq preserves biproducts, cones and
cylinders, so it maps any triangle of the form

X‚ Cylpfq Cpfq X‚r1s
i1 p2 p1

to a triangle of the same form in K˚pBq. This shows that K˚pF ˝ Iq preserves distinguished triangles. Since the
localizing functors QSR and QB preserve distinguished triangles, by commutativity of (6.4) shows that D˚pF ˝ Iq
preserves distinguished triangles. Hence it is an exact functor.

By lemma 6.1.5 C˚pF q of an exact functor F preserves exact complexes. Hence, by above D˚pF q : D˚pAq Ñ
D˚pBq is an exact functor.

We come now to the definition of derived functors.

Definition 6.1.13. The right derived functor of a left exact functor F : A Ñ B of abelian categories is a pair
consisting of an exact functor RF : D`pAq Ñ D`pBq and a natural transformation εF : QB ˝K`pF q Ñ RF ˝QB
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such that for any exact functor G : D`pAq Ñ D`pBq and any natural transformation εG : QB ˝K`pF q Ñ G ˝QA
there exists a unique natural transformation η : RF Ñ G such that the following diagram

QB ˝K`pF q RF ˝QA

G ˝QA

εF

εG
η˝QA

is commutative.
The left derived functor of a right exact functor F : AÑ B of abelian categories is a pair consisting of an exact

functor LF : D´pAq Ñ D´pBq and a morphism of functors εF : QB ˝K´pF q Ñ LF ˝QA such that for any exact
functor G : D´pAq Ñ D´pBq and any natural transformation εG : QB ˝ K´pF q Ñ G ˝ QA there exists a unique
natural transformation η : GÑ LF such that the following diagram

G ˝QA QB ˝K´pF q

LF ˝QA

εG

εF
η

is commutative.

We are ready to prove the main result of this section, the existence of derived functors. To prove this theorem
we need the formalism of coroofs, see proposition 3.2.9.

Theorem 6.1.14. Let F : A Ñ B be a left (resp. right) exact functor of abelian categories, R a class of objects
adapted to F , and SR the class of quasi-isomorphisms in K`pRq (resp. K´pRq). Then the right (resp. left) derived
functor RF (resp. LF ) exists.

Proof. We will prove only the existence of the right derived functor RF . Existence of the left derived functor LF
is proved similarly.

Construction of RF : By corollary 6.1.10 we have a functor Φ : D`pAq Ñ K`pRqrS´1
R s which commutes with

the translation functors and we have the following equality and isomorphism of functors

IdK`pRqrS´1
R s
“ Φ ˝D`pISRq,

β : D`pISRq ˝ Φ IdD`pAq
–

.

By proposition 6.1.8 and (6.4) the following diagram is commutative

K`pAq K`pRq K`pBq

D`pAq K`pRqrS´1
R s D`pBq

QA

K`pIq

K`pF˝Iq

QSR QB

Φ

D`pISR q

D`pF˝Iq

(6.5)

We define

RF “ D`pF ˝ Iq ˝ Φ.
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Exactness of RF : Since D`pF ˝ Iq preserves distinguished triangles by lemma 6.1.12, it remains to show that
Φ preserves distinguished triangles. Let pX‚1 , Y ‚1 , Z‚1 , f1, g1, h1q be a distinguished triangle in D`pAq. By
lemma 4.2.2 it is isomorphic to a triangle of the form pX‚2 , Y ‚2 , Cpf2q, f2, i2, p1q. By lemma 6.1.6, we find
isomorphisms X‚2 Ñ R‚0 and Y ‚2 Ñ R‚1 in D`pAq such that R‚0, R

‚
1 P K`pRq. Let us denote by φ1 the

composite X‚1 Ñ X‚2 Ñ R‚0 and by φ2 the composite Y ‚1 Ñ Y ‚2 Ñ R‚1. Since φ1 and φ2 are isomorphisms, by
TR5 and corollary 4.1.6, we obtain the following isomorphism of distinguished triangles in D`pAq.

X‚1 Y ‚1 Z‚1 X‚1 r1s

R‚0 R‚1 Cpφ2f1pφ1q
´1q R‚0r1s

f1

φ1

g1

φ2

h1

φ3 φ1r1s

φ2f1pφ1q
´1

i2 p1

Now, D`pISRq is identity on objects, so by the fact that D`pISRq is fully faithful, the morphisms between the
elements of the bottom row are morphisms of K`pRqrS´1

R s. From the equality Φ˝D`pRqrISRs “ IdK`pRqrS´1
R s

we find that the following diagram is an isomorphism of distinguished triangles

ΦpX‚1 q ΦpY ‚1 q ΦpZ‚1 q ΦpX‚1 qr1s

ΦpR‚0q ΦpR‚1q ΦpCpφ2f1pφ1q
´1qq ΦpR‚0qr1s

R‚0 R‚1 Cpφ2f1pφ1q
´1q R‚0r1s

Φpf1q

Φpφ1q

Φpg1q

Φpφ2q

Φph1q

Φpφ3q Φpφ1qr1s

Φpφ2f1pφ1q
´1
q Φpi2q Φpp1q

Φpφ2f1pφ1q
´1
q i2 p1

Since the bottom triangle of this diagram is a distinguished triangle in K`pRq, by lemma 4.2.2, we have
shown that Φ preserves distinguished triangles.

Definition of εF : Let us construct the natural transformation εF : QB ˝K`pF q Ñ RF ˝ QA in the definition of
the right derived functor. Let X‚ P K`pAq and let Y ‚ P K`pRq such that pΦ ˝ QAqpX‚q “ QSRpY

‚q. We
want to construct the following morphism

εF pX
‚q : pQB ˝K

`pF qqpX‚q ÑpRF ˝QAqpX
‚q

“ pD`pF ˝ Iq ˝ Φ ˝QAqpX
‚q

“ pD`pF ˝ Iq ˝QSRqpY
‚q

“ pQB ˝K
`pF ˝ IqqpY ‚q.

The objects K`pIqpY ‚q and X‚ are not necessarily isomorphic in K`pAq, but in D`pAq they are. Let

X‚ K`pIqpY ‚q

Z‚

f

s

be a coroof which represents the isomorphism βpXq in D`pAq. By lemma 6.1.6 we have a quasi-isomorphism
r : Z‚ Ñ K`pIqpR‚q for some R‚ P K`pRq. Since K`pRq is a full subcategory of K`pAq the composite
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K`pIqpY ‚q Ñ Z‚ Ñ K`pIqpR‚q equals K`pIqpgq for some quasi-isomorphism g : Y ‚ Ñ R‚ of K`pRq.
Application of K`pF q yields the following diagram

K`pF qpX‚q K`pF ˝ IqpY ‚q

K`pF ˝ IqpR‚q

K`pF qprfq

K`pF˝Iqpgq

where K`pF ˝Iqpgq is a quasi-isomorphism by lemma 6.1.12. We define εF pX
‚q to be the morphism in D`pBq

represented by this coroof.

εF pXq well-defined: To show that εF is well-defined, we have to show that the morphism εF pX
‚q does not depend

on the choice of the coroof in D`pAq. Let

X‚ K`pIqpY ‚q

Z‚1 Z‚2

Z‚3

f g

t s

t1

s1

be an equivalence of two coroofs which represent the isomorphism βpX‚q of QApX‚q and QApK`pIqpY ‚qq in
D`pAq. By lemma 6.1.6 we have quasi-isomorphisms a1 : Z‚1 Ñ K`pIqpR‚1q and a2 : Z‚2 Ñ K`pIqpR‚2q and
by transitivity of equivalence of coroofs, the coroofs

X‚ K`pIqpY ‚q

K`pIqpR‚1q

a1f

K`pIqpa1tq

X‚ K`pIqpY ‚q

K`pIqpR‚2q

a2g

K`pIqpa2sq

are equivalent. Therefore we can find morphisms b1 : K`pIqpR‚1q Ñ Z‚4 and b2 : K`pIqpR‚2q Ñ Z‚4 such that
the following diagram is an equivalence of coroofs

X‚ K`pIqpY ‚q

K`pIqpR‚1q K`pIqpR‚2q

Z‚4

a1f a2g

a1K
`
pIqptq a2K

`
pIqpsq

b1

b2

Again, by lemma 6.1.6, we can find a quasi-isomorphism a3 : Z‚4 Ñ K`pIqpR‚3q. Thus we have the following
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commutative diagram

X‚ K`pIqpY ‚q

K`pIqpR‚1q K`pIqpR‚2q

K`pIqpR‚3q

a1f a2g

a1K
`
pIqptq a2K

`
pIqpsq

a3b1

a3K
`
pIqpb2q

Application of K`pF q gives the following diagram

K`pF qpX‚q K`pF ˝ IqpY ‚q

K`pF ˝ IqpR‚1q K`pF ˝ IqpR‚2q

K`pF ˝ IqpR‚3q

K`pF qpa1fq K`pF qpa2gq

k`pF qpa1qK
`
pF˝Iqptq K`pF qpa2qK

`
pF˝Iqpsq

K`pF qpa3b1q

K`pF qpa3qK
`
pF˝Iqpb2q

which is an equivalence of coroofs in D`pBq. This shows that εF pX
‚q is well-defined.

εF pXq is a natural transformation: To show that εF pX
‚q is a natural transformation, let φ : X‚1 Ñ X‚2 be a

morphism in K`pAq. We have to show that the following diagram is commutative in D`pBq

pQB ˝K`pF qqpX‚1 q pRF ˝QAqpX‚1 q

pQB ˝K`pF qqpX‚2 q pRF ˝QAqpX‚2 q

εF pX
‚
1 q

pQB˝K
`
pF qqpφq pRF˝QAqpφq

εF pX
‚
2 q

Let Y ‚1 , Y
‚
2 P ObK`pRq be such that pQSRqpY

‚
1 q “ pΦ ˝QAqpX‚1 q and pQSRqpY

‚
2 q “ pΦ ˝QAqpX‚2 q. Let ψ be

a morphism of K`pRq such that QSRpψq “ pΦ ˝QAqpφq. By definition of RF we have

pRF ˝QAqpφq “ pD
`pF ˝ Iq ˝ Φ ˝QAqpφq “ pD

`pF ˝ Iq ˝QSRqpψq “ pQB ˝K
`pF ˝ Iqqpψq,

where the last equation follows from commutativity of proposition 6.1.8. Therefore we have to show that

εF pX2q ˝ pQB ˝K
`pF qqpφq “ pQB ˝K

`pF ˝ Iqqpψq ˝ εF pX1q. (6.6)

Since β is a natural transformation, the following diagram

QApX‚1 q pD`pISRq ˝QSRqpY
‚
1 q

QApX‚2 q pD`pISRq ˝QSRqpY
‚
2 q

βpX‚1 q

QApφq pD`pISR q˝QSR qpψq

βpX‚2 q

(6.7)
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is commutative in D`pAq. We fix the following coroofs to represent the morphisms

βpX‚1 q :“

X‚1 K`pIqpY ‚1 q

R‚1

βpX‚2 q :“

X‚2 K`pIqpY ‚2 q

R‚2

pD`pISRq ˝QSRqpψq :“

K`pIqpY ‚1 q K`pIqpY ‚2 q

K`pIqpY ‚2 q

K`pIqpψq

IdK`pIqpY ‚2 q

where we have assumed by using lemma 6.1.6 that the bottom objects are objects coming from K`pRq.
By commutativity of (6.7), the following compositions of coroofs represent the same morphisms in D`pAq

X‚1 K`pIqpY ‚1 q K`pIqpY ‚2 q

K`pIqpR‚1q K`pIqpY ‚2 q

K`pIqpR‚3q

X‚1 X‚2 K`pIqpY ‚2 q

X‚2 K`pIqpR‚2q

K`pIqpR‚4q

φ

IdX‚2

where the objects K`pIqpR‚3q and K`pIqpR‚4q and morphisms to them are constructed by using lemma 6.1.6.
An application of K`pF q to these two coroofs yields two coroofs of D`pBq, by lemma 6.1.12, which represent
the same morphism. Since K`pF qpβpX‚1 qq “ εF pX

‚
1 q K

`pF qpβpX‚2 qq “ εF pX
‚
2 q, and pK`pF q ˝ D`pISRq ˝

QSRqpψq “ K`pF ˝Iqpψq, we have obtained the equation (6.6). This shows that εF is a natural transformation.

Universal property of RF : Let G : D`pAq Ñ D`pBq be an exact functor and εG : QB ˝ K`pF q Ñ G ˝ QA a
natural transformation. For any X‚ P K`pAq, let

X‚ K`pIqpY ‚q

K`pIqpR‚q

f

K`pIqpsq

be a coroof, obtained by using lemma 6.1.6, which represents the isomorphism βpX‚q in D`pAq, where
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Y ‚ P K`pR‚q such that QSRpY
‚q “ pΦ ˝QAqpX‚q. We have the following commutative diagram

pQB ˝K`pF qpX‚qq pQB ˝K`pF ˝ IqqpR‚q pQB ˝K`pF ˝ IqqpY ‚q

pG ˝QAqpX‚q pG ˝QA ˝K`pIqqpR‚q pG ˝QA ˝K`pIqqpY ‚q

pQB˝K
`
pF qqpfq

εGpX
‚
q εGpQB˝K

`
pIqqpR‚q

pQB˝K
`
pF˝Iqqpsq

εGpK
`
pIqpY ‚qq

pG˝QAqpfq

pG˝QA˝K
`
pIqqpsq

By lemma 6.1.12, pQB ˝K`pF ˝ Iqqpsq is an isomorphism and pG˝QA ˝K`pIqqpsq is an isomorphism, because
s is a quasi-isomorphism, QA turns it into isomorphism, and any functor preserves isomorphisms. Therefore
these two morphisms have inverses in D`pBq and we obtain the following commutative diagram

pQB ˝K`pF qqpX‚q pG ˝QAqpX‚q

pRF ˝QAqpX‚q pG ˝QA ˝K`pIqqpY ‚q

εGpX
‚
q

εF pX
‚
q GpβpX‚qq

εGpK
`
pIqpY ‚qq

(6.8)

Note, that here pRF ˝QAqpX‚q “ pQB ˝K`pF ˝ IqqpY ‚q, so that the diagram makes sense. Now βpX‚q is an
isomorphism in D`pAq, so we can define η : RF Ñ G to be

ηpQApX
‚qq “ GpβpX‚qq´1 ˝ εGpK

`pIqpY ‚qq.

η a natural transformation: Let φ : X‚1 Ñ X‚2 be a morphism in K`pAq. To show that η is a natural transfor-
mation, we have to show that the following diagram is commutative

pRF ˝QAqpX‚1 q pG ˝QAqpK`pIqpY ‚1 qq pG ˝QAqpX‚1 q

pRF ˝QAqpX‚2 q pG ˝QAqpK`pIqpY ‚2 qq pG ˝QAqpX‚2 q

pRF˝QAqpφq

εGpK
`
pIqpY ‚1 qq pGpβpX‚1 qqq

´1

pG˝QAqpK
`
pIqpψqq pG˝QAqpφq

εGpK
`
pIqpY ‚2 qq pGpβpX‚2 qqq

´1

where pRF ˝ QAqpX‚1 q “ pQB ˝ K`pF qqpK`pIqpY ‚1 qq, pRF ˝ QAqpX‚2 q “ pQB ˝ K`pF qqpK`pIqpY ‚2 qq, and
pRF ˝ QAqpφq “ pQB ˝K`pF qqpK`pIqpψqq. The left square of this diagram is commutative because εG is a
natural transformation. Since β is a natural transformation, the following diagram

pG ˝QAqpX‚1 q pG ˝QAqpK`pIqpY ‚1 qq

pG ˝QAqpX‚2 q pG ˝QAqpK`pIqpY ‚2 qq

GpβpX‚1 qq

pG˝QAqpφq pG˝QAqpK
`
pIqpψqq

GpβpX‚2 qq

is commutative. Hence

pG ˝QAqpK
`pIqpY ‚1 qq Ñ pG ˝QAqpX

‚
1 q Ñ pG ˝QAqpX

‚
2 q

“ pG ˝QAqpK
`pIqpY ‚1 qq Ñ pG ˝QAqpX

‚
1 q Ñ pG ˝QAqpX

‚
2 q Ñ

pG ˝QAqpK
`pIqpY ‚2 qq Ñ pG ˝QAqpX

‚
2 q

“ pG ˝QAqpK
`pIqpY ‚1 qq Ñ pG ˝QAqpX

‚
1 q Ñ pG ˝QAqpK

`pIqpY ‚1 qq Ñ

pG ˝QAqpK
`pIqpY ‚2 qq Ñ pG ˝QAqpX

‚
2 q

“ pG ˝QAqpK
`pIqpY ‚1 qq Ñ pG ˝QAqpK

`pIqpY ‚2 qq Ñ pG ˝QAqpX
‚
2 q

This shows that the right square of 6.1 is commutative. Therefore η is a natural transformation.
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Uniqueness of η: To show that η is unique, let X‚ P K`pAq and let Y ‚ P K`pRq such that pQAqpX‚q –
pD`pISRq ˝QRqpY ‚q. Then by definition of η, (6.8), we have the following commutative diagram

pQB ˝K`pF qqpX‚q pG ˝QAqpX‚q

pRF ˝QAqpX‚q pG ˝QAqpY ‚q

pRF ˝QAqpK`pIqpY ‚qq

εGpX
‚
q

εF pX
‚
q GpβpX‚qq

εF pK
`
pIqpY ‚qq

ηpQAqpX
‚
q

εGpK
`
pIqpY ‚qq

ηpQAqpY
‚
q

where εF pK
`pIqpY ‚qq is the identity morphism by the definition of εF . Hence we obtain that

ηpQAqpY
‚q “ εGpK

`pIqpY ‚qq,

so the morphism ηpQAqpY ‚q is uniquely determined, and by the fact that η is a natural transformation, we
get

GpβpX‚qq ˝ ηpQAqpX
‚q “ ηpQAqpY

‚q.

Since GpβpX‚qq is an isomorphism, the morphism ηpQAqpX‚q is uniquely determined. This shows that η is
unique.

The following theorem shows that taking the derived functor behaves well under composition of functors.

Theorem 6.1.15. Let A1, A2, and A3 be abelian categories, F1 : A1 Ñ A2 and F2 : A2 Ñ A3 left exact functors,
and R1 and R2 classes of objects adapted to the functors F1 and F2, respectively, such that F1pR1q Ă R2. Then
we have an isomorphism of functors

RpG ˝ F q – RG ˝RF. (6.9)

Proof. The composite

pQA3
˝K`pGqq ˝K`pF q

εF2
Ñ RG ˝ pQA2

˝K`pF qq
εF1
Ñ RG ˝RF ˝QA1

is a natural transformation. Denote this by E. By the universal property of right derived functor there exists a
natural transformation δ : RpG ˝ F q Ñ RG ˝ RF such that for any object X‚ P K`pA1q the following diagram is
commutative

pQB ˝K`pG ˝ F qqpX‚q pRG ˝RF ˝QA1
qpX‚q

pRpG ˝ F q ˝QA1
qpX‚q

E

εG˝F pX
‚
q

pδ˝QA1
qpX‚q

By definition of εF , εG, and εG˝F , and by assumption, for any object K`pIqpY ‚q P ObK`pA1q, with Y ‚ P
ObK`pR1q, the morphisms εF pK

`pIqpY ‚qq, εGpK
`pF1 ˝ IqpY

‚qq, and εG˝F pK
`pIqpY ‚qq are identity morhisms.
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This means that EpQA∞ ˝K
`pIqqpY ‚q is an isomorphism, and because all the objects of D`pA∞q are isomorphic

to an object of K`pR1q, given by β, we find that E is an isomorphism for all objects. By commutativity δ is an
isomorphism. This proves the isomorphism (6.9).

The following is a version of the above for left derived functors

Theorem 6.1.16. Let A1, A2, and A3 be abelian categories, F1 : A1 Ñ A2 and F2 : A2 Ñ A3 right exact functors,
and R1 and R2 adapted classes of object to the functors F1 and F2, respectively, such that F1pR1q Ă R2. Then we
have an isomorphism of functors

LpG ˝ F q – LG ˝ LF. (6.10)

6.2 Examples

In this section we show that injective objects form an adapted class for a left exact functor F : A Ñ B of abelian
categories, with A having enough injective objects, and give an example of one such functor. Also, we show that the
functor ExtipY q :“ MorD`pAqpX,Y risq coincides with the functor Ri MorApX,´q :“ HipRMorApX,´qq. We use
this characterization to show that the derived category of Z-modules is not an abelian category. For more derived
functors and further references, see the notes.

Definition 6.2.1 (Injective and projective objects). Let A be an abelian category. An object I P ObA is an injective
object, if MorAp´, Iq is an exact functor. We say A has enough injective objects if for any object X P ObA there
exists a monomorphism X Ñ I for some injective object I of A.

Similarly, an object P of A is called projective if the functor MorApP,´q is exact. The category A is said to
have enough projective objects, if for any object X P ObA there exists an epimorphism P Ñ X for some projective
object P of A.

To show that injective objects form an adapted class, we need the following lemma. Note that this lemma has
a dual version for projective objects. We do not prove, or even state this, but the reader can try to state and prove
it on his own.

Lemma 6.2.2. Let A be an abelian category, I‚ P C`pAq a complex of injective objects of A, X‚ P C`pAq, and
f : X‚ Ñ I‚ a morphism of complexes. Then f is homotopic to the zero morphism.

Proof. It is clear that we can assume the morphism f and the complexes X‚ and I‚ to be of the form as in the
following diagram

. . . 0 C0 C1 . . .

. . . 0 I0 I1 . . .

f0 f1

Let χi “ 0 for i ď 0. For i “ 1, χ1 is given by definition of the injective object I0 for the following diagram

0 C0 C1

I0

d0X‚

f0

χ1
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By induction, suppose we have constructed the morphism χn such that fn´1 “ χndn´1
X‚ . We have

pfn ´ dn´1
I‚ χnqdn´1

X‚ “ dn´1
I‚ fn´1 ´ dn´1

I‚ χndn´1
X‚

“ dn´1
I‚ pfn´1 ´ χndn´1

X‚ q “ 0.

By the cokernel property of dn´1
X‚ there exists a unique morphism ψ : coker dn´1

X‚ Ñ In such that ψφ2 “ fn´dn´1
I‚ χn,

where φ2 is the epimorphism in the following epimorphism monomorphism factorization of dnX‚

coker dn´1
X‚

Xn Xn`1

β

dnX‚

φ2

Then we have the following diagram

0 coker dnX‚ Xn`1

In

β

ψ
χn`1

where the first row is exact. Thus there exists a morphism χn`1 : Xn`1 Ñ In such that the diagram is commutative.
We have

fn “ fn ´ dn´1
I‚ χn ` dn´1

I‚ χn

“ ψφ2 ` d
n´1
I‚ χn

“ χn`1dnX‚ ` d
n´1
I‚ χn.

This shows that fn is homotopic to the zero morphism.

We need the following lemma to show that the biproduct of injective objects is injective.

Lemma 6.2.3. Let A be an abelian category and let

0 M1 M2 M3 0
f1 f2

0 N1 N2 N3 0
g1 g2

be two short exact sequences in A. Then the induced sequence

0 M1 ‘N1 M2 ‘N2 M3 ‘N3 0
i1f1p1`i2g1p2 i1f2p1`i2g2p2

is exact.

Proof. By proposition 2.2.14 (ii) and (iii), it suffices show that i1f2p1 ` i2g2p2 is an epimorphism and that
kerpi1f2p1 ` i2g2p2q “ i1f1p1 ` i2g1p2. Recall that the biproduct of two objects is both the product and the
coproduct of the objects by proposition 2.1.3.

To prove that i1f2p1 ` i2g2p2 is an epimorphism, let h : M3 ‘N3 Ñ K be any morphism such that hpi1f2p1 `

i2g2p2q “ 0. Now

hpi1f2p1 ` i2g2p2qi1 “ hi1f2 “ 0
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and

hpi1f2p1 ` i2g2p2qi2 “ hi2g2 “ 0.

Since f2 and g2 are epimorphisms, hi1 “ hi2 “ 0. By the uniqueness property of biproduct, we must have h “ 0.
This shows that i1f2p1 ` i2g2p2 is an epimorphism.

To prove that kerpi1f2p1 ` i2g2p2q “ i1f1p1 ` i2g1p2, consider the following commutative diagram

M1 ‘N1

kerpi1f2p1 ` i2g2p2q

M2 M2 ‘N2 N2

M3 M3 ‘N3 N3

f1p1 g1p2

ki1f2p1`i2g2p2

i1

f2 i1f2p1`i2g2p2

i2

g2

i1

i2

By the fact that f1 and g1 are kernels of f2 and g2, respectively, and by commutativity, we have pi1f2p1 `

i2g2p2qpi1f1p1 ` i2g1p2q “ 0. Thus we obtain a unique morphism φ : M1 ‘ N1 Ñ kerpi1f2p1 ` i2g2p2q such
that

ki1f2p1`i2g2p2φ “ i1f1p1 ` i2g1p2.

Again, by the fact that f1 and g1 are kernels of f2 and g2, respectively, and by commutativity, we have p1pi1f2p1`

i2g2p2qki1f2p1`i2g2p2 “ 0 “ p2pi1f2p1 ` i2g2p2qki1f2p1`i2g2p2 . Therefore we get a unique morphism ψ : kerpi1f2i2 `
i2g2p2q ÑM1 ‘N1 such that

p1ki1f2p1`i2g2p2 “ f1p1ψ and p2ki1f2p1`i2g2p2 “ g1p2ψ.

From these equations for ψ and φ we get pi1p1`i2p2qki1f2p1`i2g2p2 “ i1f1p1ψ`i2g1p2ψ “ ki1f2p1`i2g2p2φψ. Since
pi1p1`i2p2q is the identity morphism and ki1f2p1`i2g2p2 is a monomorphism, we deduce that Idkerpi1f2i2`i2g2p2q “ φψ.

To show that ψφ “ IdM1‘N1
, consider the following equations

f1p1 “ p1ki1f2p1`i2g2p2φ “ f1p1ψφ and g1p2 “ p2ki2f2p1`i2g2p2φ “ g1p2ψφ.

By the universal property of M1 ‘N1 as a product, we get ψφ “ IdM1‘N1 . This completes the proof.

The following example shows that injective objects form an adapted class. We also give examples of left and
right exact functors.

Example 6.2.4. Let A be an abelian category with enough injective objects. Let F : AÑ B be a left exact functor
and C`pF q : C`pAq Ñ C`pBq the induced left exact functor. To see that the class I of all injective objects of A
form an adapted class, let I1 and I2 be two injective objects. By definition of biproduct we have

MorApY, I1 ‘ I2q – MorApY, I1q ‘MorApY, I2q,

where Y is an arbitrary object of A. Thus, by lemma 6.2.3, the biproduct of two injective objects is an injective
object, and so condition AC1 holds. The condition AC2 holds because A has enough injectives. It remains to verify
AC3, that is to show that for any injective exact complex I‚ of K`pIq the complex KpF q`pI‚q is exact. To show

129



this it suffices to show that IdI‚ is homotopic to the zero morphism. But by 6.2.2 IdI‚ is homotopic to 0 morphism.
Thus KpF q`pI‚q is an exact complex. This shows that the class of injective objects is adapted to F .

Similarly one can show that if an abelian category A has enough projective objects, then the class of projective
objects is adapted to any right exact functor F : AÑ B.

Now, for any R-module M , the functor MorRModpM,´q : RMod Ñ Ab is a left exact functor. It is well
known that the category RMod has enough injectives, see for example [Lan02, p.784 Theorem 4.1]. Thus by
theorem 6.1.14 there exists a derived functor RMorRModpM,´q : D`pRModq Ñ D`pAbq.

To give an example of a left derived functor, let M be an R-module. By [Sch, p.65 Example 4.3.6.(i)], RMod
has enough projective objects. The functor ´ bM : RMod Ñ RMod is right exact, so by theorem 6.1.14 there
exists a left derived functor ´bLM :“ Lp´ bMq : D´pRModq Ñ D´pRModq.

We will need the following two lemmas in an example about Ext.

Lemma 6.2.5. Let A be an abelian category with enough injectives, X‚ P ObK`pAq and s : I‚ Ñ X‚ a quasi-
isomorphism from a complex consisting of injective objects. Then there exists a quasi-isomorphism t : X‚ Ñ I‚

such that t ˝ s is homotopic to IdI‚ .

Proof. Complete s to the following distinguished triangle

I‚ X‚ Cpsq I‚r1ss i2 p1

Now Cpsq is exact, and by the proof of lemma 6.2.2 we have the homotopy χi : Ii`1 ‘ Xi Ñ Ii such that
p1 “ χi`1diCpsq ` di´1

I‚ χ
i. We show that χii2s

i „ IdI‚ . By abuse of notation, we use notation i1 and p1 for the

inclusion I‚ Ñ Cpsqr´1s and projection Cpsqr´1s Ñ I‚, respectively. We have

IdI‚ “ p1i1

“ pχidiCpsqr´1s ` d
i´1
I‚ χ

i´1qi1

“ pχipi1d
i
I‚p1 ` i2s

ip1 ´ i2d
i
X‚p2q ` d

i´2
I‚ χ

i´1qi1

“ pχii1qd
i
I‚ ` χ

ii2s
i ` di´2

I‚ pχ
i´1i1q

This shows that we can choose t :“ χii2s
i.

Lemma 6.2.6. Let A be an abelian category with enough injective objects and I‚ P K`pAq an object consisting of
injective objects. Then the localization functor QA induces a bijection

MorK`pAqpX
‚, I‚q Ñ MorD`pAqpX

‚, I‚q.

Proof. To show that the map is surjective, let

X‚ I‚

Z‚

f

s

be a coroof which represents some morphism from X‚ to I‚ in D`pAq. By lemma 6.2.5 there exists a quasi-
isomorphism t : Z‚ Ñ I‚ such that t ˝ s “ IdI‚ . The following coroof thus represents the same morphism as the
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one above
X‚ I‚

I‚

tf

IdI‚

It is clear that this coroof corresponds the following roof

X‚

X‚ I‚
IdX‚

tf

This morphism is the image of tf . Hence the map is surjective.
To show that the map is injective, we recall from proposition 3.2.10 that the functor is additive, and hence the

map is an abelian group homomorphism. Thus is suffices to show that if the following roof

X‚

X‚ I‚
IdX‚

φ

represents the zero morphism from X‚ to I‚ in D`pAq, then φ “ 0. But this follows directly from lemma 6.2.2.

The following example is taken from [GM03, p.194 14].

Example 6.2.7 (Ext functor). Let A be an abelian category with enough injective objects. In this example we
study the right derived functor of the left exact functor MorApX,´q.

For any object X P A let us denote by Xris the complex where the ith object is X and others are zero. For any
object Y P A fix an injective resolution with a quasi-isomorphism r : Y Ñ I‚Y , by lemma 6.1.6. Then we define the
functor ExtiApX,´q : AÑ Ab, i ě 0, by

ExtiApX,Y q “ MorD`pAqpXr0s, Y risq.

Note that since rris : Y ris Ñ I‚Y ris is a quasi-isomorphism, we have

MorD`pAqpXr0s, Y risq – MorD`pAqpXr0s, I
‚
Y risq.

Since I‚Y is a complex consisting of injective complexes, by lemma 6.2.6, we have the following isomorphism

MorD`pAqpXr0s, I
‚
Y risq – MorK`pAqpXr0s, I

‚
Y risq.

Construction of right derived functor implies that

Ri MorApX,Y q “ HipRMorApX,´qpY qq

“ HippD`pMorApX,´qq ˝ IqpI
‚
Y qq

“ HipMorK`pAqpXr0s, I
‚
Y qq.

Since the only homotopy between objects of Xr0s and I‚Y is the zero homotopy, we have

HipMorK`pAqpXr0s, I
‚
Y qq “ HipMorC`pAqpXr0s, I

‚
Y qq.
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Thus it remains to show that we have the following isomorphism

HipMorC`pAqpXr0s, I
‚
Y qq – MorK`pAqpXr0s, I

‚
Y risq.

To construct this isomorphism between these objects in the category Ab, we define a structure of complexes on
the set of morphisms in C`pAq. These are also called ”inner Mor” in C`pAq. Let A‚, B‚ P ObC`pAq,

MornC`pAqpA
‚, B‚q “

ź

iPZ
MorApA

i, Bi`nq

and
diMorpA‚,B‚qpfq “ diB‚f

i ´ p´1qnf i`1diA‚

for f P MorpA‚, B‚q. It is easy to check that this defines a structure of a complex on MorC`pAqpA
‚, B‚q. Hence we

get the following isomorphism

HipMorC`pAqpA
‚, B‚qq – MorK`pAqpA

‚, B‚r1sq.

This shows that

HipMorC`pAqpXr0s, I
‚
Y qq – MorK0pAqpXr0s, I

‚
Y risq.

It is left to reader to check that the isomorphism induces a natural transformation which is an isomorphism.

The following example is taken from [Ber11, 2.2(a)]

Example 6.2.8 (D`pZ´modq is not abelian). We show this by assuming that D`pZ´modq is abelian and then
we derive a contradiction. Consider the morphism f : Z{2r0s Ñ Z{2r1s which corresponds the nonzero morphism
of Ext1pZ{2,Z{2q “ MorD`pZ´modqpZ{2r0s,Z{2r1sq, given by the short exact sequence

0 Z{2 Z{4 Z{2 01ÞÑ2 1 ÞÑ1,2ÞÑ0
(6.11)

This correspondence between morphisms in Ext1pZ{2,Z{2q and short exact sequences of the form (6.11) is given
as an exercise at [Lan02, p.831 Ex.27].

Let g : M‚ Ñ Z{2r0s be the kernel of f . Now we have the following short exact sequence for any i P Z

0 MorD`pZ´modqpZr0s,M‚risq MorD`pZ´modqpZr0s, pZ{2qrisq MorD`pZ´modqpZr0s, pZ{2qri` 1sq
g˚ f˚

(6.12)

The category Z ´mod has enough injective objects so for any complex N‚ P D`pZ ´modq, by lemma 6.2.6, we
have

MorD`pZ´modqpZr0s, N‚q – MorD`pZ´modqpZr0s, I‚N‚q – MorK`pZ´modqpZr0s, I‚N‚q.

We have the following isomorphisms

MorK`pZ´modqpZr0s, I‚N‚risq – HipI‚N‚q – HipN‚q. (6.13)

Indeed, the second isomorphism follows from the fact that I‚N‚ is quasi-isomorphic to N‚ and the first isomorphism
follows from the following.
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Let φ‚, pφ‚q1 : Zr0s Ñ I‚N‚ris be morphisms of chain complexes as in the following diagram

. . . 0 Z 0 . . .

. . . Ii´1 Ii Ii`1 . . .

φ0,pφ1q0

d´1 d0

Suppose that these morphisms are homotopic, that is φ ´ φ1 “ d´1χ0, for some morphism χ0. By application of
the cohomology functor we get the following diagram

. . . 0 H0pZr0sq – Z 0 . . .

. . . Hi´1pI‚N‚q HipI‚N‚q Hi`1pI‚N‚q . . .

H0
pφ‚q,H0

ppφ1q‚q

0 0

The morphisms H0pφ‚q and H0ppφ1q‚q are equal by commutativity and the equation φ ´ φ1 “ d´1χ0. Since
MorZ´modpZ, HipI‚N‚qq – HipI‚N‚q we have shown that the map MorK`pZ´modqpZr0s, I‚N‚risq Ñ HipI‚N‚q is injective.

To show that the map is surjective, pick any element of HipI‚N‚q and let ψ : ZÑ HipI‚N‚q to be the corresponding
morphism of Z-modules. By picking any element of Ii which is mapped to ψp1q by the cohomology functor, we get
the corresponding morphism φ : Zr0s Ñ I‚N‚ . It is clear that the morphism φ is mapped to ψ by the cohomology
functor. Therefore the map MorK`pZ´modqpZr0s, I‚N‚risq Ñ HipI‚N‚q is also surjective, and hence an isomorphism.

Using the isomorphisms (6.13) to the exact sequence (6.12), we get the following exact sequence for any i P Z

0 HipM‚q HipZ{2r0sq HipZ{2r1sqHipgq Hipfq

The map Hipfq : HipZ{2r0sq Ñ HipZ{2r1sq is the zero morphism for all i. Thus the morphisms Hipgq : HipM‚q Ñ

HipZ{2r0sq are isomorphisms for all i, so g is an isomorphism in D`pZ´modq. By lemma 2.2.6 and corollary 2.2.11
this means that f is the zero morphism. This contradicts the assumption on f . Therefore we have obtained a proof
of the fact that the category D`pZ´modq is not an abelian category.

6.3 Notes

For the following derived functors Tori, bL, Rf˚, Rf! on sheaves of abelian groups on topological spaces, see
[GM03].

In the formalism of `-adic sheaves one has the following six derived functors pRf˚, Lf˚, f!, f
!, bL, RHomLq.

These are sometimes called Grothendieck’s six functors. See [Fu11] for more information about these functors.
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Chapter 7

T-structures

In this chapter we introduce t-structures on triangulated categories, following [HTT08, Chapter 8, Section 1] and
[GM03, Chapter 3, IV.4]. T-structures allow one to do cohomology on triangulated categories, see theorem 7.3.4.

7.1 T-structures

In this section we define t-structures for triangulated categories. We say that a subcategory B of a category C is
strictly full if it is full, and for C P Ob C, C – B, for some B P ObB, implies C P ObB.

Definition 7.1.1 (T-structure). Let D be a triangulated category. A t-structure on D is a pair pDď0,Dě0q where
both Dď0 and Dě0 are strictly full subcategories of D satisfying the following conditions

T1 We have ObDď0 Ă ObDď1 and ObDě1 Ă ObDě0.

T2 MorDpX,Y q “ 0 for any X P ObDď0 and Y P ObDě1.

T3 For any X P ObD there exists a distinguished triangle

A X B Ar1s

with A P ObDď0, B P ObDě1.

Here we use the notation Dďn (resp. Děn) for Dď0r´ns (resp. Dě0r´ns) for any n P Z. Let iďn : Dďn Ñ D
and iěm`1 : Děm`1 Ñ D denote the inclusion functors for any n,m P Z.

Here we prove a useful lemma which generalizes T1.

Lemma 7.1.2. Let D be a triangulated category and pDď0,Dě0q a t-structure on D. Then for any m ď n we have

ObDďm Ă ObDďn and ObDěn Ă ObDěm.

Proof. Proof by induction on n´m. The case n´m “ 0 is clear. Note that

ObDďm “ ObDď0r´ms Ă ObDď1r´ms “ ObDďm`1
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and

ObDěn “ ObDě1r´n` 1s Ă ObDě0r´n` 1s “ ObDďn´1

by T1. Thus the result follows by induction hypothesis.

The following lemma generalizes T2.

Lemma 7.1.3. Let D be a triangulated category and pDď0,Dě0q a t-structure on D. Then for any m ă n,
X P ObDďm and Y P ObDěn we have MorDpX,Y q “ 0.

Proof. By induction on n´m. The case n´m “ 1 follows from the fact that MorDpXrms, Y rmsq “ 0 by T2 and
that translation is an automorphism. In general, we have X P ObDďm Ă ObDďm`1, by lemma 7.1.2, so the result
follows from induction hypothesis.

We will need the following lemma to construct unique isomorphisms between distinguished triangles of the form
T3.

Lemma 7.1.4. Consider the following diagram in D

X1 Y1 Z1 X1r1s

X2 Y2 Z2 X2r1s

u1 v1

g

w1

u2 v2 w2

where both rows are distinguished triangles. If v2gu1 “ 0, then the diagram can be completed to a morphisms of
triangles. Moreover, if MorDpX1, Z2r´1sq “ 0, then the morphism of triangles is unique.

Proof. By proposition 4.1.5 we have the following exact sequence

MorDpX1, Z2r´1sq MorDpX1, X2q MorDpX1, Y2q MorDpX1, Z2q
´w2r´1s˚ u2˚ v2˚

From exactness it follows that there exists a morphism f : X1 Ñ X2 such that u2f “ gu1 and that this morphism
is unique up to the image of MorDpX1, Z2r´1sq. Hence, by TR5, there we obtain a morphism of triangles.

Suppose MorDpX1, Z2r´1sq “ 0. Then the morphism f : X1 Ñ X2 is unique by above. To see that the morphism
Z1 Ñ Z2, in the morphism of distinguished triangles, is unique, consider the exact sequence

MorDpX1r1s, Z2q MorDpZ1, Z2q MorDpY1, Z2q
w1
˚ v1

˚

Now MorDpX1r1s, Z2q – MorDpX1, Z2r´1sq “ 0, because translation is an additive automorphism, and by exactness
there exists a unique morphism h : Z1 Ñ Z2 such that hv1 “ v2g. This shows uniqueness of the morphism of
triangles.

7.2 Abstract truncations

In this section we introduce abstract truncation functors for a t-structure. These will be needed in proving that the
core of a t-structure is an abelian category. In this section D denotes a triangulated category and t “ pDď0,Dě0q

a fixed t-structure on D.
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Let us construct the abstract truncation functors. For any X P ObD fix a distinguished triangle

A X B Ar1s

where A P Dď0 and B P Dě1, given by T3, and let τď0X “ A and τě1X “ B. For any integer n P Z, we define

τďnX “ pτď0pXrnsqqr´ns P Dďn and τěn`1 “ pτě1pXrnsqqr´ns P Děn`1.

Using these definitions, and by application of rotation TR3, one obtains that for any n P Z the following is a
distinguished triangle

τďnX X τěn`1X pτďnXqr1s (7.1)

Indeed, by definition of τď0 and τě1 the following is a distinguished triangle

τď0pXrnsq Xrns τě1pXrnsq pτď0pXrnsqqr1s

By rotation, TR3, we get that

τď0pXrnsqr´ns Xrnsr´ns τě1pXrnsqr´ns pτď0pXrnsqqr´n` 1s

is a distinguished triangle. Since translation is an additive automorphism, Xrnsr´ns “ X, and we have obtained
that (7.1) is a distinguished triangle.

Let f : X Ñ Y be any morphism in D. Then by lemma 7.1.3 and lemma 7.1.4, the following diagram is a unique
morphism of distinguished triangles

τďnX X τěn`1X pτďnXqr1s

τďnY Y τěn`1Y pτďnXqr1s

τďnf f τěn`1f fr1s

for any n P Z. We define the morphism τďnf and τěn`1f as in the diagram. By using uniqueness, one easily verifies
that τďn : D Ñ Dďn and τěn`1 : D Ñ Děn`1 are functors.

The following proposition shows that the distinguished triangles, given by T3, are isomorphic up to unique
isomorphism. In particular, the functors τďn and τěn`1 are unique up to unique isomorphism.

Proposition 7.2.1. Suppose

A X B Ar1s (7.2)

is a distinguished triangle, with A P ObDďn and B P ObDěn`1, then it is uniquely isomorphic to the distinguished
triangle (7.1).

Proof. Since MorDpτďnX,Bq “ 0 and MorDpA, τěn`1Xq “ 0 by lemma 7.1.3, lemma 7.1.4 implies that there exists a
unique morphisms φ and ψ between (7.1) and (7.2), because MorDpτďnX,Br´1sq “ 0 and MorDpA, pτěn`1Xqr´1sq
“ 0 by lemma 7.1.3. By lemma 7.1.4 and lemma 7.1.3 the only automorphisms of distinguished triangles (7.1) and
(7.2) are the identity morphisms. This shows that ψφ and φψ are identity morphisms, hence ψ “ φ´1, and the
distinguished triangles are canonically isomorphic.
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Lemma 7.1.4 and lemma 7.1.3 imply that for any m ď n there are unique morphisms τďmX Ñ τďnX and
τěmX Ñ τěnX, because of the following unique morphism of distinguished triangles

τďmX X τěm`1X pτďmXqr1s

τďnX X τěn`1X pτďnXqr1s

(7.3)

Lemma 7.2.2. The following conditions are equivalent for any object X of D and for any integer n P Z.

(i) X P Dďn.

(ii) The morphism τďnX Ñ X is an isomorphism.

(iii) τěn`1X “ 0.

Proof. piq ñ piiq : By lemma 7.1.3, the morphism X Ñ τěn`1X is the zero morphism. Thus by TR3 and TR5 we
have the following unique, by lemma 7.1.4, morphism of distinguished triangles

X X 0 Xr1s

τďnX X τěn`1X pτďn´1Xqr1s

ψ ψr1s

Also, we have the following unique, by lemma 7.1.4, morphism of distinguished triangles

τďnX X τěn`1X pτďn´1Xqr1s

X X 0 Xr1s

ψ1 φr1s

where ψ1 is the morphism τďnX Ñ X by commutativity. Composite of these morphisms, in both order, is a unique
morphism of distinguished triangles, by lemma 7.1.4, so we have ψ1ψ “ IdX and ψψ1 “ IdτďnX . Hence X – τďnX.
piiq ñ piiiq : This follows from 4.1.6 applied to the following morphism of distinguished triangles obtained by

TR5
τďnX τďnX 0 pτďnXqr1s

τďnX X τěn`1X pτďnXqr1s

piiiq ñ piq : Apply 4.1.6 to the following morphism of distinguished triangles obtained by TR3 and TR5

X X 0 pτď0Xqr1s

τďnX X 0 pτďnXqr1s
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We have also the dual version of the previous lemma.

Proposition 7.2.3. For any object X P D and n P Z the following conditions are equivalent.

(i) X P Děn`1.

(ii) The morphism X Ñ τěn`1X is an isomorphism.

(iii) τďnX “ 0.

Proof. piq ñ piiq: The morphism τďnX Ñ X is 0 by lemma 7.1.3. Hence by TR5 we have the following morphisms
of distinguished triangles

τďnX X τěn`1X pτďnXqr1s

0 X X 0

ψ

0 X X 0

τďnX X τěn`1X pτďnXqr1s

ψ1

where ψ1 is the morphism X Ñ τěn`1X by commutativity. The composites, in both order, of the two morphisms
are unique by lemma 7.1.4, so IdX “ ψψ1 and Idτěn`1X “ ψ1ψ. This shows that X – τěn`1X.
piiq ñ piiiq: This follows from corollary 4.1.6 applied to the following morphism of distinguished triangles

obtained by TR3 and TR5

0 X X 0

τďnX X τěn`1X pτďnXqr1s

piiiq ñ piq: Apply 4.1.6 to the following morphism of distinguished triangles obtained by TR5

0 X X pτď0Xqr1s

0 X τěn`1X 0

We are ready to prove that τďn and τěn`1 are adjoints to the corresponding inclusion functors iďn and iěn`1,
respectively.

Proposition 7.2.4 (Adjoints). The functors τďn and τěn`1 are the right and left adjoints to the inclusion functors
iďn : Dďn Ñ D and iěn`1 : Děn`1 Ñ D for all n P Z.

Proof. To prove the theorem, we will need the following isomorphisms

ΦnX,Y : MorDpX,Y q
–
Ñ MorDďnpX, τďnY q Ψn`1

Z,W : MorDěn`1pτěn`1Z,W q
–
Ñ MorDpZ,W q

for any X P ObDďn, W P ObDěn`1, and Y,Z P ObD. To construct these maps, let h : X Ñ Y be a morphism
in D and let k1 : τěn`1Z Ñ W be a morphism in Děn`1. By TR1 to TR3 and TR5 and lemma 7.1.4 we have the
following unique morphisms of distinguished triangles in D

X X 0 Xr1s

τďnY Y τěn`1Y pτďnY qr1s

h1 h hr1s

φY

τďnZ Z τěn`1Z pτďnZqr1s

0 W W 0

ψZ

k k1
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We define ΦnX,Y phq “ h1 and Ψn`1
Z,W pk

1q “ k. By proposition 4.1.5, applied to the distinguished triangle (7.1) for Y
and Z, we have the following exact sequences

MorDpX, pτěn`1Y qr´1sq MorDpX, τďnY q MorDpX,Y q MorDpX, τěn`1Y q
pφY q˚

and

MorDppτďnZqr1s,W q MorDpτěn`1Z,W q MorDpZ,W q MorDpτďnZ,W q
pψZq

˚

where MorDpX, pτěn`1Y qr´1sq “ MorDpX, τěn`1Y q “ 0 and MorDpτďnZ,W q “ MorDppτďnZqr1s,W q “ 0, by
lemma 7.1.3. Hence from exactness it follows that ΦnX,Y and Ψn`1

Z,W are isomorphisms.

τďn right adjoint to iďn: To show that τďn is right adjoint to iďn, by theorem 1.3.4, it suffices to show that for
any morphisms f : X 1 Ñ X of Dďn and g : Y Ñ Y 1 of D the following diagram is commutative

MorDpX,Y q MorDďnpX, τďnY q

MorDpX 1, Y 1q MorDďnpX 1, τďnY 1q

ΦnX,Y

MorDpf,gq MorDpf,τďngq

Φn
X1,Y 1

(7.4)

Let h P MorDpX,Y q. Then MorDpf, gqphq “ ghf . Now ΦnX1,Y 1pghfq is the unique morphism k : X 1 Ñ τďnY
1

such that φ1k “ ghf , by lemma 7.1.4. This means that we have the following unique morphism of distinguished
triangles

X 1 X 1 0 X 1r1s

τďnY
1 Y 1 τěn`1Y

1 pτěn`1Y
1qr1s

k ghf

φ1

The map ΦX,Y sends h to the unique morphism l : X Ñ τďnY such that φl “ h. Now MorDpf, τďngqplq is
the composite pτďngqlf . Hence we have the following unique morphism of distinguished triangles

X 1 X 1 0 X 1r1s

X X 0 Xr1s

τďnY Y τěn`1Y pτěn`1Y qr1s

τďnY
1 Y 1 τěn`1Y

1 pτěn`1Y
1qr1s

f f

l h

φ

τďng g pτďngqr1s

φ1

By lemma 7.1.4, the morphism of distinguished triangles pX 1, X 1, 0q Ñ pτďnY
1, Y 1, τěn`1Y

1q, is unique. There-
fore k “ τď0pgqlf . This shows that the diagram (7.4) is commutative.
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τěn`1 is left adjoint to iěn`1: By theorem 1.3.4 we have to show that for all morphisms f : X Ñ X 1 of Děn`1

and g : Y 1 Ñ Y of D, the following diagram is commutative.

MorDěn`1pτěn`1pY q, Xq MorDpY,Xq

MorDěn`1pτěn`1pY
1q, X 1q MorDpY 1, X 1q

ΨY,X

Morpτěn`1pgq,fq Morpg,fq

ΨY 1,X1

(7.5)

Let h P MorDěn`1pτěn`1pY q, Xq. Then ΨY 1,X1pfhτěn`1pgqq is the unique morphism k : Y 1 Ñ X 1 such that
the following diagram is a unique morphism of distinguished triangles

τďnpY
1q Y 1 τěn`1pY

1q pτďnpY
1qqr1s

0 X 1 X 1 0

k fhτěn`1pgq

The morphism ΨY,Xphq is the unique morphism l : Y Ñ X such that the following is a morphism of distin-
guished triangles

τďnY Y τěn`1Y pτďn`1Y qr1s

0 X X 0

l h

Now MorDpf, gqplq is the unique morphism such that the following diagram is a morphism of distinguished
triangles

τďnpY
1q Y 1 τěn`1pY

1q pτďnpY
1qq

0 X 1 X 1 0

flg fhτěn`1pgq

By uniqueness of proposition 7.2.1, k “ flg. This shows that the diagram (7.5) is commutative.

We have the following isomorphisms for abstract truncations.

Proposition 7.2.5. For any integers m ď n we have canonical isomorphisms of functors

τďmτďn – τďm – τďnτďm τěmτěn – τěn – τěnτěm.

Proof. τďmτďn – τďm: By proposition 7.2.4 and lemma 1.3.2 it suffices to show that τďmτďn is right adjoint to
the inclusion functor iďm : Dďm Ñ D. Recall from the proof of proposition 7.2.4 that we have the following
isomorphism

ΦnX,Y : MorDpX,Y q
„
Ñ MorDďnpX, τďnY q,

for any n P Z. Let Φ1X,Y “ ΦmX,τďnY ˝ ΦnX,Y . By theorem 1.3.4, it suffices to show that for all morphisms

f : X 1 Ñ X of Dďm and g : Y Ñ Y 1 of D the following diagram commutes

MorDpX,Y q MorDďmpX, τďmτďnY q

MorDpX 1, Y 1q MorDďmpX 1, τďmτďnY 1q

Φ1X,Y

MorDpf,gq MorDďmpf,τďmτďngq

Φ1
X1,Y 1
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But by the proof of proposition 7.2.4 the left and right squares of the following diagram are commutative

MorDpX,Y q MorDďnpX, τďnY q MorDďmpX, τďmτďnY q

MorDpX 1, Y 1q MorDďnpX 1, τďnY 1q MorDďmpX 1, τďmτďnY 1q

ΦnX,Y

MorDpf,gq

ΦmX,τďnY

MorDďn pf,τďngq MorDďmpf,τďmτďngq

Φn
X1,Y 1

Φm
X1,τďnY

1

Thus the diagram 7.2 is commutative.

To construct the isomorphism τďmτďnX Ñ τďmX, note that the pairs pτďmτďnX, τďmτďnX Ñ Xq and
pτďmX, τďmX Ñ Xq are universal objects from iďm to X, respectively, by the proof of theorem 1.3.4. Thus
there exists the following unique morphism of distinguished triangles

τďmτďnX τďmτďnX 0 pτďmτďnXqr1s

τďmX X τěm`1X pτďmXqr1s

where τďmτďnX Ñ τďmX is the isomorphism.

τěnτěm » τěn: The argument is similar as in the previous case. Let Ψ1X,Y “ Ψn
τěmX,Y

˝Ψm
X,Y . These functors are

defined in the proof of proposition 7.2.4. By lemma 1.3.2 we need to show that τěnτěm is the left adjoint of
iěn. By theorem 1.3.4, it suffices to show that for all morphisms f : X 1 Ñ X of D and g : Y Ñ Y 1 of Děn
the following diagram commutes

MorDěnpτěnτěmX,Y q MorDpX,Y q

MorDěnpτěnτěmX 1, Y 1q MorDpX 1, Y 1q

Ψ1X,Y

MorDěn pτěnτěmf,gq MorDpf,gq

Ψ1
X1,Y 1

(7.6)

But by the proof of proposition 7.2.4 both of the squares in the following diagram are commutative

MorDěnpτěnτěmX,Y q MorDěmpτěmX,Y q MorDpX,Y q

MorDěnpτěnτěmX 1, Y 1q MorDěmpτěmX 1, Y 1q MorDpX 1, Y 1q

ΨnτěmX,Y

MorDěn pτěnτěmf,gq

ΨmX,Y

MorDěm pτěmf,gq MorDpf,gq

Ψn
τěmX

1,Y 1 Ψm
X1,Y 1

This shows that (7.6) is commutative.

To construct the isomorphism τěnX Ñ τěnτěmX, by the proof of theorem 1.3.4 the pairs pτěnX,X Ñ

τěnX “ Ψ´1pIdτěnXqq and pτěnτěmX,X Ñ τěnτěmX “ pΦ1X,Xq
´1pIdτěnτěmXq are universal objects from

X to iěn. Hence we have the following unique morphism of distinguished triangles where τěnX Ñ τěnτěmX
is the isomorphism

τďn´1X X τěnX pτěn´1Xqr1s

0 τěnτěmX τěnτěmX 0
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τďnτďm – τďm: The morphism τďnτďmX Ñ τďmX is an isomorphism by lemma 7.2.2, because τďmX P Dďm Ă

Dďn, by lemma 7.1.2. Let f : X Ñ Y be a morphism in D. Then commutativity of the left square of the
following morphism of distinguished triangles shows that the functors are isomorphic.

τďnτďmX τďmX τěn`1τďmX pτďnτďmXqr1s

τďnτďmY τďmY τěn`1τďmY pτďnτďmY qr1s

–

τďnτďmf τďmf

–

τěmτěn – τěn: By proposition 7.2.3, the morphism τěmτěnX Ñ τěnX is an isomorphism, because τěnX P Děn Ă
Děm by lemma 7.1.2. Let f : X Ñ Y be a morphism in D. Then commutativity of the middle square of the
following diagram shows that τěmτěn » τěn.

τďm´1τěnX τěnX τěmτěnX pτďm´1τěnXqr1s

τďm´1τěnY τěnY τěmτěnY pτďm´1τěnY qr1s

–

τěnf τěmτěnf

–

Lemma 7.2.6. Let
A X B Ar1s

be a distinguished triangle with A,B P Dďn. Then X P Dďn. Similarly, if A,B P Děn`1, then X P Děn`1.

Proof. Let A,B P Dďn. By lemma 7.2.2 it suffices to show that τěn`1X “ 0. Consider the following exact sequence

MorDpB, τěn`1Xq MorDpX, τěn`1Xq MorDpA, τěn`1Xq

given by proposition 4.1.5 applied to the given distinguished triangle. Then

MorDpB, τěn`1Xq “ MorDpA, τěn`1Xq “ 0

by lemma 7.1.3. Recall that Ψn`1
X,X : MorDěn`1pτěn`1X, τěn`1Xq Ñ MorDpX, τěn`1Xq, defined in the proof of

proposition 7.2.4, is an isomorphism. By exactness MorDpX, τěn`1Xq “ 0. Hence

MorDěn`1pτěn`1X, τěn`1Xq “ 0

Now Idτěn`1X “ 0, and so τěn`1X “ 0.
Suppose that A,B P Děn`1. By proposition 7.2.3 it suffices to show that τďnX “ 0. By proposition 4.1.5 we

have the following exact sequence

MorDpτďnX,Aq MorDpτďnX,Xq MorDpτďnX,Bq

where MorDpτďnX,Aq “ MorDpτďnX,Bq “ 0 by lemma 7.1.3. Now ΦnX,τďnX : MorDpτďnX,Xq Ñ MorDpτďnX,
τďnXq is an isomorphism. Thus by exactness and ΦnX,τďnX , IdτďnX “ 0. This completes the proof.

Proposition 7.2.7. For any n,m P Z we have

τěmτďn – τďnτěm.
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Proof. Suppose m ą n and let X P ObD. Then by lemma 7.1.2 τďnX P Dďm´1, so τěmτďnX “ 0 by lemma 7.2.2.
Similarly, by lemma 7.1.2, τěmX P Děn`1. Hence τďnτěmX “ 0 by proposition 7.2.3. Therefore we may assume
that m ď n.

Let X P ObD and consider the distinguished triangle (7.1) for τěmX

τďnτěmX τěmX τěn`1τěmX pτďnτěmXqr1s

By TR3 and lemma 7.2.6, τďnτěmX P Děm, because pτěnτěmXqr´1s – pτěmτěn`1Xqr´1s P Děm`1 Ă Děm, by
lemma 7.1.2 and proposition 7.2.5, and τěn`1τěmX – τěmτěn`1X P Děm, by proposition 7.2.5.

Recall the definition of the maps ΦnX,Y and Ψn
X,Y in the proof of proposition 7.2.4. We have the following

composition of isomorphisms

MorDpτďnX, τěmXq
ΦnτďnX,τěmY

Ñ MorDpτďnX, τďnτěmXq
pΨmτďnX,τďnτěmY q

´1

Ñ MorDpτěmτďnX, τďnτěmXq

The image of the composite c : τďnX Ñ X Ñ τěmX under pΨm
τďnX,τďnτěmY

q´1 ˝ ΦnτďnX,τěmY is the morphism
φ : τěmτďnX Ñ τďnτěmX obtained by first taking by lemma 7.1.4 the following unique morphism of distinguished
triangles

τďnX τďnX 0 pτďnXqr1s

τďnτěmX τěmX τěn`1τěmX pτďnτěmXqr1s

l (7.7)

and then use the morphism l to get the following unique, by lemma 7.1.4, morphism of distinguished triangles

τďm´1τďnX τďnX τěmτďnX pτďm´1τďnXqr1s

0 τďnτěmX τďnτěmX 0

k

l φ (7.8)

To show that φ is an isomorphism, consider the following upper cap diagram

τěn`1X X

τďnX

τěmτďnX τďm´1X

r1s

r1s

ö

d

r1s

d

ö

The lower triangle in the diagram is distinguished because by proposition 7.2.5 we have the following isomorphism
of triangles

τďm´1τďnX τďnX τěmτďnX pτďm´1τďnXqr1s

τďm´1X τďnX τěmτďnX pτďm´1Xqr1s

– –

143



In particular, the morphism τďm´1X Ñ τďnX in the diagram is the unique morphism given in (7.3) by the proof
of proposition 7.2.5. Hence the right triangle in the upper cap is commutative.

Complete the upper cap to the following lower cap

τěn`1X X

X 1

τěmτďnX τďm´1X

r1s

r1s
d

ö

r1s

ö

d

By proposition 7.2.1, X 1 – τěmX. By commutativity of the upper triangle, τěmX Ñ τěn`1X is the unique mor-
phism given by (7.3). We have the following unique morphism of distinguished triangles, obtained by lemma 7.1.4,
where the morphism τěn`1X Ñ τěn`1τěmX is an isomorphism by proposition 7.2.5

τďnX X τěn`1X pτďnXqr1s

0 τěn`1τěmX τěn`1τěmX 0

–

Here both of the morphisms X Ñ τěn`1X and X Ñ τěn`1τěmX factor through the morphism X Ñ τěmX by
(7.3). From this we get the following isomorphism of triangles

τěmτďnX τěmX τěn`1X pτěmτďnXqr1s

τěmτďnX τěmX τěn`1τěmX pτěmτďnXqr1s

–

where τěn`1τěmX Ñ pτěmτďnXqr1s is the composite

τěn`1τěmX Ñ τěn`1X Ñ pτěmτďnXqr1s. (7.9)

In particular, pτěmτďnX, τěmX, τěn`1τěmXq is a distinguished tringle. Therefore by TR3 and TR5 and corol-
lary 4.1.6, we have a unique isomorphism δpXq which makes the following diagram an isomorphism of distinguished
triangles

τěmτďnX τěmX τěn`1τěmX pτěmτďnXqr1s

τďnτěmX τěmX τěn`1τěmX pτďnτěmXqr1s

δpXq δpXqr1s (7.10)

To verify that φ “ δpXq, it suffices, by lemma 7.1.4, to show that l “ δpXq ˝ k. By commutativity of the
octahedra and (7.10) we have the following equalities

τďnX
k
Ñ τěmτďnX

δpXq
Ñ τďnτěmX Ñ τěmX “ τďnX

k
Ñ τěmτďnX Ñ τěmX

“ τďnX Ñ X Ñ τěmX.

Since Ψn
τďnX,τěmX

is an isomorphism, we have δpXq ˝ k “ l. Therefore δpXq “ φ.
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To show that δ is an isomorphism of functors, we need to verify that for any morphism f : X Ñ Y the following
diagram is commutative

τěmτďnX τďnτěmX

τěmτďnY τďnτěmY

δpXq

τěmτďnpfq τďnτěmpfq

δpY q

By lemma 7.1.4 we have the following unique morphism of distinguished triangles.

τďnX X τěn`1X pτďnXqr1s

τďnY Y τěn`1Y pτďnY qr1s

τďnf f τěn`1f pτďnfqr1s (7.11)

The composite τďnτěmpfq ˝ δpXq is the unique, by lemma 7.1.4, morphism such that the following composite is a
morphism of distinguished triangles

τěmτďnX τěmX τěn`1τěmX pτěmτďnXqr1s

τďnτěmX τěmX τěn`1τěmX pτďnτěmXqr1s

τďnτěmY τěmY τěn`1τěmY pτďnτěmY qr1s

δpXq

τďnτěmpfq τěmpfq

(7.12)

The composite δpY q ˝ τěmτďnpfq is the unique morphism such that the following composite is the unique, by
lemma 7.1.4, morphism of distinguished triangles

τďm´1τďnX τďnX τěmτďnX pτďm´1τďnXqr1s

τďm´1τďnY τďnY τěmτďnY pτďm´1τďnY qr1s

0 τďnτěmY τďnτěmY 0

τďm´1τďnpfq τďnpfq τěmτďnpfq

l δpY q“φ

(7.13)

To show that τďnτěmpfq˝δpXq “ δpY q˝τěmτďnpfq, it suffices, by the fact that pΨm
X,τďnτěmY

q´1 is an isomorphism,
to show that

τďnX Ñ τěmτďnX
δpXq
Ñ τďnτěmX

τďnτěmpfq
Ñ τďnτěmY

“ τďnX Ñ τěmτďnX
τěmτďnpfq
Ñ τěmτďnY

δpY q“φ
Ñ τďnτěmY.

(7.14)

By commutativity of (7.13) we have

τďnX Ñ τěmτďnX
τěmτďnpfq
Ñ τěmτďnY

δpY q“φ
Ñ τďnτěmY “ τďnX

τďnpfq
Ñ τďnY

l
Ñ τďnτěmY.
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To show equality (7.14), by the fact that pΦmτďnX,τďnτěmY q
´1 is an isomorphism, it suffices to show that

τďnX Ñ τěmτďnX
δpXq
Ñ τďnτěmX

τďnτěmpfq
Ñ τďnτěmY Ñ τěmY “ τďnX

τďnpfq
Ñ τďnY

l
Ñ τďnτěmY Ñ τěmY.

By commutativity of (7.7) for Y and (7.11), we have

τďnX
τďnpfq
Ñ τďnY

l
Ñ τďnτěmY Ñ τěmY “ τďnX

τďnpfq
Ñ τďnY Ñ Y Ñ τěmY

“ τďnX Ñ X
f
Ñ Y Ñ τěmY.

Now

τďnX Ñ τěmτďnX
δpXq
Ñ τďnτěmX

τďnτěmpfq
Ñ τďnτěmY Ñ τěmY

“ τďnX Ñ τěmτďnX
δpXq
Ñ τďnτěmX Ñ τěmX

τěmpfq
Ñ τěmY (7.12)

“ τďnX Ñ τěmτďnX Ñ τěmX
τěmpfq
Ñ τěmY (7.12)

“ τďnX Ñ X Ñ τěmX
τěmpfq
Ñ τěmY (7.7)

“ τďnX Ñ X
f
Ñ Y Ñ τěmY. (7.11)

This shows that τěmτěnpfq ˝ δpXq “ δpY q ˝ τěmτďnpfq and completes the proof.

7.3 Core and cohomology

In this section we use the abstract adjoint functors introduced in the previous section to prove that the core of a
t-structure is an abelian category. Then we show that one can do cohomology on the triangulated category with
values in the core.

Definition 7.3.1 (Core). Let D be a triangulated category and t “ pDď0,Dě0q a t-structure on D. The core,
Coreptq, of the t-structure t, is the full subcategory of D consisting of the objects in ObDď0 XObDě0.

Theorem 7.3.2 (Core is abelian). Let D be a triangulated category and t “ pDď0,Dě0q a t-structure on D. Then
Coreptq is an abelian category.

Proof. AB1: Since D is an additive category, by T3 we have the following distinguished triangle

τď00 0 τě10 pτď00qr1s

Consider the following distinguished triangle given by T3

τď0τď00 τď00 τě1τď00 pτď0τď00qr1s

By lemma 7.2.2, τě1τď00 “ 0. The translation functor of D is an additive automorphism, so by the proof of
proposition 2.1.5 it preserves the zero object. Hence 0r1s “ 0 and 0 P Dě0.

Similarly, consider the following distinguished triangle given by T3

τď0τě10 τě10 τě1τě10 pτď0τě10qr1s

We have τď0τě10 “ 0 by proposition 7.2.3. This shows that 0 P Dď0. We conclude that 0 P Ob Coreptq.
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AB2: By proposition 2.1.3 it suffices to show that Coreptq has all biproducts. Let X,Y P Coreptq. By lemma 7.2.6,
it suffices to show that

X X ‘ Y Y Xr1s
i1 p2 0 (7.15)

is a distinguished triangle in D. It is easy to verify that from properties of a biproduct it follows that the
following sequence is exact for any U P ObD

MorDppX ‘ Y qr1s, Uq MorDpXr1s, Uq MorDpY,Uq MorDpX ‘ Y,Uq MorDpX,Uq
pi1q

˚
0 pp2q

˚
pi1q

˚

Complete the morphism i1 by TR4 to the following distinguished triangle

X X ‘ Y C Xr1s
i1 g ψ

.

We have the following exact sequence

MorDppX ‘ Y qr1s, Cq MorDpXr1s, Cq MorDpY,Cq MorDpX ‘ Y,Cq MorDpX,Cq
pi1q

˚
0 pp2q

˚
pi1q

˚

By exactness and the fact that gi1 “ 0, by lemma 4.1.4, there exists a unique morphism h : Y Ñ C such that
hp2 “ g. Now

Y
h
Ñ C

ψ
Ñ Xr1s “ Y

i2
Ñ X ‘ Y

p2
Ñ Y

h
Ñ C

ψ
Ñ Xr1s

“ Y
i2
Ñ X ‘ Y

g
Ñ C

ψ
Ñ Xr1s

“ 0,

because ψg “ 0 by lemma 4.1.4. Hence we have the following morphisms of triangles

X X ‘ Y Y Xr1s

X X ‘ Y C Xr1s

i1 p2 0

h

i1 g ψ

(7.16)

Therefore, by commutativity of (7.16) and proposition 4.1.5, we have the following commutative diagram with
exact rows

MorDpXr1s ‘ Y r1s, Uq MorDpXr1s, Uq MorDpC,Uq MorDpX ‘ Y,Uq MorDpX,Uq

MorDpXr1s ‘ Y r1s, Uq MorDpXr1s, Uq MorDpY,Uq MorDpX ‘ Y,Uq MorDpX,Uq

pi1r1sq
˚ ψ˚ g˚

h˚

pi1q
˚

pi1r1sq
˚

0 pp2q
˚

pi1q
˚

By lemma 2.6.1 the morphism h˚ : MorDpC,Uq Ñ MorDpY, Uq is an isomorphism. Since this holds for every
object U , by example 2.1.6 and proposition 2.1.7, h˚ : MorDpC,´q Ñ MorDpY,´q is a natural transformation
which is an isomorphism of additive functors. By corollary 1.1.8 the morphism h : Y Ñ C is an isomorphism.
This shows that the triangle (7.15) is a distinguished triangle.
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AB3: Let f : X Ñ Y be a morphism in Coreptq. Complete it to a distinguished triangle

X Y Z Xr1s
f g h

We show that the composites φ1 : τď0pZr´1sq Ñ Zr´1s
´hr´1s
Ñ X and φ2 : Y

g
Ñ Z Ñ τě0Z can be used to

define the kernel and the cokernel of f in Coreptq, respectively. Thus we need to verify that τď0pZr´1sq P
ObDď0 and τě0Z P ObDě0 are objects of Coreptq.

First we show that Z P ObDď0XObDě´1. To show that Z P ObDď0, it suffices to show that Xr1s P ObDď0,
by lemma 7.2.6. This is equivalent to showing that X P ObDď1. But this follows from lemma 7.1.2, because
X P ObDď0. To show that Z P ObDě´1, by TR3 and lemma 7.2.6, it suffices to show that Y P ObDě´1.
But this follows from lemma 7.1.2 because Y P ObDě0.

To show that τď0pZr´1sq P ObDě0, note that Zr´1s P Dě0. Therefore τď0pZr´1sq – τď0τě0pZr´1sq –
τě0τď0pZr´1sq P Dě0 by proposition 7.2.3 and proposition 7.2.7. By lemma 7.2.2, proposition 7.2.7, and the
fact that Z P Dď0, we have τě0Z – τě0τď0Z – τď0τě0Z P ObDď0. These show that τď0pZr´1sq, τě0Z P

Ob Coreptq.

pτě0Z, φ2q is the cokernel of f : Let us show that φ2 is the cokernel of f . Let φ : Y Ñ T be a morphism in
Coreptq such that φf “ 0 and consider the following distinguished triangle

Y Z Xr1s Y r1s
g h ´fr1s

By proposition 4.1.5 we have the following exact sequence

MorDpXr1s, T q MorDpZ, T q MorDpY, T q MorDpX,T q
h˚ g˚ f˚

(7.17)

Since Xr1s P Dď´1, MorDpXr1s, T q “ 0, by lemma 7.1.3. By assumption the morphism φ is sent to 0
by f˚, so by exactness there exists a unique morphism δ1 : Z Ñ T such that δ1g “ φ. Since Ψ0

Z,T is an
isomorphism, we have MorDpτě0Z, T q – MorDpZ, T q. Thus there exists a unique morphism δ2 such that
δ2φ2 “ φ. This shows that φ2 is the cokernel of f .

pτď0pZr´1sq, φ1q is the kernel of f : To show that φ1 is the kernel of f , let φ : T Ñ X be a morphism in
Coreptq such that fφ “ 0, and consider the following distinguished triangle

Y r´1s Zr´1s X Y
´gr´1s ´hr´1s f

By proposition 4.1.5 we have the following exact sequence

MorDpT, Y r´1sq MorDpT,Zr´1sq MorDpT,Xq MorDpT, Y q MorDpT,Zq
p´gr´1sq˚q p´hr´1sq˚ f˚ g˚

By lemma 7.1.3, MorDpT, Y r´1sq “ 0, and fφ “ 0, by assumption, so by exactness there exists a
unique morphism δ1 : T Ñ Zr´1s such that p´hr´1sqδ1 “ φ. Since Φ0

T,Zr´1s is an isomorphism, we

have MorDpT,Zr´1sq – MorDpT, τď0pZr´1sqq. Therefore there exists a unique morphism δ2 such that
φ1δ2 “ φ. This shows that φ1 is the kernel of f .
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AB4: Let f : X Ñ Y be an epimorphism in Coreptq. By the proof of AB3 we have the following distinguished
triangle in D

Zr´1s X Y Z
´hr´1s f g

and the composite τď´1Zr´1s Ñ Zr´1s
´hr´1s
Ñ X is the kernel of f . By proposition 4.1.5 we have the following

exact sequence

MorDpY, T q MorDpX,T q MorDpZr´1s, T q
f˚ p´hr´1sq˚

(7.18)

for any T P Coreptq. If φ : X Ñ T is a morphism in Coreptq such that φp´hr´1sq “ 0, then by exactness of
(7.18) there exists a morphism ψ : Y Ñ T such that ψf “ φ. Since f is an epimorphism, the morphism ψ is
unique with this property. This shows that f is the cokernel of ´hr´1s.

Now, we show that pτď0pZr´1sq Ñ Zr´1sq˚ : MorDpZr´1s, T q Ñ MorDpτď0pZr´1sq, T q is an isomorphism,
from which it follows that f is the cokernel of the composite τď0pZr´1sq Ñ Zr´1s Ñ X. Consider the
following morphism of distinguished triangles

τď0pZr´1sq Zr´1s τě1pZr´1sq pτď0pZr´1sqqr1s

T T 0 T r1s

It follows from TR3 and TR5 and lemma 7.1.4 that if we have a morphism Zr´1s Ñ T then we get a unique
morphism of distinguished triangles as above and if we have a morphism τď0pZr´1sq Ñ T , then we get a
unique morphism of distinguished triangles as above. Therefore we have a bijection from MorDpZr´1s, T q to
MorDpτď0pZr´1sq, T q. Since τď0pZr´1sq P Coreptq by the proof of AB3, this shows that every epimorphism
is the cokernel of some morphism of Coreptq.

To show that every monomorphism is a kernel, let f : X Ñ Y be a monomorphism in Coreptq. We have the
following distinguished triangle

X Y Z Xr1s
f g h

and the composite Y
g
Ñ Z Ñ τě0Z is the cokernel of f by the previous step. By proposition 4.1.5 we have

the following exact sequence

MorDpT,Xq MorDpT, Y q MorDpT,Zq
f˚ g˚

(7.19)

for any T P Ob Coreptq. If φ : T Ñ Y is a morphism such that gφ “ 0, then by exactness of (7.19) there
exists a morphism ψ : T Ñ X such that φ “ fψ. Since f is a monomorphism, ψ is unique with this property.
Hence f is the kernel of g.

We show that pZ Ñ τě0Zq˚ : MorDpT,Zq Ñ MorDpT, τě0Zq is an isomorphism. Consider a morphism of
distinguished triangles of the form

0 T T 0r1s

τď´1Z Z τě0Z pτď´1Zqr1s

149



If we are given any morphism T Ñ Z, then by lemma 7.1.4 there exists a unique morphism of distinguished
triangles as above. By TR3, TR5, and lemma 7.1.4, if we are given any morphism T Ñ τě0Z, then there
exists a unique morphism of distinguished triangles as above. These together show that pZ Ñ τě0Zq˚ is an

isomorphism. Therefore f is the kernel of the composite Y
g
Ñ Z Ñ τě0Z.

Next we show that t-structures allow one to define cohomology on triangulated categories, with values in the
core.

Definition 7.3.3 (Cohomology functor). Let D be a triangulated category and A an abelian category. An additive
functor H : D Ñ A which maps any distinguished triangle pX,Y, Z, u, v, wq to an exact sequence

HpXq HpY q HpZq
Hpuq Hpvq

in A is cohomological.

Let D be a triangulated category and t “ pDď0, Dě0q a t-structure on D. Let

H0 :“ τď0τě0 : D Ñ Coreptq and HnpXq “ H0pXrnsq.

This functor is well-defined, because τď0τě0 – τě0τď0, by proposition 7.2.7. It is easy to see from the definition
that if the functor H0 is cohomological, so are all the Hn, n P Z, by TR3.

Note that for all n P Z we have the following by definition of abstract truncation functors

HnpXq “ τď0τě0pXrnsq “ τď0ppτěnXqrnsq “ pτďnτěnXqrns.

Theorem 7.3.4 (Cohomology functor). The functor H0 is a cohomology functor.

Proof. Let

X Y Z Xr1s
f g h (7.20)

be a distinguished triangle in D. We prove the theorem in several steps.

Step 1, X,Y, Z P ObDď0: We show that the sequence

H0pXq H0pY q H0pZq H0pXr1sq – 0
H0
pfq H0

pgq H0
phq

(7.21)

is exact, where the isomorphism H0pXr1sq – 0 follows from lemma 7.2.2 because Xr1s P Dď´1. Since τď0

and τě0 are adjoints to inclusions, for any objects U P Dď0 and V P Dě0 we have

MorDpH
0pUq, H0pV qq “ MorDpτď0τě0U, τď0τě0V q

– MorDpτě0τď0U, τď0τě0V q 7.2.7

– MorDpτě0U, τď0V q 7.2.2 and 7.2.3

– MorDpU, τď0V q Ψ0
U,τď0V

– MorDpU, V q pΦ0
U,V q

´1.

(7.22)

Using these isomorphisms, by lemma 7.1.3, lemma 7.2.2 and proposition 7.2.3, for any object W P Ob Coreptq
we have

MorDpH
0pXr1sq,W q – MorDpXr1s,W q “ 0. (7.23)
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The following exact sequence is obtained by proposition 4.1.5 applied to (7.20) and using (7.23)

MorDpH0pXr1sq,W q MorDpH0pZq,W q MorDpH0pY q,W q MorDpH0pXq,W q
H0
phq˚ H0

pgq˚ H0
pfq˚

. (7.24)

To show that the sequence (7.21) is exact, by proposition 2.2.14 it suffices to show that H0pgq is the cokernel
of H0pfq. Let φ : H0pY q ÑW be a morphism in Coreptq such that φH0pfq “ 0. By exactness of (7.24), there
exists a unique morphism ψ : H0pZq Ñ W such that φ “ ψH0pgq. This shows that H0pgq is the cokernel of
H0pfq and the sequence (7.21) is exact.

Step 2, X P ObDď0: In this step we show that the sequence (7.21) is exact also in this case. First we show that
τě1g : τě1Y Ñ τě1Z is an isomorphism. Let W P ObDě1. Then by proposition 4.1.5, we have the following
exact sequcence

MorDpXr1s,W q MorDpZ,W q MorDpY,W q MorDpX,W q
h˚ g˚ f˚

(7.25)

associated to (7.20). Now MorDpX,W q “ 0 and MorDpXr1s,W q “ 0 by lemma 7.1.3. By exactness we obtain
that g˚ is an isomorphism. To show that τě1g : τě1Y Ñ τě1Z is an isomorphism, recall that by theorem 1.3.4
the following diagram is commutative

MorDě1pτě1Z,W q MorDpZ,W q

MorDě1pτě1Y,W q MorDpY,W q

Ψ1
Z,W

MorDě1 pτě1g,IdW q MorDpg,IdW q

Ψ1
Y,W

Since g˚ “ MorDpg, IdW q is an isomorphism, this shows that MorDě1pτě1g, IdW q is an isomorphism. Hence
the representable functors MorDě1pτě1Z,´q and MorDě1pτě1Y,´q are isomorphic. Thus, by corollary 1.1.8,
τě1g : τě1Y Ñ τě1Z is an isomorphism.

To show that the sequence (7.21) is exact, we complete a lower cap to octahedra. See appendix (A.1) for a
proof. Let

τě1Z Y

Z

τď0Z X

r1s

r1s
d

ö

r1s

ö

d

be a lower cap and complete it to the following upper cap

τě1Z Y

V

τď0Z X

r1s

r1s

ö

d

r1s

d

ö
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By assumption X P Dď0, and because pX,V, τď0Zq is a distinguished triangle, by lemma 7.2.6 V P ObDď0.
Therefore by proposition 7.2.1 there exists a unique isomorphism of distinguished triangles from pV, Y, τě1Zq
to pτď0Y, Y, τě1Y q. In particular, V – τď0Y , and we get that pX, τď0Y, τď0Zq is a distinguished triangle.
Now H0pY q “ τď0τě0Y – τě0τď0Y – τě0τď0τď0Y – τď0τě0τď0Y “ H0pτď0Y q and H0pZq “ τď0τě0Z –

τě0τď0Z – τě0τď0τď0Z – τď0τě0τď0Z “ H0pτď0Zq by lemma 7.2.2 and propositions 7.2.5 and 7.2.7. There-
fore the sequence (7.21) is exact by the previous step applied to the distinguished triangle pX, τď0Y, τď0Zq.

Step 3, X,Y, Z P ObDě0: We show that the sequence

H0pZr´1sq – 0 H0pXq H0pY q H0pZq
H0
p´hr´1sq H0

pfq H0
pgq

(7.26)

is exact. Consider the following exact sequence given by proposition 4.1.5 and (7.22) for any W P Ob Coreptq

MorDpW,H0pZr´1sqq MorDpW,H0pXqq MorDpW,H0pY qq MorDpW,H0pZqq
H0
p´hr´1sq˚ H0

pfq˚ H0
pgq˚

where MorDpW,H0pZr´1sqq – 0, because H0pZr´1sq “ τď0τě0pZr´1sq – 0 by lemma 7.2.2. To show that
(7.26) is exact, by proposition 2.2.14 it suffices to show that H0pfq is the kernel of H0pgq. Let φ : W Ñ H0pY q
be a morphism in Coreptq such that H0pgqφ “ 0. By exactness of the above exact sequence, there exists a
unique morphism φ : W Ñ H0pXq such that φ “ H0pfqψ. This shows that H0pfq is the kernel of H0pgq.

Step 4, Z P ObDě0: Let us first show that the morphism τď´1f : τď´1X Ñ τď´1Y is an isomorphism. For any
object W P ObDď´1 we have the following exact sequence

MorDpW,Zr´1sq MorDpW,Xq MorDpW,Y q MorDpW,Zq
p´hr´1sq˚ f˚ g˚

By lemma 7.1.3 MorDpW,Zr´1sq – MorDpW,Zq – 0. Therefore f˚ is an isomorphism. Consider the following
commutative diagram for any W P ObDď´1

MorDpW,Xq MorDď´1pW, τď´1Xq

MorDpW,Y q MorDď´1pW, τď´1Y q

ΦW,Y

MorDpIdW ,fq MorDď´1 pIdW ,τď´1fq

ΦW,X

Since f˚ “ MorDpIdW , fq is an isomorphism, by commutativity MorDď´1pIdW , τď´1fq is an isomorphism.
Hence the functors MorDď´1p´, τď´1Xq and MorDď´1p´, τď´1Y q from pDď´1qop to Ab are isomorphic, so by
corollary 1.1.8 we get that τď´1f : τď´1X Ñ τď´1Y is an isomorphism.

Consider the following upper cap

Z Y

X

τě0X τď´1X

r1s

r1s

ö

d

r1s

d

ö
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and by TR6 complete it to the following lower cap

Z Y

V

τě0X τď´1X

r1s

r1s
d

ö

r1s

ö

d

By lemma 7.2.6 V P ObDě0. Since τď´1f : τď´1X Ñ τď´1Y is an isomorphism, pτď´1Y, Y, V q is a dis-
tinguished triangle, canonically isomorphic to pτď´1Y, Y, τě0Y q, by proposition 7.2.1. Hence V – τě0Y , so
pτě0X, τě0Y, Zq is a distinguished triangle. Now the fact that (7.26) is an exact sequence follows from the iso-
morphisms H0pXq “ τď0τě0X – τď0τě0τě0X “ H0pτě0Xq, H

0pY q “ τď0τě0Y – τď0τě0τě0Y “ H0pτě0Y q
and Step 3 applied to pτě0X, τě0Y,Zq.

General case: Consider the following upper cap

Z Y

X

τě1X τď0X

r1s

r1s

ö

d

r1s

d

ö

By TR6 we get the lower cap

Z Y

U

τě1X τď0X

r1s

r1s
d

ö

r1s

ö

d

By step 2 applied to pτď0X,Y, Uq we get an exact sequence

H0pXq H0pY q H0pUq 0

By applying step 4 to pU,Z, pτě1Xqr1sq, obtained by TR3, we get an exact sequence

0 H0pUq H0pZq H0ppτě1Xqr1sq

From these exact sequences one gets that the composite H0pY q Ñ H0pUq Ñ H0pZq is the epimorphism
monomorphism factorization of H0pY q Ñ H0pZq, see theorem 2.2.10. By corollary 2.2.12 the kernel of
H0pY q Ñ H0pZq is the kernel of H0pY q Ñ H0pUq. By proposition 2.2.14, using the first exact sequence,
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H0pY q Ñ H0pUq is the cokernel of H0pXq Ñ H0pY q. Thus

ImpH0pXq Ñ H0pY qq “ kerpcokerpH0pXq Ñ H0pY qqq

“ kerpH0pY q Ñ H0pUqq

“ kerpH0pY q Ñ H0pZqq.

This shows that
H0pXq H0pY q H0pZq

is an exact sequence. Therefore H0 is a cohomological functor.

We give two corollaries which apply to particular kind of t-structures. These corollaries show that one can use
cohomology to identify isomorphisms in the triangulated category and that cohomology identifies the categories
Dď0 and Dě0.

Definition 7.3.5 (Bounded t-structure). Let t “ pDď0,Dě0q be a t-structure on a triangulated category D. We
say that t is bounded if

č

nPZ
ObDďn “

č

nPZ
ObDěn “ t0u

and for any object X of D, HipXq is nonzero for only a finite number of i P Z.

Corollary 7.3.6. Let t “ pDď0,Dě0q be a bounded t-structure on a triangulated category D. Then a morphism
f : X Ñ Y is an isomorphism in D if and only if Hnpfq are isomorphisms in Coreptq for all n P Z. In particular,
if HnpXq “ 0 for all n P Z, then X “ 0.

Proof. ñ: First let us show that if HnpXq “ 0 for all n then X “ 0. Suppose that X P ObDě0. Then H0pXq –
τď0τě0X – τď0X “ 0, by proposition 7.2.3, so X – τě0X – τě1X P ObDě1 by proposition 7.2.3. By induction,
suppose X P ObDěn. Then HnpXq – pτďnτěnXqrns – pτďnXqrns “ 0, so X – τěnX – τěn`1X P ObDěn`1,
by proposition 7.2.3 and the fact that translation functor is an additive automorphism, see proposition 2.1.5. By
lemma 7.1.2, X P ObDěn for any n ă 0. This shows that X P XnPZ ObDěn “ t0u. Hence X “ 0.

Suppose that X P ObDď0. Then H0pXq “ τď0τě0X – τě0τď0X – τě0X “ 0, so X – τď0X – τď´1X P

ObDď´1, by lemma 7.2.2. By induction, suppose X P ObDďn. Then HnpXq “ pτďnτěnXqrns – pτěnτďnXqrns –
pτěnXqrns “ 0, by lemma 7.2.2 and proposition 7.2.7, so X – τďnX – τďn´1X P ObDďn´1, by lemma 7.2.2 and
the fact that translation functor is an additive automorphism, see proposition 2.1.5. By lemma 7.1.2, X P ObDďn
for all n ą 0. Therefore X P XnPZ ObDďn “ t0u. Thus X “ 0.

Now, for n ď 0

HnpXq “ pτďnτěnXqrns – pτěnτďnXqrns

– pτěnτďnτď0Xqrns – pτďnτěnτď0Xqrns “ Hnpτď0Xq

and for n ě 1

HnpXq “ pτďnτěnXqrns – pτďnτěnτě1Xqrns “ Hnpτě1Xq.

For n ą 0 we have

Hnpτď0Xq “ pτďnτěnτď0Xqrns “ 0,
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because τď0X P ObDďn´1, by lemma 7.1.2. For n ă 1 we have

Hnpτě1Xq “ pτďnτěnτě1Xqrns – pτěnτďnτě1Xqrns “ 0,

because τě1X P ObDěn`1, by lemma 7.1.2. These show that HnpXq “ Hnpτě1Xq “ Hnpτď0Xq “ 0 for all n.
Because τě1X P ObDě0, by lemma 7.1.2, we have that τě1X “ τď0X “ 0, by what we have already shown. From
the distinguished triangle (7.1) we get X “ 0 by using TR1, TR3, TR5 and corollary 4.1.6.

Let f : X Ñ Y be a morphism such that Hnpfq is an isomorphism for all n, and complete f to a distinguished
triangle pX,Y, Z, f, g, hq. Since Hn are cohomological functors, for any n the sequence

HnpXq HnpY q HnpZq
Hnpfq Hnpgq

is exact. Hence HnpZq “ 0 for all n, so Z “ 0. If we apply corollary 4.1.6 to rotation of the following morphism of
distinguished triangles

X X 0 Xr1s

X Y 0 Xr1s

f

f

we get that f is an isomorphism.
ð: If f is an isomorphism, then because any functor preserves isomorphisms, Hnpfq is an isomorphism for all

n.

Corollary 7.3.7. Let t “ pDď0,Dě0q be a bounded t-structure on a triangulated category D. Then we have

ObDďn “
 

X P ObD | HipXq “ 0 @i ą n
(

ObDěn “
 

X P ObD | HipXq “ 0 @i ă n
(

.

Proof. ObDďn “
 

X P ObD | HipXq “ 0 @i ą n
(

: Ă: Let n P Z and suppose X P ObDďn. Then for i ą n we
have

HipXq “ pτďiτěiXqris “ 0,

because X P Dďi´1 by lemma 7.1.2. This shows that X P
 

X P ObD | HipXq “ 0 @i ą n
(

.

Ą: Let n P Z and suppose X P
 

X P ObD | HipXq “ 0 @i ą n
(

. For all i ď n we have

Hipτěn`1Xq “ pτďiτěiτěn`1Xqris – pτďiτěn`1τěiXqris “ 0,

by propositions 7.2.3 and 7.2.7, because τěn`1τěiX P Děi`1. For i ą n we have

Hipτěn`1Xq “ pτďiτěiτěn`1Xqris – pτďiτěiXqris “ HipXq “ 0,

by proposition 7.2.7, proposition 7.2.5 and assumption. Therefore, by corollary 7.3.6, τěn`1X “ 0. By
lemma 7.2.2 X P Dďn.

ObDěn “
 

X P ObD | HipXq “ 0 @i ă n
(

: Ă: Let n P Z and suppose X P ObDěn. For i ă n we have

HipXq “ pτďiτěiXqris – pτěiτďiXqris “ 0,
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by propositions 7.2.3 and 7.2.7, because X P ObDěi`1 by lemma 7.1.2. This shows that

X P
 

X P ObD | HipXq “ 0 @i ă n
(

.

Ą: Let n P Z and let X P
 

X P ObD | HipXq “ 0 @i ă n
(

. Then for all i ě n we have

Hipτďn´1Xq “ pτďiτěiτďn´1Xqris “ 0,

by lemma 7.2.2, because τďn´1X P Dďi´1 by lemma 7.1.2. For i ă n we have

Hipτďn´1Xq “ pτďiτěiτďn´1Xqris – pτďiτěiXqris “ HipXq “ 0,

by proposition 7.2.5, lemma 7.2.2, and assumption. This implies τďn´1X “ 0 by corollary 7.3.6. By proposi-
tion 7.2.3, X P ObDěn.

7.4 Examples

For any abelian category A, we can define the standard t-structure on DbpAq as follows. Let Dď0 be the full
subcategory of DbpAq consisting of complexes X‚ P DbpAq such that HipX‚q “ 0 for all i ą 0 and let Dě0 be the
full subcategory of DbpAq consisting of complexes Y ‚ P DbpAq such that HipY ‚q “ 0 for all i ă 0. It is clear that
T1 holds for the pair pDď0,Dě0q.

For any object X‚ P DbpAq, there exists the following exact sequence in CbpAq

0 τď0X
‚ X‚ τě1X

‚ 0

where τď0X
‚ is the complex

. . . X´1 ker d0
X‚ 0 . . .

d´2
X‚ α 0

and τě1X
‚ is the complex

. . . 0 coker d0
X‚ X2 . . .0 0 β d2X‚

Here the morphisms α and β are the unique morphisms from the diagram (2.4). It is clear that the complexes
τď0X

‚ and τě1X
‚ are objects of DbpAq. By proposition 5.1.11 the exact sequence corresponds to the following

distinguished triangle

τď0X
‚ X‚ τě1X

‚ pτď0X
‚qr1s

This shows that condition T3 holds for the pair pDď0, Dě0q.
To show that the condition T2 holds for the pair, let f 1 : X‚ Ñ Y ‚ be a morphism in DbpAq with X‚ P ObDď0

and Y ‚ P ObDěn, n ě 1. Let

Z‚

X‚ Y ‚
s

f
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be a roof which represents the morphism f 1. One can easily check that the morphism φ : Y ‚ Ñ τě1Y
‚ is a quasi-

isomorphism because Y ‚ P ObDě1. Hence MorDbpAqpX
‚, Y ‚q – MorDbpAqpX

‚, τě1Y
‚q, so it suffices to show that

any roof

Z‚

X‚ τě1Y
‚

s

φf

represents the zero morphism from X‚ to τě1Y
‚. Since Z‚ is quasi-isomorphic to X‚, which is an object of Dď0,

so is Z‚ an object of Dď0. Hence it is easy to see that the inclusion τď0Z
‚ Ñ Z‚ is a quasi-isomorphism, and thus

the above roof is equivalent to the following roof

τď0Z
‚

X‚ τě1Y
‚

sr

φfr

Clearly, it suffices to show that φfr is the zero morphism, but this follows from the fact that φif iri “ 0 for all
i P Z. This shows that MorDbpAqpX

‚, Y ‚q “ 0. We have shown that pDď0, Dě0q is a t-structure on DbpAq.
The cohomology functor H‚ associated to this t-structure coincides with the classical cohomology on the bounded

derived category. Indeed, A is equivalent to Coreptq, by proposition 5.1.10 and corollary 7.3.7. Now

τď0τě0pX
‚rnsq “ HnpX‚q,

so cohomology on triangulated categories can be seen as a generalization of classical cohomology.

7.5 Notes

For an example of nonstandard t-structures on triangulated categories one has perverse t-structures, which are used
to construct perverse sheaves. Perverse sheaves [HTT08, Definition 8.1.28] are the objects of the core of perverse
t-structure on Db

cpXq, the derived bounded category of CX -modules on an analytic space X with constructible
cohomology. For basic properties of perverse sheaves see [HTT08, Chapter 8]. The construction of perverse sheaves
also works for `-adic sheaves, see [KW13, Chapter 3]. For coherent sheaves on an algebraic stack, perverse t-structure
is constructed in [AB10].
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Appendix A

Octahedral axiom

Here we prove that by the octahedral axiom, every lower cap can be completed to an upper cap. Fix notation by
the following octahedron

Y1

X2 Y2

Z1 X1

Z2

Let us first study the octahedral axiom in detail. To give an upper cap is equivalent, up to TR3 to TR5, to giving
three distinguished triangles pX1, Y1, Z1q, pY1, Y2, X2q, and pX1, Y2, Z2q, where the first morphism X1 Ñ Y2 of the
third triangle is the composite X1 Ñ Y1 Ñ Y2 of the first morphisms of the first two triangles. By TR5 we obtain a
morphism pX1, Y1, Z1q Ñ pX1, Y2, Z2q of distinguished triangles. Now the axiom TR6 is equivalent to that we get
the following commutative diagram

X1 Y1 Z1 X1r1s

X1 Y2 Z2 X1r1s

X2 X2 Y1

Y1r1s Z1r1s

r1s

(A.1)

where pZ1, Z2, X2q is a distinguished triangle.
Now we prove that a lower cap can be completed to octahedra. If we are given a lower cap, it is equivalent,

up to TR3 to TR5, to give the following three distinguished triangles pZ1, Z2, X2q, pX1, Y2, Z2q, and pX1, Y1, Z1q,
where Z1 Ñ X1r1s, the last morphism of the third triangle, is the composite Z1 Ñ Z2 Ñ X1r1s, where the first
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morphism is the second morphism of the first triangle and the second morphism is the last morphism of the second
triangle. By TR3 and TR5 we get a morphism pX1, Y1, Z1q Ñ pX1, Y2, Z2q of distinguished triangles. This means
that we have the following commutative diagram

X1 Y1 Z1 X1r1s

X1 Y2 Z2 X1r1s

X2

Z1r1s

By TR4 we can complete the morphism Y1 Ñ Z2 to a distinguished triangle pY1, Z2, Aq. Hence we have obtained
three distinguished triangles pX1, Y1, Z1q, pY1, Y2, Aq, and pX1, Y2, Z2q, such that the first morphism X1 Ñ Y2 of
the third triangle is the composite X1 Ñ Y1 Ñ Y2 of the first two morphisms of the first two triangles. Hence we
can apply TR6 to get the following commutative diagram

X1 Y1 Z1 X1r1s

X1 Y2 Z2 X1r1s

A A Y1

Y1r1s Z1r1s

r1s

But now, by item TR5 and corollary 4.1.6, we have the following isomorphism of distinguished triangles

Z1 Z2 X2 Z1r1s

Z1 Z2 A Z1r1s

Hence, by using the fact that X2 and A are isomorphic, we have the following commutative diagram

X1 Y1 Z1 X1r1s

X1 Y2 Z2 X1r1s

X2 X2 Y1

Y1r1s Z1r1s

r1s
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which represents octahedron. This completes our proof that a lower cap can be completed to an octahedron.
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