
Date of acceptance Grade

Instructor

Building Distributed File Systems on Commercial Cloud Stor-
age Services

Andres Levitski

Helsinki January 5, 2016

UNIVERSITY OF HELSINKI
Department of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/33740795?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Department of Computer Science

Andres Levitski

Building Distributed File Systems on Commercial Cloud Storage Services

Computer Science

Master’s thesis January 5, 2016 60 pages + 0 appendices

file systems, distributed systems, cloud storage, performance analysis

With the increase in bandwidths available for internet users, cloud storage services have emerged to
offer home users an easy way to share files and extend the storage space available for them. Most
systems offer a limited free storage quota and combining these resources from multiple providers
could be intriguing to cost-oriented users. In this study, we will implement a virtual file system
that utilizes multiple different commercial cloud storage services (Dropbox, Google Drive, Microsoft
OneDrive) to store its data. The data will be distributed among the different services and the
structure of the data will be managed locally by the file system. The file system will be run in user
space using FUSE and will use APIs provided by the cloud storage services to access the data. Our
goal is to show that it is feasible to combine the free space offered by multiple services into a single
easily accessible storage medium.

Building such a system requires making design choices in multiple problem areas ranging from
data distribution and performance to data integrity and data security. We will show how our file
system is designed to address these requirements and will then conduct several tests to measure and
analyze the level of performance provided by our system in different file system operation scenarios.
The results will also be compared to the performance of using the distinct cloud storage services
directly without distributing the data. This will help us to estimate the overhead or possible gain
in performance caused by the distribution of data. It will also help us to locate the bottlenecks of
the system. Finally, we will discuss some of the ways that could be used to improve the system
based on test results and examples from existing distributed file systems.

ACM Computing Classification System (CCS):
C.2 [COMPUTER-COMMUNICATION NETWORKS],
C.2.4 [Distributed Systems]

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

ii

Contents

1 Introduction 1

2 Cloud storage services 3

2.1 Providers . 4

2.1.1 Dropbox . 4

2.1.2 Google Drive . 5

2.1.3 Microsoft OneDrive . 7

2.2 OAuth 2.0 based authentication . 7

2.3 Official apps and REST APIs . 10

3 FUSE - Filesystem in Userspace 11

3.1 Virtual File System . 12

3.2 FUSE in Linux . 14

3.3 Key mount options and features . 16

3.4 Performance . 18

4 Existing distributed file systems built with FUSE 20

4.1 ObjectiveFS . 20

4.2 P2P-FS . 21

4.3 GlusterFS . 22

5 Cloud file system implementation 24

5.1 Basic architecture . 24

5.2 File system creation and mounting 25

5.3 CloudFS main class . 26

5.4 Storage location assignment . 30

5.5 File system table . 32

5.6 Internal cache and write buffering . 33

5.7 Modules and external storage . 34

iii

5.8 Asynchronous I/O: readahead and writeback cache 36

5.9 Security: Access control and data security 38

5.10 Concurrent usage . 39

5.11 Error processing and recovery . 40

6 Performance measurements 41

6.1 Setting and methodology . 41

6.2 Direct I/O without FUSE . 42

6.3 CloudFS with a single node . 45

6.4 Full CloudFS setup . 47

6.4.1 Sequential I/O . 47

6.4.2 Sequential I/O without readahead or writeback 48

6.4.3 Sequential I/O with unequal storage quotas 50

6.4.4 Random reads and readahead caching 51

7 Future considerations 52

7.1 Improved readahead . 53

7.2 Data availability . 54

7.3 Multiple concurrent connections . 55

8 Conclusion 55

References 56

1

1 Introduction

The number of online cloud based storage services has seen a steady evolution over
the past years. Some of the providers aim specifically for consumer markets whereas
some target the private sector. Although both the consumer and business fields are
each dominated by few largest companies the actual number of providers is much
larger and wider in the user base targeted. Consumers are drawn to these services
with ease of storing and sharing of their data and extra free storage space offered
by the companies in their basic plans.

In order to enable the creation of third-party apps and whole ecosystems around their
products, many of the companies have also made APIs and even SDKs tailored for
multiple programming languages available for general public. Anyone with sufficient
programming proficiency can now create apps that utilize storage space from one
or several services to their needs. This in combination with the general level of
evolution of higher level programming frameworks, such as Filesystem in Userspace
(FUSE) [FSU15], has led to the creation of a plethora of applications in different
platforms.

As the free quotas have increased so has the role of the could storage platforms
diversified from mere sharing platforms to increasingly also act as a final storage
locations for users’ files. Developers have also been eager to find ways to make
the most of the resources offered to them. An early demonstration of this was the
GMailFS [Han15]. It was a FUSE based file system developed in 2007 that enabled
users to store their files in GMails mailbox. The large amount of free space offered
by Google for their mailbox was at that time enough to lure people to find a way
to use it for their advantage as a storage medium. Since then the publication of
Google Drive as an actual storage medium has made GMailFS redundant but the
basic principle of making the most out of the resources provided still applies.

Surprisingly little work has been done to inspect the possibility of combining the
services of multiple providers into one network file system. With the high level API
access available from both network and kernel side the basic procedure should not
be a lot more complex than making an app for a single provider. The benefit of
this is approach is the possibility to utilize the combined resources of all providers.
This applies to both storage space and bandwidth. The downsides include the
complexities involved in sharing this distributed data and the possible performance
overhead created by reliance on multiple heterogeneous platforms.

2

There has been some work on using FUSE to build distributed cloud computing
file systems [Glu15b], distributed file system middleware [ZI13] or even peer-to-peer
file systems [Mat15]. In these systems the nodes provide their memory and CPU
resources to the system in addition to mere added storage space and bandwidth.
The underlying paradigm is different also in the fact that each node is running some
version of the file system application. In our case we have limited access to the cloud
services and can make no other adjustments on the servers than what is specified
by their APIs. The whole file system logic must run on the client’s side.

In this paper we will investigate the complexities of creating a singular file system
based on accounts from multiple cloud service providers. Our mission is to present
technologies available for easy and fast development of such systems and also to
analyze the performance considerations behind the solutions chosen. As a part of
this thesis we will also implement a FUSE based file system on Linux OS that will
enable the user to mount cloud based storage from three providers into one unified
virtual partition. The key features of our system system will include:

• Ability to group multiple storage accounts into one virtual drive with a shared
free space and folder structure.

• Files saved into the virtual drive will be distributed evenly among the cloud
storage accounts to maximally utilize the bandwidth provided by the service
providers when uploading or downloading parts of the same file from multiple
locations simultaneously.

• Buffering and caching policies to speed up the processing of commonly used
files and reduce bandwidth overhead.

• Support for data encryption to provide additional security in addition to split-
ting the information into multiple locations.

• Ability to mount the system from multiple locations with just a single login
as the file system table and credentials for other services can be saved into the
cloud for retrieval.

• Modular design of the system that will enable adding support for new service
providers and features by merely implementing new modules that adhere to
the common interface.

3

In addition to implementing the file system we will also run a number of standardized
tests on it to analyze the proper configuration and performance of such system. The
main questions addressed by the tests are:

• What is the general level of performance of such a system in relations to using
the native APIs provided by the service providers directly? Is there any added
benefit to the distributed access or are the possible benefit outweighed by the
overhead caused by the distribution and the FUSE framework chosen?

• How do the imbalances in distribution and the chosen distribution algorithm
affect the file system performance? The available space between different stor-
age severs can change based on the quota limitations and space used for other
purposes. This will have an effect on the effectiveness of the distribution al-
gorithm and on how much benefit is achieved trough simultaneous use.

• How do different configurations of the same file system perform in different
use cases? There are several parameters and functionalities that affect the
performance of the file system such as block sizes and readahead caching.

In chapter two we will presented the three cloud system providers that we have
chosen for this project to illustrate the homogeneity of the technical solutions behind
many of the APIs. Chapter three consists of look into the FUSE framework and
its integration with common file system model of a Linux operating system. In
chapter four we will inspect existing network based distributed file systems built
with the help of FUSE and make note of their key features. In chapter five we
will present our implementation for the user space cloud file system (CloudFS) and
the paradigms chosen during its design process to implement different key features.
Then we will run several benchmark tests for CloudFS in chapter six to see what are
the bottlenecks of such systems and how they could be improved. The implications
of the test results and areas of future improvement will be discussed in more detail
in chapter seven.

2 Cloud storage services

Despite the diverse field of cloud storage services, three providers dominate the
consumer market, each claiming to have over 200 million users and a growing user
base [Gri14]. The actual number of active users is hard to verify, but it is clear that

4

Dropbox, Google Drive and Microsoft OneDrive are in fierce competition with each.
As a part of that competition each of them has launched services for the users that
are very similar in nature. The technologies used to serve the developers’ needs are
also highly uniform relying heavily on REST based client-server API and OAuth 2.0
authentication [RFC6749].

2.1 Providers

2.1.1 Dropbox

Dropbox is a cloud service provider that launched it’s services in 2008. Registration
is free and provides initial 2 GB of storage space. Users can earn additional space
via referral program (up to 16 GB) or by upgrading their free plan with the company
to a paid one [Dro15c]. For application developers Dropbox offers two main ways to
interact with their service: Drop-ins and Core API [Dro15d]. In both cases the App
has to be first register in the App Console in order to acquire app key and thus gain
access to the Dropbox API.

Drop-ins are a light weight way of using Dropbox data store to the means of down-
loading and uploading files targeted specially for web and mobile users. Interfaces
for JavaScript, iOS and Android are currently available. They come in form of sep-
arate services: Chooser and Saver. Chooser provides a way to embed a Dropbox
sign-in and file selector into a mobile app or a web page. After the user has signed
in and selected a number of files using the Chooser API, temporary download links
are created for the files and returned to the caller app. After the links have been
created, downloading the files does not require any further authentication. A Saver
functions similarly to a Chooser as it provides a way to embed a Dropbox sign-in
button into a web page. With the sign-in button a parameter is included that spec-
ifies a link to the file the user wants to store. Once the user has signed in, they
are prompted to select the location where to save the file and Dropbox servers will
download the file from the link and store it. The advantage of Drop-ins is that they
require no production approval from the Dropbox to be adopted for a wider use.
In addition, apps aren’t granted any actual access to the user’s account but rather
interact with Dropbox services indirectly by using singular file links for download
and upload purposes. Chooser and Picker apps do require a web page to be provided
where the app is hosted and a way to host the files to be uploaded.

In contrast to the simplicity of Drop-ins, the Core API is a REST interface that pro-

5

vides a more wider access to manipulate the user’s account and data store. Dropbox
provides SDK libraries in several programming languages for the Core reporting API
and because the API is HTTP based, a developer community has built libraries on
multiple additional languages to ease the usage of Dropbox’s services. To gain ac-
cess to the account the Core API uses an OAuth 2.0 protocol to delegate access.
During the first use of a Dropbox app based on the Core API, user is redirected to
the Dropbox login page. After login, user is provided with a authorization code that
the app can use to acquire an oauth-token from the server to access the account.
After this the app is authenticated purely using the oath-token that is valid until
authorization is explicitly removed by the user from his account settings. The user
password is kept secret from the app during the authentication process. During the
development, apps registered to use the Core API can’t be authorized by more than
100 accounts. This sets limit on the initial number of people who can use the app.
To remove this limitation the developer has to apply for a deployment status for the
app.

Dropbox does not specify any annual bandwidth or request limitations for apps using
their developer platform, but does reserve the right to do so in case they believe
that the app is having a negative impact on their services. Dropbox Developer
User agreement does not explicitly forbid apps from using Dropbox in conjunction
with other cloud services [Dro14], but Dropbox Platform Developer Guide warns
that apps used for peer-to-peer purposes won’t be authorized for deployment status
[Dro15a]. Also, creating accounts in bulk is forbidden in Acceptable Use Policy
[Dro15b].

2.1.2 Google Drive

Google made its cloud services available in 2012 under the label of Google Drive
[Pic12]. Google Drive is tied to the users Google account, as all the other services
provided by Google, and can be used by anyone already having a Google account
by simply activating the service. It shares its initial free 15 GB of space with Gmail
and Google+ Pictures and users can gain more space either via referral program or
by buying up to 30 TB directly from Google [Goo15d].

For developers Google offers multitude of different APIs to access the storage de-
pending on the platform and purpose of usage. Web and mobile apps can make
use of Picker and Drive button APIs. These provide a simple way to integrate
file uploads and downloads to a web page using a clickable button interface that

6

is very similar to Dropbox Drop-ins. After clicking the button, the user will be
redirected to Google sign-in. After this, file selection or upload will be dealt with
by the Google interface with the help of a JavaScript libraries tied to the button
and the app will only have to provide links to the files to be uploaded or process the
file download links received from Google Drive [Goo15e]. For Android users Google
offers a special Google Drive Android API which is linked to Google Play services
client libraries[Goo15b]. Android developers are advised to use these libraries in-
stead of the standard HTTP based libraries as these are integrated to the Android
core libraries. In the case of web or mobile apps, Google+ sign-in based on OpenID
Connect can be used instead of OAuth2 [OID15]. Apps developed with both of these
APIs can also be included in Chrome Web store listings.

For applications that are not based on web or mobile platforms, referred to by
Google as "installed apps", a REST-based API with OAuth2 access delegation is
the only way to go [Goo15f]. The REST API is also available for mobile and web
platforms, although its use is not encouraged over the alternatives. Libraries in
multiple programming languages, including Android and iOS, are also provided by
Google. First-time use of the app requires using a web browser to log in to the
Google account to authorize the app in the same way as with Dropbox. The number
of users the app can have is not limited and developers do not need to apply for
permission from Google to publish the application after the development is finished.
The application does need to identify itself always during the authentication process
using client_secrets token acquired by the developer during the registration of the
app and thus this token must be included with the app. When a user authorizes
the app, the app receives a set of two OAuth2 tokens: an access token and a refresh
token. Unlike Dropbox, the time period an access token is valid is limited to six
hours after which the application must request a new access token using the refresh
token. Google API also supports multiple performance enhancing techniques such
as batching multiple API calls into a single HTTP request and HTTP compression
with gzip.

Googles APIs Terms of Service mentions no limitations of using the account in
combination with other cloud services [Goo15a]. Google has also not specified any
bandwidth limitations for Google Drive, but API requests are limited to 1 million
per day and 10 per second. The supply for OAuth refresh tokens for an account is
also limited and app developers are encouraged to avoid simultaneous usage of too
many refresh tokens in their apps and rather reuse the old ones. Requests for too
many refresh tokens might cause the older ones to expire [Goo15g].

7

2.1.3 Microsoft OneDrive

Microsoft OneDrive, previously known as SkyDrive, launched in 2007 and currently
offers 15 GB of free space to users [One15b]. Additional 15 GB can be obtained
by using a photo synchronization application with the OneDrive. Up to 5 GB
can earned from referrals and a maximum of 1 TB for personal storage can be
purchased from Microsoft. OneDrive is tied to the general Microsoft account and
anyone already registered also has a OneDrive account.

For developers Microsoft offers the similar two fold API choice as Dropbox and
Google. Picker and Saver are Microsoft’s version of the one click web-oriented simple
upload and download APIs and both are available for Android, iOS and JavaScript
platforms [One15c]. The Full OneDrive API [One15d] that is based on REST and
OAuth 2.0 has been redone from the previous Microsoft Live API which is being
phased out [Liv15a]. The aim of the new API is to provide additional features
to developers and to be more compatible with the new programming paradigms.
Official SDKs have have been published recently in multiple languages. Unofficial
Open Source SDKs utilizing the REST interface also exist [PYO15]. OneDrive
for Business uses a separate Sharepoint API that is not yet fully compatible with
consumer OneDrive API, although work is in progress to combine the APIs [RNU15].

Microsoft’s does not limit the use of their services in parallel with other cloud storage
providers but potential unspecified throttling limits are mentioned in the Terms of
Usage of Live SDK [Liv15b].

2.2 OAuth 2.0 based authentication

OAuth is an authorization layer protocol designed to securely authorize third party
applications to gain a limited access to a user’s resources via HTTP. Version 1.0
[RFC5849] of OAuth was published in 2010 and was used to gather experience
for the design of the current version 2.0 [RFC6749] published in 2012. The main
factor in its design was to enable authorization without having to expose the user’s
credentials to outside applications. Other key factors were limiting the scope and
duration of access so that creation of additional accounts or revoking of the old ones
was not needed. Revoking old credentials without having to reset the account is
especially handy in situations were credentials stored by the third-party application
were compromised.

To meet its goals, OAuth uses access tokens instead of the original credentials to

8

authorize, limit and control access to user’s resources. Access token defines a specific
scope, lifetime, and other access attributes that determine how those resources can
be used by the application. The form of an access token is not defined by the OAuth
2.0 protocol, but usually it contains some data and a signature. Clients usually do
not need to care about the form of the access tokens as all they need to do is deliver
it to the server attached to a HTTP-header. Optional refresh tokens can also be
provided by the server. They can be used to refresh expired tokens or gain additional
access tokens and serve as client’s personal credentials to the server, not requiring
user interaction.

Applications using the OAuth scheme to access user’s resources must be registered
beforehand on the authentication server before contacting the resource server. After
registering client identifier and client secrets are created. The form of both of these
is undefined as in the case of access tokens. These are used by the application to
identify itself to the server. Registering usually is done by the user without any
direct interaction between the third-party application and the server. When the
application is registered, two pieces of information must be supplied: application
type (confidential or public) and redirection URI. Confidential applications are ex-
pected to be able to keep client secrets safe whereas redirection URI defines the
address where user’s browser is redirected after initial authentication and autho-
rization. OAuth 2.0 was designed with three common client profiles in mind: web
application that can keep client secrets secured on the server, and installed and na-
tive applications that have client secrets included with them and thus potentially
exposed.

Figure 1: A sample use case of authenticating with Google servers using OAuth 2.0
protocol [Goo15g].

9

Typical initial authorization and authentication sequence with Google servers using
OAuth 2.0 with an installed application is illustrated in Figure 1. The flow starts
in a situation were the app is already registered on the server and client identifier
and secrets have been provided to the app by the developer.

• Application makes an authorization grant request to the authorization server.
The authorization server might be a separate entity or integrated within the
resource server. Included in the request are the grant type, the scope and the
time span of the grant and also the client identifier and potentially also the
client secret of the application.

• User’s browser is directed to the servers sign-in page to authenticate the user
and authorize the grant.

• When user has logged on and authorized the grant, the authorization server
creates an activation code that user provides to the application.

• This code is then used by the application to request the actual access token
directly from the authentication server.

• If the code is valid, the server replies with an access token and optionally also
with a refresh token.

• After receiving the access token, the application can use it to access the re-
sources on the server as long as it remains valid.

The communication between the application and the authentication server must
be secured, but the details are once again left open in the OAuth 2.0 specification.
Authorization via grant request is not the only way to acquire access tokens. OAuth
2.0 defines three other possible ways to authenticate. In implicit mode, instead of
a grant phase, an access token is immediately returned when the user has logged in
and authorized the request. The advantage of this is that it simplifies the procedure
for interactive web apps relying on technologies such as JavaScript to handle the
flow. On the flip side it can make the access token easier to extract by the user. In
password authentication, the application can authenticate directly using the user’s
account password. This exposes the user’s credentials to the application but is still
useful way to keep them secret from other parties because the application does not
need to store them anywhere as it can use access tokens after initial authorization.
Alternatively, the application can use its previous credentials to the server (such

10

as a refresh token) to authenticate and request new access tokens with a similar or
more limited scope.

2.3 Official apps and REST APIs

Dropbox, Google Drive and Microsoft OneDrive all provide users with apps to syn-
chronize files between the cloud and local storage on multiple different platforms
[Dro15e, Goo15c, One15a]. Basic principle of use is very similar across all the three
apps. Once a folder is created as a mount point for the file system, the app runs
in the background of the user’s system and autonomously or semi-autonomously
downloads files from the cloud or uploads files to the cloud to make sure that both
locations have the exact same copies of the files. This means that space has to be
used equally on the local system and on the remote host, giving the user no space
savings. These apps are used to provide availability, not for saving resources.

The encrypted protocols used by these apps to communicate with the cloud offer
a wider range of features that are not available for the developers via the REST
APIs. Bulk uploads and downloads are used by Dropbox to group transmissions
of smaller files into larger packages to reduce the overhead caused by setting up a
transmission, a feature that is not implementable without server-side support. This
comes handy when large volumes of files are uploaded or downloaded simultaneously,
event most common during initial synchronization run. File compression is another
feature used to reduce the overhead during transmission. Efficiency or inefficiency
of compression is dependent on the contents of the file and Google Drive client uses
smart compression based on content analysis to determine if compression is needed.
Another example of techniques used by the apps to reduce traffic is delta encoding.
It is used by the Dropbox client to track changes made to existing files and only
submit the changed parts instead of re-uploading the whole file. [DBM13]

The REST APIs share many of the same characteristics of these synchronization
apps, but most of the performance enhancing features are not present in them or
in their SDKs. Google Drive API is the only one to currently support compressed
downloads, batched requests and partial downloads of a file. All three also provide
some rudimentary way to track file level changes made to folders and a way to revert
changes to a file, but no way to upload partial changes to files. The REST APIs also
impose some technical limitations on data transfers. Synchronization apps transfer
large files split into chunks with typical size of 4 to 8 MB [DBM13]. This provides
resiliency for transmission errors and lost connections as only the current chunk has

11

to be re-transmitted. In the same way Dropbox and OneDrive have limited the
size of a single file uploads to 150 MB and 100 MB. Files larger than this have to
be uploaded in chunks which in itself creates some connection overhead. Google’s
REST API also supports chunked uploads but does not enforce it.

3 FUSE - Filesystem in Userspace

Writing a new file system driver usually requires the developer to gain a wide un-
derstanding of the operating system kernel in order to integrate these two. Because
in most operating systems file system operations require kernel space privileges, the
driver has to be either integrated into the kernel code or otherwise loaded to the
kernel space as a module. Developer has to also be meticulous about the imple-
mentation as crashing of the driver could bring the whole kernel down. FUSE was
developed to address these issues [FSU15]. It is an abstract file system interface
that enables file system drivers be run in user space. FUSE module itself resides
in kernel space, as any other file system module. There it communicates with user
space libraries delegating kernel space file system calls to user implemented drivers
run in user space.

The perks of FUSE based file systems include easier and faster development. De-
veloper requires no specific insight into writing kernel drivers and only needs to
implement a set of file system operations, the rest is taken care by the FUSE li-
braries. File systems can be written in a plethora of languages and programmers
can make use of each language’s wast array of libraries for their needs without wor-
rying too much about running third-party code in the kernel space. The ease of
development and a great choice of programming languages available has lead to the
creation of hundreds of FUSE based utility file systems. One of the most prominent
ones is GMailFS [Han15] that was originally developed before the launch of Google
Drive, and was used to store files in Gmail’s mailbox. Another example of a typical
FUSE project is rar2fs [RAR15] that makes possible to mount rar files as file systems
that can read and written on the fly as they were regular folders.

The high level of abstraction makes the drivers also platform independent. The same
drivers can be used in any system that has FUSE ported on it. Currently FUSE has
been independently ported into multiple OSes, such as Linux, Mac OS X, BSD and
Solaris [FUO15]. Support for Windows is currently still a work in progress. Because
Linux was selected as the test bed for this thesis work, rest of this document will

12

mainly discuss the usage of FUSE as it is implemented in Linux kernel.

3.1 Virtual File System

Virtual File System or Virtual File system Switch is an abstract file system interface
layer found in Unix like kernels [BC05]. Many other OSes have similar layers such as
Installable File System in IBM OS/2 and Microsoft Windows. The mission of VFS
is to provide a singular standardized interface for all file operations. In Linux VFS
resides in kernel space above the different file system modules as the first layer where
file system calls are handled. Modern operating systems have support for hundreds
of different file systems used for different purposes. If each of those file systems had
their own interface specifications, adding support for them in the kernel would be a
mess. Instead, VFS specifies a common interface along with common POSIX calls
that all file system modules must adhere to in order to be able function with VFS as
a part of the OS kernel. Now the file system modules are used totally independent
from how they are implemented.

Figure 2: Progression of a file system call in kernel space.

In VFS paradigm applications make POSIX standardized file system calls via C
libraries such as open() and read() to the kernel and its VFS interface. VFS either

13

handles those calls independently or redirects them to the right file system module
based on the information that it has about the file’s mount point and its file system
type and the file system’s module. VFS in Linux is responsible of organizing the
interaction between file system calls and their implementation. VFS also participates
in path lookup operations and keeps memory caches related to open or previously
accessed files, most important of which are inode and dentry caches.

The VFS’s common file model treats both files and a directories as file objects
defined by a specific file data structure. When a file or folder is opened, a file
object is created in the kernel memory. This object has a standardized structure of
metadata relevant to the access of the file, including process ownership information
(GID, UID) and the current access offset. It also contains a shortcut pointer to
common file operations (write(), read(), seek(), etc.) implemented by the kernel
module responsible for the file system where the file resides in. The file object also
contains reference to the corresponding dentry object.

In the same way as file objects, dentry objects can only be found in kernel memory
and they have no disk based manifestations. They are created during path resolution
for the actual item being accessed (folder or file) and also for each item along the
path (folders). Dentries connect path items into the corresponding inodes and also
contain pointers to the previous and next dentries along the path. Dentry operations
are usually implemented only by the VFS, although they can be overwritten by the
file system kernel module. Dentries remain in dentry cache even after they are no
longer acutely needed, as long as there is available space. They are marked free so
that the data in them can be overwritten when creating an another dentry.

Figure 3: Common file model of the VFS.

Inodes are used to index and identify files and folder in ext2 file system. Because VFS

14

was designed with ext2 file system specifically in mind, VFS uses inode objects
to uniquely identify files that are actively used. Inode objects loaded into kernel
memory form an inode cache. Files opened by multiple processes could have multiple
file objects but only one inode object. For very different file systems, like NFS or
FUSE, that do not use inodes, this creates compatibility problems. To circumvent
the problem, modules for file systems without inodes must emulate inodes and inode
operations when used in conjunction with VFS [BC05]. In addition to attribute
and block location data found in on-disk inodes, inode objects in VFS also contain
pointers to inode operations defined by the file system module. Because inode
objects duplicate some of the on-disk inode data and changes to active files are first
made in memory, inodes on the disk have to be regularly updated based on the inode
objects.

VFS participates in the mount process of a new file system by creating a superblock
for the mounted file system and by populating it with data received from the module
responsible for the file system. A superblock represents the file system instance and
it contains metadata for the file system such as block size, quotas and file system
type. File system type reveals information about which module is responsible for
handling file system calls for this superblock and it also contains pointers to the
functions responsible for its operations in the module. Not all operations need to
be implemented by the file system modules, some have default implementations in
VFS itself that can be used if no pointers are defined. Together superblock, inode
cahe, dentry cache and file objects form the framework in which all file operations
in the Linux are processed.

3.2 FUSE in Linux

FUSE consists of two main parts: a kernel module (fusefs) and userspace libraries
(libfuse). In addition, FUSE comes with its own mount utility (fusermount). Since
the mount() system call is a privileged operation, fusermount is installed with setuid
root, acting as a helper program in the mount process. fusefs resides in the kernel
space and implements VFS interface as any other file system module and is therefore
not different from any other module from VFS’s perspective. It provides VFS a set
of functions to handle the system calls directed to a mount point that is registered
to a FUSE module in VFS’s superblock. It also deals with providing VFS the data
and metadata that it requests. The difference is that all the actual data and some
of the metadata manipulation is done in user space by the user space file system

15

[KL09].

When FUSE module is loaded for the first time with VFS and the rest of the
kernel, it creates a character device interface /dev/fuse that is used as the means
of communication between kernel space module and the user space libraries. When
a new user space file system is mounted, it calls fuse_main in fuselib. fuse_main
will subsequently call fuse_mount() that will execute fusermount as a new process,
after first creating a unix socket to communicate with it. Unlike libfuse, fusermount
is run with root privileges which it uses to open /dev/fuse and to register the file
system. /dev/fuse file descriptor is used as a fusefs specific parameter and FUSE
as the file system type in the mount call. VFS will create a superblock for the file
system with the help of fusefs. fusefs associates the minor device number of the
fuse device (/dev/fuse) with the mount point. Before fusermount exits, it will then
return the device’s file handle back to libfuse via the open unix socket. When the
mounting is finished, the user space file system application will call fuse_loop() to
fork itself as a daemon process. This daemon will then move to read character device
/dev/fuse in blocking mode waiting for file system calls directed to it by the kernel
module. [KL09]

Figure 4: The delegation of file system calls in FUSE based file system.

For developers FUSE offers two operational modes. In fuse_lowlevel user space file
system has to deal with all the requests arriving from VFS as real file system module,
including inode management and path resolution. In fuse_operations a more high

16

level approach is provided where the user level file system only has to implement
a subset of POSIX compatible callback functions. Everything else, including inode
management and encapsulating the responses to the correct structure, is done by
libfuse.

3.3 Key mount options and features

In addition to the more common mount options, FUSE libraries come with FUSE
specific mount options that can drastically change the way in which FUSE operates
and communicates with the VFS and the user space file system. Most crucial are
the ones that modify the caching policy in kernel space and designate how the data
is moved between kernel space and user space.

-s (single thread mode)

By default, FUSE runs in a threaded mode causing each request to create a new
thread. Running fuse in a threaded mode enables parallel processing and makes sure
that the file system won’t hang up while processing a request that takes a long time.
FUSE naturally blocks concurrent write access to a single file, but beyond that it is
the file system developer’s responsibility to make sure that his file system is thread
safe. This means keeping track of the request ordering to avoid race conditions where
it matters and implementing locks to those parts of the code that are not considered
thread safe. Single thread mode allows to circumvent the hassle of creating a thread
safe file system, but makes the user experience a much less enjoyable, as a single
prolonged read could lock up the whole file system so that even directory traversals
are not possible.

direct_io

By default, FUSE uses kernel’s page cache to save data requested previously and
does not redirect requests to client file system if the data is found from the cache,
therefore avoiding unnecessary context switching. While this is efficient in most
cases, the paradigm runs into problems in some specific scenarios and might be
nonoptimal in others. If the data on the client file system can be changed from
another host, which is common in network based file systems, kernel cache could
get out of sync with the file system. Page cache only gets flushed during opening

17

and closing of files or when a specific flush() call is initiated from the OS. Another
problematic scenario arises when the internal block size used by the client file system
does not match the size of requests issued by the FUSE kernel module. If requests
are smaller than the block size of the file system, it will force the file system to
keep its own internal buffers and caches where to store data between partial reads
and writes which will result in redundancy and could double the memory usage.
direct_io mount option disables page cache for the file system making sure that
each system call will actually reach the user mode file system.

max_readahead

FUSE also support readahead functionality of the Linux kernel that implements a
data prefetching policy. When a read system call targets a certain data offset in a
file, it will also trigger read requests for additional n following bytes in the file. The
data acquired this way gets stored in page cache of the kernel and is more promptly
available when those regions of the file are read. The number of bytes to prefetch
is determined by the kernel, but can be limited by the user when mounting the file
system. In kernel versions 2.6.22 and earlier, upper limit for this number was limited
to 128 KB by FUSE.

big_writes, max_write, max_read

The number of context switches made when moving data between kernel and user
space is directly related to the unit sizes of the data transferred. By default, FUSE
writes data kernel memory page at a time which in i386 systems means 4 KB. This
value can raised up to 32 pages or 128 KB in Linux kernel version 2.6.26 and newer
by enabling the option big_writes. 32 pages is a limitation coded into the FUSE
kernel module and setting larger values would require changes to the kernel module.

Similarly, in 2.4 kernel versions reads were limited to 4 KB by default and large_reads
option was required to enable larger reads. In kernel versions 2.6 onward FUSE lets
the kernel decide the size for read operations by default, retaining still the upper
limit of 32 pages. Users can modify the size of reads and writes inside these limits
with max_read and max_write options. The Linux manual page of FUSE contains
a hint that the 32 page upper limit might be removed in the future releases [FUM15].

18

default_permissions, allow_other, allow_root

By default, FUSE does not check for user permissions when accessing objects on
the file system as long as the user has privileges to access the actual file system.
Access to the file system is granted only to the user mounting the file system and
default setting do not allow even the root user to access the mount point. This
can be changed by setting allow_root and allow_other options during mount time.
allow_other can only be set by the root user, unless configured otherwise in the
fuse.conf file. By setting the default_permissions option, FUSE will enforce file
permissions based on file mode attributes and st_gid and st_uid fields. GID and
UID values for all the objects in the file system can also be temporarily overwritten
with mount options.

3.4 Performance

The main issue with performance in FUSE when compared to regular kernel space
file system modules involves making a context switches when a system call get
propagated from kernel mode fusefs module to the user space file system. In Unix-
like systems, when a application makes a system call targeting a regular file system
module, only a mode switch needs to be made, changing user mode to kernel mode
and back. In FUSE, because the actual file system resides in user space as another
process, both kernel mode and context switches need to be made. Context switching
is much more taxable operation to the performance of an operating system as it
requires saving the state of the previous process from processor registers and flushing
the caches and buffers populated by it.

In addition to context switching, the multi-stage structure of FUSE induces a higher
memory footprint. When data is written or read via FUSE, an additional copy of it
has to be made by libfuse when receiving or sending it via /dev/fuse. In addition, a
third copy of them same data could be made by the user space file system if it e.g.
saves the data on disk by invoking the VFS that will save it in page cache, although
a copy of it already exits there due to previous system call to fusefs.

Another source of potential performance degradation caused by FUSE could be the
result of using higher level programming languages and programming paradigms.
File system modules in kernel are all implemented in C and are usually highly opti-
mized performance-wise. The nature of FUSE as a light weight alternative to writing
file system modules or just prototyping them combined with programming languages

19

or third party libraries with considerable overhead could cause performance issues.
That is not to say that efficient file system could not be written with FUSE.

Block size used in sending and reading data from FUSE file system has a significant
effect on the overall performance as it dictates how many context switches have to
be made when writing or reading a singular file. Comparative performance tests run
as a part of the development of FUSE based HyCache middleware [ZI13] revealed
that the performance can rise fivefold in writing and over threefold in reading when
moving from 4 KB blocks to 16 MB blocks. Performance of the non-FUSE-based
RAMDISK file system remained unchanged due to lack of context switches involved.

Rajgarhia & Ashish [RG10] observed in their paper that the overhead caused by
FUSE is most apparent when in memory performance between FUSE and native
file systems is explored and that in practical implementations the difference is much
more manageable. In their experimental setting they implemented a C and Java
based FUSE file systems that just passed system calls and data it received to the
native Ext4 file system. When compared to to native file system both C and Java
based file systems fared considerable worse in block write test having over 50 %
overhead when file sizes were small enough to fit into page cache. When file sizes
forced the data to be written on disk, disk I/O dominated the performance and
the differences between file systems became non-existent. Same marginal differences
were seen when files were read directly from the disk after flushing the page cache.

Some initiatives to make changes in the FUSE libraries and module alleviate the
overhead caused by FUSE have also been made. As a part of their research on
Gfarm file system Ishiguro developed a a version of fuse kernel module that could
directly write and read data on local disk using other kernel modules [IMO12]. This
required the file to be opened first with the help of libfuse and user mode file system
to receive the file descriptor. The solution would eliminate the context switches and
memory overhead caused by transferring the actual data blocks, which account for
most of the overhead in dealing with large files. In write and read tests of a 1 GB
file, the new FUSE module performed comparably to the native file system with
performance differences in the range of 0-3 % instead of the 20-40 % without the
change.

Voras [Vor06] implemented a Trivially Distributed File System using FUSE and
compared its performance to NFS. They found, similarly to previous results, that
performance was block size dependent. The most optimal configuration for their
setup was the maximum of tested: 32 KB. In addition, they were able to improve the

20

performance of their system closer to that of NFS by implementing compression as a
part of the protocol, showing that improvements in implementation can compensate
for the lack of performance in the framework.

4 Existing distributed file systems built with FUSE

FUSE is used by many distributed file systems to provide user front-end as the
implementation of the file system beneath is not dependent on FUSE. Most clusters
and cluster based storage solutions require complex interaction between servers and
offload much of the complexity into the cloud, but client-centric approaches also
exist. In this chapter we will present three distributed file systems where much of
the logic is situated on the client-side.

4.1 ObjectiveFS

ObjectiveFS is a commercial closed source file system built by Objective Security
Corp to provide a high performance interface to Amazon AWS S3 or Google Cloud
Storage (GSC) [OFS15]. It is built using FUSE and comes with Linux or Mac
clients. It advertises itself as "a shared distributed POSIX file system that provides
persistent data storage among your cloud instances, laptops, containers and office
servers". As with S3 and GCS, the file system is intended mostly for enterprise level
users and comes with a price that is tied to the number of concurrent active mounts
and the level of customer support. ObjectiveFS does not provide any of its own
storage space, but rather requires the user to buy storage from Amazon or Google
and then use ObjectiveFS to build a file system on top of it. Originally the support
was limited to only AWS S3 but has now modularly evolved to also include Google
Cloud Storage and now also allows users to use local object store devices compatible
with S3 API.

ObjectFS is client-centric file system without any of its own components installed
on the end server. It relies on the cloud storage providers on data redundancy and
availability as it does not allow distribution of data along multiple vendors inside
the scope of single file system. Once a filesystem is created, it can be extended with
additional S3 buckets and it also has the ability to allocate itself more space as the
storage needs grow. ObjectFS uses NaCl crypto library to implement client-side
encryption [BLS12].

21

The main selling point for ObjectiveFS is its performance. The filesystem is jour-
naling based and supports concurrent reads and writes that are immediately synced
to all sources accessing the filesytem. To achieve better performance ObjectiveFS
spawns multiple concurrent connections when reading or writing a file. It claims to
achieve near HDD speeds, although this is dependent on the scalability of the end
storage servers as the number of concurrent connections is limited by the capabili-
ties of the object store back end. The file system also uses in-memory caching with
optional disk cache and write bundling with smart compression when uploading files.

Figure 5: Performance claimed to be gained by ObjectFS by spawning multiple
concurrent connections when transferring large compressed files [OFS15].

4.2 P2P-FS

P2P-FS is a project launched in 2007 by Dhruv Matani to build a file sharing
network for computers connected inside the same LAN [Mat15]. It uses FUSE as
its front end to mount the file system and access files shared between known hosts
in the network. To mount the file system, users have to configure addresses of
known computers already in the network and list the directories in their own local
storage that they want to share with the others. Files will appear to the file systems
of interconnected users sorted into directories by the hosts where they are stored,
resembling a workgroup-like file sharing scheme. Although the file system itself is
available for multiple users to use at the same time, the access is read-only and
therefore it avoids most of the problematic issues related to concurrent usage.

22

P2P-FS uses a custom P2P protocol to share metadata of both hosts and files. It
also uses MD5 hashes to enhance file distribution. Upon mounting the file system,
the local client sends information of its shared files and their hashes to all the other
hosts listed in the configuration file. Others respond with their lists and propagate
the original message to other hosts known by them. The other hosts will also send
their shares to the new node unless they have already done so. When a host receives
the metadata from other hosts it will use it to build three data structures: a list of
known hosts, a list of known files indexed by their location and a list of known files
indexed by their MD5 hashes. The MD5 hashes are used to identify duplicates from
multiple sources. When a user wants to access a file that is available from more
than one source, simultaneous requests can be sent to all the hosts to download
the file, providing more bandwidth for the download. This can be beneficial when
prefetching data form the file beyond the original offset as the filesystem also utilizes
a built-in readahead policy.

The effectiveness of the readahead policy is monitored on a file object basis. If the
file gets too many random, non-sequential reads and the ratio of useful prefetch
requests and all prefetch requests drops below a threshold configured by the user
before mounting, the readahead policy will be disabled for that file object for the
rest of its use.

4.3 GlusterFS

GlusterFS is an open source network storage file system currently developed by
Red Hat, Inc. The file system consists of client and server components. The client
program is used both to manage the storage configuration and to access the storage,
whereas the server components manage their local storage configuration and respond
to requests from the client. Unlike many other distributed file system clusters,
GlusterFS uses no separate metadata servers to coordinate the cluster operations.
A storage node can be any hardware or virtualization-based system that is capable
of running the server software. The client program is used to form trusted storage
pool, a collection servers making up the cluster, by adding and detaching storage
nodes from the setup. The architecture is heavily client-centric. [Glu15a]

GlusterFS support both distributed and centralized storage. The basic storage unit
of ClusterFS is a brick that, in essence, is a folder located in the file system of one
of the server nodes using the node’s local file system for storage. There is no limit
for the number of bricks on a storage node, but for performance reasons, the bricks

23

should be of the same size. Bricks are combined to form logical storage units called
volumes. Volumes are named and can be mounted to create the file system. The
same brick can be part of multiple volumes and volumes can consists of bricks from
multiple different storage nodes depending on the storage configuration.

Because GlusterFS uses no metadata store, the location of the file, i.e. the correct
volume in a file system and the correct brick in a volume, is determined by a Davies-
Meyer hash algorithm referred to as the Elastic Hashing Algorithm [GFS11]. Each
volume and brick inside the volume is assigned a region in the hash space. Then the
algorithm is used to hash the file path to receive a hash that determines the file’s
location in the file system.

Figure 6: An example of what a translator stack could look like on a client and on
a server [Glu15a].

GlusterFS supports configurations with data replication that can be done either on
file level (Replicated Volume) or brick level (Distributed Replicated Volume). It also
supports splitting files into smaller chunks and distributing the chunks to different
bricks (Striped Volume). Data consistency during concurrent file system access from
multiple clients is ensured via lease lock mechanism. Read, write and file descriptor
based leases can be requested from the storage server for file operations.

All the individual functionality in the client and the server is split into basic func-
tional units called the translators. Translators are stacked together in distinct order
to form a directed graph of processing phases. Translators provide the basic features
of the file system both on the client and on the storage node. These features could

24

include file replication, leasing, readahead caching, writeback support and locating
the correct volume or brick inside the volume. Translators can be also used to easily
add new features to the system making the design very modular.

GlusterFS volumes can be accessed trough multiple different interfaces. Originally
the file system was designed to be used with FUSE, but since the publication of
libgfapi the native protocol can also be accessed without the involvement of kernel
or VFS. Other protocols supported are NFSv3, SMB, REST/HTTP, HDFS.

5 Cloud file system implementation

Building a distributed file system requires its developers to address multiple design
issues. Some of the main things to consider are what kind of a distribution algorithm
to use, how to structure the file system and what features to implement to ensure
acceptable performance. As a part of our research, we built our own distributed
FUSE-based file system called CloudFS. This sections describes how our system has
been designed and how it implements different features required from a distributed
file system.

5.1 Basic architecture

CloudFS has been implemented with Python version 2.7 using fusepy 2.0.2 library
[Hon15] that wraps Python functions around the base FUSE C libraries. The ap-
plication uses high level fuse_operations framework by implementing subset of the
system calls defined in it. The core of the application is the CloudFS class that in-
herits and implements fuse_operations. When a file system is mounted, a CloudFS
instance is created and passed to the user space FUSE daemon. The daemon will
process systems calls targeting the file system and delivered via /dev/fuse by calling
the object’s methods.

In addition to the main class, the application consists of several other parts needed
for the whole to function. This includes the file system table that CloudFS uses to
track the file and folder structure, to access file object attributes and also to locate
the storage locations of the blocks that make up a file. File cache is used to store
data from recent write or read requests to speed up processing of recurring requests
and is also available to store data from readahead requests. Storage modules are
the components that are ultimately responsible for data storage. They are run as

25

threads and accessed by CloudFS object by sending requests and receiving responses
via queues.

Figure 7: A simplified overview of CloudFS class structure.

5.2 File system creation and mounting

Before the file system can be mounted, it has to be first created with a separate
utility: bootsrap.py. The utility takes as an input a json file that contains separate
parameters for the file system to be created and for all the storage nodes to be
included. Node configuration options only contain two parameters: reference to the
module used for this storage node and the initialization dict sent to the module dur-
ing first initialization. The modules responsible for communication between storage
servers and the file system are always initialized with a dictionary structure con-
taining parameters that are unique for the module in question. Most of the module
and file system options available when creating a file system are optional and the
json used for this purpose can be very simple. Listing 1 shows a json configuration
that would create a OneDrive file system with a limited maximum quota of 1.5 GB
to a folder "cloudFS" on the destination server.

Listing 1: A bootstrapt json for a filesystem with Microsoft OneDrive as the storage
host.

{

"name" : "onedriveFS",

"nodes" : [

{"module" : "modules.fs_classes.onedrive_fs",

"init" : {"max_quota": 1610612736, "path": "cloudFS"}}

]

}

26

The file system creation process might include an OAuth 2.0 authorization step,
unless the user has provided pre-existing credentials as a parameter with the ini-
tialization dict. This would require the user to open a browser and to copy and
paste the link provided by the bootstrap utility to sign in to a storage provider’s
page to authorize the app. After the modules have been initialized for the first time,
the bootstrap utility then requests for the final initialization dicts from each of the
modules. The returned parameters usually include OAuth tokens and might also
include encryption keys. The nodes will then be labelled with unique ids and their
initialization dicts will be saved by the bootstrap utility to the final json file system
configuration file and will be used from now on when the file system is mounted.

Extending the file system with new storage locations after its creation is a trivial task
as the storage locations do not have dependencies between each other. Removing
existing storage location is also feasible, but requires relocating the data on the node
to other locations. Both scenarios are not part of this study.

When a file system has been created and is finally mounted, the first thing that
happens is the initialization of the CloudFS main object with the data provided
in the json file. This step includes the creation of the storage node objects. Each
object is created with a corresponding init dict from the json file and run as a
thread. Once all the objects are created, their connectivity will then be validated by
fetching basic information about the available storage quotas with the df() method.
After the connectivity of the nodes has been tested, the file system table object gets
loaded into memory either from the same json file or from one of the storage nodes.
Finally, cache and write buffer objects are created and other remaining variables
are initialized. When the file system is run in multithreaded mode, all the objects
created at this phase are shared among all the threads. This includes the modules,
cache, file system table and the write buffer.

5.3 CloudFS main class

The main class of the file system consists of a set of methods inherited from libfuse
fuse_operations structure and extended by the CloudFS file system. All the system
calls and also the methods present in fuselib version 2.9.4 and their implementation
in CloudFS are listed in Table 1. Most of the methods do not deal with the end
storage and can be serviced by the main class itself. Thing such as path traversal,
reading file attributes (getattr), relocating and renaming (rename) files can be done
with the help of the file system table object that stores all the metadata related

27

to the file system and is refreshed when the file system is mounted. Even new file
(create) or folder (mkdir) creation is storage independent as it only requires a new
entry in the file system table.

The actual methods that require the help of the storage nodes are the ones directly
involved in writing (write) or reading (read) or the ones that otherwise manipulate
data (truncate, unlink, rmdir, destroy). It is worth noting that unlike in most local
file systems, deletion of files requires the deletion of the data on the servers to free
up the space. A mere removal of the entry from the file system table is not enough.

System calls targeting files and folders and sent by FUSE to the file system use both
file path and a file descriptor to point the target. File descriptor is a unique 64-bit
integer identifier that the file system can return when the object is opened with the
open() or opendir() calls. It identifies the file or directory object while it remains
open and can be helpful when indexing open objects. Its use is in no way mandatory
and our file system uses only the path of the target to find file objects from the file
system table with the help of a specific _resovle_path() function.

System call Function CloudFS implementation
init Initialize filesystem Inits the filesystem and its modules
destroy Clean up filesystem Flushes the write buffer and signals

module threads to exit after checking
for errors

getattr Get file attributes Returns attributes from file system ta-
ble

readlink Read the target of a sym-
bolic link

Not implemented

mknod Create a file node Not implemented (see create() instead)
mkdir Create a directory Adds an object to the file system table
unlink Remove a file Removes the object from file system ta-

ble and queues remove requests
rmdir Remove a directory Removes the dir from file system table
symlink Create a symbolic link Not implemented
rename Rename a file Renames the object in file system table
link Create a file hard link Not implemented
chmod Change the permission

bits of a file
Changes the mode_t attribute in file
system table

28

chown Change the owner and
group of a file

Changes the st_uid and st_gid at-
tributes in file system table

truncate Change the size of a file Removes blocks from file system table
and queues remove requests

open File open operation Not implemented (FUSE deals with
write mode blocking)

read Read data from an open
file

Reads the data from cache, write buffer
or sends a read request to a module

write Write contents of buffer
to an open file

Buffers the write until a full block is
formed, then queues the write

statfs Get file system statistics Returns file system statistics saved to
the file system table

flush Possibly flush cached
data

Sends buffered writes and waits for the
pending writeback operations to finish

release Release an open file Calls flush()
fsync Synchronize file contents Not implemented
setxattr Set extended attributes Not implemented
getxattr Get extended attributes Not implemented
listxattr List extended attributes Not implemented
removexattr Remove extended at-

tributes
Not implemented

opendir Open directory Not implemented
readdir Read directory Returns the full directory listing
releasedir Release directory Not implemented
fsyncdir Synchronize dir contents Not implemented
access Check file access per-

missions if no de-
fault_permissions

Not implemented

create Create and open a file Creates an entry to the file system table
ftruncate Change the size of an

open file
Redirects to truncate()

fgetattr Get attributes from an
open file

Redirects to getattr()

lock Perform POSIX file lock-
ing operation

Not implemented

29

utimens Change file access and
modification times

Makes the changes to the file objects
attributes

bmap Map block index within
file to block in a device

Not implemented

ioctl ioctl - control device Not implemented
poll Poll for IO readiness

events
Not implemented

write_buf Write contents of buffer
to an open file

Not implemented

read_buf Store data from an open
file in a buffer

Not implemented

flock Perform BSD file locking Not implemented
fallocate Allocates space for an

open file
Not implemented

Table 1: POSIX system calls present in fuse_operations
[FUR15] and their implementation in CloudFS.

The threaded design of the storage node objects makes it possible to do data ma-
nipulation operations asynchronously. For example, a file deletion is executed by
fetching the locations of the blocks making up the file from the file system table,
then posting requests to have them removed into the the nodes’ queues. After that
the file entry can be removed from the file system table. In the same way, writing to
a file requires only making changes to the file system table and then queuing up the
request with the data. The main thread can return at this point while the threaded
nodes will continue to execute the request in the background.

Block size used by the file system is configured during the file system creation.
Because the actual size of blocks sent by the FUSE kernel module can be considerably
smaller (max. 4 KB in Linux kernels up to 2.4) than the block size used by the file
system internally, it is practical to buffer the smaller blocks before sending the to
the nodes. Otherwise adding more data to the block would in the worst case require
downloading of the old block and then overwriting it with the new extended one,
causing considerable overhead with each operation. CloudFS buffers writes until a
complete block is formed or the file object is flushed or released.

30

Because of block buffering and the asynchronous nature of write operations running
in the background, extra care must be taken when then file system gets unmounted.
Removing the file system without unmounting it properly can result in data loss.
In proper unmounting, a destroy method is called when exiting the files system.
It will ensure that the file system is fully synchronized by sending blocking exit
requests to all the queues before exiting itself. However, fusermount will not wait
for the destroy method to finish before unmounting and will remove the file system
from mtab (mounted file systems table) if the mount location is not actively being
used. This can cause problems with data consistency, as the file system appears to
be unmounted to the user, but in the background, destroy method might still be
waiting for the file system to synchronize.

5.4 Storage location assignment

CloudFS does not store its files as singular objects, but instead splits them into
blocks. Block-based solution was chosen because it enables more balanced distribu-
tion of data and enables partial data downloads and uploads in cases where only a
certain part of the file is read or modified, instead of always transferring the whole
file. Blocks also enable using multiple nodes concurrently to download or upload dif-
ferent parts of the same file, making use of the combined bandwidth of the different
nodes.

Block distribution policy lies at the heart of distributed file systems as it defines
the way resources are allocated during the download and upload of files. Good
distribution algorithm must supports both the performance and the stability of the
file system. The most crucial part in the performance of CloudFS is the number
of nodes that can be used concurrently during the upload or download of a file.
Because different nodes have different performance characteristics, a sophisticated
algorithm monitoring the throughput of each node could be built to ensure that
each source would be used most efficiently. This approach fulfils the greedy needs
that would provide local maximum for the performance of the file system. This
algorithms would not consider the space limitations that different nodes have and
would result in depletion of resources on the most efficient nodes and thus lead to
performance degradation before the full total quota has been used. Clearly both
speed and balanced space allocation play role in choosing a storage locations for
blocks.

CloudFS uses straightforward algorithm that allocates storage locations solely based

31

on the available space on each node. In addition to the available space on each node,
the algorithm also keeps track on how many blocks have been allocated to each
node during this session. The storage location for the next block is then determined
by dividing the available space on each node with the number of blocks allocated
and choosing the current largest value. This policy ensures equal spread based on
the available space. An intuitive improvement to the algorithm would be to also
make sure that the same location would not appear in succession. In practice, this
approach would load to the same problems of depleting the available resources which
in itself would mean drastic performance degradation at some point, and because it
is impossible to predict at what available space range the file system is mostly used,
the result would provide unpredictable performance levels for the user.

Figure 8: A simulation of effectiveness of four different distribution algorithms. On
smaller factor sizes no 3 following and distribution based algorithms overlap.

Figure 8 show simulations done on a three node system with four different distri-
bution algorithms: CloudFS distribution based (Distribution), modifications of the
CloudFS algorithm where no 2 or 3 concurrent blocks are allowed to be placed on
the same node, and a purely random strategy. The space on each file system is
considered unequally distributed at the start with the factor of F, meaning a split
of F 2 : F : 1 between the three nodes. Metric used to assess the goodness of the

32

spread is calculated using both cumulative and local (100 previous nodes) average
of distinct nodes in the three succeeding node locations. As the figure shows, with
smaller unequal distributions three first algorithms fare more or less equally, al-
though with the factor of F = 2 purely distribution based algorithm fares better
than one of the modified versions, showing that forcing changes to the spread could
lead to non-optimal sequences. As the factor of inequality increases, the modified
algorithms start to initially fare better, but quickly deplete the available space on
the smallest nodes and then drastically drop in performance. The algorithm which
tries to prevent two successive similar nodes from appearing in the sequence also
leads to a worse overall spread when the available space is used to its fullest.

The write method in CloudFS contains the logic responsible for data distribution
and is the only place where it is used. The information about available storage
space on each node is stored when the file system get initialized and is recalculated
whenever file operations have an effect on it. The storage space statistics are not
re-synced while the file system is mounted unless one of the nodes unexpectedly runs
out of space. This means that the distribution algorithm might not have the right
information of available space if the storage location is accessed via other means
while the file system is mounted. Unexpected available storage quota changes can
also appear while the file system is unmounted. Having storage nodes of equal size is
usually the optimal situation performance-wise and might warrant limiting available
space on each node with max_quota module option to ensure this.

5.5 File system table

Figure 9: Directories and files are represented by python dictionaries in the file
system table and serialized to json form when saved.

The file system table is a dictionary based structure that contains file and folder
metadata such as creation date, file sizes and access permissions. In addition to

33

these basic attributes it also contains block location indexes. The folder structure of
the table starts from a root folder dict that has pointers to other file and folder dicts
forming a tree-like structure. Folders and files are mostly similar in structure. A
major difference is the the load field that in folders stores a dict containing other file
and folder dicts in that path indexed by their name. In files the load field contains a
list of tuples corresponding to the locations where the blocks of that file are stored.
The first element of the tuple is the destination or node identifier and the second
one is the block identifier (i.e. file name on the server).

When the file system receives a system call directed at a file, it will first have to
make a path resolution with resolve_path() method that will traverse the folder
structure from the root one element at the time. When the right object is reached
and confirmed to exist, the offset value provided by the system call is then used to
determine the blocks where the requested data resides. Because blocks in CloudFS
are standard sized it is easy to calculate the index to the right tuple based on the
file offset. Completeness of the last block has to be calculated from the file size. To
read the data, a request containing the block identifier has to be sent to the correct
node. The resulting dataset or datasets might need some splitting and/or joining
before returned back to libfuse to meet the block sizes used by FUSE in the request.

When the file system is unmounted, the file system table object is stored on the
disk to the same json file as the file system metadata. It is also possible to select to
store the file system table on one of the cloud servers. It will then be downloaded
when the file system is initialized. Doing this would still require the user to provide
an intial module configuration for the storage location and, in addition, either valid
credentials or the user has to re-authorize the app in order to be able to download
the rest of the configuration. Therefore it is questionable how practical using this
feature would be unless the file size of the file system table grows too large.

5.6 Internal cache and write buffering

One of the common performance enhancing techniques used in network file systems
is data caching. CloudFS also implements an internal cache with the help of a Cache
class. A Cache is a simple hash table cache implemented using dictionaries. It can
be accessed via three methods: put() to store a block, get() to check if a block
is cached and fetch the data and remove() to remove a block. The basic object in
CloudFS cache is a virtual block that is indexed by both the storage node id and the
block id. Objects stored into cache are also connected to each other with backward

34

and forward references to implement a linked list. The size of the cache can be set
during mount time or configured with file system options and the Cache class starts
to implement a FIFO policy when the cache quota is full.

Cache is used to speed up read operations so that each read will not initiate a request
sent to the storage node when block sizes used by the file system are larger than
the ones used by FUSE. The cache is also accessed by the write method to add or
update block data in the cache, truncate method to remove blocks from the cache
when they are removed from the file system and also by the storage modules to
write prefetched data into the cache. Each reference to a block by a read or write
operation also refreshes its location in the cache and moves the block back to the
tail of the list while oldest blocks are located at the root.

In addition to the cache used to speed up read operations, CloudFS also needs a
write buffer to speed up writes. Default build of the FUSE kernel module supports
transferring data to the user space file system in block sizes no larger than 128 KB. If
the user space file system uses larger blocks than this, writing each block would cause
multiple write requests to be sent to the storage node with data in the block growing
by the increments of 128 KB. Without cache it would also require multiple reads to
fetch the previously written data. To avoid multiple write operations, CloudFS also
buffers writes to a dictionary indexed by the storage node id and the block id and
does not send requests to store the data until a complete block has been formed or
until the file is released or flushed.

5.7 Modules and external storage

File system modules connect our virtual file system to the actual cloud data store on
the service providers’ servers. They follow a standardized structure defined by the
abstract class fs_template and have to implement only a handful of basic methods
to do so: read(), write, delete(). In addition, a set of control methods are also
required: init_dict() returns the dict structure that was used to initialize the object
and df() return a set of basic information about the data store, mainly the available
free space and total quota.

File system module objects are created and run as threads when the file system is
initialized based on the initialization dict. Multiple instances of the same module
can exist simultaneously and file system only requires the minimum of one object to
exits to be functional. File system modules do not operate on the structure of the

35

file system table, but rather only respond to requests send out by the main class.

Modules communicate with the main class via two set of queues both unique for
each module object. Because the modules are run as threads, the incoming queue is
monitored by a blocking loop. Once a request gets posted in the queue, the thread’s
main loop, inherited from the template class, will process it and directed it to the
right internal method. Similarly, when the method exits, the main loop redirects its
output to the outgoing queue, if needed. Because requests are delivered via a single
FIFO queue, a race condition is not an issue if the main class makes sure that the
requests are posted in the right order.

When blocks are sent to the modules to be saved on the servers, they are assigned
an identifier by the CloudFS main object. Typically this identifier would be the file
name used to store the block on the storage server and could also be used to retrieve
the block when needed. In practice, this is not always so straight forward. Out of
the three modules implemented, Dropbox conforms to this model as it uses unique
file names as file identifiers and files can be requested via the API using their names.
Google Drive and Microsoft OneDrive assign unique identifiers to the stored files,
enabling multiple files to have the same names. Files are also addressed in requests
with these server-side identifiers and not by their names. This poses a problem:
file names are used as the block identifiers in our file system, but they cannot be
addressed by their name when fetching data.

Both Google Drive and OneDrive provide means to query directory contents for
metadata that can be used to map file names to their server-side ids. Doing this
during each request would induces more lag to operations. To circumvent the prob-
lem, Google Drive and OneDrive modules create and populate special mapping
dictionaries between file names and ids when the nodes are initiated. Another al-
ternative would be to use server-side ids as block identifiers in the file system. This
would cause a non-uniform block id scheme and would require modules to directly
manipulate the file system table or the main program to wait for the modules to
return the assigned id. Allowing direct access to file system table is not desirable
from modular viewpoint and forcing the main loop to wait for the completion of the
request is not optimal when implementing asynchronous I/O functionality to the
file system. Therefore, addressing the mapping between CloudFS ids and server ids
was left for the modules to manage.

Due to this modular structure of the file system, it is easily extensible to new services.
Our basic implementation only includes three modules for three different services:

36

Dropbox, Google Drive and Microsoft OneDrive. Additional modules do not have to
be cloud storage or even network-based. The same framework can used to implement
a method that stores part of the data on disk. It is also easy to implement additional
features to the file system on the modular level. This could include extending
the features of existing modules by implementing data compression or encryption
options.

Because all of our modules use OAuth 2.0 protocol to authenticate with the server,
client ids and client secrets registered for the app at each of the services are also
stored among the modules in plain text. Client secrets are considered confidential
information as they are used to verify the identity of the app. In practice, it is im-
possible to keep them secret in a locally installed app. Even if they were encrypted
or hard-coded to the application code, it would be an easy task to force the appli-
cation to send them to a fake authentication server. Because the authentication is
token based and the apps cannot authorize themselves without an existing refresh
token, this should not be a security issue, as long as users are aware that the app
that they are authorizing is the one they intended to authorize.

Figure 10: An example of the module class structure of the file system with Dropbox
module. Only parameters for the module itself are listed.

5.8 Asynchronous I/O: readahead and writeback cache

FUSE supports Linux kernel’s data prefetching policy known as readahead. It will
fetch blocks immediately following the read block and place them into page cache
anticipating further read requests to follow. The operation of the policy can be reg-

37

ulated with the max_readahead mount option. Setting the mount option direct_io
disables it altogether as FUSE will not use kernel page cache in that mode.

Kernel space data cache has the advantage of avoiding unnecessary context switches
when moving data between user space file system and kernel module. The disad-
vantage is once again in the maximum size of data transmitted between the kernel
and user space file system that is limited to 128 KB in FUSE version 2.9.4. Maxi-
mum block size of the readahead mode supported by FUSE and general block size
of /dev/fuse might change in the future, but they will still dependent on the Linux
kernel version used and can vary between systems. Using larger block sizes in the
file system would result in additional context switches as data is prefetched in the
units of 128 KB while the meaningful block size from the file system’s perspective
is much larger.

Due to the limitations imposed by FUSE and because a internal read cache was
already available, CloudFS was designed to implement its own readahead policy. The
number of blocks to prefetch to cache is configurable when creating or mounting a
file system. Caching takes place when a read system call reaches the read() method.
After sending the original read request, the algorithm checks for the number of blocks
to readahead and queues special cache requests to the appropriate modules before
proceeding to wait response to the original request. Nodes take care of the rest of
the caching process. After downloading the block, it gets automatically saved to
the cache. The policy enables using idle nodes to download data while the original
download is still under way. This kind of a readahead policy is most suitable when
the file is accessed sequentially, in random access scenarios its effects on performance
are less predictable.

In addition to the semi-asynchronous reads provided by readahead policy, CloudFS
also implements fully asynchronous writes. When data is handed to the modules,
the main program will not wait for a confirmation messages from the modules,
but instead exits immediately. Success of the writes is ensured by checking a special
error queue, where modules can post failed writes, at the start of each write and read
operation. If the queue contains any error messages they will be dealt with. This
writeback cache policy ensures that multiple modules can be utilized concurrently
when writing data to single file as a write operation for the next block can start
while the previous is still in progress.

38

Figure 11: A sequence diagram of what happens when a read call arrives at the main
class. After the appropriate node_id and block_id are resolved, a query is made to
the cache. If the cache contains no entry for that block, a request is sent to the the
queue of a file system node responsible for that block. If readahead functionality is
enabled, additional cache requests are sent to the queues of the nodes responsible
for the next blocks. Once the original request is fulfilled, it is read from the output
queue and returned by the main class. Threaded nodes processing the cache requests
send their data directly to the cache after they are finished.

5.9 Security: Access control and data security

FUSE provides means to implement file system specific access control by providing
access() method that gets be called before file objects are accessed. CloudFS does
take use of these features to implement its own file access control scheme. By default,
the mounted file system is only available to the user mounting it, but the access can
be expanded to other users with the allow_other mount option. CloudFS file system
does store st_uid and st_gid attributes associated with file objects and enabling
default_permissions mount option will make libfuse enforce access policy based on
these fields. Using the file system from another computer might make uid and gid
attributes not compatible with the local system, but these can be overwritten during

39

mount time.

Data security on storage servers and during data transfer is the responsibility of
the individual modules serving the needs of the main file system. CloudFS itself
is oblivious to the module level data encryption services provided which makes
extending and customizing the security features easier. The information needed to
implemented the encryption can be provided in the module specific init initialization
dicts which could include attributes such as public and private key pairs. As a
proof of concept, we implemented a data encryption option to our Dropbox module
using simple-crypt library [Sim15] which itself makes use of PyCrypto cryptographic
libraries [Pyc15]. Simple-crypt uses only a single password do encrypt and decrypt
the data. The password is automatically created when the file system is created and
is stored as a part of the node initialization dict. Data sent to a node based this
module is then encrypted on a block level before sent out to the cloud.

Implementing block level data encryption also solves the need for data security
during transfer, but even without it multiple existing libraries can be used for this
specific purpose. Dropbox, Google Drive and Microsoft OneDrive SDKs all use
urllib2 and ssl modules to create encrypted HTTPS connection to transfer the data.

5.10 Concurrent usage

CloudFS does not support simultaneous usage of the file system from multiple dif-
ferent sources as there is no built-in way to share changes to the file system table
or to lock blocks on the storage nodes for modification. To make sure that the file
system is not mounted from multiple locations at the same time, it implements a
storage node locking mechanism. Upon initialization of the storage nodes, the files
system will attempt to write a .lock file to each of them. As the folder structure of
each end storage location is flat, a .lock file in the destination folder signifies that
the node is already mounted in a file system and subsequent mounting operations
will exit until the .lock file is removed.

File systems such GlusterFS are able to implement read and write lease locking
schemes thanks to the fact that both client and server software have built-in support
for it. Without server-side support, implementing universal read or write locking on
CloudFS would be a costly task involving a lot of additional file operations on the
destination servers.

On local level, CloudFS is made thread safe by using Lock synchronization primitives

40

to ensure that thread unsafe code gets accessed only by one thread a time. There
are two main operation types that require locking. First, operations on the file
system table have to be atomic to keep its contents consistent and therefore access
to it is limited to one thread at a time regardless of if any modifications are made.
Secondly, read or write operations must retain ordering when sent to nodes after the
file system table has been accessed. This means that once the block indexes have
been added or read from the file system table, the thread is guaranteed to send the
read or write request to the correct node before any other thread. After this point
the natural ordering in the queue makes sure that requests retain the right order.
Implementing these locks makes the system runnable in threaded mode.

5.11 Error processing and recovery

The asynchronous nature of the I/O creates problems with data integrity as network
connections is prone to errors. Depending on the error type, storage modules im-
plement a timed retry policy for a given number of times before returning an error.
Read errors are straightforward to handle as all direct reads are done synchronously.
Failed cache request can be just ignored as they do not directly effect the function-
ing of the file system. When an actual read operation fails, the module in question
returns an error message via return queue. This will prompt the read method to
return the proper POSIX error code corresponding to the error.

The real problem is associated with failed writes. Asynchronous writes cause prob-
lems because multiple operations can occur in-between before an error is spotted.
Write errors get logged by the file system modules into a special error queue that
the CloudFS main object checks at the beginning of each read and write operation
and also when the file system gets unmounted. The default behaviour when a write
fails is to try to relocate the block into another node. If this also fails, as a last
resort, the block is saved to local disk and a recovery is attempted and the user is
notified when the file system gets mounted for the next time. Users can configure
how many requests can be queued at the same time for one node, thus reducing the
work that a recovery from a serious error might need.

41

6 Performance measurements

Network file system performance is largely dominated by the lag and bandwidth
limitations of the link and the end servers. Although FUSE based system suffers
from overhead caused by switching between kernel and user modes and from the
internal metadata management to keep the system consistent, the design of the file
system seeks to utilize the combined resources of multiple connections to overcome
these shortcomings. In addition it implements a set of features that include a read
cache, write buffering and readahead functionality to gain additional performance
benefits.

To assess the way in which solutions made during the design of CloudFS paid off and
to gain a general understanding of what are performance characteristics of a such
a distributed storage system, a series of tests were performed. The file system was
tested in multiple different use cases and data configurations. The areas measured
did not just cover general performance characteristics of the system as whole, but
also different parts of the system in an effort to gain a deeper level of understanding
what are the bottlenecks. These goals were met by running separate tests for the
storage services directly via their APIs, running tests on CloudFS with different
single node configurations and finally running tests on the system as a whole, but
with varying feature sets, such as different block sizes and storage size distribution.

6.1 Setting and methodology

The tests were run in a Ukko cluster of the Department of Computer Science of
University of Helsinki. The cluster ran a generic Ubuntu based Linux kernel version
3.2.0-95 with libfuse version 2.8.6. Python version 2.7.3 with fusepy version 2.0.2
were used as the framework for running CloudFS.

All the data sets used in the tests contained randomly generated binary data. The
data sets were preloaded into memory before running the tests to eliminate the
possible effects of disk operations that were not in interest of this study. Data sets
themselves consisted of files of different sizes ranging from 4 KB to 1 GB and were
used in different numbers during the testing. Each test was run three times and the
average of the runs was reported in the results.

The connection to the cloud servers suffered some instability during testing and
transmitting individual files. Modules used during testing contained transmission

42

retry counters and tried to resend the same file up to five times before raising an
error. In case of an error, the test was rerun, but the number of retransmissions
occurring during the testing was not otherwise monitored.

Standard Python libraries from all three Vendors: Dropbox, OneDrive and Google
Drive were used in the trials. Modifications had to be made to the OneDrive li-
braries to ensure that in-memory data object could be passed directly to it. The
default interface only accepted file paths which the libraries would then read into
memory themselves. The modifications were minor and a template for object pass-
ing interface already existed in OneDrive’s libraries, but was not fully implemented
for reasons unknown.

Run time of the tests was recorded with Python’s inbuilt time module from an
external script responsible for loading the files into memory and running the tests.
When timing CloudFS performance, the measurements were continued until the
process exited after unmount operation, as this ensure that all of the ongoing write
operations were synced. In each of the tests, the measured transmission times were
converted into bandwidths (KB /s) based on the size of the data transmitted. This
was done to make comparisons easier between tests. It is worth noting that numbers
on the figures do not represent the actual throughput of the network connection
unless specified otherwise. In addition to measuring the time spent in completing
the operations, Wireshark network protocol analyser [Wir15] was used to extract
further details and to profile the link usage.

6.2 Direct I/O without FUSE

First, to establish the raw performance of the REST interfaces of the three cloud
services, test were run without the involvement of CloudFS or FUSE. Official Python
libraries provided by Google, Dropbox and Microsoft were used to run a series of
sequential read and write tests. Files of different sizes and different numbers (1 GB,
16 MB, 10 x 1 MB, 25 x 4 KB) were used to mimic the different potential block
size configurations that could be used in CloudFS to measure in which way the
performance of the REST interface is file size dependent even without involvement
of FUSE.

The results in Figure 12 show that Google performs best in most scenarios and
especially dominates the others in write speeds to the cloud. Google Drive’s write
speed even outperforms its own read speeds, even though with other clouds write

43

Figure 12: Performance of three different cloud services during direct sequential
write (W) and read (R) tests using official Python APIs.

speeds tend to be about double of that of the read speeds. File size also has a
considerable impact on the overall performance. Although the performance drop
when moving from 1 GB to 16 MB is a moderate one, and Dropbox seems to
even gain small performance boost, the change from 16 MB to 1 MB lowers the
performance with a factor of 2-4 across the board. Moving further to the file sizes
of 4 KB, previously the default read size in FUSE, the speeds drop down to few
kilobytes, as setting up the connection and round-trip delay between transmissions
takes up most of the time.

The trials were also monitored with Wireshark to track the addresses of servers
contacted during data transmission and to profile the link usage during. GeoIP
database service by MaxMind [Geo15] was used to establish a geographical location
of the IPs monitored during the tests. Microsoft and Dropbox both used servers in
USA to manage communications and to receive and send the data. Google delegated
the file transmission operations to multiple servers during the tests and the servers
could change even during the same test run. All of the Google’s servers were located
in Ireland. The much shorter geographical distance between Finland and Ireland
could at least partially explain the much better performance of Google Drive during
the tests.

Wireshark was also used to profile the traffic flows among different cloud services.

44

Figure 13: Transmission profiles of uploading and downloading 1 GB file with three
different APIs.

The traffic profiles recorded during one of the test runs and visualized in Figure 13
shows that Google and Dropbox both maintain a steady flow of traffic between the
client and the server, whereas OneDrive’s uploads progresses in bursts followed by
a pause. The bursts correspond to the 60 MB chunks used to upload the 1 GB file.
The pauses are caused by the Python client waiting for REST API level confirmation
message from the server to make sure that the upload was successful for each chunk.
Only after receiving the confirmation the TCP connection gets closed and a new one
is opened. The raw transmission speed of OneDrive matches that of Google Drive,

45

but the long pauses ranging between 10-20 seconds slow down the total progression.

The confirmation messages are not only related to chunked uploads, but are required
for all uploads. Downloads are not affected by the pauses as they do not require
confirmation messages from the server. The length of the pause is tied to the size of
the uploaded data object, but in general, uploading larger objects seems to be more
cost effective. OneDrive also supports asynchronous operations. This would require
implementing concurrent queue management inside the module, a feature that was
not implemented during these trials.

6.3 CloudFS with a single node

Tests with a single storage node were run to provide a comparison point between
using Python REST libraries directly and using a FUSE based CloudFS system
without any improvements other than basic read caching and write buffering. Sin-
gle node configurations were made for all three cloud storage providers separately.
Varying block sizes of 32 KB, 64 KB, 128 KB, 256 KB, 512 KB, 1 MB, 4 MB and
16 MB were used during testing to inspect how the performance scales with object
sizes. The tests were run using two separate file configurations: multiple 1 MB files
and a single 16 MB file that was replaced by a 1 GB file for block sizes of 4 MB and
16 MB. The tests themselves contained the same basic sequential write and read
scenarios as the direct I/O tests.

Results from the tests shown in Figure 14 highlight how block size dependant the
speed of the file system is. Both write and read speeds continue to grow with every
doubling of the block sizes. Although the actual numbers fluctuate, most of the
increase up to the block size of 1 MB in both writes and reads in the single file write
tests is in the range of 50-100 %. At the top end of 16 MB, the interpolated relative
growth is more modest ranging from 6-42 % for writes and 7-42 % for reads with
the doubling of the block size.

The absolute difference between write speeds of 1400-1200 KB/s at 16 MB and 600-
200 KB/s at 1 MB is huge, but it only manifests itself in scenarios where large files
are read written in sequence. If the read operation accesses a file only partially,
large block sizes could cause a lot of overhead to the operations. In Figure 15 read
and write times for accessing only a single block from the file are calculated. The
Figure shows that increased speed gains are not enough to compensate the larger
volume of data transmitted in this scenario.

46

Figure 14: Performance of three different cloud services in a single node CloudFS
setup with sequential write and read tests. Results from 16 MB (upper) and 1 MB
(lower) direct I/O tests are shown with a dashed lines for easier comparison.

Figure 15: Single block write and read times calculated based on the results in
Figure 14.

Figure 14 also shows a noticeable performance difference between CloudFS and
direct writes. Both in read and write operations CloudFS speeds lag behind direct
I/O, yet some source related differences do remain. The difference is also generally
larger with larger block sizes. The source of the difference in a single node system

47

could be either related to the overhead caused by the CloudFS code or the context
switches caused by the FUSE kernel module.

To assess the possibility of the latter reason, test were by using max_read and
max_write mount options to force the FUSE to use internal block sizes of 4 KB
in transferring data between the kernel and user space. This could result in the
increase of context switching with the multiple of 32 when compared to the default
setting of 128 KB. Results from these tests are show in Figure 16 together with the
results from the standard tests.

Although a slight systematic difference is visible throughout most of the trials, the
difference does not noticeably increase with block sizes and is too small to lead to
the conclusion that contexts switching is the main reason why CloudFS performs
less efficiently than direct I/O. The main reason is likely related to the overhead
caused by the increased processing within CloudFS code.

Figure 16: Comparison between read and write tests run on single node CloudFS
file systems with FUSE internal block sizes of 128 KB and 4 KB.

6.4 Full CloudFS setup

6.4.1 Sequential I/O

The full CloudFS configuration consisted of three nodes, one for each of the cloud
services. The storage quota for each node was artificially limited to 1.5 GB to ensure
a balanced spread with the distribution algorithm. Both writeback and readahead
features were used with readahead set to 2, meaning that two additional blocks were
prefetched with read requests. Otherwise the test setup was similar to the single

48

node scenario. Varying block sizes of 32 KB, 64 KB, 128 KB, 256 KB, 512 KB, 1
MB, 4 MB and 16 MB were used during testing and tests were run by sequentially
reading a single file – 10 MB for block sizes of 1 MB and below and 1 GB for larger
blocks.

Figure 17: Performance of a three node CloudFS with readahead and writeback
enabled. Theoretical upper limit and combined best results from single node trials
are drawn as a reference with dashed lines.

Figure 17 has results from the trials and also contains two references. The best result
for each of the blocks sizes from single node trials is shown in gray and the worst
result from those trials multiplied by three is shown in orange as the theoretical
maximum. Even in theory the maximum speed that a combined CloudFS setup
could have is the speed of the slowest node multiplied by the number of the nodes,
assumed that all of the nodes are used equally. The actual performance of the full
configuration is considerably hindered by the speed of the slowest node, both in
write and read operations. Only at the highest block sizes CloudFS breaks free of
this ceiling. In parts where theoretical maximum is not hindering the performance,
the full configuration fares clearly better than the best single node configuration,
showing that combined resources of the multiple sources can be used to speed up
the operations.

6.4.2 Sequential I/O without readahead or writeback

For comparison, the same tests were also run with writeback and readahead disabled.
The results in Figure 20 illustrate the difference, as CloudFS without these feature
would just match the average of all the nodes run separately. Read speeds seem
to gain more boost from readahed cache than writes from writeback cache when

49

Figure 18: Performance gain achieved by running CloudFS with readahead and
writeback enabled.

moving to larger block sizes. This makes sense when considering the way write
operations differ from reads in CloudFS. Read requests are sent out immediately
when the first requests arrives, even if only a part of a block is accessed. The first
read also triggers readahead operations for the next blocks. Subsequent reads can
then be served from the cache once the firsts read has finished and in the best case
scenario the following blocks are also already found in the cache. Unlike reads, write
requests will be buffered until a complete block is formed and only then a request is
put into an outgoing queue. This means that a delay is caused when partial chunks
of data arrive to the CloudFS before the requests gets actually sent. With larger

50

block sizes the delay is also larger.

6.4.3 Sequential I/O with unequal storage quotas

All of the previous combined tests were run with a setup that limited the storage
quotas on each of the links to equal sizes. In reality, storage space offered by each
of the clouds varies naturally and is also dependent on other files stored on user
accounts bypassing the CloudFS. In order to compare how the systems performance
characteristics change when the storage nodes quotas change, tests were run by
limiting the space available on each node with the factors mentioned in Chapter 5.4.

The storage nodes for smallest and largest available space were selected by their
performance in single node tests. In scenario 1 (GDO), the best performer Google
Drive had most space and weakest performer OneDrive least. In Scenario 2 (ODG),
the roles were reversed. A separate run where all thee storage services had their
unlimited maximum storage spaces (Dropbox: 2.5 GB, Google Drive: 15 GB, Mi-
crosoft OneDrive: 15 GB) made available was also included. Tests were run with
both readahead and writeback enabled. The tests were only run with block sizes of
4 MB with a 1 GB file as an input.

Figure 19: Sequential write (W) and read (R) tests for unequal storage quotas for
scenarios 1 (GDO), 2 (ODG), balanced setup and unlimited natural quota scenario.
Performance in relation to the basic balanced scenario is shown in percentages atop
of the bars.

Figure 19 shows the results from all of the tests. In scenario 1, where Google
is the main storage cloud, results show a considerable performance gain over the

51

standard balanced setup. Especially the write speeds have gained a boost. This
is not surprising when considering that Google had the best write speeds of all the
services and in balanced setup OneDrive’s write performance slowed down the whole
system. Setup GDO_F2 is also closest to the optimal spread according to the single
node speed tests which shows in the fact that speeds start to fall when reaching a
more imbalanced setups of the same scenario.

Scenario 2 shows steady drops in performance as OneDrive’s role is increased. Drops
in both writes and reads are relatively equal which differs from scenario 1. The
natural setup where full free space of all of the clouds was utilized according to
their quotas shows a 16 % drop in read speeds and 28 % drop in write speeds. The
difference in essence is that the role of Dropbox as a storage destination is reduced
and replaced by OneDrive and Google Drive. The drop in speeds thus signifies both a
loss of concurrency and also replacing a better performing node with a less optimal
one. The greater drop in write speed is surprising as the write speed difference
between Dopbox and OneDrive was smaller than in read speeds. It might hint that
the loss of concurrency in general effects write speeds more than read speeds.

6.4.4 Random reads and readahead caching

Readahead caching clearly speeds up operations with sequential reads, but file access
is not always sequential. In random access scenarios readahead might even reduce
the performance as unnecessary file blocks might be downloaded without never being
used. To inspect the performance of CloudFS’s readahead functionality in a worst
case scenario a backwards read test was run with readahead = 2 policy set. In
the test, every third block was read from a single file sequentially backwards. This
caused every readahead requests to become futile as both of the two blocks fetched
were skipped. The test files used were again 10 MB for block sizes of 1 MB and less
and 1 GB otherwise.

Results from the tests show a stable loss of throughput across all block sizes, ranging
between 35 – 62 % when compared to the file system run without readahead. This is
comparable to the increase in performance when running the system with readahead
in normal sequential read scenarios where the gain in speed ranges between 46 – 66
% on block sizes of 1 MB and lower, and 81 – 125 % on block sizes of 4 – 16 MB.
This means that with larger block sizes speeds roughly double when switching off
readahead in worst case random reads scenario and double again when switching it
on when moving back to sequential reads.

52

Figure 20: Performance of readahead in CloudFS with worst case random reads
scenario.

The overhead caused by the readahead policy in single client random reads is tied to
the imbalance in the speed and storage quotas between different nodes. Differences
in these two measures might change the results significantly. E.g. if all nodes were to
provide the same transfer speeds and the distribution of storage were equal between
the nodes and the ceiling of the network link would not have been reached, readahead
should not effect performance in a negative way even with random reads. All nodes
would finish their downloads at the same time and even if the prefetched block
would not be used, the user would not see any difference in speeds when compared
to non-readahead scenario.

7 Future considerations

Tests in the previous chapter have shown that in its current configuration CloudFS
functions at an acceptable levels of performance making good use of some of the
basic performance enhancing techniques employed in it. At the same time it has
been made clear that improvements in some areas are badly needed. In this chapter
we present some of the findings from the previous chapter and propose changes
to be made to improve CloudFS in the areas of prefetching, data availability and
concurrency.

53

7.1 Improved readahead

Results from readahead tests showed that the functionality is highly beneficial for
operating the file system, but at the same time its efficiency is high dependent
on data access patterns. In highly random reads it could even degrade performance
which leads to the conclusion that there should be a policy of enabling and disabling
it. Because it is not sensible to assume that the user could decide on mount time
what kind of access patterns he will mostly use with the data, the policy should be
a dynamic one instead of the current on/off switch.

P2P-FS described in Section 4.2 uses a file monitoring scheme where readahead gets
turned off if data access to a file is too random. The user can set a coefficient that
determines the acceptable ratio of hits and misses for prefetches. In P2P-FS when
readahead gets turned off it will stay off for that file while the file remains open. In
CloudFS the policy does not have to be that stiff as a moving average could be used
to determine the local efficiency of the policy. Readahead could be turned on again
when the local average of the coefficient shows that it has exceeded the limit set by
the coefficient.

The value of the coefficient or the ratio at which readahead gets disabled is also
something that the system and not the user should decide. The point at which
prefetching becomes harmful is dependent on the speeds of individual nodes and the
frequency of use determined by the distribution algorithm.

Modules could measure their service speeds using local averages to report back their
performance characteristics. Due to the asynchronous nature of the I/O file system
itself can’t manage this task. At the same time file system can keep track of the
local ratio of used and unused prefetches. Using these two in combination of the file
system table information of the spread of the blocks in the open file, the system could
dynamically not only determine if readahead should be used, but also determine how
many blocks should be fetched with each read request.

P (block used)× E(tread) > P (block wasted)× (E(treadahead)− E(tread))

Figure 21: When the duration of a readahead, occurring concurrently with the
original read, is expected to exceed the read time, the expected savings in time
must outweigh the expected loss.

In a single thread mode this would be as simple as making sure that, if the expected

54

readahead time exceeds the read time of the original block, the expected gain in
time is larger than the expected loss. In reality the scenario is more complex as
concurrent reads and link speed limitations must be considered. The improved
readahead policy would of course cause the need of additional module and file system
level bookkeeping, but the benefits clearly outweigh the effort.

7.2 Data availability

During the testing some of tests failed and had to be rerun as the connection to
the storage nodes was lost. This was caused by server-side errors that were not
resolved during the retransmission steps. Although the connection was eventually
quick to recover, the default policy of CloudFS in such situations is to process
the failed transmissions and unmount if recovery is not possible. In the case of
writes, the blocks whose upload has failed can be relocated to new locations and
the system could be kept on-line, checking every now and then if the failed node
has recovered. The real problem emerges with read operations, as the read request
cannot be processed at all if the node is not available.

Currently CloudFS relies on the server-side cloud to provide data availability. This
can be improved by implementing a client-side redundancy to data storage to make
sure that data remains available even if one of the nodes goes offline. One way to
create redundancy is using distributed parity scheme similar to the one implemented
in RAID 5. A separate parity block can be calculated based on blocks saved into
(n-1) different nodes and then saved on the nth node. In the case of a temporary
single node failure the data can be still be recovered with the help of the parity
block and the blocks on other nodes. Optimally the blocks forming the parity block
are interrelated and would be downloaded anyway during sequential read of a file.

This kind of a policy would induce a penalty to write operations and would also
consume extra space in the file system. It also scales badly with unequal storage
quotas as the blocks making up the parity block would have to be located on different
nodes. Still, in systems where data availability is essential, a client-side parity block
scheme could be useful. In most cases, however, data availability provided by the
clouds should suffice.

55

7.3 Multiple concurrent connections

The gain in transmission speeds that CloudFS was able to acquire came from utilis-
ing each of the storage nodes concurrently, yet the speed of the network link was still
not utilized to the maximum. ObjectFS uses multiple concurrent connections to the
same node to help make most of the link bandwidth. In the case of ObjectFS the
storage clouds used are enterprise level solutions, but there is no reason to suspect
that consumer clouds could not be sped up similarly by using multiple connections.

None of the three cloud services have any legal restriction to using multiple con-
current connections, but all three do reserve rights to limit the connections in case
of malicious access patterns are detected. Google also specifies in more detail that
requests are accepted at the maximum rate of 10 requests/s. In theory, based on
the Figure 15 and depending on the block sizes used, this could mean anything from
10 concurrent connections upwards. In practice, however, it would be likely that
server-side error responses would increase with the number of connections and some
kind of a hard ceiling would limit the number of concurrent connections.

Implementing multiple concurrent connections would require redesigning some of the
aspects of the file system and also some measures to ensure thread safety. Easiest
way to implement the changes would be to hide away the complexity to the mod-
ular level which means that both the core file system and its modules would run,
manage and communicate with threads. Modular level currency would also allow
the implementation of OneDrive asynchronous writes, benefiting its performance.

8 Conclusion

With the advent of cloud storage services, during the last seven years consumer
markets have become populated with services that offer gigabytes of free space to
end users. These services come with very homogeneous APIs utilizing REST based
communication together with OAuth 2.0 based authentication. At the same time
high level frameworks for file system creation, among them Filesystem in Userspace,
have evolved to provide the means to build and prototype user space file system
with little effort and knowledge of kernel internals.

With CloudFS we have shown that these two can be coupled together to take the
most out of the free space available on the cloud storage markets. CloudFS was
built on FUSE and seamlessly combines the storage from three services (Dropbox,

56

Google Drive, Microsoft OneDrive) into a single file system. In addition to utilizing
the storage space it also utilizes the combined bandwidth of the file systems to its
advantage. The tests run on CloudFS reveal that such a file system is susceptible to
the heterogeneity of the performance of the underlying services and the combined
file system profile also depends on the way each storage node is used. Therefore the
raw performance of such a system is not necessarily much different from that of a
best performing single node. The caching and prefetching policies implemented in
CloudFS were crucial for the level of performance gained, but also showed consid-
erable weaknesses.

There are still multiple areas for improvement in the system and some features were
left unimplemented altogether. Especially implementing a file locking scheme for
concurrent usage from multiple mount points without server-side support remains
largely an open problem. Despite its shortfalls, the basic design of CloudFS, with its
block based distribution model, has proven to be successful. The modular structure
that we have chosen supports and encourages easily implementable changes to the
existing system. Because the file system is implemented in a high-level language,
a wide array of modules already exist to add additional new features to the file
system. Therefore CloudFS shows the characteristics of a modern era system with
easy initial development and plenty of room for incremental improvements.

References

BC05 Bovet, D. P. and Cesati, M., Chapter 12. the virtual filesystem. In Un-
derstanding the Linux Kernel, O’Reilly, third edition, November 2005.

BLS12 Bernstein, D. J., Lange, T. and Schwabe, P., The security impact of a
new cryptographic library. In Progress in Cryptology–LATINCRYPT
2012, Springer, 2012, pages 159–176.

DBM13 Drago, I., Bocchi, E., Mellia, M., Slatman, H. and Pras, A., Bench-
marking personal cloud storage. Proceedings of the 2013 conference on
Internet measurement conference. ACM, 2013, pages 205–212.

Dro15b Dropbox Acceptable Use Policy. https://www.dropbox.com/terms#

acceptable_use. [17.7.2015]

Dro15c Dropbox Company Info. https://www.dropbox.com/news/

company-info. [17.7.2015]

57

Dro14 Dropbox Developer Terms and Conditions 20-November-2014. https:
//www.dropbox.com/developers/reference/tos. [17.7.2015]

Dro15d Dropbox Developers. https://www.dropbox.com/developers/.
[17.7.2015]

Dro15e Dropbox Download. https://www.dropbox.com/downloading.
[4.12.2015]

Dro15a Dropbox Platform developer guide. https://www.dropbox.

com/developers/reference/devguide#production-approval.
[17.7.2015]

RFC5849 E. Hammer-Lahav, E., The oauth 1.0 protocol. RFC 5849, IETF, April
2010. URL https://tools.ietf.org/html/rfc5849.

FSU15 Filesystem in Userspace Website. http://fuse.sourceforge.net/.
[17.7.2015]

FUM15 fuse(8) System Manager’s Manual.

FUO15 Filesystem in Userspace, Operating Systems. http://sourceforge.

net/p/fuse/wiki/OperatingSystems/. [17.7.2015]

FUR15 fuse_operations Struct Reference. http://fuse.sourceforge.net/

doxygen/structfuse__operations.html. [21.11.2015]

Geo15 GeoIP2 City Database Demo. https://www.maxmind.com/en/

geoip-demo/. [18.12.2015]

Glu15a GlusterFS Architecture. http://gluster.readthedocs.org/en/

latest/Quick-Start-Guide/Architecture/. [22.12.2015]

Glu15b GlusterFS Website. http://www.gluster.org/. [17.7.2015]

GFS11 Gluster, Inc., Cloud Storage for the Modern Data Center, An Introduc-
tion to Gluster Architecture, 2011. Versions 3.1.x.

Goo15b Google APIs for Android. https://developers.google.com/

android/. [17.7.2015]

Goo15a Google APIs Terms of Service. https://developers.google.com/

terms/. [17.7.2015]

58

Goo15c Google Drive Download. https://www.google.com/drive/

download/. [4.12.2015]

Goo15f Google Drive REST API Reference. https://developers.google.

com/drive/v2/reference/. [17.7.2015]

Goo15d Google drive storage. https://www.google.com/settings/storage.
[17.7.2015]

Goo15g Google Identity Platform, Using OAuth 2.0 to Access Google APIs.
https://developers.google.com/identity/protocols/OAuth2.
[17.7.2015]

Goo15e Google Picker API Developer’s Guide. https://developers.google.
com/picker/docs/. [17.7.2015]

Gri14 Griffith, E., Who’s winning the consumer cloud storage
wars?, 6-November 2014. http://fortune.com/2014/11/06/

dropbox-google-drive-microsoft-onedrive/. [17.7.2015]

Han15 Hansen, D., GMailFS Website. https://sr71.net/projects/

gmailfs/. [17.7.2015]

RFC6749 Hardt, D., E., The oauth 2.0 authorization framework. RFC 6749,
IETF, October 2012. URL https://tools.ietf.org/html/rfc6749.

Hon15 Honles, T., Fusepy module. https://github.com/terencehonles/

fusepy. [25.8.2015]

IMO12 Ishiguro, S., Murakami, J., Oyama, Y. and Tatebe, O., Optimizing lo-
cal file accesses for fuse-based distributed storage. High Performance
Computing, Networking, Storage and Analysis (SCC), 2012 SC Com-
panion:. IEEE, 2012, pages 760–765.

KL09 Krier, W. and Liska, E., FUSE Design Document. Sun microsystems,
16-May 2009. Revision 0.6 (Draft).

Liv15b Live SDK Term of Use. https://msdn.microsoft.com/en-us/

onedrive/dn735994.aspx. [17.7.2015]

Liv15a The Live SDK. https://msdn.microsoft.com/en-us/library/

dn631819.aspx. [17.7.2015]

59

Mat15 Matani, D., P2P-FS Website. http://p2p-fs.sourceforge.net/.
[17.7.2015]

OFS15 ObjectiveFS Features. https://objectivefs.com/features.
[1.9.2015]

OID15 Open ID Connect. https://developers.google.com/identity/

protocols/OpenIDConnect. [17.7.2015]

One15d Develop with the OneDrive API. https://dev.onedrive.com/

readme.htm. [29.12.2015]

One15a Onedrive Download. https://onedrive.live.com/about/en-US/

download/. [4.12.2015]

One15c OneDrive pickers and savers. https://msdn.microsoft.com/en-us/

library/office/dn782252.aspx. [17.7.2015]

One15b OneDrive storage plans. https://onedrive.live.com/about/en-us/
plans/. [17.7.2015]

Pic12 Pichai, S., Introducing Google Drive... yes, really,
2012. http://googleblog.blogspot.fi/2012/04/

introducing-google-drive-yes-really.html. [17.7.2015]

Pyc15 PyCrypto – The Python Cryptography Toolkit. https://www.dlitz.
net/software/pycrypto/. [25.8.2015]

PYO15 Python-onedrive module. https://pypi.python.org/pypi/

python-onedrive/15.8.0. [17.7.2015]

RAR15 RAR2FS – FUSE file system for reading RAR archives. http://

hasse69.github.io/rar2fs/. [17.7.2015]

RG10 Rajgarhia, A. and Gehani, A., Performance and extension of user space
file systems. Proceedings of the 2010 ACM Symposium on Applied Com-
puting. ACM, 2010, pages 206–213.

RNU15 Release notes for using OneDrive API with OneDrive for Business (pre-
view). https://dev.onedrive.com/odb-preview/release-notes.

htm. [17.7.2015]

60

Sim15 Simple-crypt module. https://pypi.python.org/pypi/

simple-crypt. [25.8.2015]

Vor06 Voras, I., Network distributed file system in user space. Information
Technology Interfaces, 2006. 28th International Conference on. IEEE,
2006, pages 669–674.

Wir15 Wireshark Website. https://www.wireshark.org/. [17.12.2015]

ZI13 Zhao, D. and Ioan, R., Hycache: a user-level caching middleware for
distributed file systems. Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th International.
IEEE, 2013, pages 1997–2006.

