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1 Introduction

The era of modern low temperature physics began in 1908, when Heike Kamerlingh Onnes managed

to liquefy helium at 4.2 K, or at −268.95◦C [1], opening up the Kelvin temperature range to science.

In the following years outstanding discoveries were made. First, when mercury was cooled to liquid

helium temperature, its electrical resistance suddenly dropped to zero. This phenomenon is known

as superconductivity. Then, after that, it was observed that liquid helium itself started to behave

unexpectedly when cooled to 2.2 K. Helium had become super�uid, which can �ow completely

freely, without friction.

At room temperature, helium is one of the most trivial substances, since it is a chemically inert

noble gas. But at low temperatures, it becomes one of the most intriguing research subjects, as

it enables us to study the fundamental properties of quantum mechanical particles. Indeed, the

peculiar behavior of liquid helium at low temperatures can only be explained through quantum

mechanics, no analogy to classical mechanics exists. Helium is the only observable quantum liquid

since it is the only substance that does not solidify under its saturated vapor pressure even at

absolute zero temperature limit. To solidify liquid helium, the pressure would have to be more than

25 times the normal air pressure.

Helium has two stable isotopes, the more common 4He that Kamerlingh Onnes was able to

liquefy, and the extremely rare 3He, which is produced in tritium (3H) decay in nuclear reactions.

At room temperature, both isotopes behave almost identically, as the only di�erence is in their

mass. However, at low temperatures, their behavior is dramatically di�erent, since they represent

the two fundamental types of particles: bosons and fermions. To which group a particle belongs,

depends on its spin. 4He is made up from a pair of protons, neutrons, and electrons each, and since

each pair consists of spin 1/2 particles, with opposite spin direction, the total spin of 4He is an

integer, 0, making it a boson. 3He, on the other hand, is a fermion, since its total spin is 1/2 due

to an unpaired neutron in the nucleus.

The di�erence between these two particle types becomes apparent, when we discuss the su-

per�uid transition temperature. 4He becomes super�uid already at 2.2 K, but the required tem-

perature for super�uidity in 3He is a thousand times lower, about 1 mK. When the temperature

is lowered below 2.2 K, more and more 4He bosons start occupy the lowest quantum mechanical

energy state in a Bose-Einstein condensation-like phenomenon. However, contrary to the usual

Bose-Einstein condensation, where at low enough temperature practically all particles are in the

lowest energy state, in 4He only about 10 % of the atoms can occupy the lowest energy state

due to the stronger interaction between 4He atoms than between ideal Bose particles. Fermionic
3He, by contrast, has to follow the Pauli exclusion principle, which allows only two particles, with

opposite spin, to occupy the same energy state. 3He cannot then form a condensate same way

as 4He. Instead, it behaves more like the conduction electrons in superconductors: they form
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so-called Cooper pairs, which, according to the BCS theory, can form the condensate. As the

pair of fermions has an integer spin, the pair behaves like a boson. The su�cient condition for

formation of Cooper pairs is an attractive interaction between the constituent particles; if there

is an attraction between fermions, they will form Cooper pairs at some low enough temperature.

For pure 3He this temperature is around 1 mK. [2]

Mixtures of the two helium isotopes are also interesting research subjects. A remarkable feature

of these mixtures, is the �nite solubility of 3He in 4He even at absolute zero temperature limit,

which, for example, makes it possible to cool liquid helium to millikelvin range. Furthermore, in

dilute mixtures, the super�uid transition temperature of 4He is suppressed to a lower temperature,

and the super�uid transition of 3He is expected to occur only at such low temperatures that have

not been reached with current cooling methods. [3]

A peculiar feature of bulk super�uid helium is it being able to support two di�erent sound

modes. While �rst sound is an ordinary pressure (or density) wave, second sound is a mode unique

to super�uid systems, a propagating temperature (or entropy) wave. In the non-super�uid systems,

the temperature �uctuations are so strongly damped that there cannot exist a temperature wave.

The super�uid, however, can �ow without any friction, making this second sound mode possible.

These two sound modes do not exist completely independent of each other, but rather variations in

pressure are accompanied by variations in temperature and vice versa. The coupling between �rst

sound and second sound has been studied in super�uid helium in aerogel by Brusov et al. [4], where

they also present calculations of the sound coupling in bare 3He−4He mixtures. However, as pointed

out by Rysti [5], they made an error in their calculations which prevented them from noticing

an interesting property of the coupling between second and �rst sound. At some temperature

and concentration region, the coupling vanishes, and the two sound modes become completely

independent. The goal of our experiment was �rst to verify the existence of this decoupling region,

and then to observe its properties. To do so, we studied 3He − 4He mixtures, at temperatures

between 2.2 K and 1.7 K, and at 3He concentrations ranging from 0 % to 11 % using a quartz tuning

fork oscillator. The resonance response of this fork would change depending on the coupling strength

between �rst and second sound.

We start this thesis by talking a little more about general properties of 3He − 4He mixtures,

and then move on to theoretical calculations of the �rst and second sound velocities, as well as the

coupling factors. After that, we describe our experimental setup, focusing on the quartz tuning

fork oscillator, and before the results we shortly go over our experiment procedure, and �nally sum

up everything in the discussion section.

2 3He - 4He Mixtures

The properties of 4He are substantially modi�ed by the addition of 3He. Perhaps the most impor-

tant property of these mixtures of two helium isotopes is the �nite solubility of 3He in 4He even at

absolute zero temperature limit, which, for example, enables us to cool the mixtures to millikelvin
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temperatures. This, in turn, enables us to reach even lower temperatures using adiabatic nuclear

demagnetization cooling [3]. In our experiment however, we remain still at relatively high temper-

ature, and the important property that the addition of 3He modi�es, is the super�uid transition

temperature of 4He.

Unstable Region

0
0

T
(K
)

3He Concentration, x3

4He superfluid

3He and 4He

normal fluids

λ-line

Phase Separation

0.5

1.0

1.5

2.0

0.2 0.4 0.6 0.8 1

3He normal fluid

region of our experiment

Figure 2.1: Low temperature phase diagram of liquid 3He - 4He mixtures at saturated vapor
pressure. The region of our experiment is shown by the rectangle with dashed lines.

The phase diagram of liquid 3He − 4He mixture is shown in �g. (2.1), where the molar 3He

concentration, x3, is expressed as

x3 =
N3

N3 +N4
, (2.1)

where N3 and N4 are the number of 3He and 4He atoms, respectively.

Pure 4He becomes super�uid at 2.1768 K, and pure 3He super�uid transition is not shown in the

�gure, since it occurs at millikelvin range. The addition of 3He lowers the total density of the liquid,

and keeps 4He atoms further apart, shifting the 4He super�uid transition to lower temperature. The

super�uid transition temperature of 4He, Tλ, follows the λ-line of �g. (2.1), which is practically

linear in the temperature and concentration range of our experiment.

At x3 = 67.5 %, at 0.87 K temperature, the λ-line ends, and below this point the liquid will

separate into 3He rich phase and 4He rich phase. On the 3He rich phase, 4He does not anymore

become super�uid. When the temperature is still lowered, the 3He rich phase eventually becomes

pure 3He, but, remarkably, in the 4He rich phase there is always a �nite amount of 3He, even at
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zero temperature limit. 3He is lighter than 4He and therefore it also has a larger zero point energy.

This means that a 3He atom occupies a larger volume than a 4He atom. Now, when we mix 3He

atoms with 4He atoms, the 3He atom feels a stronger interaction with neighboring 4He atoms,

since they, with their lower zero-point energy, can come closer to it than other 3He atoms. Hence,
3He atom is more strongly bound in mixture than it would be in pure 3He, which results in the

�nite solubility. Then, we have to remember that since 3He is a fermion, it has to follow the Pauli

exclusion principle, and each 3He atom added to the mixture would have to go to a successively

higher energy state, and eventually the binding energy will be the same in pure 3He and in mixture.

This Fermi character limits the solubility of 3He in 4He to 6.6 % at zero temperature limit, for

example. [3]

The �nite solubility is the basis of the dilution refrigerator technology, in which 3He from the
3He rich phase is continuously mixed into the 4He rich phase. The enthalpy di�erence between these

phases is used to produce cooling power. This is the only available continuous cooling method down

to 10 mK range.

The attraction between 3He atoms in mixture consists of two e�ects: �rst there is a magnetic

interaction between 1/2 total spin 3He atoms, which is also present in pure 3He , and second, there

is the density e�ect discussed above. Since there exists an attraction between 3He atoms in mixture,

they can form Cooper pairs also in mixture, meaning that at some ultra low temperature it is possi-

ble to �nd a phase where both 3He and 4He are in super�uid state. It would present an interesting

new system with mixture of bosonic and fermionic super�uids. However, it has not yet been ob-

served, as the super�uid transition point of 3He in mixture occurs only at some temperature below

100µK, which has not been reached with current cooling methods. Temperatures below this have

been achieved, but they are the electron temperatures of copper nuclear demagnetization cryostats.

Because the thermal boundary resistance increases dramatically with decreasing temperature, it

becomes more and more di�cult to thermalize the liquid helium sample to the temperature of its

container. A new proposed cooling method would utilize adiabatic melting of pure 4He crystal in

liquid 3He. As the two isotopes would then mix, this setup would produce cooling similarly to the

dilution refrigerator, and now the cooling power would directly cool helium, and we would not have

to worry about the thermal boundary resistance e�ects. [6]

At equal temperature, the vapor pressure of 3He is larger than that of 4He, as shown in �g. (2.2).

This di�erence is can also be explained by the zero-point energy di�erence between the isotopes.

This means that the 3He concentration in the vapor above the mixture is large, even at low 3He

concentrations in the liquid. However, as the temperature is lowered the vapor pressure eventually

becomes very small and the vapor phase contains then a negligible portion of the total 3He.

Motivated by Tisza [7, 8] and Landau's [9] two-�uid theory of super�uid 4He, we can also consider

dilute 3He − 4He mixtures to be �two-�uid�. One �uid is formed by super�uid 4He, with exactly

zero viscosity and entropy, while the other is formed by normal �uid 4He, and 3He �impurities�.

These two �uids can �ow about each other without any viscous interaction.

If temperature were below 0.5 K, practically all 4He would be in super�uid state, and the normal

component would then be almost pure 3He. At those temperatures, the mixture would behave like
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Fermi-gas, since now the bosonic super�uid 4He acts like an inert background that only a�ects the

e�ective mass of 3He. This system is interesting in its own right, as it is a Fermi system where

we can alter the Fermi temperature by changing the 3He concentration. Conversely, above the

Fermi-temperature (∼ 1 K), 3He behaves more like a classical gas.

0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

T (K)

P (bar)

 

 

He3 He4

Figure 2.2: Saturated vapor pressure of 3He (red) and 4He (blue).

3 Sound Propagation in 3He - Super�uid 4He Mixtures

In this section, we set out to obtain expressions for the coupling factors between �rst and second

sound in 3He - super�uid 4He mixtures. To do that, we must �rst �nd an expression for the sound

velocities in the mixture.

In normal systems, temperature �uctuations are damped so much that they cannot propagate

as temperature waves, but super�uid, on the other hand, can �ow without dissipation up to some

critical velocity. Due to the gap in the super�uid energy spectrum, excitations that enable the

dissipation cannot be created below this critical velocity, and in freely �owing super�uid systems it

is then possible to �nd propagating temperature waves, or second sound.

According to the two-�uid model, super�uid 4He can be thought to consist of two components:

super�uid and normal �uid. These two components can �ow freely about each, meaning that at each

point of the liquid there exist two independent velocity �elds. In mixtures, it is further assumed

that 3He atoms move along with the normal �uid component, which has been proven accurate by

Khalatnikov [10]. This assumption is valid when 3He is in normal state, which is certainly true

in the temperature region of our experiment. In terms of the two-�uid model, the �rst sound is a

mode where the two components oscillate in phase, and a density (or pressure) wave is propagating

through the system. In the second sound mode the super�uid component and the normal �uid

component oscillate antiphase, and since only the normal component can carry entropy, this mode
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is observed as an entropy (or temperature) wave. Additionally, since 3He �ows with the normal

�uid component, the second sound can also be considered a 3He concentration wave.

The total density of the 3He - super�uid 4He mixture is

ρ = ρn + ρs, (3.1)

where ρn is the normal �uid density and ρs is the super�uid density. The normal �uid density

consists of the normal component of 4He (ρn,4) and 3He component (ρn,3): ρn = ρn,3 + ρn,4. Since

the motion of the super�uid component and the normal �uid component can be assumed to be

independent, the total mass �ux is

j = ρnvn + ρsvs, (3.2)

where vn and vs are the normal �uid velocity and super�uid velocity, respectively. Mathematically,

the existence of second sound is a result of these two coexisting velocity �elds.

The linearized two-�uid hydrodynamical equations are given by Khalatnikov [10]:

∂ρ

∂t
+∇ · j = 0 (3.3)

∂j

∂t
+∇P = 0 (3.4)

∂ (ρσ)

∂t
+ ρσ∇ · vn = 0 (3.5)

∂ (ρc)

∂t
+ ρc∇ · vn = 0 (3.6)

∂vs

∂t
+∇

(
µ− Z

ρ
c

)
= 0 (3.7)

The �rst equation is the equation of mass conservation, and the second is due to the conservation

of momentum (P is the pressure). The third equation is the conservation of entropy, where σ is

the speci�c entropy (entropy per mass unit). The fourth equation is the continuity equation for the
3He �impurities�. Here c is the mass concentration of 3He

c =
m3N3

m4N4 +m3N3
, (3.8)

where m3 and m4 are the atomic mass of 3He and 4He respectively, and N3 and N4 the number of
3He and 4He atoms, respectively. The mass concentration is related to the molar concentration x3

through

c =
x3m3

m4 − x3 (m4 −m3)
. (3.9)

The �fth and �nal equation is the equation of motion of the super�uid component, where

µ = cµ3 + (1− c)µ4 is the speci�c chemical potential with µ3 and µ4 being the chemical potentials
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of the components of the mixture, and Z ≡ ρ (µ3 − µ4). Using them we get an alternative form for

eq. (3.7):
∂vs

∂t
+∇µ4 = 0, (3.10)

telling us that the motion of the super�uid component is driven by the gradient in the chemical

potential of 4He.

3.1 Sound Velocity

Now we are ready to start working our way towards an expression for sound velocity in 3He -

super�uid 4He mixture. The calculation presented here follows the same outline as the calculation

carried out by Khalatnikov [10], and by Wilks [11] and Tilley [12] for pure 4He, however we present

it here in more detail.

We start by taking time derivative of eq. (3.3), and divergence of eq. (3.4) to obtain

∂2ρ

∂t2
= ∇2P. (3.11)

Next, we simply subtract eq. (3.6) from eq. (3.5) in order to get:

1

σ

∂σ

∂t
=

1

c

∂c

∂t
. (3.12)

To get the third equation, we �rst take time derivative of eq. (3.5) and divergence of eqs. (3.4)

and (3.7), and eliminate the velocity terms to get

ρs∇2

(
µ− Z

ρ
c

)
−∇2P +

ρn

ρσ

∂2 (ρσ)

∂t2
= 0. (3.13)

Then, we eliminate the speci�c chemical potential µ by using the Maxwell relation

dµ = −σdT +
dP

ρ
⇒ ∇2µ = −σ∇2T +

∇2P

ρ
, (3.14)

where T is the temperature, to obtain

ρn

ρsσ

∂2σ

∂t2
= σ∇2T + c∇2

(
Z

ρ

)
. (3.15)

Eq. (3.11) is the �rst sound wave equation, and eq. (3.15) is the second sound wave equation.

We proceed by choosing T , P and c as our independent variables, and consider small perturba-

tions around an equilibrium value, indicated by subscript 0, so that
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T = T0 + T̃ (r, t)

P = P0 + P̃ (r, t) (3.16)

c = c0 + c̃ (r, t) .

Then, we can express the perturbations in ρ, σ, and Z/ρ using these three independent variables:

ρ̃ =

(
∂ρ

∂T

)
P,c

T̃ +

(
∂ρ

∂P

)
T,c

P̃ +

(
∂ρ

∂c

)
T,P

c̃

σ̃ =

(
∂σ

∂T

)
P,c

T̃ +

(
∂σ

∂P

)
T,c

P̃ +

(
∂σ

∂c

)
T,P

c̃ (3.17)

Z̃/ρ =

(
∂ (Z/ρ)

∂T

)
P,c

T̃ +

(
∂ (Z/ρ)

∂P

)
T,c

P̃ +

(
∂ (Z/ρ)

∂c

)
T,P

c̃.

We further assume that all the variables have a plane wave form ∝ exp
(
iω
(
z
u − t

))
, where ω

is the angular frequency and u the velocity of the wave. We have chosen such a coordinate system

that the perturbation propagates in the z-direction. When we insert these assumptions in the eqs.

(3.11), (3.12), and (3.15), we obtain equations(
∂ρ

∂T

)
P,c

T̃ +

(
∂ρ

∂P

)
T,c

P̃ +

(
∂ρ

∂c

)
T,P

c̃ =
P̃

u2
(3.18)

c0

(
∂σ

∂T

)
P,c

T̃ +
c0
ρ2

0

(
∂ρ

∂T

)
P,c

P̃ = σ̄c̃ (3.19)

u2ρn

ρsσ0

[(
∂σ

∂T

)
P,c

T̃ +
1

ρ2
0

(
∂ρ

∂T

)
P,c

P̃ +

(
σ0 − σ̄
c0

)
c̃

]
= σ̄T̃ − c0

ρ2
0

(
∂ρ

∂c

)
T,P

P̃ + c0

(
∂ (Z/ρ)

∂c

)
T,P

c̃.

(3.20)

Where we have used the Maxwell relations [5]

∂ (Z/ρ)

∂P
= − 1

ρ2
0

∂ρ

∂c

∂ (Z/ρ)

∂T
= −∂σ

∂c
(3.21)

∂σ

∂P
=

1

ρ2
0

∂ρ

∂T
,

and, furthermore, we have de�ned σ̄ ≡ σ0 − c0 ∂σ∂c .
When we next eliminate c̃ from eqs. (3.18)-(3.20), we arrive to equations
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u2

[(
∂ρ

∂T

)
P,c

+
c0
σ̄

(
∂ρ

∂c

)
T,P

(
∂σ

∂T

)
P,c

]
T̃+

[
u2

((
∂ρ

∂P

)
T,c

+
c0
σ̄ρ2

0

(
∂ρ

∂T

)
P,c

(
∂ρ

∂c

)
T,P

)
− 1

]
P̃ = 0, (3.22)

and [
1

σ̄

(
∂σ

∂T

)
P,c

U2 − σ̄

]
T̃ +

[
1

ρ2
0σ̄

(
∂ρ

∂T

)
P,c

U2 +
c0
ρ2

0

(
∂ρ

∂c

)
T,P

]
P̃ = 0, (3.23)

where we have de�ned

U2 ≡ u2 ρn

ρs
− c20

∂ (Z/ρ)

∂c
. (3.24)

Now, (3.22) is the �rst sound wave equation, and (3.23) the second sound wave equation. Since the

partial derivative
(
∂ρ
∂T

)
P,c

= −κρ, where κ is the thermal expansion coe�cient, is very small for

super�uid helium [10], we can ignore it to simplify our equations to[
u2 c0
σ̄

(
∂ρ

∂c

)
T,P

(
∂σ

∂T

)
P,c

]
T̃ +

[
u2

(
∂ρ

∂P

)
T,c

− 1

]
P̃ = 0 (3.25)

[
1

σ̄

(
∂σ

∂T

)
P,c

U2 − σ̄

]
T̃ +

[
c0
ρ2

0

(
∂ρ

∂c

)
T,P

]
P̃ = 0. (3.26)

As per usual, the system of equations (3.25) and (3.26) has a non-zero solution, if the determinant

of its coe�cients is zero, i.e.

u4 − u2

(∂P
∂ρ

)
T,c

1 +
ρs

ρn

(
c0
ρ0

(
∂ρ

∂c

)
T,P

)2
+

ρsσ̄
2

ρn

(
∂T

∂σ

)
P,c

+
ρsc

2
0

ρn

(
∂ (Z/ρ)

∂c

)
T,P

+

ρsσ̄
2

ρn

(
∂T

∂σ

)
P,c

(
∂P

∂ρ

)
T,c

+
ρsc

2
0

ρn

(
∂P

∂ρ

)
T,c

(
∂ (Z/ρ)

∂c

)
T,P

= 0. (3.27)

This equation can be further simpli�ed by noticing that

(
1 + ρs

ρn

(
c0
ρ0

(
∂ρ
∂c

)
T,P

)2
)
≈ 1, since

ρs
ρn

(
c0
ρ0

(
∂ρ
∂c

)
T,P

)2

≤ 0.012 within our temperature and concentration range. Finally, we obtain

two solutions for the sound velocity in 3He - super�uid 4He mixture

u2
1 =

(
∂P

∂ρ

)
T,c

(3.28)

u2
2 =

ρs

ρn

(
σ̄2

(
∂T

∂σ

)
P,c

+ c20

(
∂ (Z/ρ)

∂c

)
T,P

)
, (3.29)
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where u1 is the velocity of the �rst sound, of order 200 m
s , and u2 the velocity of the second sound,

roughly around 30 m
s .

In pure 4He, the velocity of second sound reduces to u2
2 = ρs

ρn
σ2

0

(
∂T
∂σ

)
P
, indicating that it is

a temperature (or entropy) wave at a constant pressure. The term c20

(
∂(Z/ρ)
∂c

)
T,P

is due to the

addition of 3He component. We can also see that the second sound can only exist in super�uid; if

super�uid density ρs goes to zero, so does u2. Conversely, �rst sound is a pressure wave at constant

temperature.

We have to remember, however, starting from the linearized two-�uid hydrodynamical equations,

our derivation has ignored all non-linear terms, and irreversible e�ects, as well as left out the e�ect

of the thermal expansion, which resulted in the two sound modes being completely independent.

In practice, both �rst and second sound are almost always present, as they are coupled together.

3.2 Sound Conversion and Coupling Factors

The coupling between �rst and second sound in pure 4He is due to the thermal expansion, in helium

mixtures there appears additionally a 3He concentration dependent contribution. This means that

�rst and second sound velocities, calculated in the previous section, cannot be true eigenvalues of

the system since we had ignored the thermal expansion during their calculation. But, if we assume

that the coupling between the sound modes is weak, they are good approximations of the true

eigenvalues.

Since we have �forced� the eigenvalues of the system to be pure �rst sound and pure second

sound, we can consider eqs. (3.22) and (3.23) independently. In fact, with these forced eigenvalues,

they cannot be true at the same time, but we are simply going to ignore that contradiction by

realizing that it is a result of our simpli�cations of the system. First, in order to gain information

about the coupling between �rst and second sound, we excite �rst sound, and see how it converts

into second sound, i.e. we insert the approximate eigenvalue u1 into eq. (3.23), which was obtained

from second sound wave equation (3.15). After a rearrangement we get

T̃ =
U2

1

(
∂ρ
∂T

)
P,c

+ c0σ̄
(
∂ρ
∂c

)
T,P

ρ2
0σ̄

2 − ρ2
0U

2
1

(
∂σ
∂T

)
P,c

P̃ = βP̃ , (3.30)

where U2
1 ≡ u2

1
ρn
ρs
− c20

(
∂(Z/ρ)
∂c

)
T,P

. This equation represents the conversion of �rst sound into

second sound. The coupling factor β determines the amplitude of the temperature oscillations

accompanying the pressure oscillations in the plane wave. We can immediately see, had we omitted

the
(
∂ρ
∂T

)
P,c

term, this coupling factor would be zero in pure 4He.
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Then, similarly, to get the coupling between second and �rst sound, we insert u2 into eq. (3.22)

(�rst sound wave equation) to obtain

P̃ = −
u2

2

[(
∂ρ
∂T

)
P,c

+ c0
σ̄

(
∂ρ
∂c

)
T,P

(
∂σ
∂T

)
P,c

]
u2

2

[(
∂ρ
∂P

)
T,c

+ c0
σ̄ρ20

(
∂ρ
∂T

)
P,c

(
∂ρ
∂c

)
T,P

]
− 1

T̃ , (3.31)

which can be simpli�ed by noticing that, in the denominator, c0
σ̄ρ2

(
∂ρ
∂T

)
P,c

(
∂ρ
∂c

)
T,P
v 10−6 is small

compared to
(
∂ρ
∂P

)
T,c

∼ 10−3, giving us

P̃ =

[(
∂ρ

∂T

)
P,c

+
c0
σ̄

(
∂ρ

∂c

)
T,P

(
∂σ

∂T

)
P,c

]
u2

1u
2
2

u2
1 − u2

2

T̃ = αT̃. (3.32)

This is the conversion of second sound into �rst sound, with the coupling factor α determining the

amplitude of pressure oscillations that accompany temperature oscillations. We note that in pure
4He the coupling is quite weak due to the small

(
∂ρ
∂T

)
P,c

= −κρ term. In super�uid helium, the

thermal expansion coe�cient, κ, is negative, which makes the �rst term in brackets of eq. (3.32)

positive. The second term is due to added 3He, and in it c0σ̄ > 0, and
(
∂σ
∂T

)
P,c

> 0, but
(
∂ρ
∂c

)
T,P

< 0,

meaning that the second term is negative. It is then possible that at some conditions the two terms

cancel out each other, decoupling �rst sound from second sound. At those speci�c conditions,

second sound cannot create �rst sound, i.e. temperature oscillations occur without change in the

density of the liquid. The goal of our experiment was to observe that particular phenomenon. As

the 3He concentration increases, the second term in brackets starts to dominate the coupling factor

α, and the strength of the coupling starts to increase.

The coupling factors presented here are of similar form as the ones given by Brusov et al. [4].

However, they made a sign error in the bracketed term of eq. (3.32), as noted by Rysti [5], which

prevented them from noticing that, at certain concentrations and temperatures, this coupling factor

can indeed become zero.

Next, we discuss a little about double sound conversion, which becomes very important later,

when we want to understand what is really happening in our experimental setup. Double sound

conversion occurs either, when �rst sound is initially converted into second sound and after that

back into �rst sound, or, alternatively, when second sound is turned into �rst sound and back. In

both cases, the amplitude of the twice converted sound P̃ ′ (or alternatively T̃ ′) is proportional to

the product of the coupling factors P̃ ′ = αT̃ = αβP̃

T̃ ′ = βP̃ = αβT̃.
(3.33)

The calculations presented here, and in the previous sections, consider only pure �rst and second
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sound modes, P̃ and T̃ , respectively. In practice, we cannot create completely pure �rst sound,

pressure oscillations at exactly constant temperature, but an oscillator that creates mainly �rst

sound inevitably heats the medium it is immersed. We should then present this calculation in a

sound mode basis that does not consist of pure �rst and second sound, but rather some superposi-

tions of the two, where the �rst mode is mainly density oscillations with some small temperature

oscillations, and the second other way around. However, we can construct an approximation of this

situation using the concept of pure sound modes. We can say that the sound mode, s̃0, that our

oscillator creates is pure �rst sound plus some pure second sound

s̃0 ∼ P̃ + T̃ . (3.34)

Pure �rst sound can generate pure second sound, and vice versa, which means that after single

sound conversion (SSC) the total sound is

s̃SSC ∼ s̃0 + βP̃ + αT̃ , (3.35)

and after double sound conversion

s̃DSC ∼ s̃SSC + αβP̃ + αβT̃ =
(
P̃ + αT̃ + αβP̃

)
+
(
T̃ + βP̃ + αβT̃

)
, (3.36)

where the terms are arranged so that the �rst parenthetical term consists of pressure oscillations,

and the second of temperature oscillations. Key thing is, whether we consider pure sound modes, or

superposition modes, if the coupling factor α goes to zero, so do all the �rst sound modes generated

in sound conversions.

3.3 Calculation of Sound Velocities and Coupling Factors

In order to determine the value of the coupling factors and the sound velocities, we must �nd

expressions for the multitude of derivative terms present in the equations (3.28), (3.29), (3.30), and

(3.32).

The derivatives of the speci�c entropy σ can be obtained by assuming that 3He and 4He form

an ideal solution, meaning that the isotopes do not interact with each other. The speci�c entropy

σ can then be written as [10, 11]

σ = (1− c)σ40 + cσ30 −
R

M4
(1− c) ln (1− x3)− R

M3
c lnx3, (3.37)

where σ40, M4 σ30, and M3 are the speci�c entropy and molar mass of pure 4He and pure 3He,

respectively, and R is the molar gas constant. Hence, we get

∂σ

∂T
= (1− c)

(
∂σ40

∂T

)
+ c

(
∂σ30

∂T

)
, (3.38)
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σ̄ = σ40 −
R

M4
ln (1− x3) , (3.39)

∂σ

∂c
=
σ − σ̄
c

, (3.40)

and

c2
∂ (Z/ρ)

∂c
=
RTx3

M4
. (3.41)

The speci�c entropy values of pure 3He were taken from Roberts et al. [13], and the speci�c entropy

of pure 4He from Kramers et al. [14], and Hill and Lounasmaa [15].

The total density of the helium mixture consists of super�uid 4He, normal �uid 4He, and 3He,

which is always at normal state in our temperature range. The contribution of 3He to the normal

�uid density, ρn,3, is [10, 11]

ρn,3 = ρ
m∗3
m4

x3, (3.42)

where m∗3 is the e�ective mass of 3He atom in the 3He - super�uid 4He mixture. For m∗3 we use a

phenomenological formula

m∗3 =

(
1− 0.57

n4

n0
4

)−1

m3, (3.43)

from Baym and Pethick [16], where n4 is the number density of 4He, and n0
4 is the number density

of 4He at T = P = 0. The value for n0
4 was obtained from Manninen [17]. The normal �uid density

contribution of 4He, ρn,4, can be approximated by [5]

ρn,4 = ρ (1− c) ξ, (3.44)

where ξ is the normal �uid fraction of pure 4He, obtained from Donnelly and Barenghi [18]. We

have to note, however, that using these approximations it is possible for the total normal �uid

density to exceed the total density of the mixture when ξ ≈ 1. We had to handle this by scaling

the normal �uid densities for each concentration with its maximum value, so that the normal �uid

fraction at Tλ is always exactly 1, as otherwise our model would not behave correctly near Tλ.

The derivatives of the total density of the mixture, ρ, can be obtained by �rst writing the density

in terms of the molar volume of the 3He - 4He mixture, Vm:

ρ =
M

Vm
, (3.45)

where M = x3M3 + (1− x3)M4 is the molar mass of the mixture. According to Dobbs [19], in our

temperature region, and at low 3He concentrations, the molar volume can be expressed as

Vm = Vm,4 (1 + ηx3) , (3.46)

where Vm,4 is the molar volume of pure 4He, and η = (0.284± 0.005) −
[
(0.032± 0.003) TK

]
is an
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experimentally determined parameter. Then, we �nd

∂ρ

∂c
=
M3

M4

(x3

c

)2 M3 − (1 + η)M4

M4

ρ4
(1 + ηx3)

2 , (3.47)

and

∂ρ

∂T
=

[x3 (M3 −M4) +M4]
[

1
ρ4

∂ρ4
∂T (1 + ηx3) + x3

∂η
∂T

]
M4

ρ4
(1 + ηx3)

2 , (3.48)

where we have expressed the molar volume of pure 4He using the density of pure 4He, ρ4. Niemela

and Donnelly [20] give an experimental formula for ρ4, which is a function of |T − Tλ
(
pure 4He

)
|,

and using it as it is means that eqs. (3.47) and (3.48) do not take into account that the λ-point

of the mixture changes with 3He concentration. We resolved this by replacing Tλ in Niemela and

Donnelly's formula with 3He concentration dependent Tλ (x3), so that ρ4 ∝ |T − Tλ (x3) |. This

modi�cation keeps the overall functional shape of ρ4 intact, but it moves the curve in temperature

so that the total density of the mixture ρ starts to increase more rapidly when approaching the

λ-point, even at 3He concentrations other than 0. The values for Tλ (x3) were determined from our

experiment.

Fig. (3.1) shows the second sound velocity obtained from our calculations, while the di�erent

points indicate experimental second sound velocity values, for comparison. At very low 3He con-

centrations there is a local maximum in the velocity at about 1.8 K, which subsequently disappears

as the concentration is increased. The velocity curves end at the λ-point of the 3He− 4He mixture,

where the second sound ceases to exist.

The rest of the experimental data collected from various sources [21], are shown in �g. (3.2),

which also shows the behavior of the second sound velocity at temperatures below 1 K. Our model

is in quite a good agreement with the experimental data down to temperature 1.3 K. We cannot

compare the two below this temperature, as the experimental data that we used in our calculations

end at there. Furthermore, at higher 3He concentrations the discrepancy between our calculated

model and measured data seems to increase, which is likely caused by the assumptions we made in

calculating the molar volume, and density of the liquid, which limited the validity of our model to

low concentrations.

Then, in �g. (3.3) the second sound velocity is shown as a function of the temperature relative

to the λ-point temperature, the temperature scale that our experimental data is presented. Now,

as the temperatures are scaled with Tλ, all the curves end at the same point.
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Figure 3.1: Velocity of second sound as a function of temperature, at 3He concentrations between
0.001 % and 10 %. The various points indicate experimental second sound velocity data, read from
�g. (3.2), in pure 4He (+) [22�24], and in mixtures with 3He concentrations 0.32 % (�), and 4.3 %
(�) [25], and 8 % (•) [21]. The velocity has a local maximum in pure 4He, at around 1.8 K, which
subsequently disappears when the 3He concentration is increased. At λ-point, the second sound
velocity goes to zero.

u
2
(m
/s
)

x = 6.28% at SVP

x = 0.15% at SVP

x = 5.41% at 20 atm

x = 5.76% at 10 atm

saturated at melt. pres.

x = 8% at SVP

x = 4.3% at SVP

x = 0.32% at SVP

Figure 3.2: Experimental data for the second sound velocity in 3He − 4He mixtures. The dashed
line is for pure 4He at saturated vapor pressure [22�24], and other points are at di�erent 3He
concentrations; 0.32 % and 4.3 % [25], and 0.15 %, 6.28 %, 5.41 %, and 5.76 % [26], and 8 % [21]. In
mixtures, there is a maximum in the second sound velocity around 1 K.
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Figure 3.3: The velocity of second sound as a function of temperature relative to the λ-point
temperature, at 3He concentrations from 0.001 % to 10 %.

Next, we move on to the coupling factors. In order to obtain a value for them, besides the

derivative terms described above, we need to know the �rst sound velocity u1, which was obtained

from Donnelly and Barenghi [18] for pure 4He, and from Roberts and Sydoriak [27] for 3He− 4He

mixtures.

We �rst study separately the bracketed term of eq. (3.32), denoted α̃, in �g. (3.4). This is the

term that determines when the two sound modes become decoupled, since from �g. (3.6) we see

that the velocity factor in α is never smaller than zero, and zero only at Tλ. In pure 4He, α̃ seems

to go to zero at some very low temperature. Then, at 0.32 % 3He concentration, for example, the

two terms of α̃ cancel out each other at about 0.77Tλ ≈ 1.7 K, and as the concentration increases

the decoupling temperature also increases, until after about 4 % concentration it no longer occurs.

The α̃ = α = 0 line is shown in �g. (3.5).

On the other hand, �rst sound can always create second sound, as the coupling factor β , shown

in �g. (3.6), is always non-zero. The product αβ which represents the double sound conversion,

shown at the bottom plot of �g. (3.6), naturally also disappears when α̃ goes to zero.
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Figure 3.4: The bracketed term of eq. (3.32), α̃ =
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+ c0
σ̄

(
∂ρ
∂c

)
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(
∂σ
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, as a function of

the temperature relative to the λ-point temperature, at 3He concentrations between 0.001 % and
10 %. This term can go to zero at temperatures shown in �g. (3.5).
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Figure 3.5: Decoupling temperature, temperature where α = 0, as a function of 3He concentration.
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Figure 3.6: The velocity factor of α (eq. (3.32)), β (eq. (3.30)), and αβ as a function of T/Tλ, at
3He concentrations between 0.001 % and 10 %. The velocity factor and β do not change sign below
the λ-point.

Since the coupling factor β is always non-zero, pressure oscillations are always accompanied by

temperature oscillations, meaning, we cannot have on oscillating body in the liquid helium that

does not cause some periodic heating and cooling of the medium. But this is not always case the

other way around: there exists certain temperature and concentration values, where small periodic

heating of the 3He - 4He mixture does not cause changes in the total density of the liquid. This

decoupling behavior is the main focus of our experiment.

4 Quartz Tuning Fork Resonator

The main instrument in our experiment was a quartz tuning fork oscillator, which was used to

directly observe the properties of 3He− 4He mixture at di�erent concentrations and temperatures.

Quartz tuning forks are commercially produced piezoelectric oscillators that are commonly used

as frequency standards in various devices, such as watches. A properly cut and shaped quartz crystal

can resonate at certain frequencies. These oscillators usually come in the shape of a traditional

tuning fork, hence the name. There are number of possible resonant modes available, but the

most commonly used is the one where the two tines oscillate antiphase toward each other with no

nodes along the tines. The intended frequency for this mode is usually 215 Hz = 32768 Hz at room

temperature, although, the exact frequency changes slightly from fork to fork. The fork is excited

by the metal electrodes placed on the surface of the tines.

Di�erent kinds of mechanical resonators, ranging from wires to spheres, have long been used to
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observe the properties of super�uid helium. When an oscillator is immersed in �uid, its response

changes due to added inertia and dissipation of the medium, compared to vacuum environment.

The quartz tuning forks, however, have several important advantages over the other oscillators.

As they are mass produced, they are cheap and readily available, as well as robust and easy to

install and use. Furthermore, unlike vibrating wires, they do not require magnetic �eld to operate,

and are, in fact, insensitive to magnetic �elds, which is a useful trait at many low temperature

experiments. The main disadvantage of the forks is their rather non-trivial geometry making an-

alytical calculations of their resonance behavior more di�cult. Quartz tuning forks have been

successfully used to measure, for example, temperature, pressure, viscosity, and turbulence in su-

per�uid helium. [28]

Figure 4.1: Schematic picture of a quartz tuning fork, with holes cut in its metallic container.

Quartz tuning forks come encapsulated in a hermetically sealed metallic container, often cylin-

drical in shape, as shown in �g. (4.1). The container has to either be completely removed, or have

holes made in it to allow the �uid to reach the fork itself. The orientation of the fork within the

container a�ects which resonant modes can be excited. This further adds to the uniqueness of the

forks since no two forks have exactly the same position within their container. [5]

We used ECS-.327-8-14X 32.768 kHz, shown in �g. (4.2), and ECS-.400-12.5-13 40.000 kHz

quartz tuning forks. However, the 40 kHz fork soon proved to be unreliable, of which more later,

and the results presented in this thesis were obtained with the 32 kHz fork.
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Figure 4.2: ECS-.327-8-14X, 32.768 kHz vacuum resonance frequency, quartz tuning fork with its
dimensions.

In our setup (�g. (4.3)), we used a sinusoidal voltage from a function generator to excite the

fork, and to apply a reference signal to a lock-in ampli�er. The detection signal passes through a

preampli�er before arriving to the lock-in ampli�er. The two parameters that we want to measure

from our fork are, of course, the resonance frequency, but also the width of the resonance, which is

a very good indicator of the viscosity of the medium.

~signal

generator

fork
preampli�er

lock-in ampli�er

reference signal

Figure 4.3: Circuit diagram of our quartz tuning fork measurement.

These two parameters were obtained using a resonance-tracking method, where we measure the

fork signal at a single frequency close to the resonance frequency. When the resonator is operated in

the linear regime, we can assume that the area of the resonance is frequency independent constant,

and the shape of the resonance is a Lorentz function. This enables us to calculate the resonance

frequency and resonance width based on a single measurement point. [21]

Before we can start to use the resonance-tracking method, we have to record a calibration

spectrum over entire frequency range at stable conditions to determine the background o�set and

slope, the phase shift caused by the detection circuit, as well as the amplitude and width of the

resonance peak. The main advantage of the resonance-tracking method is it being much faster than
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recording entire spectra. Using the resonance-tracking method, it is possible to obtain a new data

point every two seconds, whereas full frequency sweep would require minutes. The downside is that

the full shape of the fork resonance is lost.

From our single frequency measurement, we get the two voltage components of the phase-

corrected AC response, V1 and V2, which are related to the fork's resonance frequency, f0, and

resonance width, w, by [21]:

w =
CV1

V 2
1 + V 2

2

, (4.1)

and

f0 =

√
f

(
f + w

V2

V1

)
, (4.2)

where the constant C is the product of the width and amplitude of the resonance peak, and f the

measurement frequency.

For maximal accuracy, the resonance-tracking measurement would have to be done as close the

fork's resonance frequency as possible, at least within the width of the resonance. To make this

happen, we had a computer program which used the previous computed resonance frequency as the

new measurement frequency. This algorithm meant that if the resonance frequency was changing

too rapidly, the program could not follow it properly causing error in the computed resonance

frequency. However, in our experiment the rate of change in temperature was so slow that the

program had no di�culties in keeping track of the fork resonance.

As the data obtained from the resonance-tracking measurement are just the voltage data, we

don't necessarily need to have exactly the correct resonance-tracking parameters in place during

the measurement, rather, we can record them as a part of the measurement process and then apply

them to the voltage data during the data analysis stage. The resonance-tracking parameters used

in the measurements must, however, be good enough to enable the computer algorithm to properly

track the resonance.

4.1 Second Sound Resonances in Quartz Tuning Fork

When a quartz tuning fork is oscillating in super�uid helium, it creates �rst sound as it pushes the

liquid around it, but at the same time it also heats the liquid due to friction between the normal

�uid component of helium and the surface of the fork. So, in practice, the oscillating fork creates

a sound mode that is a combination of �rst and second sound.

In the temperature region of our experiment, the velocity of second sound is around 30 m
s ,

meaning that at the frequency region of 32 kHz the wavelength is of the order of a millimeter, which

matches the scale of the quartz tuning fork and its container. The second sound created by the fork

is then able to form a standing wave within the container of the fork. On the contrary, the velocity

of �rst sound is roughly ten times larger than the velocity of second sound, meaning its wavelength

is too long to form a standing wave around the fork. The second sound part of the sound mode
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that the fork creates can then generate �rst sound, which can couple back to the fork altering its

resonance response. A few possible standing wave modes within quartz tuning fork container are

shown in �g. (4.4).

We discussed about these superposition sound modes at the end of Section 3.2, where, after

double sound conversion, we ended up with the total sound wave

s̃DSC ∼
(
P̃ + αT̃ + αβP̃

)
+
(
T̃ + βP̃ + αβT̃

)
. (4.3)

Only the pressure oscillations of the �rst parenthetical term can alter the fork's resonance behavior,

since the temperature oscillations of the second parenthetical term cannot create piezoelectric e�ect

in the fork. The �rst pressure oscillation term P̃ is �rst sound created by driving the fork and it has

no signi�cant temperature dependence, meaning it also cannot have an e�ect on the fork's resonance

response. Conversely, αT̃ and αβP̃ have stronger temperature and concentration dependence due

to the coupling factor α, and its e�ect can be observed. The coupling factor β has only a weak

temperature and concentration dependence, which makes it di�cult to determine which of the two

�rst sound modes gained from sound conversions is dominant, or if either is.

On the other hand, we could simplify the situation by assuming that the fork creates only pure

�rst sound. The pure �rst sound then can create pure second sound with coupling factor β. This

second sound can then form the standing wave within the fork's container and again induce �rst

sound, this time with coupling factor α. The entire process is then a double sound conversion, and

the amplitude of the �nal pressure wave is proportional to the product of the coupling factors, αβ.

In our case, the important thing is that only the �rst sound modes can couple back to the fork,

whereas second sound modes are invisible to the fork. Also, whether the �rst sound mode that

couples back to the fork is a result from singe sound conversion (αT̃ ) or double sound conversion

(αβP̃ ), it is still proportional to the coupling factor α. If it disappears, so does the coupling back

to the fork, and that is exactly what we wanted to study.

When the coupling back to the fork occurs, the standing wave formed by the temperature wave

drives a pressure wave at same wavelength, which can be detected by the fork. This can be seen as

an anomaly in the resonance response of the fork, which appears as a loop in the fork's resonance

frequency - resonance width graph. These anomalies, or these loops, are called second sound res-

onances, where the magnitude of the loop is directly proportional to the strength of the coupling

between the two sound modes.
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Figure 4.4: Some of the most strongly coupling standing wave modes in quartz tuning fork container
with the oscillator placed symmetrically in the cavity. Blue and red colors indicate antinodes of the
sound wave with opposing displacement from the equilibrium. The upper row shows sliced images,
with the fork shown, and the lower shows the container surface. The wavelength of the sound wave
is given above the image. [29]

5 Experimental Setup

The setup of our experiment consists of 3He− 4He mixture cell placed in a 4He bath in a glass dewar.

The mixture is monitored by the two quartz tuning forks discussed previously. The temperature

of the bath is measured with two carbon resistors, and the bath and mixture cell pressure are

measured with capacitive pressure gauges.

5.1 Mixture Cell

The mixture cell, presented in �g. (5.1), was made of copper, with stainless steel �lling line on top,

and with cupronickel and brass tubes on the side for the fork feedthroughs. The feedthroughs were

made of di�erent materials simply because we did not have a cupronickel tube with an appropriate

diameter to �t the 40 kHz fork. The top section of the fork's container was completely removed

to enable the 3He− 4He mixture to reach the fork. The opened containers were then soldered to

the tubes on the sides of the cell, and �nally the tubes were wrapped in tissue paper, soaked with

Stycast 1266 epoxy glue, to protect the fork feedthroughs from mechanical damage. At the bottom,

there is a threaded hole for fastening the cell in place, however we did not end up using it.
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Figure 5.1: Schematic of the 3He− 4He mixture cell. There is a bu�er volume above the horizontal
quartz tuning fork volume, which helps to keep the forks submerged and to maintain saturated
vapor pressure in the mixture.

Strictly speaking, in order to observe second sound resonances, we would need just large enough

volume of liquid to immerse the forks in it. However, we decided to include a larger bu�er volume

to help maintain the mixture at saturated vapor pressure, and to ensure that the forks remain

properly submerged throughout our experiment. The total volume of the mixture cell was about

2 cm3, with the bu�er volume making 94 % of it.

As the �nal step, we wrapped thin manganin wire, with total resistance of about 10 Ω, around

the cell as a heater.

5.2 Cooling System

The 3He− 4He mixture cell was placed on a stand, as shown in �g. (5.2a), which could then be

placed in a 4He bath in a glass dewar. Next, two Matsushita carbon resistor thermometers were

installed, one (50 Ω) taped on top of the cell, and the other (185 Ω) a little higher, �xed on the

support structure of the stand, to measure the temperature of the 4He bath. Additionally, we

installed a 130 Ω power resistor heater on the bottom plate of the stand. A better view of the entire

stand is in �g. (5.2b).
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(a) Mixture cell installed on the stand of
the glass dewar.

(b) Zoomed out view of
the mixture cell on the
stand.

(c) Glass dewar during the experiment.

Figure 5.2

The glass dewar had a 4He volume of about 2.5 liters, and smaller liquid nitrogen volume,

separated by vacuum volume, for precooling and thermal shielding. The nitrogen volume was easily

replenishable.

The 4He bath was then pumped with a rotary pump to obtain temperatures down to 1.7 K. The

cooling power is due to the latent heat of evaporation of liquid 4He. When we pump away atoms

from the vapor phase above the liquid, the most energetic atoms leave the liquid to replenish the

vapor phase. Each atom transferred from liquid to vapor phase cools the liquid with the amount

determined by the latent heat of evaporation. The cooling power decreases with temperature as

∝ exp
(
− 1
T

)
, which imposes a limit to the lowest obtainable temperature, with small heat leaks and

powerful pumps, to about 1 K for 4He. [3]

As 4He is pumped the liquid level in the bath decreases, this limits the time available at low

temperature, since the 4He bath cannot be replenished without warming it up to 4.2 K. The time

available for our measurements was 7− 8 hours with full bath, which was just enough for a single

measurement set. Initially, the liquid in the bath is consumed very rapidly, the cooling from 4.2 K

at 1 bar to the λ-point at 2.18 K and 50.4 mbar expends roughly one quarter of the total amount of

the liquid. After that, the consumption is signi�cantly lower.
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The pressure gauge of the 4He bath was placed on the tube on the top �ange of the glass dewar's

stand, while the mixture cell pressure gauge was placed on the room temperature end of the �lling

line of the cell. Both pressure sensors were Pirani gauges with capacitive mode.

A photograph of the fully equipped glass dewar is in �g. (5.2c). The table where the class

dewar stands is not protected from vibrations, but the bu�er volume of the mixture cell makes it

insensitive to external mechanical vibrations, and they then caused no problems.

A useful feature of the glass dewar is a �window�, through which it is possible to actually see the

liquid in the 4He bath. This made it easy to monitor the liquid level of the bath, and to visually

observe the bath's super�uid transition. In normal state, boiling liquid 4He bubbles like any other

boiling liquid. However, when the transition to the super�uid occurs the bubbling suddenly stops

and the surface of the liquid is completely calm, even though it still is at a boiling point. This is

due to the extremely large thermal conductivity of the super�uid 4He, which means that the entire

liquid is exactly at boiling temperature, as opposed to normal �uid, where only some points of the

liquid are at boiling point.

6 Experiment Procedure

6.1 Room Temperature Preparations

The 3He− 4He mixtures used in our experiment were prepared at room temperature. We started

with commercial quality pure 4He gas placed in a known volume, and then added 3He− 4He mix-

tures of known concentrations of (6.0± 0.3) % and (11.0± 0.3) % to get mixtures with 3He concen-

tration ranging from 0 % to 9 % with about 0.5 percentage point interval. The amount of mixture

to be added was calculated by assuming that the gaseous helium mixture was a mixture of two

ideal gases. For two of the measurements, we used the gas directly from the known concentration

tanks.

After each measurement, we gathered the mixture back with our gas handling system, and simply

added some amount of richer mixture to it to make up the mixture for the next measurement.

Initially, we had 25 mmol of pure 4He, and �nally ended up with 94 mmol of 9 % mixture. The

amount interval was chosen so that at the beginning there would be enough liquid in the mixture

cell to partly �ll the bu�er volume, and at the end we could still put all the mixture in the cell

without risking it being completely full.

The 3He concentration of the �known� concentration tanks was determined by a sound speed

measurement at room temperature. Since 3He is lighter than 4He, increasing its concentration

decreases the overall density of the mixture increasing the speed of sound. We had a chamber with

known geometry, equipped with a speaker and a microphone placed at the antinodes of a certain

standing sound wave forming inside the chamber. Then we made a frequency sweep to �nd the

resonance frequency and compared it to the reference value of commercial quality pure 4He, to

determine the 3He concentration. The chamber was placed in a water bath to keep it at a constant

temperature, and in order to prevent contaminations in the helium gas from entering the chamber,
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the gas went �rst through an activated charcoal trap at liquid nitrogen temperature (77 K) where

the contaminants would freeze.

We learned that the pure 4He reference value varied somewhat from day to day, which meant that

the temperature inside the chamber was not kept perfectly constant. Also, the residual impurities

left in the gas handling system could have caused some error. The 3He concentration values were

then obtained as an average value after measuring their concentrations on several days.

The volume of the sound speed measurement chamber plus the liquid nitrogen trap was so large

that we could not use this setup to measure the concentration of the mixtures prepared for our

mixture cell. To do so we would have had to prepare larger amounts of the mixture, and there was

not enough room in our gas handling system to store it. However, the key thing for us was to prepare

mixtures with steadily increasing concentrations, rather than to prepare mixtures with some speci�c

concentrations. Eventually, we determined the concentrations of the prepared mixtures with the

quartz tuning fork, using the (6.0± 0.3) % and (11.0± 0.3) % mixtures as calibration points.

6.2 Procedure at Low Temperatures

When the glass dewar was full of liquid 4He at 4.2 K, we allowed the prepared 3He− 4He mixture

to enter the mixture cell through the �lling line. At the same time, we started to pump the 4He

bath to lower its temperature. 4He has one degree higher boiling point than 3He, meaning that, at

�rst, mostly 4He is condensing in the cell. Only below 3 K there starts to be signi�cantly more 3He

in the liquid.

As soon as we reached the λ-point, we started our controlled temperature sweep. It was done

by combination of adjusting the pumping of the 4He bath with a valve, and heating the bath with a

control loop feedback controlled heater. We tuned the pumping so that the temperature decreased

a little too quickly, and then heated the bath just enough to slow it down to an appropriate level.

The controlled heater used a PID control loop, which allows us to give it a temperature sweep

pro�le to follow, and the algorithm takes into account the current di�erence between the actual and

the desired temperature (Proportional), and past di�erence based on the sum of earlier di�erences

(Integral), as well as the anticipated di�erence based on current rate of change (Derivative). The

current through the heating resistor is then adjusted according to this algorithm to produce the

desired temperature sweep. Initially, our intention was to use the heater wire wrapped around the

cell for the PID controller, but we learned that the power resistor placed at the bottom of the bath

was more suited to the task, since with it we were able to obtain a steadier sweep rate.

Our temperature sweep pro�le was a linear with decrease rate of 0.5 mK
min between the λ-point

and about 2 K, and slightly faster, 1.5 mK
min , below 2 K. The temperature sweep back to the λ-point

from the lowest temperature was done somewhat faster, as this way we were able to carry out all

the measurements for a single concentration in the time window of 7-8 hours, which was determined

by the amount of 4He in the glass dewar. Moreover, we found that it was easier to maintain steady

sweep rate while going down in temperature than going up.

The resistor thermometers were calibrated against saturated vapor pressure during the pure 4He
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runs. The vapor pressure was converted to temperature according to the ITS-90 temperature scale.

We found, that of the two installed carbon resistors, the one �xed on the support structure of the

stand was slightly more sensitive to temperature changes, and we used it as our main thermometer.

The second thermometer, taped directly on top of the mixture cell, was used as a backup. We made

runs in pure 4He both before and after the measurements in other 3He concentrations to verify that

our experimental setup had not changed in between.

All the while the temperature sweeps were going on, we were measuring the resonance frequency

and resonance width of the two quartz tuning forks using the resonance-tracking method discussed

in Section 4. During each cooldown, we stopped the temperature sweep at some point, and used

the PID controller to maintain constant temperature to record a full quartz tuning fork spectrum

in order to obtain new parameters for our resonance-tracking measurement.

7 Results

7.1 Second Sound Resonances

We begin by looking at the 32 kHz quartz tuning fork resonance data obtained during a single glass

dewar cooldown period, with 4.2 % 3He concentration mixture, which is presented in �g. (7.1). The

super�uid transition shows clearly in the fork's resonance frequency - resonance width plot as a

tilted V-shape near the 20 Hz resonance width. Below the λ-point, the resonance frequency of the

fork increases with decreasing temperature, while above it is the other way around. The width of

the fork's resonance decreases with decreasing temperature both above and below the λ-point, but

below the change is more rapid.

When we are initially cooling down the mixture, far left in �g. (7.1), the super�uid transition

curve starts to form in a di�erent location than where it eventually ends up being. This is due to

the two helium isotopes not properly mixing until the super�uid transition. As we cool down the

helium mixture somewhat slowly from room temperature, mostly 4He lique�es at �rst due to its

higher boiling point, and then 3He lique�es on top of it, and because it is lighter than 4He, and

because we are not disturbing the cell, it tends to stay there. When both isotopes are in normal

state, their mixing due to di�usion is rather slow, and because the fork is at the bottom of the

cell, mixture around it contains less 3He than mixture closer to the surface. When 4He becomes

super�uid, it can �ow without viscosity, driven strongly even by a small temperature gradient,

which mixes the two isotopes very e�ciently throughout the liquid volume. This feature can assist

us in determining the location of the true λ-point, but we can only utilize it at concentrations above

2 %, for below it, this e�ect becomes quite small.

When the fork data are presented in the frequency-width plot, the second sound resonances

are easily distinguishable, they appear as loops against the background slope that is caused by the

temperature sweep. The magnitude of the loop is directly proportional to the coupling strength

between �rst and second sound. Also, the sequence of the appearing resonances remains the same,

even as we change the 3He concentration; if there are two small resonances followed by a large
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Figure 7.1: Fork resonance width versus fork resonance frequency in 4.2 % 3He concentration mix-
ture during the temperature sweep from about 2.6 K (slightly above Tλ) to 1.7 K and back, with
key features indicated by the arrows.

one, or several small resonances within a large one, at one concentration, the same is true in other

concentrations as well. This means, that even though the shape of the second sound resonances

changes from concentration to concentration, it is possible to identify equivalent series of loops.

Alternatively, we can, for example, present the fork resonance width as a function of tempera-

ture, as in �g. (7.2), where we notice that the width of the second sound resonance in temperature

increases with decreasing temperature. Near the λ-point, both the amplitude and width of the

second sound resonances are small, making them very hard to distinguish, whereas at lower tem-

peratures they clearly stand out. When the amplitude of the second sound resonance is large,

this presentation works almost as well as the frequency-width plot. However, smaller resonances

may be lost to the background noise, whereas they would still have distinct loop-like shape in

frequency-width plot. Also, the region where the two isotopes mix is very di�cult to discern in the

temperature-width plot.

The rest of the quartz tuning fork resonance data obtained with the 32 kHz fork are shown in �g.

(7.3). The temperature sweeps were carried out down to about 1.8 K in the �rst few measurement

runs. Then, starting from 2.1 % mixture run, they were extended to about 1.7 K. Finally, the 11.0 %

mixture run was again stopped at the higher temperature, as its main purpose was to calibrate our
3He concentration scale. The temperature sweep rate of the 11.0 % run was also somewhat faster

than in other measurements.

Below Tλ, the behavior of the background slope of the fork resonance frequency-width plot can

be understood in terms of the two-�uid model: as temperature decreases the super�uid portion of
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Figure 7.2: Fork resonance width versus temperature in 4.2 % 3He concentration mixture during
the temperature sweep. Same key features as in �g. (7.1) are highlighted.

the two-�uid increases, and since it has no viscosity that could dampen the fork's oscillations, we

see a sharper resonance peak. On the other hand, as we increase the 3He concentration, we are

e�ectively increasing the normal �uid portion of our two-�uid, since in our temperature region 3He

cannot be in super�uid state. This means, that as we go towards higher concentrations, at constant

temperature, the fork resonance width increases.

Since �g. (7.3) contains both the temperature sweep down and temperature sweep up, we can see

that the second sound resonances of the 32 kHz fork appear, with good accuracy, at same location,

independent of whether we were increasing or decreasing temperature. The same was not true for

the 40 kHz fork. We measured the pure 4He spectrum several times during the initial tests of our

experimental setup, and already during this phase it became clear that the 40 kHz fork could not

reproduce the locations of its second sound resonances within any sensible accuracy. Even during

the same cooldown, the location of a single resonance seemed to shift arbitrarily. Since, during the

same time, the 32 kHz fork worked well in comparison, we decided not to replace the 40 kHz fork,

but rather went on with our experiment. We kept measuring the 40 kHz fork parallel with the other

fork, but its poor behavior persisted throughout the experiment. All the data presented here were

then obtained using the 32 kHz fork.

There were also some di�culties with the 32 kHz fork during the 1.1 % concentration experiment,

as its curve is clearly shifted from the others. We could not identify any apparent reason for the

shift, as the quartz tuning fork behaved otherwise just like before. Curiously, similar thing occurred

during one of the pure 4He measurements that were done after the other mixture runs, but it was

remedied by thermal cycling our setup back to the room temperature. It is possible, that these shifts
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Figure 7.3: Resonance width of the 32 kHz quartz tuning fork versus the resonance frequency of
the fork. Colors indicate di�erent 3He concentrations, which are given next to the curves. The
background slope of the graphs is due to change in temperature, and the second sound resonances
appear as loops. Note, that the 11.0 % dataset does not include the largest low temperature
resonances.

are somehow related to small changes in the fork's measurement circuit, orientation of the wires,

for example. We tried to keep the measurement circuit as unchanged as possible, but as there were

other experiments running parallel with ours, some small variations were unavoidable. Then again,

we recorded new tracking parameters for our resonance-tracking method during each cooldown,

which should have mostly eliminated the error caused by the changes in the fork measurement

circuit. It is also possible that some residual impurities in helium, like hydrogen, could have frozen

on the surface of the fork changing its resonance response. This would explain why the problem did

not occur in consecutive measurement runs, as the impurities would have evaporated away when

we warmed up our setup to room temperature in between measurements.

Because of this shift, in 1.1 % concentration run, we started our temperature sweep at such low a

temperature, that we missed the small resonances near Tλ. But, on the other hand, its temperature

sweep was carried out to a lower temperature than in most of the previous measurements, which

shows that the largest low temperature second sound resonances, that become very prominent at

high concentrations, had not yet appeared at 1.1 % concentration.

The general region of the super�uid transition can easily be determined from the tilted V-shape

clearly visible in all measurements in �g. (7.3). However, the exact location of the λ-point is

slightly more challenging to determine. Guided by the fork response during the �isotopes mix�

stage of �g. (7.1), we have placed the λ-point at the point, where the fork response curve starts to

shift from the below Tλ background curve. The λ-points determined this way are presented in �g.
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(7.4). The general behavior of Tλ is consistent with the data from Taconis and de Bruyn Ouboter

[30], although our method gives systematically lower Tλ than their results. Since the data given

by Taconis and de Bruyn Ouboter uses the outdated ITS-48 temperature scale, we have scaled it

linearly to match the current ITS-90 temperature scale.

The λ-points were determined during the warm up stage of the experiment, and the temperature

value was obtained from the carbon resistor thermometer. The location of the super�uid transition

determined from the quartz tuning fork response may be correct, but at that instant the carbon

resistor may not yet have warmed up to the exactly same temperature as the liquid surrounding it,

giving us slightly too low Tλ value. Nevertheless, as we start to present our data in a temperature

scale relative to the λ-point, the e�ect of the error in our Tλ should be reduced.
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Figure 7.4: Super�uid transition temperature Tλ determined from our measurements (black), com-
pared to the data from Taconis and de Bruyn Ouboter [30] (red).

The 3He concentrations of �g. (7.3) were determined by making a linear �t to the background

slope of each measurement set below Tλ. We chose the fork resonance frequency axis as our ref-

erence line, which means that the 3He concentration is proportional to the ratio of the constant

term and the slope of the linear �t. Since three datasets were obtained with known 3He concentra-

tions, one with pure 4He, and the other two with (6.0± 0.3) % and (11.0± 0.3) % concentration

mixtures taken directly from our room temperature storage tanks, we are able to determine the
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concentrations of the rest of the mixtures. The linear �ts are shown in �g. (7.5). The error of those

concentrations was estimated to be ±0.3 percentage points, which is mostly due to the uncertainty

of the storage tank mixture concentrations.
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Figure 7.5: Linear �ts to the background slopes of the fork data used to determine the 3He concen-
trations.

The pure 4He data presented in �g. (7.3) were obtained during one of the runs that were made

after all the other mixture runs. For comparison, in �g. (7.6), we have two additional pure 4He

datasets obtained before any other mixture measurements. In one of them, the temperature sweep

was extended to the lowest reachable temperature with our cooling system, 1.7 K. We see that the

lowest temperature second sound resonances, that �rst appear at 2.1 % concentration in �g. (7.3),

are absent in pure 4He. Because we had not extended all the temperature sweeps at low 3He con-

centrations so close to the minimum temperature, the dataset for the lowest temperature resonances

is somewhat incomplete. Fortunately, since we had not noticed the shift of the problematic 1.1 %

measurement set until afterward, we had carried out its temperature sweep down to almost 1.7 K.

As these resonances had not yet appeared there, we can then narrow down the 3He concentration

they appear to somewhere between 1.1 % and 2.1 %.
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Figure 7.6: Three datasets obtained with pure 4He during three di�erent glass dewar cooldowns.
Brown and light green data were obtained before measurements with any other 3He concentration,
and the blue data after them. In the light green dataset, the temperature sweep was continued
to the lowest obtainable temperature, about 1.6 K. Inset shows a close up of one group of second
sound resonances illustrating that some of the resonances are distorted in the light green dataset
because the temperature sweep rate was too high during it.

The second sound resonances start already quite small in pure 4He, but as the 3He concentration

is increased they �rst become even smaller and only after 2.1 % concentration their size starts to

increase, eventually becoming very large compared to the starting point. Furthermore, as we noted,

the lowest temperature resonances appear for the �rst time at 2.1 % concentration. The amplitude

of the second sound resonances, i.e. the magnitude of the loop, is directly proportional to the

coupling strength between second and �rst sound, as discussed in Section 3.1. In pure 4He the

coupling between second an �rst sound is already quite weak due to the small thermal expansion

coe�cient of super�uid helium. Then, as we add a small amount of 3He, the coupling becomes

even weaker, since the second term in brackets of eq. (3.32) has an opposite sign than the thermal

expansion term. This is evident by the decreasing magnitude of the second sound resonances.

When the second term begins do dominate, the coupling becomes stronger and stronger, and the

magnitude of the second sound resonance loops starts to increase.

In �g. (7.7), we take a closer look of the region, where the second sound resonances �rst dis-

appear, and then reappear, as the 3He concentration is increased. This is the region where second

sound and �rst sound decouple from each other. We have focused the view on those resonances

that are clearly identi�able, and can therefore be followed through di�erent concentrations. There



7 Results 36

would be many more second sound resonances near Tλ, but their amplitude is always quite small

and they are very close together making them very di�cult to distinguish, especially when trying

to �nd them at various concentrations. On the other hand, the lowest temperature resonances

would very much stand out, but since they cannot be found in pure 4He, they are not very useful

in studying the decoupling region.
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Figure 7.7: Cropped view of the region where the second sound resonances �rst disappear and then
reappear as the 3He concentration is increased. To make the �gure clearer, the temperature sweeps
up and the entire 11.0 % measurement have been omitted. The second sound resonances vanish
between 1 % and 2 % concentrations, and reappear as the concentration is further increased.

Next, in �g. (7.8) we have focused the view on a single group of second sound resonances. In

pure 4He, this group can be found near 13 Hz fork resonance width. We have also numbered three

of the second sound resonances that stand out clearly both before and after the sound mode decou-

pling. Before the decoupling, the second sound resonances are loops above the background slope,

but afterward, just as they start to reappear, they are more like dints below the background level.

Only as the 3He concentration is increased even more, the loops start to become visible again, but

their shapes are clearly di�erent from those in pure 4He. However, the second sound resonances

still appear in the same order, the big resonance, labeled '2', is still between two smaller resonances

in 4.2 % mixture, like it is in pure 4He. Between 1.7 % and 3.2 % concentrations, it is slightly more

di�cult to recognize this resonance, since it has �ipped below the background slope. Furthermore,

we notice, that when we also take into account the temperature of the second sound resonances,

the 1.1 % mixture dataset, that was clearly shifted in previous �gures, seems to �t quite well with

the other datasets.



7 Results 37

12.8

13

13.2

13.4

13.6

0.4%

12.6

12.8

13

13.2

13.4

0.7%

14.8

15

15.2

15.4

15.6

1.1%

12.8

13

13.2

13.4

13.6

1.7%

13

13.2

13.4

13.6

13.8

2.1%

13.2

13.4

13.6

13.8

14

2.7%

13.4

13.6

13.8

14

14.2

3.2%

13.2

13.4

13.6

13.8

14

14.2

3.8%

13.6

13.8

14

14.2

14.4

4.2%

1

1

2

2

3

3

fo
rk

Figure 7.8: Closer view of the largest high temperature second sound resonance of �g. (7.7) followed
through the decoupling region. The color of the line changes according to temperature, showing
that the resonances move to a higher temperature as the 3He concentration increases. Even though
the shape of the resonances changes, we can still identify the three big resonances of pure 4He also
in 4.2 % mixture.
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7.2 Constant Second Sound Velocity Curves

From �gs. (7.7) and (7.8), we saw that it is possible to identify several equivalent second sound res-

onances from temperature sweeps at di�erent 3He concentrations, due to the resonances appearing

in same sequence despite their changing amplitude and shape. These equivalent resonances form

the same standing wave mode within the container of the quartz tuning fork, which is possible only

if the velocity of the second sound remains constant. So, by following the second sound resonances

it is possible to construct a constant second sound velocity plot.

We begin by looking at �g. (7.9), where we have plotted the observed second sound resonances

in the plane of 3He concentration and temperature relative to the λ-point. Note that the colors of

�g. (7.9) are not related to the colors of previous �gures. Now, the coloring points out an identi�ed

resonance followed through increasing 3He concentrations. Not all followed resonances are indicated

with colors, rather a few examples are pointed out in various temperature regions. Also, note that

the 1.1 % dataset, that is clearly shifted in �g. (7.3), �ts in quite well with other datasets in the

relative temperature presentation, although it is still missing the small second sound resonances

near the λ-point, as its temperature sweep rate was too high there.

The sound decoupling region is also visible in this plot, and we actually see some temperature

dependence in it. The amplitude of the second sound resonances near Tλ is smallest at higher

concentration than the amplitude of the resonances at lower temperatures.
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Figure 7.9: Observed second sound resonances in the plane of 3He concentration and temperature
relative to the super�uid transition temperature Tλ. The amplitude of the resonance is represented
by the size of the circle. The coloring indicates examples of the same resonance followed through
di�erent concentrations.
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The second sound resonances were identi�ed, and followed, from frequency-width plots, while

their amplitude and location in temperature space was determined from temperature-width pre-

sentations, such as the one shown in �g. (7.2). Since we measured only pure 4He during multiple

cooldowns, we have to rely on its data to evaluate the error in the resonance location. When we

evaluate the location error using pure 4He runs, from multiple cooldowns, we end up with a value

±3 mK, or about ±0.0014Tλ. Conversely, the error between temperature sweep down and temper-

ature sweep up, in a single cooldown, is merely ±0.6 mK. The error in the 3He concentration is

±0.3 percentage points, as discussed earlier.

Next, in �g. (7.10), we have a constant second sound velocity plot, obtained using the equations

discussed in Sections 3.1 and 3.3. Then, in �g. (7.11), we essentially have the same data as in �g.

(7.9), but now we show only those second sound resonances we were able to identify and follow

through di�erent 3He concentrations, we have also left out the circles representing the amplitude

of the resonance. Lastly, in �g. (7.12) we have superimposed the two previous �gures to make

comparison easier.

When we compare the contours of these two plots, we see that they behave similarly. Near the

λ-point, as we go from concentration to concentration, we can �nd the same resonance practically

at same relative temperature. Correspondingly, in the same region, the constant second sound ve-

locity curve is almost horizontal. When we move to a lower temperature, the resonance locations at

higher concentrations are still about constant in relative temperature, but at lower concentrations

the observed resonances start to arc towards lower temperatures, which is again mirrored by the

constant second sound velocity curves. Finally, the behavior of the constant velocity would also

explain why we cannot locate the lowest temperature second sound resonances in pure 4He. The

constant second sound velocity has, in fact, curved so much that it no longer intersects the 0 % line.

However, there are some di�erences between the two as well: at higher 3He concentrations, there

is still a clear slope in the constant second sound velocity in the calculated model, whereas in the

measured data the slope is noticeably smaller. Our calculated model is valid at low concentrations,

meaning we should not use it to make any serious assumptions how the constant second sound

velocity would behave at increasing 3He concentrations. Furthermore, near the decoupling region,

the amplitude of the second sound resonances becomes very small, which makes them di�cult to

identify.
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Figure 7.10: Calculated constant second sound velocity curves in the plane of 3He concentration
and temperature relative to the super�uid transition temperature, Tλ. The velocity values in m/s
are shown next to the curves.
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Figure 7.11: Constant second sound velocity curves obtained by following the second sound reso-
nances through di�erent concentrations. The second sound velocity values, in m/s, are shown by
the numbers next to the curves. The values indicated by ” ∼ ” were evaluated from our calculated
model, while the others were obtained from the pure 4He second sound velocity data by Donnelly
and Barenghi [18]. The colors here match the colors of the resonances in �g. (7.9).
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The strong resemblance between the �gs. (7.10) and (7.11) con�rms that we have followed the

second sound resonances correctly, which could have been called to question, as the identi�cation

of the resonances was basically done by eye. The constant second sound velocity value, for those

resonances that are also found in pure 4He, can be obtained from various sources, as the second

sound velocity in pure 4He is well known. But for the resonances that did not appear in pure 4He,

the velocity values had to be taken from our calculated model, which makes them more unreliable.

Below u2 = 20 m
s , our calculated model gives roughly 10 % larger second sound velocity than the

value obtained from pure 4He velocity data of Donnelly and Barenghi [18].

The constant second sound velocity curves obtainable with this kind of measurement are re-

stricted to regions where there actually are second sound resonances. For example, in our data,

there are gaps between 15.3 m
s and 18.2 m

s , and between 19.1 m
s and 24.5 m

s , simply because there

are no second sound resonances there. To get a more complete dataset, the measurement would

have to be done with several di�erent forks, which would have second sound resonances at di�erent

temperatures. In this sense, too, it would have been very useful if our 40 kHz fork had worked

properly.

Figure 7.12: Comparison between the calculated constant second sound contours of �g. (7.10), and
the measured data of �g. (7.11). Discrepancy between the calculated model and measured data
becomes larger at lower temperatures and higher concentrations.
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7.3 Amplitude of the Second Sound Resonances and Coupling Factors
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Figure 7.13: Plotted surface is the result of the theoretical calculation of the product of the coupling
factors, −αβ, as a function of 3He concentration and temperature relative to the λ-point, whereas
the stems are the measured amplitudes of the second sound resonances normalized to the 9.0 % 3He
concentration calculated data. The length of the stem is the di�erence between the calculated and
the measured value. The z-axis is linear, but the colormap of the surface is logarithmic in order to
emphasize the decoupling region. Surface is semitransparent to make the stems that lie beneath it
visible. Dashed white line indicates where α = 0 according to our calculated model.

The most important thing we learned of the coupling between second and �rst sound is already

clearly visible from the fork's frequency-width plots of Section 7.1: there is a region, around 1 % 3He

concentration, where second sound resonances vanish as the two sound modes decouple from each

other, and second sound can no longer generate �rst sound. In this section, we want to compare

the observed amplitude of the second sound resonances to the calculated strength of the coupling,

represented either by the product of the coupling factors αβ, in the case of double sound conversion,

or by justα, in single sound conversion, as discussed in Section 3.2.

In our data analysis, we have assumed that the coupling strength is proportional to the product

of the coupling factors. Using equations (3.30) and (3.32) it is possible to construct a surface to

represent the product, αβ, as a function of 3He concentration, and relative temperature T/Tλ. To

make comparison with the second sound resonance data possible, we have normalized the resonance

amplitude to the αβ value at 9.0 % concentration, so at this concentration calculated data and mea-

sured data match exactly. The second sound resonances, that can be normalized to the amplitude

value at some speci�c 3He concentration, are those same resonances, we were able to follow through

di�erent concentrations in �g. (7.11).

The comparison plot is shown in �g. (7.13). We have plotted the surface as −αβ to make the

measured datapoints more visible. While the z-axis of this plot is linear, the colormap of the surface
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is base 10 logarithmic to make the decoupling region stand out. Since the second sound resonance

amplitude data do not contain any information about the sign of the product of the coupling factors,

we have manually inserted it to match the calculated data. Before the decoupling, below about

1 % concentration, the product is positive, while after the decoupling, it is negative. The amplitude

data is presented in a stem plot, where the dot indicates the data point, and the line the distance

from the calculated surface. Overall, the measured data behaves very similarly to the calculated

data, though our data points are systematically above the surface, except for the 11.0% dataset,

which lies mostly below the surface. The temperature sweep rate of the 11.0 % measurement was

somewhat faster than in the other measurements, which could distort the resonances causing error

in their amplitude determination. The observed coupling then generally seems to be stronger at low

concentrations than our calculated model predicted, but at high concentrations it is the other way

around. Our calculated model assumed, for example, an ideal solution of 3He and 4He, where the

components do not interact with each other. This could result in our model underestimating the

e�ect 3He has to the the coupling strength. Additionally, the only dataset lying almost completely

below the surface is the one at a larger concentration than the 9.0 % normalization concentration,

implying that the normalization already may have skewed the measured data. When we are nor-

malizing the the amplitudes of the set of resonances followed through di�erent 3He concentration

to the amplitude value at a single concentration, we are implicitly assuming that the rest of the

second sound resonances in the set have the same quality factor, which, in reality, is a function of

temperature and concentration, which would have to be taken into account to get more accurate

comparison between the measured and the calculated data.

Figure 7.14: Same data as in �g. (7.13), but with logarithmic z-scale.
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To emphasize the decoupling region even more, in �g. (7.14), we have also set the z-axis to

logarithmic scale, but we have kept the same colormap as before. The decoupling region now clearly

stands out as a ravine, and we also see how the surface curves to zero when approaching the λ-point.

At Tλ the product of the coupling factors becomes zero since the super�uid density goes to zero.

The measured data still seems to match calculated data quite well. However, the length of the

stems near the decoupling region indicates that we had reached the resolution of our quartz tuning

fork measurement there. This is shown more clearly in the relative residual plots of �g. (7.15),

where the residuals are noticeably larger near the decoupling region, and their sign changes more

often than in the measurements at higher concentrations. If we were able to make a mixture with

concentration even closer to the decoupling concentration, it would become even more di�cult to

separate the miniscule second sound resonances from the background noise.

0.8 0.85 0.9 0.95 1

−6

−4

−2

0

2

4

T/Tλ

re
la

tiv
e 

re
si

du
al

0 2 4 6 8 10 12

−6

−4

−2

0

2

4

x3(%)

re
la

tiv
e 

re
si

du
al

Figure 7.15: Relative residual (di�erence between measured data point and corresponding point on
the calculated surface, divided by the value at the surface) as a function of relative temperature
(upper), and 3He concentration (lower).
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Because the coupling factor between �rst and second sound, β, shown in �g. (3.6), is small,

always non-zero, and almost constant everywhere except very close to Tλ, its contribution to the

product αβ is very di�cult to observe. In fact, we can leave β out of this surface analysis, and

normalize the measured data only to the coupling factor between second and �rst sound, α, without

greatly diminishing the consistency between the calculated model and the measured data. Our

experiment then cannot tell whether the �rst sound that couples back to the fork is created by a

single sound conversion from second sound generated by the fork, or by a double sound conversion

from �rst sound generated by the fork. But in either case we get information about the coupling

factor α, as it alone determines the decoupling behavior. In order to get more information about

the small coupling factor β, we could repeat our measurement at higher pressures, where the

compressibility of helium would change its behavior and maybe make it more easily observable.

Next, in �g. (7.16), we look at the previous surface plots from above, on the plane of 3He

concentration and relative temperature T/Tλ. At low temperature, the decoupling is predicted

to occur already at about 0.3 % concentration, and as the temperature increases the decoupling

concentration also increases to about 1 % in the region where most of our observable second sound

resonances were, and �nally going somewhere above 4 % concentration as we get closer to Tλ. Nat-

urally, as we approach the λ -point, the product of the coupling factors goes to zero at any 3He

concentration, as the super�uid density goes to zero at Tλ.
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Figure 7.16: Projection of the calculated surface in the plane of 3He concentration and temperature
relative to the super�uid transition temperature Tλ. Even though the stems are parallel to the
x-axis in this presentation, they still represent the di�erence between the datapoint and the surface
in the z-direction. When the line of the stem is on the right side of the datapoint, the datapoint is
above the surface, and when it is on the left side, the datapoint is below the surface.
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Finally, in �g. (7.17), we compare the decoupling region obtained from our measurements to the

α = 0 line calculated in Section 3.3 (see �g. (3.5)). By making a linear �t to each set of followed

second sound resonances, both before and after the decoupling, we can evaluate the decoupling

temperature and concentration as the intersection point of the two lines. Then, to evaluate error,

we can pick a set of resonances before the decoupling region, which clearly have larger than zero

amplitude, and similarly after the decoupling region. The error estimated this way is shown as

the shaded areas in �g. (7.17). Decoupling seems to occur at higher concentrations than predicted

by our calculated model. This is likely mostly due to the approximations made in our calculated

model, but also at least partly due to the linear �t oversimplifying the behavior of the resonances

near the decoupling region.

Figure 7.17: Comparison between α = 0 line obtained from our calculations (solid line), and the
measured region where the second sound resonances disappear in the plane of 3He concentration
and relative temperature. Here (◦) indicates the locations, where the resonances clearly had not
disappeared yet, and (M) the locations where they had reappeared. Locations marked by (+) are
the evaluated decoupling points obtained by making a linear �ts to the experimental data both sides
the decoupling region. Shaded areas indicate the con�dence bounds of the measured decoupling
region. Since the low temperature resonances do not appear in pure 4He, their error bound extends
to 0 % concentration.
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8 Discussion

The goal of our experiment was to observe coupling between �rst and second sound in dilute 3He−
4He mixtures, using a quartz tuning fork oscillator, at temperatures available with 4He evaporation

cooling, and to con�rm whether there exists a region where the second and �rst sound decouple from

each other. The main result was clearly visible already from practically raw measurement data.

The amplitude of the second sound resonances �rst decreased with increasing 3He concentration

until about 2 % mixture, after which the amplitude started to increase, which is evidence of the

decoupling behavior. Additionally, we noticed that after the decoupling region, there appeared new

resonances at low temperatures that were not visible in the most dilute mixtures. We compared

the amplitude of the second sound resonances to calculated values of the product of the coupling

factors, and found that they were generally consistent, both near the decoupling region and farther

away from it, but the decoupling occurs at slightly higher concentration than predicted by the

calculations.

Furthermore, the second sound resonances were su�ciently unique, making it possible to �nd

equivalent resonances in di�erent concentrations. These resonances formed constant second sound

velocity curves, which also were in good agreement with the corresponding calculated data.

Initial plan was to use two quartz tuning forks with di�erent resonance frequencies, but the

locations of the second sound resonances were not properly reproducible in one of them. It would

have been more thorough to verify the decoupling of the second and �rst sound using two di�erent

forks, with two di�erent sets of second sound resonances. Using two forks, we also could have

obtained a few more constant second sound velocity curves, which could have �lled the velocity

gaps in �g. (7.11). However, the decoupling temperature and concentration should not depend on

the quartz tuning fork, as it is a property of the medium not the oscillator. Only the exact locations

of the second sound resonances are fork dependent, because each fork container has unique standing

wave patterns.

In the 32 kHz fork, the locations of the second sound resonances remained fairly constant in

temperature between di�erent cooldowns, which we estimated within ±3 mK. There is a much

larger uncertainty in the absolute temperature values of the resonance locations, since there is

already clear discrepancy between Tλ determined from our measurements and values found in other

publications, as seen in �g. (7.4). Nevertheless, the error caused by this is somewhat diminished

as we present our data in temperature scale relative to the super�uid transition temperature. The

error in 3He concentration determination was relatively larger than in temperature determination,

as it was mainly due to the uncertainty of our calibration mixtures.

One application for the second sound resonances could be in indicating some �xed point in

temperature. If we could once somehow determine precisely the temperature of a second sound

resonance appearing in the quartz tuning fork response, we would know, that the next time we saw

it, the temperature would be the same with very good accuracy. Another way to utilize the second

sound resonances would be to use them to help keep an experiment at a constant temperature. In

our experiment, we used PID controlled heater, which was reading the resistance value of a carbon
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resistor thermometer, to control temperature of the 4He bath. It works well in temperature sweeps,

but if we would try to keep the temperature constant, it would not be the most accurate method

since the resistance value drifts somewhat. But, if we were to instead have the PID controlled

heater follow a second sound resonance by reading the fork resonance width, for example, we could

be sure that the temperature is truly constant. To get an idea of the temperature range, let us

say we manage to �x our temperature so that we are always within half width of a second sound

resonance, for instance, the �rst small resonance loop in pure 4He dataset in �g. (7.8), the one at

roughly 13 Hz fork resonance width. The temperature di�erence between the beginning and the

end of the loop is about 2 mK, so we could potentially keep the temperature constant with that

accuracy. As we lower the temperature, the second sound resonances spread wider in temperature

decreasing the accuracy of the constant temperature. However, if we could �nd a second sound

resonance with su�cient �ne structure, caused by having several resonances close together, we could

�x our temperature controller on them narrowing down the temperature spread.

We actually tried to make our PID controller follow a single second sound resonance, but there

were essentially two problems: �rst, since the glass dewar was not properly insulated from its

surroundings, the heat load to its 4He bath �uctuated quite strongly, and secondly, our PID con-

troller simply was not fast enough to adjust the current to the heating resistor to compensate the

external heat load within such a small temperature range. In order to study the possibility of

this temperature control application properly, we would have to change our experimental setup

considerably.

A natural continuation to our experiment would be to add pressure to the variables, while

now we did all the measurements under saturated vapor pressure. We could study, if increasing

pressure would considerably change the appearance of the second sound resonance loops, and if it

would change the behavior of the decoupling region. Varying pressure could also tell us more about

the coupling factor β, which is nearly constant under saturated vapor pressure. Another way to

continue would be to go to even lower temperature, to go to the other side of the second sound

velocity maximum in mixtures. The temperature regime of that experiment would be below 1 K,

which is not reachable using evaporative cooling of 4He, but we would have to use a di�erent cooling

method, a dilution refrigerator, for example. Furthermore, near the decoupling region, we noticed

that the second sound resonances had ��ipped over�, compared to pure 4He resonances. We could

try to gain better understanding of it by doing simulations with coupled oscillators, and study if

they had any similar behavior with certain parameters.
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List of Symbols

α coupling factor between second and �rst sound

β coupling factor between �rst and second sound

c mass concentration of 3He

f0 quartz tuning fork resonance frequency

f quartz tuning fork measurement frequency

j mass �ux

κ thermal expansion coe�cient

µ speci�c chemical potential

µ4 (µ3) speci�c chemical potential of 4He
(

3He
)

m4 (m3) atomic mass of 4He
(

3He
)

m∗3 e�ective mass of 3He

M4 (M3) molar mass of 4He
(

3He
)

n4 number density of 4He

n0
4 number density of 4He at absolute zero, at zero pressure

N4(N3) number of 4He
(

3He
)
atoms

ξ normal �uid fraction of pure 4He

P pressure

R molar gas constant

ρ total density

ρn (ρs) normal �uid (super�uid) density

σ speci�c entropy

σ40 (σ30) speci�c entropy of pure 4He
(

3He
)

t time

T temperature

Tλ super�uid transition temperature of 4He
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u1 velocity of �rst sound

u2 velocity of second sound

vn (vs) normal �uid (super�uid) velocity

V voltage

Vm (Vm,4) molar volume (pure 4He)

ω angular frequency

w quartz tuning fork resonance width

x3 molar concentration of 3He
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