
Anti-Heparanase Aptamers as Potential Diagnostic and
Therapeutic Agents for Oral Cancer
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Abstract

Heparanase is an endoglycosidase enzyme present in activated leucocytes, mast cells, placental tissue, neutrophils and
macrophages, and is involved in tumour metastasis and tissue invasion. It presents a potential target for cancer therapies
and various molecules have been developed in an attempt to inhibit the enzymatic action of heparanase. In an attempt to
develop a novel therapeutic with an associated diagnostic assay, we have previously described high affinity aptamers
selected against heparanase. In this work, we demonstrated that these anti-heparanase aptamers are capable of inhibiting
tissue invasion of tumour cells associated with oral cancer and verified that such inhibition is due to inhibition of the
enzyme and not due to other potentially cytotoxic effects of the aptamers. Furthermore, we have identified a short 30 bases
aptamer as a potential candidate for further studies, as this showed a higher ability to inhibit tissue invasion than its longer
counterpart, as well as a reduced potential for complex formation with other non-specific serum proteins. Finally, the
aptamer was found to be stable and therefore suitable for use in human models, as it showed no degradation in the
presence of human serum, making it a potential candidate for both diagnostic and therapeutic use.
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Introduction

Heparanase is a b-1,4-endoglycosidase enzyme [1] that

participates in extracellular matrix (ECM) degradation and

remodeling [1]. The heparanase gene was first cloned in 1999

by the Vlodavsky and Parish groups in the seminal back to back

Nature medicine papers [2,3].

The nascent polypeptide is a 543 amino acid pre-proenzyme,

which after removal of the signal peptide sequence in the

endoplasmic reticulum, undergoes proteolytic processing in late

endosomes/lysosomes by cathepsin-L like proteases [4] at sites

Glu109-Ser110 and Gln157-Lys158, yielding a N-terminal 8 kDa

polypeptide, a C-terminal 50 kDa polypeptide and between them

a 6 kDa linker polypeptide [3]. The 50 and 8 kDa polypeptides

associate to form a heterodimeric active enzyme, whilst the 6 kDa

linker is excised and degraded [5,6].

Heparanase activity is associated with activated leukocytes, mast

cells, placental tissue and macrophages and the enzyme is secreted

by activated CD4 + T cells [7,8,9], platelets [3], neutrophils and

metastatic cells [10]. Upon secretion of heparanase from

metastatic tumour cells, the enzyme hydrolyses the glycosidic

bonds of heparan sulfate chains attached to proteoglycans to a

product of 10–20 sugar units in length [11], leading to penetration

of the endothelial cells of blood vessels and target organs by the

tumor cell. Liberation of bound cytokines and growth factors

sequestered by heparan sulfate chains in tissues [12] further

facilitates growth of the tumour and promotes angiogenesis and

proliferation of secondary tumours [13]. Levels of heparanase

expression in tumour cells correlate with their metastatic potential;

elevated levels of heparanase mRNA and protein have been found

in cancer patients who show significantly shorter postoperative

survival times than patients whose heparanase levels are normal

[13,14].

Heparanase upregulation in cancer cells from myeloma,

lymphoblastoid and breast cancer reflects in augmentation of
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exosome secretion with an enhanced content of syndecan-1,

VEGF and HGF whose roles are closely related to tumor

aggressiveness [15]. In addition to its function in cancer

progression, heparanase enzyme also plays a major role in

inflammation per se and carcinogenesis related to inflammatory

process [16]. The enzyme has been detected in a variety of

immune cells including T and B cells, macrophages, neutrophils

and mast cells. It has been shown to mediate extravasation

through the endothelial barrier via the remodeling of ECM

heparan sulfate, which then allows trafficking to the sites of

inflammation [10,17,18]. Heparanase expression has been linked

to tumorigenesis in a number of different cancers, for example,

acute myeloid leukaemia [19], bladder, brain [20], breast [21],

colon [22], gastric [23], oesophageal [24], oral [25], pancreatic

[14], and cervical cancer [26], suggesting that it may be a suitable

target for drug therapy. Currently available inhibitors of hepar-

anase include neutralizing antibodies [27], peptides [28] and small

molecules [29,30].

A number of modified heparins and sulphated oligosaccharides

have also been shown to be potent heparanase inhibitors with

promising anti-tumour activities and have now advanced to the

clinical testing stages. Examples of these include SST0001, M402,

PI-88 and PG545. SST0001 is a fully N-acetylated modified

heparin which lacks anti-coagulant activity and shown to be a

selective heparanase inhibitor. It is currently in Phase I/II clinical

trials for treatment of myeloma patients. M402 is an N-sulfated

modified heparin that binds a wider range of growth factors

compared to SST0001. This has progressed to Phase I/II clinical

trials as a combination therapy with the chemotherapy agent

gemcitabine for the treatment of metastatic pancreatic cancer. PI-

88 is a sulphated polysaccharide with potent anti-angiogenic and

anti-metastatic activity and with reduced unwanted anticoagulant

activity. It has reached Phase III clinical trials for post-resection

hepatocellular carcinoma. PG545 is a tetrasaccharide which has

superior pharmacokinetic properties due to its high degree of

lipophilicity. It has shown potent anti-tumour activity in PI88

resistant models, however, Phase I clinical trials in late 2010 were

abandoned due to unexpected injection site reactions [31].

Aptamers are short DNA or RNA oligonucleotides developed

for diagnostic and therapeutic use that display high binding affinity

and specificity for target molecules [32–34]. The affinity of

aptamers has been compared with that of antibodies (i.e. in the

nanomolar range), but as aptamers are smaller (8–25 kDa

compared to the 150 kDa size of antibodies), they can both

penetrate tissues and be cleared from the plasma within minutes of

intravenous administration without triggering an immune re-

sponse, which can be useful when using them as diagnostic agents

[35]. For therapeutic use, they are able to retain their function and

binding characteristics upon modification with other moieties to

improve their stability and solubility, whilst reducing their toxicity

and plasma clearance [35–38][39–41]. Typically, aptamers are

from 22 to 100 bases in length, and contain a region of variable

sequence, flanked by known sequences, which are used for

amplification and identification purposes. A large repertoire of

different sequence combinations (typically in the region of 1015) in

the central domain creates many different folding arrangements,

specificity and binding affinity for different molecules. Aptamers

are typically produced based on the SELEX (systematic evolution

of ligands by exponential enrichment) procedure [42], although a

number of other selection methodologies are currently available

[43–45].

Aptamers were previously generated against active human

recombinant heparanase using a modified SELEX protocol and

salt elution series. Selection yielded three aptamers, ‘1.5 M short’,

a 30 base truncated version of ‘1.5 M long’ (73 bases), and ‘3.0 M’

(55 bases). ELISAs and fluorescence titrations separated the two

longer aptamers as showing higher affinity and recognition of

heparanase in placental cells, whereas placental tissue staining

favoured ‘1.5 M long’. This was confirmed in a Matrigel invasion

assay using ovarian carcinoma cells previously shown to require

heparanase for invasion [46]. Two additional aptamers, termed

‘pink’ and ‘yellow’ were selected against the linker peptide

sequence of pro-heparanase, as these could have a function in

inhibiting the formation of the active heterodimer enzyme, by

blocking peptide protease excision.

In this study, efforts were made to further characterise the

previously selected aptamers and to assess their potential as a

diagnostic or therapeutic agent. The stability of the aptamer was

assessed by incubation over different time points with human and

mouse serum, and polyacrylamide gel electrophoresis used to

determine the extent of its degradation by nucleases present in the

serum. An additional invasion assay, in addition to the previous

mouse EHS-tumour derived Matrigel invasion assay, was carried

out using human uterine leiomyoma tissue and heparanase-

expressing human oral squamous carcinoma cells (HSC-3), as this

experiment represents a more authentic picture of what happens

in human tissue. Furthermore, a cell cytotoxicity/cell proliferation

assay was performed to verify that any inhibition of invasion

observed was not a result of cytotoxicity on the part of the

aptamers. Finally, the interactions of the aptamers with serum

proteins was investigated to both verify specificity of the aptamers

and study their potential transport by such proteins in the

bloodstream. Increasing literature in the DNA aptamer field has

demonstrated that these molecules have tremendous therapeutic

potential in cancer therapy treatment and have already been used

as so called escort molecules to deliver drugs into cancer cells

(reviewed in [47]). AS1411 is an example of a DNA aptamer that

has progressed to clinical trials testing. The aptamer in this case

specifically targets nucleolin protein and has been trialed with

metastatic, clear-cell, renal cell carcinoma patients who have been

refractory to prior tyrosine kinase inhibitors [48].

Materials and Methods

Cell culture
Human tongue squamous carcinoma cells, HSC-3 (JCRB 0623;

Osaka National Institute of Health Sciences, Osaka, Japan), were

cultured in growth media: 50% DMEM 50% Ham’s F-12 (Sigma

Aldrich) and additionally supplemented with 50 mg/ml ascorbic

acid, 250 ng/ml amphotericin B, 5mg/ml insulin (bovine pancre-

as), 0.4 ng/ml hydrocortisone and 10% heat-inactivated foetal

bovine serum. The culture supplement was purchased from Sigma

Aldrich. All cell cultures were carried out using pre-warmed

reagents. Cells were incubated in 95% air/5% CO2 at 37uC. Cells

were passaged by removing media and washing with HBSS (Sigma

Aldrich), then adding 3 ml 16 Trypsin-EDTA (Sigma Aldrich)

and incubating for 5 minutes. The Trypsin-EDTA was inactivated

by adding 7 ml growth media and removing any cell clumps. 1 ml

cell suspension (plus 24 ml fresh growth media) was retained in the

flask for maintenance of stocks and the remaining 9 ml was

counted and used for experiments.

Organotypic invasion assay and analyses of the inhibitors
on invasion

The organotypic invasion assay and the quantitation of results

were performed as described in Nurmenniemi et al. (2009) [49].

Briefly, 7 6 105 HSC-3 cells suspended in media containing the

appropriate aptamer (Unrelated, 1.5 M short, 1.5 M long, 3 M,
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Pink and Yellow) or an antibody against heparanase (Hpa Ab,

0.7 mM). Also (2-{4-[(E)-3-(4-bromophenyl) acryloylamino]-3-

fluorophenyl} benzooxazol-5-yl) acetic acid, abbreviated to BAFB,

was used, as this was shown to have inhibitory effects upon

heparanase in previous studies [29] (Table 1). Each aptamer or

antibody was added at 1 mM to HSC-3 cell suspension in the

beginning of the study and in the HSC-3 cell culture media

throughout the experiment. Myoma disks without HSC-3 cells and

HSC-3 cells without inhibitor were also included in the assay as

controls. The disks were incubated for 14 days at 37uC with 5%

CO2 with the media containing the appropriate inhibitors. The

media were collected, centrifuged, and fresh media with inhibitors

were changed at days 4, 7, 10 and 14. From the collected media

supernatants, the degradation products of myoma tissue type III

collagen were analyzed using SP99 radioimmunoassay (RIA) for

C-terminal telopeptide (IIICTP), and N-terminal telopeptide

(IIINTP) indirect enzyme immunoassays (EIA) for N-terminal

telopeptide, following the methods described in Nurmenniemi et
al. ([49] for RIA and [50] for EIA). On day 14, the myoma disks

were fixed in 4% paraformaldehyde and prepared for immuno-

histological analysis. Six mm histological sections of myoma disks

were stained with monoclonal pancytokeratin antibody (DAKO,

clone AE1/AE3 at a 1:150 dilution) and viewed under a

microscope at 100 6 magnification. Nine representative images

were taken from each of the three repeats of every treatment.

Images were analyzed as described in Nurmenniemi et al. (2009)

[49]. Differences in the invasion area and depth were evaluated

using a Student’s t-test and Mann-Whitney test and p-values less

than 0.05 were considered statistically significant.

Cell proliferation assay
To determine the effect of the ‘1.5 M short’ aptamer on HSC-3

cell proliferation, we used the CellTiter 96 AQueous Cell

Proliferation Assay (Promega), an MTS assay. Approximately 1

6 104 cells were seeded in triplicate for in a 96-well plate with

1mM of the short aptamer. After 24, 48 and 72 h, 20 ml of

CellTiter 96 Aqueous One Solution Reagent were added to each

well and cells were incubated for 1 h at 37uC in a 5% CO2

incubator. The absorbance recorded at 490 nm on a FLUOstar

Optima plate reader was used as a representation of the relative

number of living cells in culture.

Serum stability assay
Aptamers ‘1.5 M short’, ‘1.5 M long’ and ‘3.0 M’ were

incubated at a concentration of 5 mM with human and mouse

serum for 30, 60, 120, 180, 240 and 300 minutes at 37uC. The

reaction was then stopped by the addition of 100 mM EDTA and

the products ran on a 12% native polyacrylamide gel, alongside a

25 bp DNA marker ladder. Gels were stained using ethidium

bromide and viewed under UV light.

Serum albumin binding
Bovine Serum Albumin (BSA) was purchased from Sigma-

Aldrich Ltd (Gillingham, UK, product code A7030 10 g). UV

experiments were conducted on a Bio-Tek Uvikon XL with a

Peltier Thermosystem for temperature control and stirring facility,

connected to the PC utilizing Lab Power Junior software for data

collection and analysis. Fluorimeter used was a Horiba Jobin Yvon

Fluoromax-P equipped with a photon counter and Peltier system

for temperature control and stirring facility, coupled to a PC

utilizing Datamax software for spectral analysis. Initial measure-

ments were taken to verify the presence or absence of fluorescent

emission of both aptamers for excitation wavelength of 290 nm

(selective for tryptophan residues) and emission wavelengths

between 300 and 400 nm. Both aptamers were titrated in water

and 10 mM phosphate buffer solutions pH 7.4, at 37uC. The

1.5 M short aptamer concentration varied from 0.3 to 8.0 mM,

and the 1.5 M long aptamer varied from 0.5 to 8.0 mM, showing

the intrinsic fluorescence of these aptamers. Both aptamers

presented fluorescence emission spectra in this range. Earlier tests

showed that aptamer concentrations ranging from 0.1 mg/ml to

8 mg/ml did not interfere in the evaluation of albumin quenching

[51]. Quenching measurements were taken in 1 ml of 6 mM

albumins in phosphate buffer pH 7.4. Emission spectra were

registered from 300 to 400 nm wavelength, after a reaction time of

90 sec from each aptamer addition. Both emission and excitation

bandwidth were set to 3 nm. Aptamer was added from a

concentrated stock solution so that the volume increment was

negligible. Experiments were performed at 37uC, pH 7.4.

To evaluate any existing primary and/or secondary inner filter

effects (IFEs), correction procedures based on absorbance mea-

surements of solutions were performed at excitation and emission

wavelengths of albumin. This effect consists on the absorption of

exciting and/or emitted radiation by dissolved species, including

the fluorophore itself [52]. Absorbance measurement of aptamers/

albumin solutions at excitation and emission wavelengths of

albumin showed that inner filter effect caused by absorption of

emitted radiation was negligible.

Results

The anti-heparanase aptamers inhibit carcinoma cell
invasion

The invasion of HSC-3 cells was studied with a human myoma

organotypic model [49] exposing the carcinoma cells to various

aptamers (Unrelated, 1.5 M short, 1.5 M long, 3 M, Pink, and

Yellow) or heparanase antibody (Hpa Ab) (Fig. 1A). The effects of

these compounds compared to control (no inhibitor) on invasion

area (calculated based on the mm-area of invasive cells) and depth

of invasion (the distance from the lower surface of the noninvasive

cell layer to the deepest invaded cell) were analyzed (Fig. 1B and

C). Aptamer 1.5 M Short decreased significantly the total invasion

Table 1. The aptamer sequences used in this study.

Name Sequence

1.5 M Long GGGAGACAAGAATAAACGCTCAAATGG ACTTTTGAATGTGGCAACAAATTCGACAGG AGGCTCACAACAGGC

1.5 M Short ACTTTTGAATGTGGCAACAAATTCGACAGG

Pink TTGCTCCTTATAGAGCCGTCCGAGC

Yellow CTAAAGTGCCTCACGCTGTTAACTC

In bold the sequence of the short aptamer, which is the part of the long aptamer that is structured.
doi:10.1371/journal.pone.0096846.t001
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area (p = 0.0001) similar to Hpa Ab, which was used as a positive

invasion inhibitor control [27]. On the contrary, none of the other

compounds had an effect on HSC-3 invasion (Figure 1). The

invasion depth decreased significantly only after Hpa Ab

treatment (p = 0.0001) (Figure 1C). Based on our previous

findings, the degradation of type III collagen by HSC-3 cells

measured with RIA peaks from days 7 to 11 [49]. Similarly, the

media analyzed by RIA from day 4 did not show differences

between any of the treatments (not shown). The media change

upon termination of the experiment at day 14 showed only

statistical significance from the treatment with no cells added

(p = 0.001; not shown). Degradation of type III collagen without

inhibitors was highest at days 7 (not shown) and 10 (Figure 2A–D).

On day 10, the treatment with heparanase antibody inhibited

significantly the degradation compared to unrelated control

(p = 0.07 in RIA, and p = 0.03 in EIA). On day 10 there was a

significant inhibition by 1.5 M Short (p = 0.004 in RIA, and

p = 0.007 in EIA) and 1.5 M Long (p = 0.02 in RIA, and p = 0.03

in EIA) compared to HSC-3 control. However, 3 M, Pink, and

Yellow aptamers, as well as BAFB showed no significant decrease

in the amount of collagen degradation products, indicating that

they were not successful inhibitors of invasion.

The short anti-heparanase aptamer does not exhibit any
cytotoxicity

The cytotoxicity of the selected aptamers on HSC-3 cells was

studied, to verify that the inhibition of invasion observed in the

organotypic model was a result of the inhibition of the heparanase,

as previously verified [46] and not cell cytotoxicity. The MTS

assay was performed over 72 hrs, with a single addition of the

aptamer in the beginning of the assay, and measurements over the

period intervals of 24, 48 and 72 hrs. No change in cell viability

and cell growth was observed between the cells where aptamer was

added and the control (see Figure 3). Only the aptamers that

showed inhibition of invasion were tested for cytotoxicity, to

investigate if the inhibitory effect observed was due to cytotoxicity

or inhibition of heparanase. Aptamers that do not inhibit cell

invasion clearly have no effect on the cells and therefore there was

no reason to be further studied for cytotoxicity.

The short anti-heparanase aptamer does not bind
significantly to serum proteins

Short and long aptamers 1.5 M were initially titrated stepwise

into water and phosphate buffer solution, pH 7.4 at 37uC to

investigate their intrinsic fluorescence. Both aptamers have

intrinsic fluorescence with peaks at 380 nm, which increases in

Figure 1. HSC-3 invasion in myoma discs. A: Paraffin-embedded 14-day myoma organotypic sections were stained for pancytokeratin marker
AE1/AE3 to analyze HSC-3 invasion after various treatments: no inhibitor, Hpa Ab, (the polyclonal heparanase antibody as a positive control),
unrelated aptamer, (selected against a target involved in Alzheimer’s disease), anti-heparanase aptamers 1.5 M Short, 1.5 M long and 3 M; linker
peptide aptamers Pink and Yellow. Scale bar is 100 mm. The differences in invasion area (B) and invasion depth (C) after various treatments (n = 27/
treatment). The statistics were done as two-sample t-test and Mann-Whitney test.
doi:10.1371/journal.pone.0096846.g001
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fluorescence intensity upon a corresponding increase of the

aptamer concentration; the short showing less fluorescence than

the long aptamer (Figure 4A and B). Water was used as a diluent

to show that the aptamer and not phosphate buffer solution was

the cause of the fluorescence, although the fluorescence for the

short aptamer increased upon using phosphate buffer solution as

the diluent. However, this was likely due to a difference in pH as in

fluorescence spectroscopy pH changes have a significant influence

on results.

The short aptamer was able to quench the fluorescence of HSA

at 37uC by 1.5% (60.03%) and 9% (61.2%) at 1:100 and 1:10

molar ratios respectively, with quenching of 10% achieved by a

molar concentration 9.1 times lower than HSA (Figure 5). Long

aptamer is able to quench the fluorescence of HSA by 10% at a

concentration 18.2 times lower than HSA, and by 2.4% (60.1%)

and 16% (60.6%) at 1:100 and 1:10 molar ratios. The results

show that both aptamers are able to quench the fluorescence of

HSA, although the long aptamer was more effective. HSA

quenching indicates that the aptamers reach sub domain IIA,

where its single tryptophan is located. This tryptophan residue is

located at site 214 in subdomain IIA, within which there is a large

hydrophobic cavity with many arginine residues near the surface

[53], which have been shown in different studies to serve as anchor

points for aptamers [54].

To gain more information about the type of interaction

occurring between the aptamers and HSA, UV spectrometry

titrations were carried out by titrating increasing concentrations of

short and long aptamers and 6 mM HSA diluted in phosphate

buffer pH 7.4, as shown in Figure 5. The addition of both

aptamers to phosphate buffer and HSA increased the overall

absorbance, showing that the aptamer was responsible for this

increase rather than HSA. The increase was more pronounced for

the long aptamer over the short aptamer, and both produced a

shift of the maximum absorbance to the left upon addition of

increasing concentrations of aptamer.

The shift observed from the short aptamer (Figure 6A) moved

6 nm to the left, suggesting that only a slight conformational

change in the protein was occurring [55] and therefore, HSA

quenching by this aptamer is most likely due to dynamic

quenching. However, in the case of the long aptamer (Figure 6B),

not only was there a substantial shift in the maximal absorption by

20 nm to the left, but a complete change in the shape of the peak

Figure 2. EIA and RIA assays. A: EIA (IIINTP indirect enzyme immunoassays) detecting N-terminal telopeptide from collagen type III degradation
products at day 10 media change. Increasing absorbance means less collagen degradation product present. Hpa Ab (p = 0.03), 1.5 M Short (p = 0.007)
and 1.5 M Long (p = 0.03) showed significant increase in absorbance compared to no inhibitor, suggesting they have inhibited the invasion of HSC-3
cells. B: The graph shows previous EIA values adjusted for negative control at day 10 media change. C: RIA (radioimmunoassay for type III collagen)
detecting C-terminal telopeptide at day 10 media change. Increasing levels mean less collagen degradation product. Hpa Ab (p = 0.07), 1.5 M Short
(p = 0.004) and 1.5 M Long (p = 0.02). D: RIA has confirmed the EIA assays showing significantly lower collagen degradation products than that for
tissues without inhibitor added, indicating that they were successful inhibitors of invasion.
doi:10.1371/journal.pone.0096846.g002
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Figure 3. The MTS absorbance at 490 nm is shown over 24, 48 and 72 h in the presence and absence of the 1.5 M short aptamer.
The presence of the aptamer at 1 mM concentration was found to have no effect on the cell growth in comparison with the control.
doi:10.1371/journal.pone.0096846.g003

Figure 4. Fluorescence spectra of short aptamer in water and phosphate buffer solution (A) and PBS (B), at 376C. Fluorescence
increases upon increasing the concentration of aptamer in both phosphate and water, showing that although the fluorescence is higher in
phosphate, the aptamer is in fact the cause and the pH difference in water and PBS is the most likely reason for the increase of fluorescence of the
aptamer in PBS.
doi:10.1371/journal.pone.0096846.g004

Anti-Heparanase Aptamers in Oral Cancer
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was observed, incorporating the peak at 260 nm of the aptamer,

suggesting that one complex was formed and that the quenching

was due to the static quenching phenomenon with long aptamers

[55]. Thus, the UV titrations suggested that the short aptamer did

not form a complex with HSA and that the interactions were due

to dynamic quenching, whereas the long aptamer was suggested to

form a ground state complex with HSA, in contrast with other

aptamers previously studied, which also show specificity and

complex formation only with their target protein [56]. This work

has been expanded and interactions of the aptamers with serum

proteins and the specific position of their interaction has been

calculated and published separately, as it was not within the scope

of this article [57].

Aptamers are stable in human serum
To assess the aptamers’ suitability as therapeutic agents, it was

necessary to have an understanding of how stable the unmodified

aptamers would be in the body, as, in the bloodstream alone, there

are many nucleases capable of degrading the aptamers. Thus, to

verify the stability of the aptamers in human serum, we have

characterized any degradation products by gel electrophoresis.

Comparison of bands on the gels for 1.5 M short aptamer

incubated for different time points with human and mouse serum,

with that of aptamer only showed that 1.5 M short aptamer was

not subject to nuclease degradation from human serum as the

bands did not show any smearing or decrease in size or intensity

compared to aptamer only, and hence, no breakdown of the

aptamer into smaller fragments was observed (data not shown).

With mouse serum, however, there was a decrease in primary

band intensity at five hours’ incubation time, suggesting that

nucleases have degraded the aptamer by that time.

Discussion

In this study we have explored the potential of previously

selected aptamers against heparanase as promising diagnostic and

therapeutic agents against oral cancer. The aptamers were

previously shown to have high affinity against heparanase and

were functional in a Matrigel assay. On these initial studies, it was

found that the longer aptamers had a higher affinity for

heparanase and they had performed well in fluorescent micros-

copy and Matrigel invasion assays. However, when we examined

these aptamers on the organotypic invasion assay and analysed

their potential to block invasion, it was found that the short

aptamer was far more capable of doing so, compared to its long

counterparts. This was also verified by the analysis by RIA and

EIA of the degradation products of myoma tissue, namely type III

collagen C- and N-terminal telopeptide respectively. The 1.5 M

Short and 1.5 M Long aptamers consist of the same variable

region and in fact the short one is a truncated version of the long.

However, it appears that although the long one has a slightly

higher affinity, probably due to increased interactions between the

protein and the primer parts of the aptamer, these resulted in

reducing the ability of these aptamers to inhibit tissue invasion.

The presence of various proteins in the actual tissue, as compared

to the Matrigel experiment previously performed, may be the

reason for this, as the long aptamer may form other interactions

with such proteins, or the primer tails may have a steric hindrance

effect on the tissue, which is not apparent in the simpler matrigel

model. This, in fact, was confirmed by the study of the interactions

between the two aptamers and serum proteins. In these studies it

was found that the long aptamer formed a complex with human

serum albumin, whereas the short aptamer did not form a

complex and showed only a limited dynamic quenching. In a

further study [57], we have modelled the interactions of the short

and long aptamers with HSA and have identified that indeed the

long aptamer forms a complex with serum albumins in a single

binding site, close to Trp 214 of HSA or 212 of BSA, at the

subdomain IIA of these proteins, in a positively charged cavity

lined with lysine and arginine residues [57]. It has been

demonstrated that the shorter aptamer species lacks the ability

to form complexes with serum proteins and exhibits thus higher

specificity for its target, which justifies our choice of using it in any

further therapeutic or diagnostic development and is in agreement

with the myoma data presented in this work. One further

important feature of this study is the demonstration that post-

SELEX modifications may be more beneficial for aptamer

selection than initial counter-selection steps, where this is possible.

In a series of studies with various methodologies of detection,

aptamer affinity for their target has been compared to that for

albumin. The majority of the exemplars for new aptamer-based

detection methodologies are based on the thrombin aptamers. In a

study of aptamer-enhanced laser desorption/ionization study, the

thrombin-binding DNA aptamer was used for affinity capture of

thrombin in MALDI-TOF-MS. This aptamer was shown to be

capable to bind to thrombin in a thrombin/albumin mixture [58].

Similarly, aptamers have been shown to distinguish thrombin from

albumin in a QCM experiment [59]. Another G-quadruplex

based thrombin aptamer in cationic polythiophene protein

detection arrays was also able to detect thrombin over albumin

in the attomole range in less than one hour without any tagging of

the target [60]. The thrombin aptamer has also been used in an

electrochemical detection assay, where it has been able to separate

thrombin from BSA, HSA, Lysozyme and immunoglobulin G

[61].

Apart from the thrombin aptamers, other aptamers in detection

assays have also been compared with albumin, or have shown

specific binding in the presence of high concentration of albumins.

In an electrochemical sensor, aptamers against lysozyme have

been shown to detect lysozyme in a mixture of six proteins

Figure 5. Stern-Volmer plots for HSA titrated by short and long
apatmers 376C. Excitation wavelength 290 nm, [HSA] = 6 mM.
Excitation wavelength at 290 mM in a solution of sodium phosphate.
Data is the mean of six values showing no greater standard deviation
than 11%. The quenching effect is more considerable for long than
short aptamer.
doi:10.1371/journal.pone.0096846.g005
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including albumin [62]. Immunoglobulin E has also been detected

in serum over albumin [63], whereas an anti- F. tularensis
aptamer cocktail, when tested in a sandwich Aptamer-Linked

Immobilized Sorbent Assay (ALISA) and dot blot analysis,

exhibited specificity in its ability to bind only to tularemia

bacterial antigen from subspecies japonica, holarctica (also known

as palaearctica) and tularensis but not to Bartonella henselae, nor

to pure chicken albumin or chicken lysozyme, demonstrating the

ability of this aptamer cocktail to function as a bacterial detection

agent [64].

Depending on the aptamer species, some aptamers present

cross-reactivity with serum albumins, whereas the majority of

them are capable of distinguishing between the protein they have

been selected for, and albumins. Thus, for example, when we

investigated a number of KLK6 aptamers with serum albumins,

we identified that the majority of the selected aptamers against

that target were specific, but one of them had significant affinity

for albumin [65]. In addition, it is important to note that the same

aptamer may or may not form complexes with HSA or BSA,

depending on their post-SELEX refinement. Thus, the heparanase

aptamer of this study, when truncated for the binding site of the

specific target protein, does not form a stable complex with serum

proteins, whereas its longer counterpart that contains the flanking

primers, not selected for specific binding, can do. This is important

Figure 6. UV wavelength scan of HSA (left) and plot of PBS (right) titrated with 1.5 M short aptamer (A) and UV wavelength scan of
HSA (left) and plot of PBS (right) titrated with 1.5 M long aptamer (B).
doi:10.1371/journal.pone.0096846.g006
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with respect to selection strategies, as, in the case of heparanase,

we started the selection with a naı̈ve library, containing all possible

species, and the selection and studies clearly indicated that one

aptamer species was the best candidate. This candidate would

have been lost if a counter-selection against albumins had been

performed at the beginning, as it also presents affinity for these

proteins prior to truncation. However, with a simple truncation of

the flanking primers, the aptamer gained the necessary specificity

to be further developed for therapeutic and diagnostic applica-

tions.

Furthermore, the effect seen in the inhibition of the invasion

assay could have been a result of a cytotoxic effect on the part of

aptamers. This possibility was eliminated in a cytotoxicity assay,

which clearly demonstrated that the aptamers did not show any

cytotoxic effect on these cells after 72 hours of incubation, thus

verifying that the inhibition of invasion was in fact due to

inhibition of heparanase. Finally, aptamers were found to be stable

in human serum even without any modification, making them

potentially interesting therapeutic reagents on their own accord.

This is important as such stability would reduce production costs

of such an aptamer, if it were selected for subsequent therapeutic

or diagnostic applications.
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