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Abstract

Previously described transgenic tobacco lines express the full length infectious Tobacco mosaic virus (TMV) genome under
the 35S promoter (Siddiqui et al., 2007. Mol Plant Microbe Interact, 20: 1489–1494). Through their young stages these plants
exhibit strong resistance against both the endogenously expressed and exogenously inoculated TMV, but at the age of
about 7–8 weeks they break into TMV infection, with typical severe virus symptoms. Infections with some other viruses
(Potato viruses Y, A, and X) induce the breaking of the TMV resistance and lead to synergistic proliferation of both viruses.
To deduce the gene functions related to this early resistance, we have performed microarray analysis of the transgenic
plants during the early resistant stage, and after the resistance break, and also of TMV-infected wild type tobacco plants.
Comparison of these transcriptomes to those of corresponding wild type healthy plants indicated that 1362, 1150 and 550
transcripts were up-regulated in the transgenic plants before and after the resistance break, and in the TMV-infected wild
type tobacco plants, respectively, and 1422, 1200 and 480 transcripts were down-regulated in these plants, respectively.
These transcriptome alterations were distinctly different between the three types of plants, and it appears that several
different mechanisms, such as the enhanced expression of the defense, hormone signaling and protein degradation
pathways contributed to the TMV-resistance in the young transgenic plants. In addition to these alterations, we also
observed a distinct and unique gene expression alteration in these plants, which was the strong suppression of the
translational machinery. This may also contribute to the resistance by slowing down the synthesis of viral proteins. Viral
replication potential may also be suppressed, to some extent, by the reduction of the translation initiation and elongation
factors eIF-3 and eEF1A and B, which are required for the TMV replication complex.
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Introduction

Viruses are obligate intracellular molecular parasites which

depend on host’s cellular machinery and on multiple host factors

to complete their infectious life cycle. They utilize a large variety of

host-encoded proteins and molecular structures as components of

their replication complex or cell-to-cell movement machinery [1–

6] and various cellular compartments (typically various membra-

nous structures) as their replication sites [1,7–10]. For instance,

many RNA-viruses use the host’s translation elongation factor 1A

(eEF1A) as a component of their replication complex, tobamo-

viruses use also the factors eEF1B and eIF3 in this complex, and

potyviral VPg molecules interact with the host’s initiation factor

4E (eIF4E) for promoting their translation [11–19].

Viruses can also alter the functions and composition of their

host cells to benefit their own proliferation. For instance, they can

enhance the expression of their needed host factors, bind or

suppress various resistance factors, induce changes in the lipid

composition of infected cells, and interfere with host’s hormonal

pathways [1,8,13,20–22].

Viruses can initiate infection process only in susceptible host

species that provide compatible host factors, needed for the viral

replication and spread. However, many of these potential host

species also recognize the invading viruses and mount different

defense mechanisms to stop their proliferation or spread. For

instance, activation of the R-gene mediated resistance leads to

hypersensitive reaction (HR) and virus localization, enhanced

expression of various defense-related genes and induction of
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systemic acquired resistance (SAR) [23–25]. Accumulation of

virus-specific double-stranded RNAs also induces the RNA-

silencing mediated immune-system in plants [26], which leads to

sequence-specific degradation of the viral RNAs. To counteract

these silencing-mediated defense reactions, viruses produce specific

silencing suppressor proteins (Viral RNA-silencing suppressors,

VRSS) which interfere with different steps of the silencing

pathways [22,27–31]. Some of these VRSS-factors have been

identified as viral host determinants or pathogenicity factors within

specific host species [32–35], demonstrating the importance of this

defense/counter-defense interaction between viruses and their

hosts. The VRSS factors may also interfere with the silencing-

mediated endogenous regulatory pathways in the cells [36–39].

This may happen as a mere side-effect of the viral counter-defense,

or as an active means to weaken hosts’ cellular status.

The virus-host interactions thus consist of a very complex

molecular interplay. It involves depletion of various host factors

and energy compounds through viral parasitism, altered expres-

sion of the viral-induced host factors, active defense mechanisms

mounted by the host, active viral counter-defense mechanisms,

disturbance of the silencing-mediated regulatory network, and the

general infection related stress-reaction in the host [17,23,40].

Some of these interactions depend on functions of individual virus-

encoded genes, while others are related to the replication of the

viral RNA or to the consorted action of various viral products.

They may lead to either plant resistance, or to virus proliferation

and symptom development in the host plant.

Now, different system biology approaches are available to

investigate the plant responses induced in different stages of virus

infections, or in transgenic plants that express individual viral

genes. Expression levels of many hundreds or even several

thousands of genes have been found to be altered in these plants,

and although these alterations have some common features

(enhanced expression of defense- and stress-related genes), they

are mostly unique and specific to each virus/host combination

[20,21,41–47]. This illustrates that the molecular interactions are

unique and specific in each compatible or incompatible virus-host

combination.

Through the last few decades, Tobacco mosaic virus (TMV) or

its constituent genes have often been used as a model system to

investigate the plant-virus interactions and to dissect the details of

viral replication, movement, host resistance and physiological

alterations [6,19,42,48–52]. Here we are using the functional

genomics to study the molecular response of transgenic tobacco

plants expressing the infectious TMV genome under the

constitutive 35S promoter [53]. Interestingly, during the early

growth stages (up to about 7–8 weeks after germination) these

plants accumulate only a very low level of the TMV RNA, and

also exhibit strong resistance against external TMV infections.

After this period the resistance breaks, plants become infected

from the transformed TMV sequence, accumulate high levels of

TMV RNA and show typical TMV symptoms. To identify the

gene functions that are associated to this early resistance we have

conducted a microarray analysis of these transgenic plants just

before resistance break (BRB), and compared their gene expres-

sion patterns to those of corresponding healthy wild type (wt)

plants. The observed trasncriptome alterations were compared to

those observed in the same plants after resistance break (ARB) and

in TMV-infected (TMVi) wt tobacco plants. Gene expression

alterations were also compared to those observed in other

transgenic tobacco plants expressing various virus-derived VRSS

genes [54] that are known not to be resistant against TMV, to

reveal the genes or processes that would be specific to the

resistance condition.

Results

Transgenic tobacco plants that express the wt TMV genome

have been previously produced and characterized in our

laboratory [53]. All transgenic lines derived from separate

transformation events, and sibling lines from the same transfor-

mations all had the same, consistent, stunted phenotype

(Figure 1A), were initially resistant against TMV, and broke into

a strong TMV infection typically at about 7–9 weeks after

germination. This emerging infection verified the positive tran-

scription of the transgene. Positive transgene expression status,

even before the resistance break, was also shown by positive,

although very low detection of the viral RNA by northern blotting

and by RT-PCR. At the resistance breaking stage, the TMV-coat

protein positive cells, as detected by in situ immunolabeling, first

appeared as isolated infection foci in the vascular tissues of the

upper leaves (Figure 1B). Typical viral symptoms also first

appeared on upper leaves of the plants and then slowly progressed

towards the lower older leaves, i.e. showing similar symptom

pattern as a normal TMV-infection in wt tobacco plants (data not

shown).

To investigate the molecular mechanisms underlying this

resistant condition, transcriptomic profiles of three young resistant

plants (BRB), and of the same plants after the resistance break

(ARB), and of three wt TMV-infected (TMVi) plants were

analyzed by the microarray approach, and compared each to

the transcriptomes of healthy control plants of corresponding age.

The observed transcriptome alterations were compared between

these three types of plants to reveal gene functions that would be

specific to each condition.

The microarray analysis was performed using Tobacco 4644K

microarray (Agilent), according to Agilent’s standard procedures

(see Methods). Our previous microarray analyses of different

transgenic tobacco lines have revealed that the transcript profiles

of control plants transformed with the empty pBin61 transforma-

tion vector are approximately equal to those of the wild type

healthy plants [41], and therefore only the wild type plants were

used here as controls. The raw microarray data was normalized

and subjected to statistical analysis, with BH false discovery rate of

less than 0.05 (Student t-test with adjusted P-value ,0.05).

Subsequently, the transcripts that were 2-fold up- or down-

regulated, as compared to the corresponding healthy control

plants, were considered as differentially expressed in the test

plants. Some of the expression levels of randomly selected genes

were verified by using RT-qPCR, with essentially same results as

was attained with the microarray method (Table 1).

The microarray analyses indicate that total of 1362 transcripts

were up- and 1422 transcripts were down-regulated in the BRB

transgenic plants (Figure 2, Table S1), total of 1150 transcripts

were up- and 1200 were down-regulated in the ARB transgenic

plants (Figure 2, Table S2), and 550 transcripts were up- and 480

transcripts down-regulated in the TMVi plants, respectively

(Figure 2, Table S3). The transcriptional alterations were very

distinct and different between these three types of plants. The

details of these alterations are compared and discussed in further

sections.

Transcripts of the protein synthesis machinery were
strongly reduced in BRB plants

Many viruses infecting eukaryotic hosts use different mecha-

nisms to reduce the host-specific protein synthesis, and to increase

the synthesis of the virus-specific proteins [55]. Interestingly, the

three different types of plants examined in this study (BRB and

ARB transgenic plants and TMVi tobacco plants) showed strong –
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but strikingly different - alterations in the expression levels of the

translation-related transcripts.

In BRB transgenic plants, the largest group of down-regulated

genes (total of 750) was composed of translation-related transcripts

(Figures 2, S1, Table S4). Most of them were pertained to the

cytosolic ribosomal genes, including transcripts coding for various

60S ribosomal proteins (total of 391 transcripts, e.g. the L5–L15,

L17–L39, L44, P0, P1, P3 and P4), and for various 40S ribosomal

proteins (total of 222 transcripts, e.g. S3–S29), with reduction

levels ranging up to 5,5-fold level. Also, some transcripts related to

the 18S ribosomal RNA and ribosomal biogenesis regulators were

down-regulated, as were several (total of 33) transcripts coding for

translation initiation factors (including eIF2c, eIF-4A, eIF-3

genes), and for elongation-related genes like nascent polypeptide

complex, LOS1 and elongation factors eEF1A, B, P, D and TuA.

Also, several transcripts related to the post-translational modifica-

tions, protein targeting (such as TIC40- and TOC75-complexes),

amino acid biosynthesis and various protein folding chaperons

were down-regulated (Table S4) in the BRB-plants. In addition,

about 150 protein processing and degradation-related transcripts

were clearly up-regulated in the BRB-plants, including ubiquitin

ligases and conjugating proteins, autophagy 8c proteins and a

variety of peptidases and proteases. Also, some transcripts coding

for translation initiation factors, amino acid synthesis, protease

inhibitors, ribosomal proteins and protein kinases were up-

regulated (Table S5).

Interestingly, nearly opposite expression pattern of translation-

related genes was observed in the ARB transgenic plants. In these

plants, only 120 translation-related transcripts were down-regu-

lated, and a total of 135 translation-related transcripts were up-

regulated (Table S5). Among these, several transcripts related to

the ribosomes and translational initiation (total of 13), amino acid

biosynthesis (total of 25), and protein secreting pathways (6) were

induced. In contrast to the BRB-plants, 60 transcripts coding for

proteases, peptidases and ubiquitin-mediated protein degradation

pathways were down-regulated (Table S4), including the tran-

scripts for the S41 and M48 peptidases, believed to be involved in

the processing of the D1 protein of the photosystem II (PSII) in

plants [56–58]. Also, several genes related to transcription (e.g.

sigma factors and RNA polymerases), or to the posttranslational

modifications were down-regulated. Only 16 genes coding for

different proteases and 29 genes coding for ubiquitin-mediated

protein degradation pathway were up-regulated. Some of the up-

regulated transcripts in the ARB transgenic plants were related to

metallocarboxypeptidase, kinases and amino acid degradation.

In the TMVi plants, the translation and protein processing

related transcripts were predominantly up-regulated, with a total

of 197 translation-related transcripts being up-regulated and 44

being down-regulated (Table S4 & S5). Most interestingly, many

of the up-regulated transcripts in the TMVi plants were related to

60S (114) and 40S (55) ribosomes and their subunits, and to

translation elongation, which were down-regulated in the BRB

transgenic plants; these transcripts were enhanced by 2–23.2 fold.

Also, some transcripts related to, nucleus targeting, protein folding

and protein phosphatases, and protein and amino acid degrada-

tion pathways were up-regulated in the TMVi plants, including

ubiquitin mediated pathway and several proteases and peptidases.

Only 7 transcripts related to ribosomal proteins and 26S ribosomal

RNA, and 11 transcripts related to post-translational modification

pathways were down-regulated in TMVi plants.

Many stress-related genes were induced in TMV-
transgenic plants but not in wild type TMV infected
tobacco plants

In compatible plant-virus interactions the virus must be able to

infect the host plant without mounting excessive or fast defense

reactions, or to suppress the basal host defense mechanisms

[50,59,60]. The interaction of TMV with tobacco is known to be

compatible in nature [50]. In this work such full compatibility was

found only in TMVi wild type tobacco plants where only few

biotic and abiotic stress response-related transcripts were induced.

Instead, the TMV- expressing BRB and ARB transgenic plants

showed strongly activated defense-responses.

In the BRB transgenic plants, total of 174 stress response-related

transcripts were up-regulated and 76 were down-regulated (Figure

S2, Table S7 & S6). Many of the up-regulated transcripts were

coding for heat shock proteins (20), chitinases (17), elicitor

Figure 1. Phenotype of the transgenic plants that harbor the
full length infectious TMV cDNA, under 35S promoter. (A) BRB-
TMV transgenic plant (on the left), at the age of six weeks after
germination. The plants show no viral symptoms, and do not contain
any detectable viral RNA or CP, but they are severely stunted as
compared to the wild type plants of the same age. (B), Anti-TMV CP
labeled thin sections of the apical domain of the TMV transgenic plant
during the early stage of the resistance break (at 8 weeks after
germination). Isolated TMV-positive foci are detected in the vascular
tissue, and in the tips of leaf initials. On the left, two adjacent sections
are shown to illustrate the small size of the foci.
doi:10.1371/journal.pone.0107778.g001

Different Defense Mechanisms Are Involved in TMV Resistance in Tobacco

PLOS ONE | www.plosone.org 3 September 2014 | Volume 9 | Issue 9 | e107778



inducible proteins (16), HR-proteins (12), glycine rich proteins (13),

osmotin precursors (8), wound responsive proteins (16) and disease

resistance proteins (6). Interestingly, also the non-functional allele

of the TMV-resistance gene N, 13 SAR- and 16 HR-related

transcripts were also enhanced in the BRB plants [59,61], even

that no visible signs of HR was seen on the plants. Several

transcripts related to various abiotic stresses such as cold

acclimation, dehydration, reactive oxygen species such as perox-

idases, and to various redox-reactions, as well as transcripts coding

for cytochrome p450 and glutathione transferases were also up-

regulated in these plants (Table S7). On the other hand, several

other transcripts pertaining to heat shock proteins, defense

proteins, ATP binding proteins, arabinogalactan proteins, perox-

idases and cytochrome p450 were down-regulated in BRB plants

(Table S6).

Even more (total of 192) of stress-related genes were up-

regulated in the ARB transgenic plants (Table S7), including

transcripts coding for heat shock proteins (25), PR-proteins (17),

chitinases (12), dehydration response factors (8), different protease

inhibitors (10), peroxidases (18), redoxins (11) and various defense

proteins (23) such as defensins, thaumatin, thionins and germins.

Also, the transcripts of the TMV viral coat protein transcript,

which was completely absent in BRB transgenic plants, accumu-

lated to very high levels in the ARB transgenic plants. Various

stress-related transcripts (total of 131), e.g. coding for heat shock

proteins, wound induced proteins, elicitor inducible proteins,

methanol inducible proteins, NDR1-like, cytochrome p450,

thioredoxins and glutathione transferases were down-regulated in

the ARB transgenic plants (Table S6). Interestingly, SAR-proteins

(6) and HR- (3) related transcripts were down-regulated in the

ARB transgenic plants in contrast to their up-regulation in the

BRB transgenic plants.

In TMVi plants, only total of 61 of stress-related transcripts

were up-regulated (Table S7). These included several transcripts

coding for heat shock proteins (12), chitinases (9), pathogenesis

related proteins (11) and senescence associated proteins (2). The

transcript for the viral coat protein was highly expressed in the

TMV infected plants. A total of 40 stress-related transcripts, e.g.

coding for heat shock proteins, wound induced proteins, glutathi-

one-S-transferase and peroxidases were down-regulated in the

TMVi plants as well (Table S6).

Hormone and development related transcripts
Plant hormones play a major role in various defense signaling

pathways, and some viruses interact with these signaling pathways

to enhance their infection process [14,17,18]. Our microarray data

also indicates differential hormonal regulation between the BRB

and ARB transgenic plants, and the TMVi plants. In the BRB

transgenic plants, total of 60 transcripts related to hormones and

development were up-regulated. Particularly the auxin repressed/

dormancy associated, and auxin- and ethylene responsive tran-

scripts were up-regulated by 10–15 fold (Tables S8 & S9). Also

several other hormones and development-related transcripts were

either down- or up-regulated (Tables S8 & S9) in these plants,

Table 1. Microarray results verification by using quantitative real-time PCR (RT-qPCR).

Log value Log value s.e. of Ct

EST/mRNA Description Microarray RT-qPCR of RT-qPCR

BRB transgenic plants up-regulated transcripts

EB683763 P-rich protein NtEIG-C29 2.9 3.0 0.46

BP128776 DNAJ heat shock protein 4.6 6.8 0.21

BRB transgenic plants down-regulated transcripts

CV018266 60 s acidic ribosomal protein-like protein 22.0 22.4 0.15

DV158570 40S ribosomal protein S8 22.1 22.6 0.11

EB683199 60S ribosomal protein L35 22.1 22.8 0.03

ARB transgenic plants up-regulated transcripts

EB438730 Dicer-like 2 protein (DCL901) 3.1 3.3 0.53

EH620111 Pathogenesis-related protein 1B precursor 2.6 3.8 0.24

EH617029 WRKY transcription factor-30 1.0 1.1 0.03

ARB transgenic plants down-regulated transcripts

CV017513 Chlorophyll a-b binding protein 3A 25.1 25.3 0.47

EH620344 F box related protein 21.2 21.1 0.09

TMV infected plants up-regulated transcripts

EH620111 Pathogenesis-related protein 1B precursor 3.5 3.6 0.15

EB643469 60 s Acidic ribosomal protein 4.5 6.0 0.57

TMV infected plants down-regulated transcripts

EH620344 F box related protein 21.5 21.7 0.22

CV017513 Chlorophyll a–b binding protein 3A 21.8 21.9 0.22

TA12913_4097 Pollen coat like protein 23.5 24.7 0.29

Accumulation of some up- or down-regulated transcripts of the the wild type, BRB- and ARB- transgenic, and of TMV infected wt plants were tested by RT-qPCR, and
compared to their accumulation levels observed by the microarray assay. The depicted log values are normalized mean intensive value (n = 3) differences of the wt
control plants and the different plant types of TMV-transgenic and TMV-infected wt plants. Statistical significance of the results was tested using Student’s t-test (p,

0.05). The Standard error of mean (s.e) is calculated for the Ct values of the RT-qPCR results.
doi:10.1371/journal.pone.0107778.t001
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including transcripts related to ethylene, senescence, and abscisic

acid synthesis or to various development associated genes.

In ARB plants, a total of 59 transcripts related to defence

hormones (ethylene and jasmonic acid) or coding for development-

related embryo-specific proteins were up-regulated (Table S9).

The jasmonic acid-related genes were induced by up to 26-fold in

these plants. Interestingly, 8 transcripts related to auxin repressed/

dormancy, auxin associated and SAUR-families were down-

Figure 2. A overview chart showing the distribution in different functional groups of the up- and down-regulated transcripts and
their numbers in the BRB- and ARB-TMV transgenic, and in TMVi tobacco plants.
doi:10.1371/journal.pone.0107778.g002
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regulated, in contrast to their up-regulation in the BRB transgenic

plants. Some transcripts related to ethylene synthesis, abscisic acid,

gibberellin 20-oxidase, LEA proteins and pentatricopeptide

repeat-containing proteins were down- regulated in these plants

(Table S8).

In TMVi plants, a total of 33 transcripts related to hormones

and development were down-regulated (Table S8), including some

transcripts coding for auxin repressed genes, ethylene signal

transduction, gibberellin oxidase, jasmonic acid and senescence

related genes. A few transcripts related to hormones and

development (total of 5) including transcripts coding for ethylene

biosynthesis, protodermal factor and pale cress related were up-

regulated (Table S9).

Photosynthesis and carbohydrate metabolism related
transcripts

Several studies indicate that virus infections or expression of

virus-derived genes in transgenic plants reduce the photosynthesis

process and cause alterations of the carbohydrate metabolism and

translocation in the plants [17,41,43,44,62,63]. Furthermore,

some chloroplast proteins (i.e. Rubisco activase, ATP-synthase c-

subunit, and the 33K subunit of the oxygen evolving complex)

interact directly with the TMV-encoded replicase protein. These

proteins mediate some level of suppression of virus replication,

while the virus infection causes some suppression of their

expression [51,64]. Interestingly, in the three types of our studied

plants, fewer photosynthesis and carbohydrate metabolism-related

transcripts were down-regulated in the BRB plants as compared to

the ARB and TMVi plants. Only total of 13 transcripts coding for

chloroplast proteins, Rubisco activase, NADP-dependent g-3-p

dehydrogenase, plastocyanin, ferredoxin and tetrapyrrole synthesis

were down-regulated in the BRB plants (Table S10). Similarly,

only few photosynthesis-related transcripts (total 28), coding for

PSI and II subunits L, O and R, OEC proteins, PGR5-1A and

alternative oxidase, or related to chlororespiration and NADPH

dehydrogenase complex were up-regulated in these plants (Table

S11).

Contrastingly, total of 239 photosynthesis-related genes were

down-regulated in the ARB transgenic plants (Table S10). Many

of these (total of 227) were related to the photosynthetic

machinery, as they coded for the chlorophyll binding and synthesis

related proteins (125), or for the subunits of PSI and II, and of the

OEC (including the 33 kDa subunit), and for plastocyanin and

PGR5-1A. A total of 48 transcripts related to carbon metabolism

(i.e. related to starch degradation, sucrose synthesis, Calvin cycle

or photorespiration, or coding for electron carriers, carbonic

anhydrase or enolase) were up-regulated in ARB plants (Table

S11).

Similar to the ARB transgenic plants, photosynthesis related

transcripts were predominantly down-regulated in TMVi plants

(Table S10). Total of 55 down-regulated transcripts were related to

photosynthesis and carbohydrate metabolism (i.e. coding for the

chlorophyll a, b binding proteins, components of the PSI and PSII

complexes, PGR5-like, carbonic anhydrase, glycolysis, Ribulose

biphosphate carboxylase, and for the OEC components, including

the 33 kDa protein). A few transcripts (total of 5) related to

carbohydrate metabolism (including b-amylase, trehalose-6-phos-

pahte phosphatase and L-lactate dehydrogenase encoding tran-

scripts) were up-regulated in the TMV-infected plants (Table S11).

Cell division, cell organization and DNA binding and
repair related transcripts

The gene expression related to cell cycle and cell organization

was differentially altered in BRB and ARB transgenic plants and

in TMVi plants. Specific to the BRB transgenic plants, 30 and 18

transcripts related to cell cycle and organization were up- and

down- regulated, respectively (Table S13 & S12). Specifically,

several transcripts of B-type cyclins, peptidyl-prolyl cis-trans

isomerases, mitotic spindle check proteins, XKLP2 targeting

protein, Knolle protein, and various nucleolus and transport-

related proteins were down-regulated, while some transcripts

related to cell division and cell organization, including annexins,

HIPL2, myosin-13 and tubulins were up-regulated in these plants.

In the ARB transgenic plants total of 36 transcripts related to

cell cycle and cell organization were down-regulated (Table S12),

including some transcripts coding for cell division control protein

48, tubulins, ankyrin repeat proteins, kinesin and vesicle transport

realated proteins. Meanwhile, a total of 17 transcripts coding e.g.

for cyclins, cell cycle check point control proteins, motor proteins

and cell division inhibited proteins were up-regulated in these

plants (Table S13). The cell division check point control protein

RAD9A, which is abnormally expressed in several cancer types in

animal cells [65,66] was induced by 1386fold, as compared to the

wild type controls.

Very few of cell division and organization-related transcripts

were altered in the TMVi plants. Only 5 transcripts, coding for the

CDC kinase and annexin were down-regulated (Table S12), and 5

transcripts related to cell cycle check point control protein and

other miscellaneous cell cycle proteins were up-regulated in these

plants (Table S13). Interestingly, the transcript of the cell division

check point control protein RAD9A accumulated to 1386 fold

level also in the TMVi plants, as it did in the ARB transgenic

plants.

Similar to the cell cycle and organization gene expression

pattern, also the transcripts for histones and DNA repair proteins

were affected differently in BRB and ARB transgenic plants and in

TMVi plants. In the BRB transgenic plants, a total of 54 histone-

encoding transcripts and 28 DNA binding and repair protein-

encoding transcripts were down-regulated (Table S12), while 11

transcripts related to DNA repair and binding were up-regulated

in these plants (Table S13). In the ARB transgenic plants, only 13

DNA binding protein transcripts were down-regulated, and 16

transcripts coding for various DNA binding proteins were up-

regulated (Tables S12 & S13).

In TMVi plants, only four transcripts coding for DNA

modifying proteins, i.e. one coding for a transposase, one coding

for nuclease and two coding for DNA binding proteins were down-

regulated, and only one NAP1-related transcript was up-regulated

(Tables S12 & S13).

Gene expression alterations unique for the BRB-TMV
plants

To reveal the gene expression alterations that were unique to

the resistant stage of the BRB transgenic plants, their RNA

expression profile was compared with that of the same transgenic

plants at the ARB stage, with TMVi plants and with our

previously published transcriptomes of transgenic plants express-

ing various viral silencing suppressors, i.e. HC-Pro from Potato
virus Y [41], AC2 from African cassava mosaic virus [44], and P25

from Potato virus 6 [43], which all are known not to be resistant

against TMV (data not shown). In total, 1305 up-regulated

transcripts of the BRB transgenic plants were compared against

3453 up-regulated transcripts from the other transgenic and
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TMVi plants. This comparison revealed 695 unique and 610

commonly up-regulated transcripts in the TMV-resistant BRB

transgenic plants (Figure 3). Many of the uniquely up-regulated

transcripts in the BRB transgenic plants were related to stress (98),

translation (88), photosynthesis (53), molecular transporters (27),

lipids (27), hormones and development (40) and transcription

factors (46) (Table S14).

Similarly, comparison of the total of 1462 transcripts that were

down-regulated in the BRB transgenic plants against the 2884

down-regulated transcripts of other plants revealed that 1232 of

these were unique to the BRB plants (Figure 3). Most of these

unique down-regulated transcripts were related to translation

(676), but some were related to chromatin (63), cell division (44),

stress (48), and RNA processing (31) or were unknown for their

function (159) in the BRB transgenic plants (Table S15). The

strong suppression of protein synthesis machinery (see Figure S1) is

a very special response observed only in this plant material,

suggesting that it may be related to the unique virus resistance

occurring in these plants. Still, the large number of transcripts that

were distinctly altered (either up or down) in the resistance stage of

the BRB plants suggests that many other functions may also

contribut to the resistance.

Not only transcripts but also total protein levels and
profiles were different between BRB, ARB and TMVi
plants

To find out how the strong reduction of the proteins synthesis-

related transcripts, and of the increase of protein degradation-

related transcripts in the BRB-plants affects the total protein

content of these plants, their total soluble protein was extracted,

quantitated by the Lowry method, and compared to the soluble

protein content of healthy control plants of the same age. This

revealed that the total soluble protein content of the BRB-TMV

transgenic plants was 28% lower that that of the wt plants

(Figure 4). From previous literature it is known that the wt TMV

infection does not significantly change the total protein content of

tobacco leaves, although it significantly changes their protein

composition [42,51,62,64,67]. We are not aware of any other virus

infection condition where the total protein content would be

reduced.

The total protein composition of the three types (BRB, ARB

and TMVi) of test plants was analysed by using the 1D and 2D-

PAGE, and compared with their corresponding wild type controls.

The analyses were repeated with three biological replicates for

each plant type. Upon loading of equal amounts of protein

samples, the 2D-PAGE analysis showed that the protein profile of

the BRB samples contained multiple altered (either enhanced or

reduced) bands or spots as compared to the wild type control

Figure 3. A Venn-diagram showing the numbers of up- and down-regulated transcripts that are either uniquely altered in the BRB-
TMV transgenic plants, or in in the ARB-TMV transgenic plants or in the TMVi plants, or in the transgenic tobacco lines that express
various viral silencing suppressors (as described in the text), and numbers of genes that are detected both in the BRB-TMV plants
and in some of the other plants.
doi:10.1371/journal.pone.0107778.g003

Figure 4. Lowry-quantitation of the soluble protein content of
the BRB-TMV plants and of the corresponding wt control
plants. Standard error of mean is presented as bars above the columns
(consisting of three biological replicates). The confidence level
determined by the Student’s T-test, with confidence level higher than
95% is indicated by *, higher than 99% indicated by **, and higher than
0,001 indicated by ***.
doi:10.1371/journal.pone.0107778.g004
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plants, but the altered spots were not identified (Figure S3). Also

the samples of the ARB transgenic plants and TMV infected

plants revealed reduction of multiple spots in the protein profiles

compared to the healthy wild type plants, with strong accumu-

lation of the TMV coat protein either as monomer (17,5 kDa) or

as a dimer protein (35 kDa) Figure S3).

TMV infection reduces photosynthetic oxygen evolution
Differential photosynthetic gene expression and appearance of

the chlorotic TMV symptoms at different stages of plant growth

indicated that photosynthetic activity was differentially altered in

BRB and ARB transgenic plants and in TMVi plants. To analyze

this, we measured their oxygen evolution per ug chlorophyll, and

compared this against the oxygen evolution rate of control plants

of the same age. The results indicated that oxygen evolution was

not changed much in the BRB transgenic plants (Figure 5 A),

whereas in ARB and TMVi plants it was strongly reduced

(Figure 5 B). Thus, reduction of the photosynthetic activity was

correlated to TMV virus accumulation.

Response of the TMV-resistant plants to other viruses
To check whether the observed TMV resistance in the young

TMV-transgenic plants was TMV-specific, or active against a

broader range of viruses, the plants were inoculated with PVX,

PVY and PVA. ELISA results indicated that these viruses reacted

somewhat differently to theTMV- transgenic host. The PVY level

was somewhat increased, and PVX level somewhat decreased in

the inoculated leaves of the transgenic plants, as compared to the

inoculated leaves of the wt plants at 7 days post inoculation (dpi).

Any of these viral levels did not differ significantly in the

systemically infected leaves of TMV-transgenic and wt plants at

7 dpi, but PVA infection was strongly enhanced in the transgenic

plants at 10 dpi (Figure 6). Meanwhile, these second infections also

caused the breaking of the TMV-resistance and induced strong

accumulation of the TMV in the transgenic plants, prior to the

time of typical resistance break (Figure 6 B).

Discussion

Typically, viruses can infect and complete their life cycle in a

susceptible host and also easily spread systemically in such a host

plant. This kind of compatible interaction involves effective use of

necessary host factors and suppression of the host defense

mechanisms [20,50,59]. In natural infections TMV has a very

compatible interaction with its tobacco host. In inoculated mature

tobacco leaves it typically spreads and accumulates evenly in all

cells, while in systemically infected young leaves it spreads

unevenly, causing mosaic where some tissues become fully

infected, while others remain virus-free. These dark-green islands

(DGI) are protected against the spreading infection by RNA-

silencing, which becomes activated at the marginal regions of the

initial infection foci [52].

Our transgenic tobacco plants represent an artificial inoculation

system, where the infectious TMV genome is expressed under the

constitutive 35S promoter, supposedly already in all cells of the

germinating embryo. This leads to a very strong resistance

condition that prevails in the plants until they reach a certain stage

of maturity (about seven weeks from germination). This resistance

was mostly specific to its endogenous inducer virus, although it

provided low level transient protection also against two exoge-

nously inoculated viruses (PVY and PVA), maybe due to the

multiple defence genes that are activated in these tissues (Figure 6).

However, as these viruses infected the plants, also the TMV-

resistance was broken, indicating that the resistance mechanism

was not durable under the stress factors, or was compromised by

the silencing suppressors produced by the second viruses.

This suggests that the resistance may be related to the TMV-

specific RNA silencing, and similar in nature to the resistance

surrounding the DGIs in the young systemically infected leaves.

Still, this was not supported by our earlier results, which showed

that the TMV-derived transgene was not silenced by methylation,

and that virus-specific siRNAs were not detected in the resistant

tissues. The methylation level increased and the siRNAs became

detectable only after the resistance break, indicating that the RNA

silencing became activated at this stage [53].

The resistance was very strong in the young transgenic plants,

and the viral RNA level remained very low: it was not detectable

by Northern blotting [53] or by the microarray hybridization, but

was barely detectable by qRT-PCR analysis, being reduced by a

factor of 210 as compared to normal productive infection (data not

shown). No viral CP was detected during this period in the plants.

Still, the transgene expression, and the resistance reaction against

the expressed infectious viral RNA caused a severe stress condition

of the plants, manifested by the strong reduction of the plant

growth (Figure 1).

When the resistance was broken, at about 1.5–2 months after

germination, the plants became fully infected from the endogenous

inoculum. The first sign of the resistance break was the

Figure 5. Light-responsive O2-evolution of photosystem II of
the different test plants, as compared to the wild type control
plants. BRB- (A), and ARB-TMV transgenic and TMVi plants (B). O2-
evolution was measured of freshly isolated thylakoid membranes using
DCBQ as an electron acceptor. Four light intensities is shown in x-axis
(mmol photons s21 m22) and the O2-evolution in y-axis (mmol O2

(mgChl)21 h21). Standard error of mean is presented as bars above the
columns (n = 4, consisting of five biological replicates). The confidence
level determined by the Student’s T-test, with confidence level higher
than 95% is indicated by *, higher than 99% indicated by **, and higher
than 99,9% indicated by ***.
doi:10.1371/journal.pone.0107778.g005
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appearance of typical patchy mosaic symptoms in the small apical

leaves. Also, the viral coat protein was first detected by

immunolabeling as small patches in the apical leaf initials, and

in the vascular tissue, but not in the apical meristems (Figure 1B).

This patchy pattern of the resistance break particularly in the

uppermost leaves suggests that it was related to the changing

developmental and maturity level of the plants.

Similar, but not identical, virus resistance has been reported in

transgenic N. benthamiana plants that express the full length

genome of Plum pox potyvirus (PPV) [68]. In that case the virus

resistance occurred only in some of the PPV-expressing transgenic

lines, and apparently several different mechanisms contributed to

its induction, including RNA silencing.

To identify physiological and molecular processes that are

associated with the resistance status of the young plants, we

investigated the transcriptome of the transgenic plants before and

after resistance break. The microarray analysis revealed multiple

gene expression alterations in these plants, and several of them -

for example the strong suppression of the translational machinery,

enhanced biotic stress responses including the activation of the

SAR and HR pathways, hormonal changes or cell division

alterations - may all contribute to the resistance.

Protein translation machinery was strongly suppressed in
the BRB transgenic plants

An interesting feature in the transcript profile was the strong

down-regulation of the multiple (more than 700) transcripts coding

for different components of the translation machinery. The strong

reduction of the 40S and 60S ribosomal RNAs, and of other

ribosomal genes in the BRB plants, compared to their strong up-

regulation in the TMV infected wt plants, and also to their normal

expression in the ARB transgenic plants, suggest that the

availability of host translational machinery is actively restricted

in the BRB transgenic plants. This may directly suppress the

accumulation of viral proteins. Furthermore, the reduction of the

eIF3 and eEF1A and eEF1B translation initiation and elongation

factors, which are known to be needed for the TMV-specific

replicase complex [1,15,16,19,30,49,69–71], may, to some extent,

directly suppress the TMV replication.

Many viruses modify the host translational machinery to

increase the viral protein synthesis but not host protein synthesis

[55,72–74]. In the case of TMV, the viral genomic and coat

protein RNAs are stronger translational templates than host

mRNAs [55]. TMV genomic RNA has a long 59-leader sequence,

so called omega sequence, which promotes its translation by

efficiently recruiting the 40S and 60S ribosomal subunits to form

the 80S-preinitiation complex [74,75]. The 59-leader sequence

also interacts with the heat shock protein 101 to recruit eIF4F [76].

Thus, TMV should strongly compete for the host cell’s transla-

tional capacity, even under the situation where the total translation

machinery is reduced. Thus the significance of this response, in

terms of the induced viral resistance, is not clear.

Many protein degradation pathways and several proteases were

induced at the resistant stage but reduced in the TMVi plants,

indicating that the BRB transgenic plants may promote the

resistance also through enhanced turnover of the viral proteins.

The reduced protein synthesis, and enhanced protein degradation

were reflected in the reduced soluble protein content, and also in

the altered protein profile of the BRB plants.

TMV-resistant BRB transgenic plants exhibited less
photosynthetic damage and higher defense responses
than did the ARB transgenic and TMVi plants

Chloroplasts are the main center for many important metabolic

functions, and many biotic/abiotic stresses, including virus

infections, influence their environment [63]. For instance, TMV

infections affects the composition of chloroplast proteins, and

efficient TMV accumulation depends on the silencing of the 33k

subunit of the OEC and ferridoxin I proteins, which are involved

in defense against TMV [51,62,64,77]. Up-regulation of OEC

complex proteins in the BRB-TMV plants, and their down-

regulation in the the ARB plants may thus relate to the induced

defense condition in the BRB-TMV plants.

In the TMVi plants the transcriptome was altered much less

than in the transgenic BRB and ARB plants. Interestingly, while

induction of defense-related genes is not typical to TMVi plants

due to the compatible interaction, this reaction was quite opposite

in the BRB and ARB transgenic plants. Induced expression of

SAR- and HR-associated proteins in the BRB transgenic plants,

and their down-regulation after resistance break or virus infection

(ARB and TMVi plants) indicates the incompatible host-virus

interactions and induction of the active resistance pathways [61] in

the BRB plants. This was also indicated by the expression of the

non-functional allele of the N-resistance gene and of other R-

genes, observed in the BRB transgenic plants. All these activated

defence-related genes and pathways are likely to contribute to the

strong TMV resistance condition in the BRB plants.

Cell division
Several animal studies have revealed that viruses can hijack the

host cell division machinery to control the anti-cancer mechanisms

[78] and thus provide a suitable environment for virus replication

process. One of the cell division check point control protein

RAD9A is expressed on very high level (,140 x) in our ARB

transgenic and TMVi plants but not in the BRB transgenic plants.

RAD9A protein is known for its high expression levels during high

DNA damage conditions. Several cancer studies indicate that cells

accumulate RAD9A protein during carcinogenesis and also the

RAD9A down-regulation by siRNA reduces the tumorogenesis in

the cells [65,66]. It is not clear how the RAD9A protein increases

tumorogenesis, but one hypothesis is that it may induce the

expression of adjacent carcinogenic genes. Abnormally high

expression of RAD94 in the ARB transgenic and TMVi plants

may indicate that it plays some role in the TMV infection process

or cell’s stress reaction under the virus infection.

Many cyclins (A and B type) were strongly down-regulated in

the BRB transgenic plants. Cyclins are involved in the cell cycle

regulation by the cyclin dependent protein kinases phosphoryla-

tion process (CDKs) [79,80], and their down-regulation may

indicate that the cell cycle is stalled during G2 and M phase in the

BRB transgenic plants, leading to their stunted phenotype.

Figure 6. ELISA-mediated detection of the exogenously inoculated PVX, PVY and PVA viruses, and of the endogenously infecting
TMV, from the BRB-TMV transgenic plants. A. Detection of PVX, PVY and PVA the from the inoculated leaves (i), and form the systemic leaves (ii)
at 7 dpi (ii), and from the systemic leaves at 10 dpi (iii), and (B) detection of the TMV from the wt tobacco plants, and from the TMV-transgenic plants
at 7 days after inoculation either with PVX, PVA and PVY. Standard error of mean is presented as bars above the columns (consisting of three
biological replicates). The confidence level determined by the Student’s T-test, with confidence level higher than 95% is indicated by *, higher than
99% indicated by **, and higher than 99,9% indicated by ***.
doi:10.1371/journal.pone.0107778.g006
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Conclusions
The microarray analysis reveals that the expression of the

infectious TMV genome in the germinating and developing

tobacco tissue induces strong alterations in an unique pool of

transcripts, many of which may contribute to the TMV resistance

status of the plants. One important factor in this condition appears

to be the strong enhancement of the SAR- and HR-type defence

pathways. Another interesting response is the suppression of the

translational machinery, which is a totally unique reaction

observed in these plants. This may slow down the synthesis of

viral proteins, and also deprive the cells of different host factors

(e.g. translation factors eIF-3 and eEF1A and B) which are needed

for TMV replication, but the role of these reactions in terms of the

virus resistance remains unclear. How all these responses are

induced and mutually integrated in the young transgenic plants

remains to be solved.

Methods

Plant material
The wild type tobacco (Nicotiana tabacum cv. xanthi nn) and

transgenic tobacco plants, which express the whole TMV genome

(strain U1) were grown in greenhouse at 60% relative humidity

and in 22uC temperature, with a light/night regime of 16 h light

(150 mmol photons m22s21) and 8 h dark. Three replicate

samples were collected from the selected transgenic tobacco line,

from three BRB plants at 6 weeks, and from the same ARB plants

at 8 weeks after germination. At the same time, corresponding sets

of the control samples were collected from wild type (wt) plants,

which were grown in the same conditions and of the same age as

the test plants at the time of sampling. During this collection

period all plants remained in the vegetative growth stage. Always

the third leaf from the apex (about half of the mature leaf size) was

collected, and the collection took place always at the same time of

the day (11 am). Wt tobacco plants were mechanically inoculated

with TMV at 8 weeks after germination, and samples of

systemically infected leaves were collected from these plants at 8

days after inoculation, in parallel with corresponding control

samples from healthy wt plants. All the leaf samples were directly

frozen in liquid nitrogen and used for RNA extraction. Positive

expression of transgene (TMV) RNA was detected in the leaf

samples by qRT-PCR prior to the array analysis; TMV RNA was

not detectable in these samples by Northern blotting [53] but was

detectable on very low level by qRT-PCR. The first set of protein

extractions were done from the same samples what were used for

the RNA extraction, and additional protein samples were later

collected from separate sets of plants of the same line, at the same

growth stage and growth conditions.

RNA extraction, cDNA labeling and microarray
hybridization

Total RNA was extracted from healthy wild type (controls),

BRB and ARB transgenic, and TMVi wild type tobacco plants by

using TRIsure reagent (Bio line, UK) according to manufacturer’s

instructions. The extracted total RNA was purified with the RNA

purification kit (Nucleospin RNA clean-up, Macherey-Nagel) and

then subjected to DNaseI treatment (Promega RQ1 RNase free-

DNaseI) according to the manufacturer’s recommendations.

Subsequently, the total RNA was concentrated with Amicon

Ultra-0.5 centrifugal filter devices. The cDNA labeling, and

Agilent 4644k microarray hybridization were done according to

the manufactures instructions (Center for Biotechnology, Turku,

Finland) and the raw numerical data handling and its statistical

analysis were done by using Chipster (CSC, Finland) program [81]

as previously described [41].

Annotation of differentially regulated genes in
microarray data

The probe information provided by the manufacturer for the

Agilent 4644k microarray was limited and mainly based on EST

and cDNA sequences. Therefore, most of this descriptive

annotation information was obtained from the http://mapman.

gabipd.org/web/guest/mapman-annotationexperts website, with

additional information obtained from the websites like JCVI

http://plantta.jcvi.org/ and BLAST http://blast.ncbi.nlm.nih.

gov/Blast.cgi. The functional grouping of probes was also attained

from the mapman.gabipd.org website, with some additional

manual adjustments.

Verification of differentially expressed genes
The microarray results were verified by using the quantitative

real-time PCR (RT-qPCR) method by following the MIQE

guidelines [82]. A total of 1 mg purified leaf total RNA was used

to make cDNA synthesis by using the Revert Aid reverse

transcriptase enzyme (product # EPO441, Fermentas) according

to the manufacture instructions. The RT-qPCR reactions were

performed using 10 ng (3 ml) of diluted cDNA samples (1:15), gene

specific primers (Table S16) and Maxima SYBR Green/Fluorescein

RT-qPCR Master Mix (2X) (Product #K0242, Fermentas) with a

total volume of 25 ml. For each biological replicate, 3–4 technical

replicates were run to reduce the pipetting errors. The standard

error of mean was measured from the three biological replicates.

The Bio-Rad iQ5 machine was used to perform the RT-qPCR in

96–well plate and the results were calculated by employing the

quantification cycle (Cq) method (delta delta Cq). Primer specificity

was tested by checking the single peak in the DNA melting curves.

In situ labeling of the TMV coat protein
Sample sections (7 mm) were prepared from the shoot apical

domains of BRB/ARB TMV transgenic plants at 7 weeks after

germination, i.e. just at the time of resistance break, by excising

and immediate fixing as described previously [83]. The sample

sections were initially incubated in phosphate buffered saline (PBS)

containing 4% bovine serum albumin at room temperature for

30 min. Later, the samples were subjected to incubation by TMV-

specific alkaline phosphatase–conjugated polyclonal antibodies

(dilution 1:50) at 4uC for overnight. Next morning, the samples

were washed and stained with freshly prepared fuchsin substrate

solution and examined with a Leitz, Laborlux S light microscope

(Leica Microsystems AG) at 406 and 1006magnifications.

Photosynthetic Measurements
Equal amount of leaf samples (1.0 g) from the healthy control,

BRB and ARB transgenic plants, and from TMVi tobacco plants

were taken and ground in 4 ml of thylakoid isolation buffer (0.3 M

sorbitol, 50 mM HEPES/KOH pH 7.4, 5 mM MgCl2, 1 mM

EDTA, and 1% BSA) with ice cold mortar and pestle. The ground

mixture was filtered through the Miracloth and 2 ml of the filtrate

was taken and centrifuged at 120006g for 2 minutes. The

chlorophyll concentration measurements were done according to

the procedure stated in [84]. The supernatant was removed and the

thylakoid pellet was resuspended in oxygen electrode buffer (0.3 M

sorbitol, 50 mM HEPES/KOH pH 7.4, 5 mM MgCl2 and 1 mM

KH2PO4). The oxygen evolution measurements were carried out by

a Clark type electrode by using 0.5 mM DCBQ as electron donor.
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Protein Isolation and 2D gel electrophoresis
Protein extraction for the measurement of the total soluble

protein content from the BRB plants and healthy control plants

was done from by 0.5 g of leaf tissue, ground inthe ice cold oxygen

electrode buffer (0.3 M sorbitol, 50 mM HEPES/KOH pH 7.4,

5 mM MgCl2 and 1 mM KH2PO4). Subsequently, supernantent

was isolated and used for protein quantity measurement by using

lowry assay.

Protein samples for the electrophoresis analysis from leaves of the

healthy control, BRB and ARB transgenic plants and of the TMVi

plants were isolated by using TRIsure reagent (Bio line, U.K)

according to the manufacture recommendations with some adaptive

steps from TRIzol protocol (Invitrogen Inc. USA). The concentra-

tions of isolated protein samples were measured by using Lowry

assay. A total of 20 mg protein samples were loaded and run on 1D

SDS-page electrophoresis to verify the equal loading of the protein

samples. 250 mg of protein samples were taken and mixed with

rehydration buffer (8 M urea, 4% CHAPS, 2 M thiourea, 20 mM

Tris-HCl, 0.05% bromophenol blue, 100 mM DTT and 5 ml/ml of

Bio-lyte ampholyte solution). The protein samples were incubated

for 2 hours at room temperature and separated by isoelectric

focusing using Bio-Rad 7 cm IPG pH 3–10 strips. Subsequently, the

IPG strips were subjected to the second dimension separation with

the 15% PAGE gels by using protein II apparatus (Bio-Rad). The

protein gels were fixed with isopropanol and acetic acid treatments

for 15 minutes each and incubated overnight with coomassie blue

stain (Page Blue staining kit, Fermentas). In the next morning, gels

were destained and photographed. Optionally, the gels were stained

again with silver staining kit (Page silver staining kit, Fermentas)

according to manufacturer’s instructions to analyze even the low

abundance proteins.

ELISA analysis of the virus titers
Different viruses used in this study (PVY, PVX, PVA and TMV)

were detected by using double antibody sandwich enzyme-linked

immunosorbent assay (DAS-ELISA) according to the manufactur-

ers guidelines (Bioreba, Reinach, Switzerland) with slightly modified

protocol. The commercial polyclonal, alkaline phosphatases conju-

gated antibodies (Bioreba, Reinach, Switzerland) against all viruses

were diluted to 1:10000 for use. The ELISA reactions were

developed by using the p-Nitrophenyl phosphate as a substrate, and

measured at 405 nm absorbance by using the ELISA plate reader

(Benchmark, Bio-Rad, Hercules, CA, U.S.A.). 100 ng of purified

virions of the corresponding viruses were used as internal standards.

Supporting Information

Figure S1 Graphic presentation of the altered protein
synthesis-related transcripts (log2 value.1), as detected
and portrayed by the MapMan software from the
microarray data of the BRB-, ARB-TMV transgenic
and TMVi plants. The blue- and red squares and bars

represent the up- and down-regulated transcripts, respectively,

and the picture frame depicts their functional location in the cell.

The boxes portrayed inside the nuclear circles indicate the

alterations in the transcription- and mRNA processing-related

transcripts, respectively. Alterations of the translation-related

transcripts are portrayed in the cytoplasm, separately for the

plastidic, mitochondrial and cytoplasmic ribosomes.

(TIF)

Figure S2 Graphic presentation of the altered stress-
related transcripts (log2 value.1) as detected and
portrayed by using the MapMan software from the
microarray data of the BRB- and ARB-TMV transgenic

and TMVi plants. The blue and red squares represent the up-

and down-regulated transcripts, respectively, that are involved in

the different signaling pathways and in different stress responces.

(TIF)

Figure S3 1D-SDS-PAGE gels (left panel), and 2D-
polyacrylamide gel electrophoresis (2D-PAGE) (right
panel) showing, respectively, the equal loading of
samples and the levels of various individual proteins.
Upper two panels show BRB-TMV transgenic plants protein

samples analysis at before resistance break stage, the middle two

panels show the ARB-TMV transgenic plants protein samples

analysis at after resistance break stage, and the bottom two panels

show samples from the TMV-infected wild type tobacco plants

(TMVi). All gels were stained with coomassie blue. Molecular

weight ladder (Thermo Scientific) contains markers for the 250,

130, 100, 70, 55, 35, 25, 15, and 10 kDa proteins – the most

important ones are marked in the panels. The TMV CP is

indicated with the * in the ARB and TMVi gels.

(TIF)

Table S1 Normalized microarray data showing both
down- (sheet1) and up-regulated (sheet 2) transcripts in
the leaves of BRB-TMV transgenic tobacco plants.

(XLSX)

Table S2 Normalized microarray data showing both
down- (sheet1) and up-regulated (sheet 2) transcripts in
the leaves of ARB-TMV transgenic tobacco plants.

(XLSX)

Table S3 Normalized microarray data showing both
down- (sheet1) and up-regulated (sheet 2) transcripts in
the leaves of TMVi wild type tobacco plants.

(XLS)

Table S4 Down-regulated transcripts related to the
protein synthesis, degradation and amino acid metab-
olism in the leaves of BRB-, ARB- transgenic and TMVi
plants.

(DOCX)

Table S5 Protein synthesis, degradation and amino
acid metabolism related up-regulated transcripts de-
tected in the leaves of BRB-, ARB- transgenic and TMVi
plants.

(DOCX)

Table S6 Biotic stress related down-regulated tran-
scripts detected in the leaves of BRB-, ARB- transgenic
and TMVi plants.

(DOCX)

Table S7 Biotic stress related up-regulated transcripts
detected in the leaves of BRB-, ARB- transgenic and
TMVi plants.

(DOCX)

Table S8 Hormones and development related down-
regulated detected in the leaves of BRB-, ARB- trans-
genic and TMVi plants.

(DOCX)

Table S9 Hormones and development related up-regu-
lated detected in the leaves of BRB-, ARB- transgenic
and TMVi plants.

(DOCX)
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Table S10 Photosynthesis and carbohydrate metabo-
lism related down-regulated transcripts detected in the
leaves of BRB-, ARB- transgenic and TMVi plants.
(DOCX)

Table S11 Photosynthesis and carbohydrate metabo-
lism related up-regulated transcripts detected in the
leaves of BRB-, ARB- transgenic and TMVi plants.
(DOCX)

Table S12 Cell division and DNA-binding related down-
regulated transcripts detected in the leaves of BRB-,
ARB- transgenic and TMVi plants.
(DOCX)

Table S13 Cell division and DNA-binding related up-
regulated transcripts detected in the leaves of BRB-,
ARB- transgenic and TMVi plants.
(DOCX)

Table S14 Different up-regulated transcripts in the
BRB-TMV transgenic plants after subtracting the up-
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