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Abstract

Background

Ancient DNA analysis offers a way to detect changes in populations over time. To date,
most studies of ancient cattle have focused on their domestication in prehistory, while only
a limited number of studies have analysed later periods. Conversely, the genetic structure
of modern cattle populations is well known given the undertaking of several molecular and
population genetic studies.

Results

Bones and teeth from ancient cattle populations from the North-East Baltic Sea region
dated to the Prehistoric (Late Bronze and Iron Age, 5 samples), Medieval (14), and Post-
Medieval (26) periods were investigated by sequencing 667 base pairs (bp) from the mito-
chondrial DNA (mtDNA) and 155 bp of intron 19 in the Y-chromosomal UTY gene. Compatri-
son of maternal (mtDNA haplotypes) genetic diversity in ancient cattle (45 samples) with
modern cattle populations in Europe and Asia (2094 samples) revealed 30 ancient mtDNA
haplotypes, 24 of which were shared with modern breeds, while 6 were unique to the an-
cient samples. Of seven Y-chromosomal sequences determined from ancient samples, six
were Y2 and one Y1 haplotype. Combined data including Swedish samples from the same
periods (64 samples) was compared with the occurrence of Y-chromosomal haplotypes in
modern cattle (1614 samples).

PLOS ONE | DOI:10.1371/journal.pone.0123821

May 20, 2015 1/16


https://core.ac.uk/display/33740558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0123821&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.aka.fi/en-GB/A/
http://www.aka.fi/en-GB/A/
http://www.oulu.fi/biology/PopGenSchool/
http://www.oulu.fi/biology/PopGenSchool/

@'PLOS ‘ ONE

Mitochondrial and Y-Chromosomal DNA Analyses of N-E Baltic Sea Cattle

Estonia were part of the grant project no 8156 of
Estonian Science Foundation, http://www.etag.ee/
rahastamine/etfgrandid/. The funders had no role in
study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

Conclusions

The diversity of haplogroups was highest in the Prehistoric samples, where many haplo-
types were unique. The Medieval and Post-Medieval samples also show a high diversity
with new haplotypes. Some of these haplotypes have become frequent in modern breeds in
the Nordic Countries and North-Western Russia while other haplotypes have remained in
only a few local breeds or seem to have been lost. A temporal shift in Y-chromosomal haplo-
types from Y2 to Y1 was detected that corresponds with the appearance of new mtDNA
haplotypes in the Medieval and Post-Medieval period. This suggests a replacement of the
Prehistoric mtDNA and Y chromosomal haplotypes by new types of cattle.

Introduction

Archaeological and mitochondrial DNA evidence indicate that cattle were domesticated from
the auroch (Bos primigenius) [1-5], about 10,000 years ago in the Fertile Crescent [6]. From
the Fertile Crescent, domestic cattle spread to South Eastern Europe around 8,800 Before Pres-
ent (BP), to Central Europe around 7,000 BP, and to North Central Europe after 6,700 BP [7].
Domestic cattle reached southern Scandinavia by 6,000 BP [8], Estonia by 4,100 BP [7] and fi-
nally Finland in the northern Baltic Sea region by 3,000 BP [9]. The oldest radiocarbon dated
remains of cattle in Finland date back to 3086 + 30 BP [9].

Molecular analyses of mitochondrial DNA and the Y-chromosome can be used to trace
bovine maternal and paternal lineages, respectively [10,11]. Variation in the hypervariable re-
gion of the mithochondrial D-loop defines the majority of taurine cattle, as well as some mi-
tochondrial lineages of Near Eastern aurochs and many Italian aurochs [12], to belong to the
T mega-haplogroup, including the haplogroups T, T1, T2, T3, and T4 [1,5,13-15]. A study of
the whole mitochondrial DNA has suggested an additional haplogroup, T5, defined by sites
outside of the D-loop region [15]. Three other haplogroups have been identified in taurine
cattle, where the closest in phylogeny to haplogroup T is haplogroup Q [10], differing by one
diagnostic SNP site in the hypervariable region (position 15953 in V00654) [15]. Haplogroup
Q has been found at low frequency in modern South European cattle breeds [10,15]. The dis-
tribution of haplogroup Q has been hypothesised to indicate a parallel Near eastern origin for
haplogroups T and Q, where Q represents a minor domesticated lineage [16]. Haplogroup P
that has only been identified in northern and central European aurochs, and in a couple of
scattered taurine samples, diverged from T and Q prior to their split [15,17]. The oldest di-
verging branch in the mtDNA phylogeny is the very rare haplogroup R that has only been
identified in local Italian cattle breeds [16].

The genetic diversity of the T haplogroup is highest in the Near and Middle East cattle pop-
ulations, where four haplogroups T, T1, T2, and T3 exist [1,14], indicating a Near Eastern ori-
gin of taurine cattle, which is also supported by nuclear marker analyses that show higher
variability in the Near East than in other regions [1,18]. European domestic cattle carry the
same four haplogroups as Near East cattle, but with T3 predominating in Europe at least from
the Neolithic period onwards [11,14,17,19,20]. Haplogroup T1 is quite frequent across the
Mediterranean countries [3,21], and predominant and almost fixed in Africa [14]. Haplogroup
T4 derives from T3 and has thus far only been detected in Asian and Yakutian cattle from Rus-
sian Siberia [11]. The star-like patterns of the T3-centered haplotypes detected in modern and
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Neolithic European cattle populations have been suggested to result from post-domestic accu-
mulation of mutations [14,19].

A north—south gradient of genetic diversity has been detected in modern European cattle
(Bos taurus), [11,18], including the Y-chromosome [11]. A single nucleotide polymorphism in
intron 19 of the UTY gene (UTY19) can be used to distinguish between the two Y-chromosom-
al haplotypes, Y1 and Y2 [22]. Whereas Y1 is the dominating haplotype in modern Western
and Northern European breeds, haplotype Y2 dominates in South European breeds [22], with
a clear dividing zone in central Europe [23]. Apart from the geographical variation, a temporal
fluctuation in Y1 and Y2 haplotype frequencies has been detected, mainly from Swedish an-
cient bulls and aurochs, suggesting that variation in present-day frequencies of Y1 and Y2 hap-
lotypes is likely due to recent demographic events [24].

The aim of this study was to explore temporal population variation by maternally and pater-
nally inherited markers in cattle from the North East Baltic Sea region (N-EBSR), and to com-
pare ancient populations with modern breeds. Haplotype data from 45 ancient mtDNA and 7
Y-chromosome samples was used together with contemporary data from 2094 mtDNA
[10,11,15,16,20] and 1614 modern [22-24] and 71 ancient Y-chromosomes [24-26] samples.
The data indicates clear changes in the N-EBSR cattle populations from late Bronze/Iron Age
to modern times.

Materials and Methods
Ancient cattle bones

A total of 77 cattle bones were selected for aDNA analysis from different sites across Finland
and Estonia and in the town of Vyborg in the Leningrad Region in north-western Russia

(Fig A in S1 File). The samples for this study were from museum collections held at 1.) The
National Board of Antiquities, 2.) Museum of Raisio (Harkko), 3.) The Museum Centre of
Turku, 4.) Alands Museum, 5.) Museum of Viljandi, 6.) Pirnu Museum, 7.) Saaremaa Muse-
um, 8.) University of Turku, 9.) St. Petersburg, Institute for the Material Culture History, Rus-
sian Academy of Sciences, 10.) Tallinn University, and 11.) University of Tartu (Table A in

S1 File). All necessary permits were obtained for the described study, which complied with

all relevant regulations.

The samples from Vyborg derive from the Medieval and Post-Medieval periods, during which
Vyborg was part of Finland. The earliest bones (2 samples) available for this study derive from
the Late Bronze Age (700-500 BC) from the island of Saaremaa, Estonia. The rest of the Prehis-
toric samples dates to the Late Iron Age (800-1200 AD). To verify that each individual within
one site and period was sampled only once, samples deriving from the same side of the animal
were selected, or the size and age of the individual was used to separate individuals. Whenever
possible, metacarpals were preferred as metacarpals are used to osteologically determine the sex
of the animal [27,28]. From 77 samples initially selected, a total of 18 bones or teeth from the Pre-
historic period (700 BC-1200 AD), 24 from the Medieval period (1200-1550 AD), and 34 from
the Post-Medieval period (1550-1800 AD) were used for aDNA analyses. One sample that was
radiocarbon dated as modern was omitted from further aDNA analysis. A total of 21 skeletal
samples were radiocarbon-dated at the Laboratory of Chronology of the Finnish Museum of Nat-
ural History (LUOMUS), University of Helsinki (Table A in S1 File). Radiocarbon dated samples
covered all bones and teeth from non-distinct cultural layers that were used for aDNA analyses.

DNA markers and laboratory methods

To determine the mtDNA haplogroups T, T1, T2, T3, T4, and T5 [15], a combination of three
fragments yielding 486 bp of sequence covering the mtDNA D-loop from position 16031 to
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178 [GenBank: V00654] and a 181 bp sequence from the ND5 gene (position 12 911 to 13 091
[GenBank: V00654]) were analysed. An additional 77 bp D-loop fragment (positions 15936-
16012 in V00654), determining haplotype Q, was analysed from one sample (H01, BtTor4). As
a Y-chromosomal haplotype marker, a 155 bp sequence from intron 19 in the UTY gene was
analysed (the transversion G>T at position 423 in [GenBank: AY936543], defining haplotypes
Y1 or Y2) [22]. DNA extraction [29], PCR methods and sequencing of PCR products were as
described in [30]. Briefly, 0.2-0.5 ml of bone powder was suspended in 900 ul 0.5M EDTA,
100 ul 10M urea and 5 pl proteinase K (20 mg/ml), and incubated with constant shaking at
55°C overnight. DNA from the concentrated supernatant (Amicon-4 30K centrifugal filter
units, Merck Millipore) was extracted with a QIAquick PCR Purification Kit (Qiagen, Sweden)
according to manufacturer’s instructions. Approximately 5-10 uL of DNA extract was used in
the PCR performed with the HotStarTaq DNA polymerase Kit (Qiagen, Sweden) with an inclu-
sion of 0.4 mM dNTP, 0.2 pM of each primer and 0.25 units (U) of Uracil DNA Glycosylase
(UNG, Sigma-Aldrich). The PCR program included initial steps of 37°C for 10 min and 95°C
for 15 min followed by 55 three-step cycles of 94°C for 30s, AT°C for 40s and 72°C for 1 min
and 10 min at 72°, where AT stands for a specific annealing temperature for each primer pair
(Table B in S1 File). Primers and success rates of aDNA analyses (Text A in S1 File, Table B in
S1 File) are provided in the Supporting Information.

Authenticity of ancient cattle DNA

The authenticity of aDNA analyses was controlled in various steps of the laboratory work-flow
and the analyses were repeated in independent ancient DNA laboratories. All 45 ancient sam-
ples included in the statistical analyses were extracted at least twice (MTT Agrifood Research
Finland, Jokioinen, Finland, Stockholm University, Stockholm, Sweden and Department of Fo-
rensic Medicine, University of Helsinki, Helsinki, Finland).

Each participating ancient DNA laboratory followed general guidelines for ancient DNA
work such as separate space for sample preparation and ancient DNA work, separate pre- and
post-PCR areas, air-controlled sterile aDNA work space, wearing of protective clothing, using
disposable tools, pipettes with aerosol resistant filter tips and treating equipment and working
surfaces with bleach and ultra-violet irradiation frequently.

To ensure the authenticity of the mtDNA and Y-chromosomal sequences, and to detect pos-
sible PCR errors, each DNA fragment of each sample was sequenced from at least two different
PCR reactions with DNA derived from different extractions. The sample was considered to be
reproducible when consistent sequences of each DNA fragment were obtained from at least
three amplifications. The consistent sequences were verified from two extractions in analyses
done at least in two independent aDNA laboratories. Overlapping primers specific to cattle
DNA were designed to prevent cross reactivity with human DNA (Text A in S1 File, Table B in
S1 File). Negative controls were applied for all steps in the aDNA extraction and amplification.
A previously analysed mammoth sample [31] was used as a positive control when the first five
samples were extracted. The mammoth sample was suitable as a positive control as it is ancient
and its sequence clearly differs from cattle.

For further analyses, sequences from aDNA samples obtained from different extractions
and amplifications, proven identical by at least two independent aDNA laboratories were used.
One sample was not repeatable and was thus excluded from analyses (Table A in S1 File). For
six samples only partial mtDNA was successfully amplified. Consequently, they were omitted
from the statistical analyses. As amplification from 25 samples (including one modern sample,
Table A in S1 File) yielded no DNA, a total of 45 samples remained for statistical analyses
(Table A in S1 File).
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Statistical analysis

The mtDNA sequences from the 45 successfully sequenced ancient cattle were aligned sepa-
rately for the 486 bp D-loop and the 181 bp ND5 gene sequences using CLUSTALW [32]
where penalties used were 10 for gap opening, 0.20 for gap extension, and 5 for gap distances.
The combination of the sequenced regions is referred to below as the 667 bp haplotype re-
gion. A CLUSTALW alignment was also performed for the seven successfully amplified Y-
chromosomal 155 bp sequences. The analysed sequences are available in GenBank, accession
numbers KF233429-KF233528.

The Reduced Median-joining Network (RMN to be most conservative € = 0) was constructed
according to the algorithm described by Bandelt, Forster and Rohl [33] with NETWORK 4.6.0.0
[33]. The topology obtained in RMN was confirmed with the Maximum likelihood (ML) and
Bayesian Markov Chain Monte Carlo (MCMC) analyses using jModeltest v2.1 [34], PhyML 3.0
[35] and MrBayes 3.2 [36]. Both the ML and the MCMC tree along with the detailed statistical
methods are presented in Supporting Information (Text A in S1 File, Fig B in S1 File).

DnaSP (version 5) [37] was used to calculate the genetic diversity estimates based on the
486 bp D-loop sequences. Number of haplotypes (h), haplotypic diversity (Hd), number of seg-
regating sites (S), nucleotide diversity (r), Tajima’s D (D), and average number of nucleotide
differences (K) were calculated for each population. To approximate the level of bias in the di-
versity estimates caused by heterochronity in the dataset when pooling samples of different
ages, corrected 7y, [38] was calculated with mutation rates of 34 and 53% per million years and
generation lengths of 5 and 7 years (upper and lower ranges as calculated from Near-Eastern
cattle in [39]). In order to provide dates to the samples when calculating m,,, radiocarbon dates
were used and the used dates were randomly assigned to cover the range of context for samples
dated by context.

In order to compare ancient cattle diversity to modern cattle populations, a number of addi-
tional sequences from Europe, Near East and North Asia were included in the population diver-
sity analysis. These sequences have previously been described and analysed [10,11,15,16,20].
The size of the common aligned mtDNA sequence in this comparison was 245 bp from a total
of 2139 individuals. This dataset was then used in two approaches.

First, to explore the temporal fluctuation in haplotypes within the N-EBSR, 49 modern cat-
tle samples from five native N-EBSR breeds (Northern, Western, and Eastern Finncattle, Esto-
nian Red and Estonian Native [11,16]), along with the 45 ancient cattle analysed here were
extracted from the aligned 245 bp dataset. These 94 N-EBSR samples were grouped into three
temporal cohorts; Prehistoric and Medieval (n = 19), Post-Medieval (n = 26), and Modern
(n =49) and into two groups: 1) the most frequent 245 bp haplotype found among the entire
2139 dataset (563 samples) and 2) the rest of the haplotypes.

The second approach was used to explore the appearance and frequency of ancient haplotypes
among 2094 modern cattle divided into ten geographical regions (N-EBSR, Scandinavia, West-
ern Europe, Southern Europe, South-Eastern Europe, Eastern Europe, Western Russia, Central
Russia, Siberia, and Near East/Central Asia). For this approach, the 2094 modern samples were
grouped into three haplotype groups: 1) the most common 245 bp haplotype in the entire dataset
(563 out of 2139 samples), 2) the rest of the haplotypes found among 45 ancient N-EBSR cattle,
and 3) other haplotypes not found in ancient data. The procedure was used to study the distribu-
tion of ancient haplotypes among contemporary cattle. Note that the Prehistoric haplotypes were
excluded here as most of the Prehistoric haplotypes were not present in contemporary data.

Pearson’s chi-square test, as implemented in SPSS v.11.5.0, was conducted to test for differ-
ences in frequencies of mtDNA haplotypes in both approaches, between the temporal cohorts
and the geographical regions.
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Sixty-nine samples were further analysed for the Y chromosomal SNP in UTY19, which dif-
ferentiates cattle Y chromosomes into haplotypes Y1 and Y2 [22]. The seven samples success-
fully analysed for the Y1/Y2 marker were analysed for temporal fluctuation with the Swedish
ancient (n = 64) and Fennoscandian modern (Northern, Western, and Eastern Finncattle,
Swedish Red, Red polled, Fjallnara and Mountain cattle, n = 41) data given in [22-25]. The
combined data from Fennoscandian bulls were divided into four temporal groups: Iron Age
(n =8 [25]), Medieval (n = 37 this study and [24,25]), Post-Medieval (n = 19 this study and
[24]), and modern (n = 28 [22] and [11] as reported in [23]). To compare the temporal analy-
ses in Fennoscandia to Central Europe, data from Medieval bulls (n = 14, [26]) from Switzer-
land was analysed together with data from modern Swiss breeds (Braunvieh, Ehringer, and
Simmental, n = 39, [22] and [11,40] as reported in [23]).

In order to make wider geographical comparisons, Y1/Y2 information from 127 modern
Eurasian breeds (n = 1614 [22,24] and [23] combining the data of [11,40-42]) were included.
Data from a total of 1692 bulls was divided into nine geographical regions (the Nordic coun-
tries, Western Europe, Southern and Central Europe, South Eastern Europe, Eastern Europe,
Near-East and Central Asia, Western Russia, Central Russia and Siberia).

A Pearson’s chi-square test, as implemented in SPSS v.11.5.0, was conducted to test for dif-
ferences in frequencies of Y1 and Y2 between the temporal cohorts (Fennoscandia and Switzer-
land) and geographical regions. In cases where 20% or more of the groups had expected counts
less than 5, Fisher’s exact probability two-tailed test was used instead.

Results
Radiocarbon dating

A total of 21 samples were radiocarbon dated. Three samples appeared to be from a later period
than expected based on the context dating while one sample from an Iron Age context turned
out to be modern (Table A in S1 File).

Osteological analysis

The metrical analysis of metacarpals revealed three males and 12 females while two metacar-
pals were indeterminable and five metacarpals were too fragmented to be analysed by osteo-
logical methods (Table A in S1 File). The results from the Y-chromosomal UTY19 were in
accordance with the osteological analyses as none of the samples taken from female metacar-
pals amplified with Y-chromosomal primers. Two male metacarpals were confirmed and one
indeterminable metacarpal was determined as male by Y-chromosomal amplification

(Table A in S1 File).

MtDNA haplotypes

Using DnaSP, 30 haplotypes were found among the ancient cattle, including one sample pro-
viding only partial information. Twenty-nine haplotypes, including the full 667 bp sequence,
were used for further analysis. When analysing the phylogeny of these 29 haplotypes, Bayesian
MCMC, ML and RMN analyses gave similar topologies (Fig 1, Median-joining network of the
29 ancient mitochondrial haplotypes (grey-black) with 43 modern reference haplotypes
(white), and Fig B in S1 File). All of the ancient haplotypes were assigned to the taurine hap-
logroups according to the known diagnostic positions of cattle mtDNA [10,11,14,15,20] (Text
A in S1 File). One sample was assigned to taurine macro-haplogroup Q while the rest of the
samples were assigned to the taurine macro-haplogroup T (Fig 1, Text A in S1 File). The 28 an-
cient haplotypes in macro-haplogroup T were further divided into haplogroups T2 (one
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Fig 1. Median-joining network of the 29 ancient mitochondrial haplotypes (grey-black) with 43 modern
reference haplotypes (white). Median-joining network (¢ = 0) shows molecular relationships between 30
ancient haplotypes (H01-H03 and H05-H30). Major haplogroups (T1, T2, T3, T5 and Q) and sub-haplogroups
(T1f, T3b) are defined by inclusion of 43 modern reference haplotypes from [10,15]. Each circle represents
one mtDNA haplotype where the size is proportional to the number of individuals in that haplotype. Black
diamonds represent hypothetical haplotypes. The length of the branches is proportional to the number of
mutations between the haplotypes except the branch between Bos taurus and Bos indicus (32 mutations),
which is shortened to fit in the picture. Haplotypes from the Prehistoric, Medieval, and Post-Medieval periods

are indicated in black, dark grey, and light grey, respectively.

doi:10.1371/journal.pone.0123821.g001

haplotype) and T3 (17 haplotypes) and sub-haplogroups T3b (9 haplotypes) and T1f (one hap-
lotype) (Fig 1, B and C Figs in S1 File, Text A in S1 File). The sample providing partial informa-

tion was assigned to T2 (Text A in S1 File, Fig C in S1 File).

Analysis of population diversity
The mtDNA diversity in the Finnish, Estonian, and Vyborg ancient cattle data are summarized
in Table 1. The nucleotide diversity for the entire data set was 0.969. Within each ancient tem-
poral cattle cohort the mitochondrial haplotype diversity estimates (s, h, Hd, K, and ) indicate
a high diversity (Table 1). The haplotype diversity was highest in Prehistoric cattle (Hd = 1.000)
and slightly lower in Medieval and Post-Medieval cattle (Hd = 0.956 and 0.972, respectively).
Nucleotide diversity varied among periods with the highest observed diversity ( = 7.41* 107)
in the Prehistoric population (Table 1). The bias in nucleotide-diversity estimate caused by het-
erochronity was low, less than 1.5% in all temporal cohorts (Table 1). Tajima’s D value was neg-
ative for all temporal cohorts with a significantly negative p value for the Post-Medieval period
and the whole ancient cattle dataset suggesting a population expansion in Finland including Vy-
borg and the Baltic region (Table 1).

Haplogroup T3 and sub-haplogroup T3b formed a star-like phylogeny of haplotypes, with
major haplotypes H17 and HO5 for T3 and T3b, respectively. The highest haplotype diversity
was detected in the oldest and smallest sample, from the Prehistoric period. A different set of
haplotypes was found from the Medieval and Post-Medieval samples (Fig 1).

Temporal mtDNA analyses
Significant temporal fluctuations in the frequency of mtDNA haplotypes in the N-EBSR cattle
were detected (Pearson Chi-Square test, n = 94, * = 13.1, df = 4, p = 0.011). Here the most
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Table 1. Summary statistics of mtDNA variation in ancient North East Baltic Sea region cattle from Prehistoric, Medieval, and Post-Medieval

periods.

Bias®
b

Thy

Bias®

Ancient North East Baltic Sea region cattle

Prehistory, 700 BC-1200 AD Medieval, 1200-1550 AD Post-Medieval, 1200-1800 AD Total
5 14 26 45

9 15 22 33

5 11 20 29
1.000 0.956 0.972 0.969
3.600 3.055 2.788 2.951
4.320 4.717 5.765 7.736
-1.184 -1.437 -1.869* -2.067*
7.41 6.29 5.74 6.07
7.35 6.28 5.73 6.04
0.84% 0.13% 0.10% 0.43%
7.30 6.28 5.73 6.03
1.45% 0.22% 0.17% 0.74%

N is number of individuals sampled; S is the number of segregating sites (excluding indels); h is the number of haplotypes; Hd is the haplotype diversity; K

is the average number of differences; 8s is ‘Theta’ derived from the observed number of segregating sites (S); D is Tajima’s D statistic value where
statistical significances P<0.05 is marked with *.17 is the nucleotide diversity*10~%; The Prehistoric cohort includes two samples from Late Bronze Age and

three samples from Late Iron Age.

@Based on generation length of 7 years and mutation rate of 43% per million years
PBased on generation length of 5 years and mutation rate of 53% per million years

doi:10.1371/journal.pone.0123821.t001

common 245 bp haplotype increased in frequency more than twice from Medieval to Post-Me-
dieval and more than thrice from Post-Medieval to modern time (grey in Fig 2b in Fig 2, Distri-
bution of ancient N-EBSR cattle mtDNA haplotypes in modern Eurasian cattle populations).
Consequently, the proportion of other haplotypes decreased through time (coloured and white
patterns in Fig 2b). Nearly half of these other haplotypes in contemporary cattle were not
found in ancient cohorts (white in Fig 2b); and thus the proportion of the ancient haplotypes
(other than the most common) in modern N-EBSR is approximately 20% (colored patterns in
Fig 2b). The proportion of unique ancient haplotypes (unique among 2139 samples) was high-
est in the Prehistoric sample (black in Fig 2b).

Geographical mtDNA analyses

The most common 245 bp haplotype (including the ancient 667 bp haplotypes H05, H06, H11,
H17, H24, and H26, Table C in S1 File) was found in most modern European and Russian
breeds with a frequency ranging from 16 to 63% within geographical regions (Table 2). The
other ancient haplotypes had more restricted occurrences and frequencies, less than 1.6%
among the 2094 modern cattle dataset (Table C in S1 File).

There were significant differences in appearance and frequency of ancient haplotypes
among ten geographical regions of contemporary cattle (Pearson Chi-Square test, n = 2094,
x> =355, df = 18, p<0.001). The proportion of ancient haplotypes was highest in contemporary
N-EBSR cattle and Western Russian cattle (Table 2), while the proportion of haplotypes not
found in our ancient sample increased with geographical distance showing highest proportions
in South and South-East Europe, and Near East/Central Asia (Table 2, indicated in white in
Fig 2a).
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Fig 2. Distribution of ancient N-EBSR cattle mtDNA haplotypes in modern Eurasian cattle
populations. Haplotype distribution in ancient Finnish, Estonian and Western Russian (Vyborg at the shore
of Baltic Sea) cattle populations from the Late Bronze Age, Iron Age, Medieval, and Post-Medieval periods is
indicated with pie charts at the right side of the map (2B, see Table C in S1 File). Seventeen ancient
haplotypes found in modern Eurasian populations (Table C in S1 File) are indicated by pie charts with
corresponding patterns (see key) on the map (2A). The modern haplotypes not found in ancient cattle are
counted together and indicated in white. Counts of unique ancient haplotypes not found in modern
populations are indicated in black.

doi:10.1371/journal.pone.0123821.g002

Y-chromosomal analysis

UTY19 allele frequencies in Fennoscandian cattle (Table D in S1 File) differed significantly be-
tween temporal cohorts (Chi-Square test, p<0.001). Type Y2 was dominating in both the Iron
Age (7/8) and the Medieval period (36/37), with no statistical difference in allele frequencies
between the two periods (Fisher’s Exact test, p = 0.327). The proportion of Y1 increased signifi-
cantly from the Medieval (1/37) to the Post-Medieval period (9/19, Fisher’s Exact Test,
p<0.001) and then again from the Post-Medieval period (9/19) to Modern times (33/41, Fish-
er’s Exact Test p = 0.015). The Y1 type was fixed in most contemporary Fennoscandian native
breeds with only one exception where Y2 was dominating (8/9), viz. in one Finnish breed, the
Eastern Finncattle.

Table 2. Distribution of N-EBSR ancient haplotypes in modern European and Asian cattle breeds.

N-EBSR Scandinavia Western Southern South- Eastern Western Near East Central Siberia Total
Europe Europe Eastern Europe Russia and Central Russia
Europe Asia
Common H 31 23 93 334 8 13 16 4 12 14 548
63.3% 28.4% 38.1% 21.7% 16.0% 50.0% 61.5% 16.0% 37.5% 58.3% 26.2%
Other 10 27 17 51 7 2 9 1 10 2 136
Ancient H 20.4% 33.3% 7.0% 3.3% 14.0% 7.7% 34.6% 4.0% 31.3% 83%  6.5%
H not found 8 31 134 1152 35 11 1 20 10 8 1410
i(;‘ag“de”t 16.3% 38.3% 54.9% 75.0% 70.0% 42.3% 3.8% 80.0% 31.3%  333% 67.3%
Total 49 81 244 1537 50 26 26 25 32 24 2094

Figures represent the count and percentage of modern cattle data from ten geographical regions grouped in three haplotype (H) groups according to the
appearance of the haplotypes in ancient N-EBSR data: The most common 245 bp haplotype (Common H), other ancient haplotypes found in Post-
Medieval or Medieval periods and haplotypes not found (H not found) in ancient North-East Baltic Sea region cattle.

doi:10.1371/journal.pone.0123821.1002
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Table 3. Summary of ancient and modern Y-haplotypes distribution across Eurasia.

Nordic Western Southern and South- Eastern Western Near Eastand Central Siberia Total
counties Europe Central Europe Eastern Europe Russia Central Asia Russia
Europe
Ancient
Y1 11 1
17% 7%
Y2 53 13
83% 93%
Total 64 14 78
Modern
Y1 101 334 120 53 9 1 24
84% 83% 13% 82% 100% 3% 96%
Y2 19 70 806 10 12 31 1 23
16% 17% 87% 100% 18% 97% 4% 100%
Total 120 404 926 10 65 9 32 25 23 1614

Data includes 78 ancient (from Finland, Sweden and Switzerland) and 1621 modern Eurasian bulls. Separate figures for each breed and ancient
populations are given in Table E in S1 File.

doi:10.1371/journal.pone.0123821.t003

There was no significant temporal changes detected in Central Europe (Switzerland) from
Medieval (late 13" century) to modern times (Fisher’s Exact Test, p = 0.462), where Y2 domi-
nated both the Medieval (13/14) and the modern (38/39) periods.

Y1 and Y2 haplotype frequencies varied significantly between geographical regions (Chi-
Square test, p<<0.001, Table 3, Table E in S1 File). Most of the modern breeds (105 from 127) in
all regions were fixed for one Y-haplotype, either Y1 (46) or Y2 (59), while 22 displayed both
Y1 and Y2 (Table E in S1 File).

Discussion
MtDNA haplogroups

The assignment of ancient samples into bovine haplogroups (Q, T2, T3) or sub-haplogroups
(T1f, T3b), with T3 and T3b predominating, is in good agreement with population analysis of
modern cattle, where T3 is the major mtDNA haplogroup in Eurasian populations [11,14]. It is
also in accordance with previous analysis of ancient European cattle populations where a pre-
dominance of the T3 haplogroup has been shown from the Neolithic [19].

A rare haplotype, belonging to sub-haplogroup T1f, was found in a sample dated to the Late
Bronze Age in Estonia at a frequency of 1/5 in the Prehistoric cohort (Fig 2). In a previous
study, T1f has been found in three individuals from the modern Italian breed Podolian (3/80 of
T1 haplogroup sequences found in Europe) and in the modern breed Menofi from Egypt (fre-
quency 1/196 of T1 haplogroup sequences found in Africa) [20]. Taking into account that Bon-
figlio et al. [20] analysed more than two thousand mtDNA samples in order to obtain 54 T1
haplotypes, the frequency of T1f must be less than 4/2000 among European, African, and
American cattle breeds.

Haplogroups Q and T2 were rare in the ancient cattle populations in the N-EBSR just as
they are in contemporary populations [11]. Haplogroup Q was found in the Northern Finnish
Post-Medieval population at a frequency of 1/26; it has previously been found in five Italian na-
tive cattle breeds [10,15,16]. Most previous studies, however, failed to differentiate haplogroup
Q from haplogroup T, as they overlooked the sequence of the diagnostic site outside the D-
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loop [2,11,19]. Based on other D-loop defining positions typical to haplogroup Q, the distribu-
tion of haplogroup Q is suggested to cover at least several South European countries, Egypt,
Turkey, and China [16].

Mitochondrial haplogroup T2 has been found in France from bones dating to 5000 BP [43]
and in bones from Switzerland dating to the Roman period [44], as well as in contemporary
Swiss cattle in two haplotypes derived from the central T2. Here the authors [44] concluded
that the Near eastern T2 lineage was introduced to Switzerland during Roman times or earlier.

According to our knowledge, this is the first time that haplogroup Q and T1 have been
found in any ancient or modern Northern European cattle population. The existence of these
rare haplotypes, as well as the T2-related haplotypes in the ancient data suggests that the an-
cient cattle population in the N-EBSR was different from modern cattle.

Y—chromosome

The significant increase of Y1 and decrease of Y2 in Finnish bulls from the Post-Medieval period
to the present is in accordance with a similar temporal shift of paternal lines detected in Swedish
cattle [24]. The higher proportion of haplotype Y1 in Swedish Post-Medieval bulls compared to
Finnish bulls from the same time period may be due to the small sample size of Finnish ancient
bulls, or it may indicate that the replacement of Y2 with Y1 happened later in Finland than in
Sweden. Multiple arrivals of cattle to the Nordic regions have been suggested, although the tim-
ing of the arrival of Y1 to the Nordic regions could not be determined based on modern samples
[23]. This study, in accordance with previous studies [24,25], suggests that this replacement of
Y2 with Y1, resulting in an almost complete fixation of the Y1 type in the contemporary Fennos-
candia [22,23], goes back 600 years starting at the turn of the Medieval and the Post-Medieval
periods with an accelerating speed during the past 200 years. This is also in accordance with
written historical records [45]. Import of foreign cattle from countries such as the Netherlands
and Sweden, especially bulls, increased in Finland during the 18" — 19" centuries [45]. In con-
temporary Taurus cattle populations, haplotype Y2 dominates in almost the whole Eurasian re-
gion [23,46,47], with the exception of Western and Northern Europe [23]. The present-day
European Y-chromosomal distribution has been taken as evidence of two different expansions
of dairy cattle to the Nordic countries [23]. Results from this study suggest that the replacement
of Y1 haplotypes in Fennoscandia is a quite recent phenomenon.

Temporal fluctuation in the N-EBSR cattle

After considering the possible reasons for the observed variations in haplotype diversity and
frequencies (sampling effect, contamination, deamination, mutations, selection, and migration,
see supporting discussion in Text A in S1 File), the most plausible explanations for the ob-
served temporal changes in this data is migration and selection of breeding animals.

Our data suggests a temporal fluctuation in cattle populations in the northern Baltic Sea re-
gion. The small set of Prehistoric samples displayed different haplotypes (Hd = 1) with an
equal amount of haplogroups and sub-haplogroups (three haplo-/ sub-haplogroups, T3, T3b
and T1f, Fig 1) compared to larger samples of later periods. The Finnish Prehistoric samples
were from the Late Iron Age (800-1200 AD), during which the human population of the West-
ern Finnish Iron Age culture increased and also dispersed further east and north [48].

A different set of haplotypes were detected in the N-EBSR from the Medieval and Post-Medi-
eval samples. The proportion of mtDNA haplotypes also found in modern Eurasian cattle popu-
lations was higher, although there was a small amount of unique ancient haplotypes (Fig 2a and
2b, Table 2). Three haplogroups and sub-haplogroups were present in the Medieval (T3, T3b
and T2) and Post-Medieval (T3, T3b and Q) periods. Haplogroup Q and the phylogenetically
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oldest T3 haplotypes may originate from early Southern European populations where they are
still found at low frequencies. In addition, the rare Post-Medieval T3-haplotypes, H22, H30, and
H25 have counterparts (based on 206 bp and 146 bp common sequences) in Neolithic and
Bronze Age German samples [19] and in samples from Early Medieval Scandinavian settle-
ments in Dublin, Ireland [2], supporting the idea of an European origin of the Medieval and
Post-Medieval N-EBSR cattle. The few contemporary rare T2 haplotypes from Switzerland have
been hypothesized to date back to the introduction of T2 into Central Europe before or during
Roman times [44]. Simultaneously, the frequency of the Y-chromosomal haplotype Y1, com-
mon in modern Northern European cattle [22,23], increased in northern Baltic Sea region cattle
(Table D in S1 File).

Detected temporal changes in mtDNA and Y-chromosomal haplotypes are in accordance
with historical events. During the Medieval period there were major changes in the society in
N-EBSR. The population density and the intensity of cultivation increased and settlements
spread to previously uninhabited areas in between old settlement cores [49,50]. Cultural con-
nections and migration routes at N-EBSR changed due to the reign of the Swedish Kingdom,
and in Estonia by reign of multiple forces e.g. the Teutonic Order [51]. The old Iron Age cul-
ture was suppressed, a church organisation was established and towns were founded [51]. The
new cattle haplotypes found in the N-EBSR medieval samples could thus relate to migration
from Southern and Western Europe, especially from Sweden and Germany, but during the 12™
and 13™ centuries possibly also from Russia, to Finland and Estonia [51,52].

After the war between Sweden and Russia in 1721, there was an increase in influence from
the east on the N-EBSR. This is when the Baltic countries and the South-East part of Finland
came under Russian rule, just like the rest of Finland at the end of the Post-Medieval period in
1809. The most severe starvation period in North European history (1695-1697 AD) [53] pre-
dated the change in reign in 1721, thus giving room for replacement with new cattle material.

The latest shift in mtDNA haplotypes, viz. from the Post-Medieval period to the present can
be seen in Fig 2. The resemblance of mtDNA haplotypes and their frequencies between modern
Finnish native breeds and modern Western Russian breeds (previously reported in [11]) can
be seen in Fig 2a. However, the ancient N-EBSR population resembles the modern West Rus-
sian population more closely than the modern N-EBSR cattle populations (Table 2). This fits
well with the historical written sources, since only some cattle were imported from Russia dur-
ing the 19" century, when most of the new stock originated from the Netherlands, British Isles,
Germany and Sweden [45]. In a recent autosomal SNP marker study, a western European ori-
gin is also suggested for two modern Baltic breeds, Lithuanian Light Grey and Lithuanian
White Backed [54]. The latest shift from the Post-Medieval to the present can also be explained
by a growing interest in specialised breeds during the 19 and 20™ century and by more effi-
cient breeding methods leading to stronger selection.

Conclusions

Analyses of ancient cattle remains in this study revealed important trends in the history of the
N-EBSR cattle: 1) The rare haplogroup Q was detected in Northern Europe for the first time,
indicating that besides the taurine T-haplogroups, haplogroup Q also reached the peripheral
area of the Baltic Sea region no later than in the Post-Medieval period (1550-1800 AD). The
rare Q and T1f haplotypes found in ancient cattle have not been detected in the Scandinavian
region in contemporary cattle nor in Middle European populations. 2) Genetic diversity has
decreased over time from Prehistory up until modern times. The observed replacement of Pre-
historic cattle haplotypes with modern haplotypes may result from population bottlenecks
caused by demographical events in the Medieval and Post-medieval periods and/or changes in
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cultural connections and thus migration of cattle in the N-EBSR. However, the recent loss of
genetic variation may be due to an increased interest in and selection for specialized breeds. 3)
Modern and ancient counterparts of mtDNA haplotypes suggest a European origin for Medie-
val N-EBSR cattle, with increasing Eastern influence during the Post-Medieval period. The
small sample of prehistoric N-EBSR cattle displayed both the most widespread T3 haplotype
and haplotypes not yet found in previous studies. Thus the origin of Prehistoric N-EBSR cattle
remains uncertain. Future ancient and modern mtDNA studies detecting the rest of the Prehis-
toric haplotypes may shed more light on the origins of prehistoric N-EBSR cattle.
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