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Abstract

Abnormal excitatory glutamate neurotransmission and plasticity have been implicated in schizophrenia and affective
disorders. Gria12/2 mice lacking GluA1 subunit (encoded by Gria1 gene) of AMPA-type glutamate receptor show robust
novelty-induced hyperactivity, social deficits and heightened approach features, suggesting that they could be used to test
for anti-manic activity of drugs. Here, we tested the efficacy of chronic treatment with established anti-manic drugs on
behavioural properties of the Gria12/2 mice. The mice received standard mood stabilizers (lithium and valproate) and
novel ones (topiramate and lamotrigine, used more as anticonvulsants) as supplements in rodent chow for at least 4 weeks.
All drugs attenuated novelty-induced locomotor hyperactivity of the Gria12/2 mice, especially by promoting the
habituation, while none of them attenuated 2-mg/kg amphetamine-induced hyperactivity as compared to control diet.
Treatment with lithium and valproate reversed the elevated exploratory activity of Gria12/2mice. Valproate treatment also
reduced struggling behaviour in tail suspension test and restored reciprocally-initiated social contacts of Gria12/2 mice to
the level shown by the wild-type Gria1+/+ mice. Gria12/2 mice consumed slightly more sucrose during intermittent
sucrose exposure than the wild-types, but ran similar distances on running wheels. These behaviours were not consistently
affected by lithium and valproate in the Gria12/2 mice. The efficacy of various anti-manic drug treatments on novelty-
induced hyperactivity suggests that the Gria12/2 mouse line can be utilized in screening for new therapeutics.
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Introduction

Abnormal major excitatory neurotransmission and neuroplas-

ticity, driven by glutamatergic neurotransmitter system, have been

implicated in schizophrenia and mood and anxiety disorders [1,2].

Psychotic, cognitive and emotional disturbances are linked to

hyperactive glutamatergic neurotransmission in the brain [3].

These disturbances can be reproduced in animals and human

subjects by blockade of N-methyl-D-aspartate (NMDA) receptors,

with a mechanism thought to involve enhanced non–NMDA

receptor-mediated glutamate transmission [4,5] and to be

attenuated by agents inhibiting presynaptic glutamate release

[6,7]. Hyperglutamatergic state in the frontal cortical areas [8] and

upregulated markers of excitotoxicity and neuroinflammation in

the post-mortem frontal cortex [9] have been also observed in

bipolar patients. Several susceptibility genes encoding for gluta-

mate receptor subunits, including the Gria1 gene encoding for

GluA1 subunit of AMPA-type glutamate receptor (previously

named GLUA1, GluR1, GluRA, GluR-A [10]), have been

identified for bipolar disease [11,12]. Most of them are overlap-

ping with schizophrenia [13,14], as these two illnesses share many

behavioural characteristics.

An interesting finding has been the decreased GluA1 subunit

expression in the post-mortem hippocampus, thalamus and frontal

cortex of schizophrenic patients [15–19] and in the striatum of

bipolar patients [20]. Mice lacking the GluA1 subunit [21] have

been suggested to mimic some features of schizoaffective disorder

and schizophrenia [22,23]. These animals are abnormally active in

the open field [21,22,24–26], but have a similar locomotor profile

as wild-type animals in familiar home-cage environment [24].

Exaggerated exploration response provoked by a new object in the

cage further point to abnormal reactivity to novel situations,

although the Gria12/2 animals are known to habituate and

recognize a familiar object [25]. Furthermore, abnormalities in

working memory [21,27,28] and increased impulsive behaviour

have been observed in the Gria12/2 mice [23]. These mice also

exhibit a deficiency in pre-pulse inhibition and aberrant social

interaction [25,29], which resemble characteristic features seen in

schizophrenic patients.

Here, we have focused on pharmacological features of the

Gria12/2 mouse line, relevant for some positive symptoms of

schizophrenia and/or mania, using a battery of behavioural tests

to assess the predictive validity of the mouse model.
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Materials and Methods

Ethics
All animal testing procedures were approved by the State

Provincial Government of Southern Finland (ESAVI-0010026/

041003/2010). All efforts were made to minimize the number and

suffering of animals.

Animals
Gria12/2 mice and their Gria1+/+ wild-type (WT) controls

were from heterozygous breeding, generated previously by

inactivation of the Gria1 gene [21] and genotyped as reported

elsewhere [26]. The Gria12/2 mouse line is available at the

Jackson Laboratory (B6N.129-Gria1tm2Rsp/J, stock number:

019012). During experiments, mice were individually-housed or

grouped-housed in same-sex cages under standard laboratory

conditions (12-h light-dark cycle; lights on at 6:00 A.M.; temper-

ature 20–23uC; relative humidity 50–60%; aspen chip beddings).

Drugs
The powdered laboratory chow (R36, Lantmännen Lantbruk,

Stockholm, Sweden and RM1 (E) SQC FG, 811004, Special Diet

Services, Essex, UK) was available ad libitum and it was mixed

homogenously with drugs as follows: lithium carbonate (Sigma-

Aldrich Corp St. Louis, MO USA) was added 1.2 g/kg chow for

the first week and 2.4 g/kg until the end of treatment; sodium

valproate (Deprakine, Sanofi Aventis Oy) 10 g/kg for the total

treatment time; topiramate (Topiramat Ratiopharm) 27 mg/kg

for the total treatment time; lamotrigine (Lamotrigin Ratiopharm)

75 mg/kg for the total treatment time. Doses aimed at human

therapeutic levels and were based on the literature [30,31] or pilot

studies. Lithium and valproate group had free access to additional

saline bottles to prevent possible ion imbalances during chronic

treatments [32]. Control chow was made in the same way but

without drugs. Animals were observed daily for any significant

body weight changes or toxicity signs during the treatments.

Drug Concentrations
Lithium and lamotrigine concentrations were analysed in

hospital laboratories from blood samples of mice taken after the

test of locomotor activity in novel environment. Trunk blood was

collected by decapitation and serum separated by centrifugation.

Concentration of lithium was determined by a colorimetric

method [33] in NordLab Oulu (Oulu, Finland) and that of

lamotrigine by a liquid chromatography after solid-phase extrac-

tion [34] in Rinnekoti-Foundation Laboratory (Espoo, Finland).

Experimental Design
Animals received drug treatments in their diet for 28 days,

followed by behavioural testing while they still continued on the

diets. Experimental design is presented in Fig. 1. We used test

batteries to measure sets of specific behavioural features. The test

order as well as a recovery break between the tests was designed to

minimize the effect of previous test on subsequent ones. The first

battery consisted of elevated-plus maze, forced swimming and

locomotor activity tests in this order for two cohorts. In the second

test battery, the animals were tested for sucrose preference using

the two-bottle choice test to evaluate hedonistic behaviour towards

sucrose, followed by open field test combined with new object

installation, tail-suspension test, social interaction test and

locomotor activity test after acute psychostimulant injection as

the last test (the drug treatments lasted up to 2 months).

Locomotor activity test was performed in several independent

cohorts of WT and Gria12/2 mice and at the end of the first test

battery and the results were pooled. All tests were performed

between 08:00 and 14:00 h. In order to study sucrose drinking and

wheel running, mice were separated to individual cages when the

treatments began (4 weeks before the beginning of test) to

minimize the effect of acute social isolation on hedonistic behavior

[35] and this housing was kept throughout this battery of tests. The

nesting material was provided in cages [36,37]. Between the tests,

the animals were handled at least two times weekly for body

weight measurement or for changing to clean cages. Also, for

certain time period the environment was enriched with running

wheels to assess hedonistic behavior.

Locomotor activity (LA) in a novel environment was observed in

plastic cages (40630620 cm) as described in detail [24]. Animals

were habituated to the experimental room at least for 1 h before

the test. Horizontal movements of eight to ten mice, placed in

visually isolated cages in a sound-attenuated room at light intensity

of 175 lx, were simultaneously recorded for 2 h using EthoVision

Color-Pro 3.0 video tracking software (EthoVision System, Noldus

Information Technology, Wageningen, Netherlands). All treat-

ment groups are listed in Table 1.

Elevated plus maze (EPM) test was used to assess mouse anxiety

[38]. The maze was made of grey plastic, elevated 50 cm from the

floor level. It consisted of a central platform (565 cm), two open

arms (5640 cm with a 0.2 cm edge) and two enclosed arms

(5640620 cm). The mice were placed individually on the central

platform facing the open arm and allowed free exploration of the

maze for 5 min. Central square was defined until 2 cm out of the

central platform, allowing detection of the centre of animal.

Movements were recorded and analysed automatically with the

EthoVision software.

Forced swimming test (FST) and tail suspension test (TST) were

done to assess animal’s coping with despair-like condition [39].

FST [24,40,41] was conducted so that each mouse was placed for

6 min individually in transparent cylindrical beakers (height

25 cm, diameter 15 cm) containing 3 l of water (23uC). In TST

[24,42], the mice were tape-attached individually by their tails on

elevated metal bar for 6 min. Behavior of each mouse was video-

recorded and analysed later by data acquisition program

Ethograph (Ethograph software 2.06, RITEC, St. Petersburg,

Russia) for the last 4 min of the tests. Behavioural analysis was

focused on the mouse immobility which was indicated when the

animal floated passively, making only small movements with the

hind paws and/or tail to prevent sinking in the water during FST

or when no struggling signs were obvious during TST.

Figure 1. Experimental schedule for different cohorts of mice.
LA, locomotor activity test; EPM, elevated plus maze test; FST, forced
swimming test; SD, sucrose drinking; RW, running wheel access; OF,
open field test; TST, tail suspension test; SI, social interaction test;
AMPH, D-amphetamine-induced LA test.
doi:10.1371/journal.pone.0100188.g001

Drug Effects in an Animal Model for Hyperactive Disorders
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Sucrose preference alone (SD) or in combination with running

wheel (RW) was performed to assess hedonic propensity of the

mice [43]. Voluntary sucrose drinking [8% weight/volume (w/v)]

was evaluated using short-term intermittent protocol [44,45]: on

alternate days the mice obtained access to choose between water

and sucrose. The alternation of sucrose-free and sucrose days (S1,

S2 and S3) was repeated 3 times, and thereafter the alternation

was repeated 3 times (S4, S5 and S6) with running wheels (RW;

ENV-044 model; Med Associates, Inc., St. Albans, Vermont,

USA). The position of water and sucrose bottle was switched

pseudo-randomly to prevent the development of place preference

towards the sides. Fluid intake and body weights were monitored

daily. Sucrose solution intake (in ml) was calculated by dividing

loss of sucrose bottle weight with 1.08 [weight in grams of 1 ml of

8% (w/v) sucrose solution]. Sucrose preference (%) was calculated

as a percentage of sucrose intake out of the total fluid intake

(sucrose plus water).

Open field (OF) test combined with new object exploration was

performed to evaluate anxiety and mouse explorative activity [46].

The animals were placed individually on the centre of empty cage

(33655619 cm) divided into fifteen squares (11611 cm) initially

for 3 min. Testing was performed at the light intensity of 175 lx.

Then, a round, textured object (diameter = 4 cm) with three 1-cm

holes was placed on the centre for the next 3 min [41]. Mouse

behaviour was video-recorded and analysed later by Ethograph for

the last 3 min of the test. Arena of the OF was divided into

peripheral and central zones in the video tracking software

(EthoVision), which was used to track the mouse automatically for

the whole 6 min duration of the test. Object-related behaviours

(sniffing, manipulation and nose-pokes of the object) were counted

as total object interactions. Other behaviours including the

rearing, locomotion and individual behaviours (any other behavior

which does not include locomotion) were divided to central and

peripheral behaviours according to the virtual zones of the OF.

Social interaction (SI) was evaluated for 10 min on a new

territory among animals receiving the same treatment [41]. Two

or three animals were simultaneously introduced to a novel cage

with fresh bedding. The behaviour of animals was video-recorded.

Behavior of every mouse in the temporarily-formed group was

analysed by the Ethograph software for (1) individual behavior

without contacts with other members, such as locomotor activity,

(2) reciprocal (simultaneously-initiated) contacts, and (3) passive

contacts initiated by other group members. All observed contacts

were non-aggressive, although aggressive behaviour was expected.

Response to psychostimulants was tested 30 min after a single

i.p injection of 2 mg/kg amphetamine diluted in saline (D-

amphetamine sulphate, Dexedrine, GlaxoSmithKline, Brentford,

UK) in a volume of 10 ml/kg. Mouse locomotion was monitored

for 1 h in a novel arena by using the EthoVision system and

software.

Statistics
Statistics were carried out using PASW Statistic 18 software

(SPSS Inc., Chicago, IL, USA). Multivariate ANOVA (two-way)

followed by a Bonferroni (p,0.05) post hoc test was used to

analyse the data obtained from EPM, FST, TST, new object

exploration and social activity tests. For the repeated measure-

ments such as locomotor activity and sucrose consumption,

analysis for repeated measurements followed by a Bonferroni post

hoc test (p,0.05) was applied. Kaplan-Meier survival analysis with

a Mantel-Cox non-parametric test (p,0.05) was used to analyse

the latencies to immobility, to the contact with the new object and

to the social contact. Spearman’s correlation coefficient was used

to test correlation between sucrose drinking and activity on

Table 1. Characteristics of the treatment groups and drug concentrations.

Treatment Gender
Genotype (number
of animals)

Age
(weeks)

Initial body
weight (g)

Final body
weight (g)

Drug concentration
in blood

Control Male WT (16) 29.463.1 31.660.9 33.960.9*** /

Gria12/2 (10) 30.162.2 29.160.9 31.660.9*** /

Female WT (11) 15.760.7 20.260.2 22.060.2*** /

Gria12/2 (10) 22.364.0 21.161.0 23.760.9*** /

Lithium Male WT (8) 21.061.8 29.660.6 29.760.5 0.760.1

Gria12/2 (7) 20.662.4 28.060.9 28.260.6 0.860.1

Female WT (13) 23.762.3 22.560.6 23.460.7 0.760.1

Gria12/2 (12) 23.262.0 23.961.0 24.060.7 0.960.1

Valproate Male WT (13) 14.760.3 24.760.6 25.760.4 /

Gria12/2 (10) 25.765.6 24.961.4 26.761.0 /

Female WT (4) 14.661.3 17.861.5 21.161.0 /

Gria12/2 (4) 17.362.8 18.561.1 20.160.7 /

Topiramate Male WT (8) 16.760.7 28.061.0 30.161.2*** /

Gria12/2 (8) 21.462.8 27.660.7 29.060.7** /

Female WT (9) 17.960.7 22.460.8 23.960.7** /

Gria12/2 (10) 16.461.0 20.260.6 21.960.8** /

Lamotrigine Female WT (8) 33.467.4 23.461.0 23.160.7 3.660.4#

Gria12/2 (9) 33.864.1 25.161.0 24.360.7 5.060.4

Treatment groups, ages at the time of locomotor activity tests in novel cages, and body weights at the beginning and end of treatments are showed. Drug
concentrations were analysed from serum samples collected after the locomotor activity tests and presented in mM (lithium) or mM (lamotrigine). Data are means 6
SEM. *p,0.05, **p,0.01, ***p,0.001 compared to body weight at the beginning of treatments (paired t-test), #p,0.05 for the genotype difference (unpaired t-test).
doi:10.1371/journal.pone.0100188.t001
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running wheels. Two-tailed t-test was used to compare differences

in results for body weights (paired), drug concentrations (unpaired)

and LA (unpaired) obtained in different cohorts. All behavioural

elements or group of the elements obtained by the Ethograph

software were statistically analysed in four measurements: total

duration (sum of the duration of the element during the test),

medial duration (ratio of the element duration to its total

frequency), total frequency, and relative frequency (ratio of the

element frequency to the sum of all frequencies of the observed

elements).

Results

Chronic Treatment with Mood Stabilizers Lithium and
Valproate and Effects on Hyperactivity of Gria12/2 Mice

As locomotor activity tests were performed in several cohorts

with different experimental schedules (as an independent test and

at the end of the first battery, Fig. 1), we analysed statistically

whether the previous tests affected the later ones, by using t-tests

within each 6 experimental groups. No difference was observed in

the total 2-h locomotor activity within the control-treated Gria12/

2 mice (t18 = 0.02, p.0.05) between the separate test [571645 m

(10), mean 6 SEM, (n)] and the last test of the first battery

[572642 m (10)], nor within the corresponding groups of control-

treated WT mice [t25 = 0.25, p.0.05, 308625 m (12) and

300622 m (15)]. Nor were there any differences in LA between

independently performed and after EPM and FST performed tests

within the lithium-treated Gria12/2 mice [t17 = 1.47, p.0.05,

417651 m (7) and 509638 m (12)], lithium-treated WT mice

[t19 = 0.47, p.0.05, 281623 m (8) and 302631 m (13)], valpro-

ate-treated Gria12/2 mice [t12 = 1.17, p.0.05, 426624 m (7)

and 375636 m (7)] nor valproate-treated WT mice [t15 = 0.33, p.

0.05, 240618 m (7) and 229625 m (10)]. We conclude that

previous testing experience did not influence the novelty-induced

LA.

In the first 60-min of LA test, there was a significant genotype6
treatment 6gender interaction (F2,106 = 3.20, p,0.05) after three-

way ANOVA. Bonferroni post-hoc comparisons showed that

female and male Gria12/2 mice travelled longer distances than

WT mice, in all treatment groups (p,0.05). There were no

significant gender differences in LA scores within Gria12/2 mice

on control-, lithium- or valproate-diets (p.0.05), nor within the

WT mice on these diets (p.0.05). Both lithium (p,0.05) and

valproate (p,0.05) treatments were efficient in reducing locomotor

hyperactivity of female Gria12/2 mice compared to control

treatment. The drugs did not affect LA of WT mice in comparison

to control diet. Valproate-treated Gria12/2 (p= 0.075) and WT

(p= 0.064) male mice tended to show reduced LA compared to

respective control-treated mice. Thus, only a slight difference in

response of female and male Gria12/2 mice to the lithium

treatment appeared during the first 60-min of the test. Statistical

analysis showed that gender did not interact with other factors in

the second 60-min of exposure to novel cages, when the effect of

the drugs on the locomotor activity was predominant (Fig. 2).

Because of that, we analyzed below pooled female and male data

also for the first 60-min of the test using two-way ANOVA and

these results are presented on Fig. 2C.

Locomotor activity of Gria12/2 mice during the first 60-min

exposures to novel environment after the chronic drug treatments

was markedly increased as compared to that of WT mice

(F1,112 = 101.17, p,0.001) (Fig. 2A–C). Only valproate-treated

Gria12/2 had reduced LA as compared to control Gria12/2

mice (F2,112 = 10.18, p,0.001). The LA of the Gria12/2 mice

continued to be higher than that of WT mice till the end of the 2-h

monitoring period, but cumulative LA during the last 60 min

showed that both lithium and valproate were efficient in reducing

LA in Gria12/2 mice (F2,112 = 4.82, p,0.05 for genotype 6
treatment interaction), but not in WT animals (Fig. 2D). Thus,

chronic treatments led to increased habituation of the Gria12/2

mice. Indeed, the effects were observed only after 15 min by

valproate and after 40 min by lithium (Fig. 2B), and the reductions

were more pronounced for 60–120 min than 0–60 min periods

(Fig. 2C and D). The differences between treatments were

indistinguishable after 70 min (Fig. 2B).

Effects on Elevated Plus-maze Test and Open Field
Exploration
Gria12/2 mice visited the centre of the elevated plus-maze

more frequently than the WT mice (F1,54 = 5.86, p,0.01) and

spent less time in the closed arms (F1,54 = 16.10, p,0.001) (data

not shown), which measures were not affected by drug treatments.

Control Gria12/2 mice spent more time in the open arms than

the control WT mice (F1,54 = 5.20, p,0.05) independent of the

treatments (Fig. 3A). No genotype or treatment effects were

observed on number of entries to open arms or on distance

travelled in the open arms (Fig. 3B–C).

Gria12/2 mice moved more than WT mice in the whole open

field arena during 3 min before the object was introduced (Fig. 4A;

F1,61 = 19.94, p,0.001), and chronic treatments with lithium and

valproate did not affect total movements (F2,61 = 1.10, p.0.05).

Gria12/2 mice visited the OF centre more frequently (Fig. 4C;

F1,61 = 4.85, p,0.05) than WT mice, but travelled similar

distances in the centre as them (Fig. 4B; F1,61 = 1.51, p.0.05).

Valproate increased the time spent in the central zone in WT

mice, but not in Gria12/2 mice (Fig. 4D; genotype 6 treatment

interaction F2,61 = 3.78, p,0.05).

After the object was introduced in the OF for the next 3 min,

Gria12/2 mice kept moving more in the whole arena (Fig. 4E;

F1,61 = 92.90, p,0.001) as well as in the arena centre (Fig. 4F;

F1,61 = 55.23, p,0.001), independently of chronic treatments.

Gria12/2 mice visited the central zone with the object more often

(Fig. 4G; F1,61 = 81.15, p,0.001) and stayed there longer (Fig. 4H;

F1,61 = 22.32, p,0.001). Control Gria12/2 mice were in contact

with the object more frequently than WT mice, while treatments

of the Gria12/2 mice with valproate and lithium decreased the

frequency to the level of the corresponding WT mice (Fig. 4J;

F2,61 = 3.97, p,0.05).

Effects on Tests for Goal-directed Behaviours
Forced swimming test (FST) has been validated to examine

increased vigour and goal-directed behavioural pattern of mania

[39]. The increased goal-directed behaviour in both FST and tail

suspension test (TST) has been already reported in Gria12/2

mice [24]. In the FST, Gria12/2 mice were less immobile as

compared to the WT mice (Fig. 5; F1,60 = 23.87, p,0.001),

especially the control and valproate-treated groups. Lithium-

treated WT mice showed a trend towards being less immobile than

other WT groups (F2,60 = 3.13, p= 0.051). Kaplan-Meier analysis

showed that immobility was observed later in the control and

lithium-treated Gria12/2 mice than in the corresponding WT

mice (14.15, p,0.0001 and 5.73, p= 0.017, respectively, data not

shown).

In the TST, again the Gria12/2 mice were less immobile than

the WT mice (Fig. 5; F1,61 = 22.79, p,0.001), especially the

control and lithium-treated Gria12/2 mice. Valproate prolonged

the immobility in the Gria12/2 mice (F2,61 = 5.34, p,0.01).

Kaplan-Meier analysis showed that lithium-treated Gria12/2

mice demonstrated immobility later than control Gria12/2 mice

Drug Effects in an Animal Model for Hyperactive Disorders
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Figure 2. Effects of chronic lithium and valproate on hyperactivity of the Gria12/2 mice. Locomotor activities of WT and Gria12/2 mice
treated chronically with control diet and lithium- and valproate-supplemented diets in 5-min time intervals for the whole 2-h period (A, B) and
cumulative activities during the first and last 60 min of exposures to novel arena (C, D). Data are means 6 SEM (n= 14–27). ***p,0.001 for the
differences between genotypes after the same treatment; ##p,0.01, ###p,0.001 for the differences from controls of the same genotype (two-way
ANOVA followed by Bonferroni post-hoc test). In panel B, the earliest significant reduction from the control activity has been marked by #(p,0.05).
doi:10.1371/journal.pone.0100188.g002

Figure 3. Effects of chronic drug treatments on behaviour of Gria12/2 mice in elevated-maze test of anxiety. Control Gria12/2 spent
more time in the open arms than control WT mice. Chronic lithium and valproate did not affect the time spent in (A) or entries to (B) or distances
travelled in open arms (C). Data are means 6 SEM (n= 7–12). **p,0.01 for the difference between genotypes after the same treatment (two-way
ANOVA followed by Bonferroni post-hoc test).
doi:10.1371/journal.pone.0100188.g003

Drug Effects in an Animal Model for Hyperactive Disorders
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Figure 4. Effects of chronic drug treatments on open field activity and interaction with a novel object. Distance travelled in the whole
arena (A, E) and in the centre (B, F), entries to the centre (C, G) and time spent in the centre (D, H) during the first 3 min before the object was
introduced (A–D) and during the next 3 min when a novel object was located in the centre of arena (E–H). (I) Representative tracking paths for
Gria12/2 and WT mice during the 2nd 3-min period with an object, with a square in the centre delineating visual centre of arena. (J) Frequencies of
object interactions, scored using Ethograph software. Data are means 6 SEM (n= 6–15). *p,0.05, **p,0.01, ***p,0.001 for the differences between
genotypes after the same treatment; #p,0.05, ##p,0.01 for the differences from the control within the same genotype (two-way ANOVA followed
by Bonferroni post-hoc test).
doi:10.1371/journal.pone.0100188.g004

Drug Effects in an Animal Model for Hyperactive Disorders
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(log-rank Mantel-Cox 14.32, p,0.0001) and lithium-treated WT

mice (13.50, p,0.0001) (data not shown).

We compared the immobility times in FST and TST tests that

were carried out in group- or individually-housed mice, respec-

tively. Within the Gria12/2 mice, no difference (t18 = 0.39, p.

0.05) was observed in the total immobility time of between FST

and TST [86.4615.1 s (12), mean 6 SEM, (n) and 96.1620.3 s

(9), respectively], and similarly, the immobility times of WT mice

in FST [176.568.8 s (12)] and TST [152.9612.2 s (14)] were

identical (t24 = 1.52, p.0.05). Also, lithium- (t20 = 0.46, p.0.05)

and valproate-treated (t11 = 1.03, p.0.05) Gria12/2 mice spent

similar times immobile in these tests, as did lithium- (t26 = 1.75, p.

0.05) and valproate-treated (t21 = 0.63, p.0.05) WT mice. It seems

that the housing conditions (individual or group-housing) hardly

affected the behavior of Gria12/2 and WT mice.

Effects on Social Interaction
Reciprocally initiated contacts were shorter-lasting but more

frequent in Gria12/2 mice than in WT mice (F2,60 = 4.64, p,

0.05), while valproate treatment levelled the Gria12/2 mice

behaviour to that of the WT mice (Fig. 6AB; treatment effect

F2,60 = 3.46, p,0.05 and F2,60 = 3.76, p,0.05 for the mean time

and frequency, respectively). Unlike WT, Gria12/2 mice spent

more time in passive interaction receiving contacts from other

mice (F1,60 = 4.24, p,0.05; data not shown), independently of the

treatments with lithium and valproate. They were engaged more

frequently in individual behaviour than WT mice (F1,60 = 31.22,

p,0.001) and lithium increased it over the control and valproate-

induced levels (F2,60 = 9.91, p,0.001; data not shown). Lithium

delayed the appearance of reciprocal contacts between the group

members in WT mice (log-rank Mantel-Cox 5.11, p,0.05), and

reciprocal contacts were observed later in control Gria12/2 than

WT mice (log-rank Mantel-Cox 4.70, p,0.05; data not shown).

Effects on Amphetamine-induced Hyperactivity
Gria12/2 and WT mice are similarly activated by acute

amphetamine challenge [26]. Here, we studied whether this

dopaminergic challenge would be affected by chronic drug

treatments. Gria12/2 mice preserved their higher locomotor

activity after 2 mg/kg amphetamine challenge throughout the 60-

min monitoring period as compared to WT mice, independently

of the chronic treatments with lithium and valproate

(F11,671 = 12.37, p,0.001 and F1,61 = 50.29, p,0.001 for time

intervals and genotype, respectively). Locomotor activity distances

(in meters as estimated by using Ethovision video-tracking) were

for the control, lithium and valproate groups of the WT mice:

311618 (mean 6 SEM, n = 14), 342622 (15) and 295611 (13),

respectively, and for the corresponding treatment groups of the

Gria12/2 mice: 507659 (9), 489632 (10) and 462624 (6),

respectively.

Effects on Sucrose Preference and Activity on Running
Wheels

To compare the mouse lines and to assess the effects of lithium

and valproate on hedonic behaviour, we tested the Gria12/2 and

WT mice for preference of sucrose-containing solution and for

running wheel activity. The Gria12/2 mice had higher prefer-

ence for sweet taste than WT mice (F1,57 = 8.87, p,0.01),

although all animals preferred sucrose solution over plain water.

Animals receiving lithium (Fig. 7A) and valproate (Fig. 7C)

increased sucrose consumption as compared with respective

control animals (F2,57 = 8.86, p,0.001). Interestingly, the control

WT mice reduced their consumption of sucrose during the first

(S4) and third (S6) session in the presence of running wheels

(F5,285 = 5.12, p,0.01). Otherwise the access to running wheels

little affected the preference for sucrose, although particularly the

valproate-treated WT mice clearly increased their activity on

running wheel on the last session (S6, Fig. 7D; F2,250 = 5.83, p,

0.01). Also lithium treatment increased running activity in the WT

mice on session S6 (Fig. 7B). Thus, no correlation (p.0.05) was

observed between running wheel activity and sucrose preference in

WT (0.01) or Gria12/2 mice (0.091).

Figure 5. Effects of chronic drug treatments in behavioural
despair paradigms. Gria12/2 mice were less immobile than the WT
mice in both the forced swimming (FST) and tail suspension (TST) tests.
Data are means 6 SEM (n= 7–13). **p,0.01, ***p,0.001 for the
differences between genotypes after the same treatment; #p,0.05 for
the differences from the control within the same genotype (two-way
ANOVA followed by Bonferroni post-hoc test).
doi:10.1371/journal.pone.0100188.g005

Figure 6. Effects of chronic drug treatments on social activity
on a new territory. Two or three animals on the same treatment were
observed for 10 min for reciprocal (simultaneously-initiated) contacts.
The contacts were shorter (A) but more frequent (B) among the control
Gria12/2 mice than among the WT mice. Chronic valproate, but not
lithium, moderated the activity of the Gria12/2mice to the level found
in the WT mice. Data are means 6 SEM (n= 6–15). *p,0.05, ***p,0.001
for the differences between genotypes after the same treatment; #p,
0.05 for the differences from the control within the same genotype
(two-way ANOVA followed by Bonferroni post-hoc test).
doi:10.1371/journal.pone.0100188.g006
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Effects of Anticonvulsants Topiramate and Lamotrigine
on Behavior of Gria12/2 Mice

In WT and Gria12/2 females, lamotrigine reduced cumulative

2-h novelty-induced LA in Gria12/2 mice (Fig. 8A–B; treatment

effect F1,35 = 5.93, p,0.05, genotype effect F1,35 = 46.38, p,

0.001), with the earliest significant reduction taking place at

20 min after starting the test (Fig. 8A).

There was no difference (t16 = 1.58, p.0.05) in LA of

topiramate-treated Gria12/2 mice between the two LA tests

[performed independently (351631 m (6), mean 6 SEM (n)) or

after other tests in the battery (457644 m (12)], nor within the

WT mice [t15 = 0.15, p.0.05; 271612 m (6) vs. 265630 m (11)].

Therefore, the data were pooled, analysed and presented in

Fig. 7C–D. The gender effect was not significant for either two 1-h

time intervals (F1,74.0.01, p.0.05, three-way ANOVA) and,

therefore, female and male data were pooled. Chronic treatment

with topiramate reduced 2-h novelty-induced hyperactivity

specifically in Gria12/2 mice in a time-dependent manner,

without affecting WT animals (Fig. 8C–D; F23,1794 = 3.09, p,0.01

for time interval 6 genotype 6 treatment interaction). The first

effect of topiramate on locomotor activity was observed after

20 min (Fig. 8C). In the EPM, treatment with topiramate reduced

the time that Gria12/2 mice stayed on the open arms (Fig. 8E;

F1,39 = 7.37, p,0.05 for genotype 6 treatment interaction),

suggesting anxiogenic or reduced risk-taking effects. Topiramate

increased total immobility time in Gria12/2 mice, but not in WT

mice (Fig. 8F, F1,43 = 5.16, p,0.05 for genotype 6 treatment

interaction) in the FST. Kaplan-Meier analysis showed that

topiramate-treated Gria12/2 mice demonstrated immobility

earlier than the control Gria12/2 mice (log-rank Mantel-Cox

4.26, p= 0.039).

Figure 7. Effects of chronic lithium and valproate on sucrose preference and running wheel activity Gria12/2 mice. Preference for
sucrose-containing solution over plain water, with and without an access to running wheels (RW) on sucrose-choice days (S1, S2 and S3) in animals
treated with lithium (A) and valproate (C). Running wheel activity during the sucrose-choice days (S1, S2, S3) in animals treated with lithium (B) and
valproate (D). Data are means 6 SEM (n= 6–14). *p,0.05, **p,0.01 for the differences between genotypes after the same treatment; #p,0.05,
###p,0.001 for the differences from the control treatment within the same genotype (two-way ANOVA followed by Bonferroni post-hoc test).
doi:10.1371/journal.pone.0100188.g007
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Discussion

In this study, we confirmed the elevated activity and highly

exploratory phenotype of Gria12/2 animals and conducted a

predictive assessment of efficacy of chronic treatments of standard

and novel, structurally and mechanistically different mood

stabilizers on a battery of behavioural tests for hyperactive aspects

of disorders, such as bipolar mania-like illness, schizophrenia and

schizoaffective disorder. We found that the treatments with

lithium, valproate, topiramate and lamotrigine all reduced

hyperactivity by increasing habituation of the Gria12/2 animals

in a novel environment and variably affected other behaviours.

Locomotor over-activity and increased exploration in open

space as well as over-reactivity to new objects were characteristic

for the Gria12/2 mice, indicative of high novelty seeking and

risk-taking behaviour. This behaviour was particularly sensitive to

both lithium and valproate. Dysfunctional exploration pattern has

been observed in bipolar manic and schizophrenic patients

[47,48]. Interestingly, bipolar manic patients are more mobile

and habituate faster than schizophrenic patients. Moreover,

bipolar patients are more interested in new objects and spend

more time near to the object [47,49]. Thus, specific behavioural

features differentiate bipolar patients from schizophrenic ones and

could be used as discriminating criteria between these disorders.

Moreover, behavioural disinhibition pattern was suggested as

endophenotype of bipolar disorder [50]. In the present work,

chronic treatment with the mood stabilizers studied here

attenuated the 2nd-h hyperlocomotion in a novel environment in

the Gria12/2 mice, but were not effective in reducing the initial

hyperactivity or the acutely exacerbated locomotion by amphet-

amine challenge. Gria12/2 mice show normal home-cage activity

pattern and diurnal rhythm [24] and amphetamine elevates the

activity similarly as is the WT mice [26], which suggest that their

abnormal novelty-induced hyperactivity resembles more mania-

type behaviour than attention deficit hyperactivity disorder-type of

behaviour.

Novelty-induced hyperactivity of the Gria12/2 mice is greatly

reduced by acute blockade of AMPA receptors with NBQX [24]

and by mGlu2/3 receptor agonist LY354740 [51], which results

are consistent with hyperactive glutamate system in the Gria12/2

mice. Our recent c-Fos mapping data suggest overactivity of the

dorsal hippocampus of the Gria12/2 animals in a novel situation

Figure 8. Effects of chronic treatments with anticonvulsants lamotrigine and topiramate on behavior of Gria12/2 mice. Cumulative
locomotor activities of Gria12/2 and WT mice treated chronically with lamotrigine- or topiramate-supplemented chow for 5-min time intervals (A, C)
and for the whole 2-h experiment (B, D). Data are means6 SEM (n= 8–27). In A and C, the earliest significant point from the control activity has been
marked by #(p,0.05). Topiramate treatment reduced the time spent in open arms of elevated-plus maze (E; means 6 SEM, n= 9–12) and increased
immobility time in forced swimming test (F; means 6 SEM, n = 11–12) in Gria12/2 mice. **p,0.01, ***p,0.001 for the difference between
genotypes after the same treatment; #p,0.05, ###p,0.001 for the difference from the control within the same genotype (two-way ANOVA followed
by Bonferroni post-hoc test).
doi:10.1371/journal.pone.0100188.g008
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[24,51]. Of the mood stabilizers studied here, topiramate and

lamotrigine reduce glutamate functions by inhibiting glutamate

receptors and glutamate release, respectively [52–54], which could

explain their efficacy. Also treatment with lithium is known to

indirectly affect NMDA-type glutamate receptor function, subunit

expression and phosphorylation and activation of the related

intracellular signalling cascades, such as phospholipase PLA2 and

nitric oxide (NO) pathways [55–58], while the NMDA receptor

antagonists potentiate the actions of lithium [59]. However, other

mechanisms than glutamate antagonism are likely to be involved

also, since valproate is not known to antagonize the glutamate

system, and indeed valproate has failed to protect from NMDA-

induced seizures [60]. Protein kinase C and extracellular signal-

regulated kinase cascades constitute as shared targets for lithium

and valproate and are involved in mediating their anti-manic

actions on various facets of the disease [61]. These pathways may

also be among the mediators of the anti-hyperactive effect of

lithium and valproate in the Gria12/2 model of abnormal

hyperactivity.

Chronic treatment with lithium could also suppress hyperloco-

motion via presynaptic mechanisms that decrease release of

catecholamines or inhibit their synthesis [62]. Indeed, dopamine

D2 receptor antagonist haloperidol somewhat reduces hyperac-

tivity in the Gria12/2 and WT mice [25]. However, depletion of

dopamine levels by inhibition of tyrosine hydroxylase did not

affect the locomotor phenotype of these mice [22], neither was

there any differential activation of the ventral tegmental area

dopaminergic (VTA DA) neurons or striatal neurons between

Gria12/2 and WT mice after 2 h in novel environment [24], and

therefore, dopaminergic mechanisms are unlikely to decisively

contribute to the hyperlocomotor phenotype. On the other hand,

glutamate receptor neuroplasticity in VTA DA neurons is

associated with the effects of rewarding drugs of abuse [63,64],

and this neuroplasticity process might be deficient in Gria12/2

mice as the opioid morphine failed to induce an increase of

AMPA/NMDA ratio of VTA DA neurons in Gria12/2 mice like

it did in WT animals [65]. State-dependent place conditioning

with morphine is abnormal in Gria12/2 mice [65]. In the present

study, of the two naturally rewarding stimuli, sucrose drinking and

running wheel activity, only sucrose drinking test was useful to

discriminate between the Gria12/2 and WT mice, while running

activity did not differ between the genotypes. Dopaminergic

projection from the VTA is important for appetitive behaviour

and hedonic responses to palatable food [66], with a lesion of this

projection decreasing sucrose intake [67]. Activation of VTA DA

neurons by disinhibition via cannabinoid CB1 receptor-dependent

mechanism has been linked to rewarding properties of voluntary

running wheel activity [68]. However, we found no interaction

between accesses to sucrose drinking and running wheels in

Gria12/2 and WT mice on control diet, and unexpectedly,

treatment with lithium and valproate rather increased than

suppressed sucrose preference. Unlike sucrose consumption, which

increased in both Gria12/2 and WT mice by valproate and

lithium, running activity increased significantly only in WT

animals. Rewarding responses were not consistently affected by

the drugs in the present study.

The main effects of the drugs studied here were on hyperactivity

of the Gria12/2 animals, but they produced also some effects on

other behaviours. Chronic lithium reduced the frequency of

contacts to new objects in the open field, as did valproate.

Valproate induced an anxiolytic-like effect in the WT mice that

was not observed in the Gria12/2 mice. In social interaction test,

valproate prolonged reciprocal social contacts only in the Gria12/

2 mice. The effects of lithium and valproate in different tests

might be related to increased habituation. Topiramate had an

anxiogenic-like effect in the Gria12/2 animals. Topiramate and

lamotrigine were not studied here as widely as lithium and

valproate for other behaviours than hyperactivity. Even though we

did not find any significant difference in the behavior of mice

differently housed (see the immobility times in FST vs. TST in the

Results section), deprivation of social contacts is known to impair

behavior [69]. Isolation of rats increases motivational value of

sucrose [35] and number of social contacts [70,71]. Multiple

testing can also have a substantial influence on behavior [72]. In

the present study, locomotor activity of mice with previous testing

history was similar compared to those naı̈ve to experimentation.

However, this does not straightforwardly imply that the behavior

observed in other tests in a multiple testing battery would not be

affected by the prior testing and associated stress. Still, behavioural

test batteries in rodents are widely used and favoured for wide

behavioural screening and designed to cover many distinct

behavioural domains relevant for human neuropsychiatric disor-

ders [73]. We conclude that in the present experiments, the main

effects that regulated the behaviour, especially the hyperactivity,

were the mouse genotype and chronic drug treatments.

Rodent models in neuropsychiatry usually phenocopy only

some aspects of a disease, such as hyperactivity. Hyperactivity is a

shared feature among several psychiatric conditions, such as

mania, anxiety, attention deficit hyperactivity disorder and autism

spectrum disorders, in addition to some forms of schizophrenia.

Animal models are valuable tools for studying predictive validity of

treatments, but even with partial face validity, they usually have

weak construct validity [74]. In Gria12/2 mouse line, hyperac-

tivity is pronounced and concomitant with other behavioral

abnormalities indicative of highly disinhibited behavior. More-

over, as we show here, their behavioral abnormalities and deficits

are controlled by mood stabilizing medications. Importantly,

AMPA receptors, as determinants of synaptic plasticity might have

a critical role during late adolescence for the onset of cognitive and

behavioral abnormalities for neuropsychiatric disorders. Ablation

of GluA1 subunit from the hippocampus in late adolescence

reproduced all behavioural abnormalities of mice with global

deletion of GluA1 subunit, except for social deficits [75]. However,

aggressiveness as a correlate of irritability and easily provoked

behavior is lacking in Gria12/2 mice [29]. There are two other

interesting glutamate-linked models for mania-like hyperactivity.

They include the mice deficient in kainate receptor GluK2 subunit

(Grik22/2) [76], in which chronic treatment with lithium reduces

hyperactivity, risk-taking behaviour and aggressive manic displays,

and the Shank3 overexpressing mice [77], in which acute valproate,

but not chronic lithium, reduces hyperactivity. While SHANK

proteins are postsynaptic density scaffolding proteins in glutamate

synapses and implicated in a number of neuropsychiatric disorders

[78], heteromeric kainate receptors, assembling also GluK2

subunits, regulate presynaptically and postsynaptically neurotrans-

mission of both interneurons and principal neurons [79,80].

Together with the present results on Gria12/2 mouse line, these

models suggest an important role for excitatory glutamate

transmission in disorders with hyperactivity.

In conclusion, this is the first report to describe behavioural

effects of chronic treatments with different clinically used mood

stabilizers in the AMPA receptor GluA1 subunit-deficient mice

using test batteries specific to some hyperactive facets of bipolar

illness, schizophrenia and schizoaffective disorder. Gria12/2 mice

showed disinhibited risk-taking behaviour, hyperlocomotion and

social deficits, which were at least partially reversed by mood

stabilizers, and therefore, we suggest that this mouse line can be
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used as a model for screening for novel drugs to treat hyperactive

neuropsychiatric disorders.
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