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Abstract

DNA microarray technologies are used extensively to profile the expression levels of thousands of genes under various
conditions, yielding extremely large data-matrices. Thus, analyzing this information and extracting biologically relevant
knowledge becomes a considerable challenge. A classical approach for tackling this challenge is to use clustering (also
known as one-way clustering) methods where genes (or respectively samples) are grouped together based on the similarity
of their expression profiles across the set of all samples (or respectively genes). An alternative approach is to develop
biclustering methods to identify local patterns in the data. These methods extract subgroups of genes that are co-expressed
across only a subset of samples and may feature important biological or medical implications. In this study we evaluate 13
biclustering and 2 clustering (k-means and hierarchical) methods. We use several approaches to compare their performance
on two real gene expression data sets. For this purpose we apply four evaluation measures in our analysis: (1) we examine
how well the considered (bi)clustering methods differentiate various sample types; (2) we evaluate how well the groups of
genes discovered by the (bi)clustering methods are annotated with similar Gene Ontology categories; (3) we evaluate the
capability of the methods to differentiate genes that are known to be specific to the particular sample types we study and
(4) we compare the running time of the algorithms. In the end, we conclude that as long as the samples are well defined
and annotated, the contamination of the samples is limited, and the samples are well replicated, biclustering methods such
as Plaid and SAMBA are useful for discovering relevant subsets of genes and samples.
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Introduction

Modern high-throughput measurement technologies, such as

microarrays, are able to quantify expression levels for tens of

thousands of genes in various organisms. One of the approaches

for analysis and interpretation of large quantities of high-

throughput data is clustering (also known as one-way clustering),

where genes, samples, or both, are grouped together based on

their gene expression profiles [1,2]. For instance, Sørlie et al.

analyzed gene expression data for 85 breast cancer samples with

hierarchical clustering to suggest five subclasses for breast cancer

[3].

Hierarchical clustering with heatmap visualization [4], k-means

clustering and self-organizing maps [5,6] have been successful in

finding biologically important groups of genes or samples. These

methods, however, do not take full advantage of the data as

clustering is done first for genes and then for samples (or vice versa).

Thus, groups of genes that are co-expressed only in a subset of

samples may be left undetected. A promising solution to identify

subgroups of genes and samples is the so called biclustering

approach [7]. An important distinction between biclustering

methods and one-way clustering methods, such as hierarchical

clustering or k-means, is that the clustering is done simultaneously

for genes and samples. Wang et al. [8] used a biclustering

algorithm (CMonkey [9]) to group breast tumors from 437

individuals based on the expression profiles of specific genes. They

reported that it is possible to identify co-expressed gene-sets in the

subgroups of breast tumor samples using biclustering methods.

Given that the concept behind the biclustering approach is

appealing in biosciences, a number of biclustering methods have

been developed [10–13]. Here, we used two gene expression data

to compare the performance of 13 biclustering and two clustering

(k-means and hierarchical) methods. The first data comprises five

different types of tissues consisting of expression data with

heterogeneous samples that resides bicluster structures with small

overlaps on their genes and samples. For the second data set we

chose two clinically well-defined subgroups of breast tumor (ER+/

PR+/HER2+ and ER2/PR2/HER22) and reference breast

samples. Due to the homogeneity of the samples and the common

active biological pathways in different tumor subtypes, the breast

cancer data is expected to reside bicluster structures with

overlapping genes and samples. For our comparison analysis, we

applied four benchmarks: Sample differentiation, Gene Ontology-

based significance, Tissue specificity of the genes, and Running

time.
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Materials and Methods

Biclustering methods can be categorized based on the type of

the searched biclusters as well as the mathematical formulation

used to discover them. Using these two criteria, we have

categorized biclustering techniques into four classes: Correlation

maximization biclustering methods, Variance minimization bi-

clustering methods, Two-way clustering methods, and Probabilis-

tic and generative methods.

Correlation maximization biclustering methods (CMB) seek for subsets

of genes and samples where the expression values of the genes (or

respectively samples) correlate highly among the samples (or

respectively genes). Figure 1 A illustrates an example of such a

bicluster with high correlation between the genes. The algorithm

proposed by Cheng and Church [7] searches for this type of

biclusters by imposing the condition that the mean square residue

is below some parameter d. The FLexible Overlapped biCluster-

ing (FLOC) technique, proposed by Yang et al. [14], is another

example of an algorithm belonging to this class.

Variance minimization biclustering methods (VMB) search for

biclusters in which the expression values have low variance

throughout the selected genes, conditions or the whole submatrix.

For instance, XMOTIF [15] searches for biclusters with constant

gene expressions by imposing the condition that the expression

values of each gene are within a very small interval, i.e., each gene

exhibits an almost constant expression level for a subset of samples.

Another example is the method developed by Hartigan [16], and

implemented in several algorithms later on [17,18]. These

methods seek for constant expression values across the selected

genes and samples. Figure 1 B illustrates a variance minimized

bicluster.

Two-way clustering methods (TWC) discover the homogeneous

subsets of genes and samples, i.e. biclusters, by iteratively

performing one-way clustering on the genes and samples. For

instance, the algorithm proposed by Getz et al. [19] repeatedly

performs one-way clustering on the genes and samples whilst the

stable clusters of genes (i.e. clusters of genes that remain constant

through the iterations of the algorithm) are used as the attributes

for the clustering of the samples, and vice versa. Another example is

an algorithm proposed by Chun Tang et al. [20], which initiates

the analysis by clustering the genes to a predefined number of

groups (usually 2), and then clusters the samples by featuring each

group of genes. Next, the algorithm selects the heterogeneous

groups of genes and samples which best represent the distribution

of the data, and the whole process is repeated on the selected genes

and samples, until the predefined termination condition is satisfied.

An example of a termination condition which can be defined by

the user is the bicluster size; the algorithm finalizes the analysis

once the bicluster size (i.e., number of genes and samples) reaches

the threshold.

Probabilistic and generative methods (PGM) employ probabilistic

techniques to discover genes (or respectively samples) that are

similarly expressed across a subset of samples (or respectively

genes) in the data-matrix [9,12,13,21]. For instance, the method

proposed by Reiss et al., called cMonkey [9], employs Markov

chains to model the biclusters. Another example of this method is

the probabilistic relational model ProBic [22], which combines

probabilistic modelling with relational logic in order to identify the

biclusters.

Detailed information regarding the biclustering methods used in

our study, including their class, parameters and characteristics, are

listed in Tables 1 and 2. Note that when assigning each method to

a specific class we prioritized the algorithm over characteristics of

the generated biclusters. For instance, FABIA and FABIAS

methods [21] are assigned to probabilistic and generative methods

(PGM), although they also generate biclusters with low variance

(VMB). For each of these methods we also report a list of

specifications which are explained in Table 3. In general, there are

nine types of parameters that are used by these biclustering

methods as detailed in Table 4.

Figure 1. Expression patterns of genes across samples in two types of biclusters. (A) Bicluster containing genes having expression values
correlated across the samples. (B) Bicluster containing genes exhibiting a limited variance in the expression values across the considered samples. The
X-axis represents the samples included in the bicluster, the Y-axis represents the expression level, and each line shows the expression values of a
gene (included in the bicluster) along the various samples of the bicluster.
doi:10.1371/journal.pone.0090801.g001
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Experiment setup
The multi-tissue data we use within our study consists of 228

samples from 5 distinct healthy human tissues from the

GeneSapiens database [23]: 59 blood t-cell, 95 cerebral cortex,

13 liver, 41 striated muscle, and 20 testis samples. The selected

tissues are transcriptionally distinct and clearly defined, hence

featuring a minimal risk of annotation errors. GeneSapiens

contains Affymetrix based human gene expression data collected

from publicly accessible biological sources, namely Gene Expres-

sion Omnibus and ArrayExpress. It includes 175 different cancer

and tissue types with altogether over 130 million data-points. To

construct GeneSapiens, data from CEL files of different types of

Affymetrix microarray generations were normalized together in a

specifically developed three-step process (Kilpinen et al [23], Autio

et al [24]) to create a large integrated data collection across

different studies and array generations. Using the selected data we

constructed a gene expression matrix with 11834 rows and 228

columns corresponding to the considered genes and samples,

respectively. In the end all genes with missing expression values

were excluded from the gene-expression matrix.

To create the breast tumor data gene expression microarrays

were downloaded from The Cancer Genome Atlas for primary

breast carcinoma tumors and controls. First, probes matching

either multiple or no genes were removed. Then, data were

normalized to a mean of 0. The original data can be obtained

from TCGA web site http://cancergenome.nih.gov/. The TSP

study accession number of the raw data in the database of

Genotype and Phenotype (dbGaP) is phs000569.v1.p7. Two

clinically well-defined subgroups of breast tumor (ER+/PR+/

HER2+ and ER2/PR2/HER22) and healthy breast samples

were chosen for our analysis. All genes with a variance less than

one across the samples were also discarded.

Quality Evaluation Benchmarks
Recently, K. Eren and colleagues studied a collection of

biclustering methods on several synthetic data matrices that

housed various types of bicluster structures and estimated how well

each method discovers them [25].

In addition to running time analysis, they reported results of

Gene Ontology based enrichment analysis in order to evaluate the

gene-sets of biclusters discovered in a gene-expression data of Rat

Table 1. The class and availability of biclustering methods.

Bicluster Method Class Since Availability Parameters

ACV [50] CMB 2007 - p2 , p9

Bayesian Plaid [51,52] PGM 2008 C [52] p1

Bimax [11] VMB 2006 Java [53] p5

BiMine [46] CMB 2009 Java p2 , p6

CC [7] CMB 2000 R [54], Java [53] p1,2

CMonkey [9] PGM 2006 R p1, p2, p3, p8

CTWC [19] TWC 2000 MATLAB p3,5, p6

DCC [55,56] TWC 2002 - -

FABIA and FABIAS [21] PGM 2010 R p1, p2, p3, p9

FLOC [14] CMB 2005 R p1, p2, p3, p4, p5

GEMS [57,58] CGS 2004 Web, C p2, p5

Gibbs biclustering [12] PGM 2003 - -

ISA [43,44] TWC 2002 Java [53] p2, p8

ITWC [20] TWC 2001 - -

OP-Clustering [59,60] CMB 2003 - -

OPSM [40] CMB 2003 Java [53], C# p1

Plaid [41,42] PGM 2002 R [54], web p1, p3, p4,

ProBic [22] PGM 2009 - -

QUBIC [45] VMB 2009 C p1 , p2 , p8

R/MSBE [30] VMB 2006 Java p9

SAMBA [13] PGM 2002 Java [61] p8

Spectral [62] VMB 2003 R [54] p1, p2, p5

TreeBic [49] PGM 2010 C p3, p5, p9

UBCLUST [63] CMB 2006 Java p9

XMOTIF [15] VMB 2003 R [54], C, Java [53] p2, p5, p6, p7

ZBDD [18] VMB 2005 - p2, p5

d -clustering [16] VMB 1972 - p2, p5

d -Pclustering [17] VMB 2002 - p2

d -jk [64] VMB 2000 - p2 , p9

The notations used for the methods classes are stated in the text. The parameters used by the biclustering methods are described in Table 4. The methods that are
shown in bold texts were evaluated in our study.
doi:10.1371/journal.pone.0090801.t001
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peripheral and brain regions. Here we, however, focus on the

biological relevance of the biclusters discovered by the 13

biclustering and 2 one-way clustering methods. In particular, we

focused on the ability of these methods to distinguish various

sample types rather than their performance in discovering various

bicluster patterns in the data. In this regard, we consider four kinds

of benchmarks: one sample-based, two gene-based and the

running time. All the applied benchmarks measure how much

the generated clusters succeed in incorporating a priori knowledge.

These benchmarks can be classified as external benchmarks as

described by Santamaria et al. [26].

Sample-based benchmarks. Sample-based benchmarks

evaluate the (bi)clusters generated by a given method by assessing

the set of samples included in them. These benchmarks answer the

question of how well a method can distinguish different types of

samples. If we denote by k the number of different types of

samples (e.g. blood T cell or liver samples in the multi-tissue data

that we use), then let Yj , with 1ƒjƒk, denote the sub-matrix

which contains all the rows from the original data matrix but only

those columns which are associated to the samples of type j. We

also denote by Xi the i-th bicluster generated by a given

biclustering method, by C(Xi) and C(Yj) the set of columns

included in the two sub-matrices Xi and Yj , respectively and by

DC(Xi)D and DC(Yj)D the number of elements in these two sets.

Then, the formula

F1C(Xi,Yj)~2|
DC(Xi)

T
C(Yj)D

DC(Xi)DzDC(Yj)D
ð1Þ

characterizes the level of overlap between the sets of columns of

the two submatrices Xi and Yj . In particular, Equation (1), which

is based on Sørensen similarity [27] and Dice’s coefficient indices

[28], returns a value in the range [0,1], with 1 indicating that the

set of columns of the bicluster Xi includes the whole set of samples

of type j, and 0 meaning that Xi does not contain any of the

samples of type j.

Equation (1) allows to define, for each biclustering method, a

matrix W[Rl|k, where l and k are the number of generated

biclusters and the number of distinct sample types considered,

respectively. Each entry Wij is the value F1C(Xi,Yj) representing

the coverage of the samples of type j by the columns of the ith

generated bicluster. Then, we construct a vector

SampleDifVec[Rm, where m is the minimum of the indices l

and k, that describes how well the biclustering method has

distinguished different sample types. This vector is actually

obtained through an iterative greedy approach where the

maximum value of the matrix W is first extracted and then its

corresponding row and column are deleted. The procedure

continues to extract the maximum value of the remaining data

and then to remove the related rows and columns until no row or

column remains. At the end of this process, we collect all the

extracted maximum values within the vector SampleDifVec. The

mean of the values in SampleDifVec is considered as the quality

measurement for the biclustering method, i.e., the sample

differentiation benchmark SampleDif. Note that contamination of the

samples with other tissue types or miss-annotation of the samples

can affect the sample differentiation.

Gene-based benchmarks. This category refers to those

benchmarks that estimate the quality of the (bi)clusters by assessing

the genes included in them. Here we consider two such

benchmarks.

Gene Ontology-based significance (denoted by GO-Sig) is one of the

widest used gene-based benchmarks for biclustering methods

[11,25,29–33]. It indicates how significantly the sets of genes

discovered by a biclustering method are enriched with a similar

GO category provided by the Gene Ontology Consortium [34].

To estimate this, we used the FuncAssociate 2.0 webtool provided

by Berriz et al. [35]. Initially, Fisher’s exact test [36], was used to

estimate a p-value which could be described as the probability of a

GO category being equally or more frequently observed if we

randomly pick the same number of genes as those included in a

given bicluster. Next, an adjusted p-value is estimated by using the

Westfall and Young procedure [37] with 1,000 re-samplings.

Finally, for each biclustering method, we set its GO-based

significance to be the percentage of the generated biclusters

Table 2. The biclustering methods specifications and testing
data types.

Bicluster Method Method specifications Tested data

ACV GSOVL Synthetic, yeast

Bayesian Plaid GSOVL, MCMC, BAYES Synthetic, yeast

Bimax GSOVL, DISC Synthetic, yeast

BiMine GSOVL, TREE Synthetic, yeast

CC GSOVL Synthetic, Human,
yeast

CMonkey GSOVL, MCMC, MOTIF, TMV Synthetic, yeast

CTWC GSOVL,SIMA Human

DCC NOVL, VECOS Human

FABIA and FABIAS GSOVL, EM, BAYES, SVD Synthetic, Human

FLOC GSOVL, TMV Synthetic, Human

GEMS GSOVL, MCMC Synthetic, Human

Gibbs biclustering GSOVL, DISC, MCMC, BAYES Synthetic, Human

ISA GSOVL Synthetic, yeast

ITWC SOVL, VECOS Human

OP-Clustering GSOVL, TREE Yeast, Human

OPSM GSOVL, DISC Synthetic, yeast [43],
Human

Plaid GSOVL, FUZZY [31] Synthetic, Human,
yeast

ProBic GSOVL, EM, BAYES, TMV Synthetic, yeast

QUBIC GSOVL Synthetic, yeast, e.
coli, Human

R/MSBE GSOVL Synthetic, yeast

SAMBA GSOVL, DISC Yeast, Human

Spectral NOVL,SVD Human

TreeBic GSOVL, MCMC, BAYES, TREE Human

UBCLUST GSOVL, DISC, MCMC, SIMA Synthetic, yeast

XMOTIF GSOVL Synthetic [43],
Human, yeast [43]

ZBDD GSOVL Synthetic, yeast

d -clustering NOVL Synthetic

d -Pclustering GSOVL Synthetic, yeast

d -jk GSOVL Synthetics, Human

The methods specifications are described in Table 3. Although the original
FLOC algorithm is tolerant to missing values (TMV), the R implementation
available in BicARE (V 1.2.0) of the Bioconductor package does not accept
missing values in input data. Note that all the tested data with missing citations
were studied by the developers of the algorithms to which they have been
assigned. For the citation of the algorithms see Table 1.
doi:10.1371/journal.pone.0090801.t002
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featuring adjusted p-values less than parameter a. For our analysis

we chose the threshold a~0:05, see Figures 2A and 2B.

TiGER-based significance (denoted by TiGER-Sig) indicates the

percentage of the biclusters generated by each method that include

genes specific to the studied sample-types. For the multi-tissue type

gene expression data we employ the Tissue-specific Gene

Expression and Regulation (TiGER) database [38], which is

constructed based on the known tissue-specific genes, TFs and cis-

regulatory modules. The database includes 7,261 tissue-specific

genes, which were discovered after analyzing the expression

patterns of approximately 54,000 genes among 30 various human

sample-types. In particular we were interested in those tissue-

specific genes that are associated with our selected sample types:

blood t-cell, cerebral cortex, liver, striated muscle, and testis. That

is, we analyzed how well the studied biclustering and clustering

methods can identify these genes. To do this, we apply a

symmetric version of the formula F1C in which we look for the

overlap of the gene-sets instead of the sample-sets, see equation (2).

F1R(Xi,Y )~2|
DR(Xi)

T
R(Y )D

DR(Xi)DzDR(Y )D
ð2Þ

The submatrix Y now contains all the columns of the initial matrix

and only those rows which correspond to the genes that are

specific to the tissue types considered in the multi-tissue type gene

expression data. Then, we denote by R(Xi) and R(Y ) the sets of

rows included in the two sub-matrices Xi and Y , respectively and

by DR(Xi)D and DR(Y )D the number of elements in these two sets.

Thus, the formula F1R(Xi,Y ) indicates the level of overlap

between the sets of rows of the two sub-matrices Xi and Y , i.e., the

coverage of the genes specific to all sample types considered here

by the ith generated bicluster. Then, for each biclustering method,

if we denote by l the number of generated biclusters, we compute

an l-dimensional vector with all its entries in the range [0, 1]. The

values in this vector are obtained by using formula (2) and the

mean of these values indicates how well the biclusters extracted by

the algorithm cover the genes specific to our samples. We also

investigated whether similar or higher overlap values could be

obtained by randomly selecting genes from the gene-expression

data. To do this, we computed a p-value for each of the generated

biclusters with 1,000 re-samplings (similarly to the second phase of

the GO-based significance). The p-value is the proportion of the

1,000 randomly picked genes that have higher overlaps with the

genes specific to the selected sample types, compared with the

genes discovered by the biclustering methods. Finally, for each

biclustering method, we set its TiGER-based significance to be the

percentage of the generated biclusters that feature a p-value less

than parameter a. In our analysis we chose a~0:05, see Figures 2A

and 2B. For the Breast cancer gene-expression data we applied the

exact same method that was described for the multi-tissue type

data except that instead of the Tissue-specific Gene Expression

and Regulation (TiGER) database we used CancerGenes [39].

CancerGenes provides cancer related genes that have been

retrieved from several gene-based resources, e.g. NCBI Entrez

Gene, Ensembl BioMart, and Sanger COSMIC, and their

Table 3. Various specifications considered for the biclustering methods.

Specifications Description

GOVL The obtained biclusters are allowed to have overlaps over only the gene-sets.

SOVL The obtained biclusters are allowed to have overlaps over only the sample-sets.

GSOVL The obtained biclusters are allowed to have overlaps over both gene and sample-sets.

NOVL No overlaps at all are allowed for the obtained biclusters.

DISC Discretization is mandatory for running the algorithm

TMV The method is tolerant to missing values.

SIMA Simulated annealing is applied to avoid convergence to local optima.

VECOS Vector Cosine Scores is applied to measure the similarities of the samples (or genes).

SVD The method applies a form of Singular Value Decomposition.

MCMC The method employs a Markovian Chain Monte Carlo approach.

BAYES The method employs a fully Bayesian approach.

EM The method uses the Expectation-Maximization method.

MOTIF The MOTIF sequence co-occurrence is considered in the biclustering approach.

TREE The method applies a tree structure for discovering suitable sets of genes and samples.

doi:10.1371/journal.pone.0090801.t003

Table 4. Different types of parameters used by the
biclustering methods.

Parameter Parameter specification

p1 the number of generated biclusters either per iteration or
globally

p2 the threshold for biclustering optimization criteria

p3 the threshold for the number of iterations

p4 the probability of including/excluding a gene or a sample
during the clustering process

p5 the threshold for the size of the biclusters

p6 the threshold for the number of gene (or respectively
sample) operations in one iteration

p7 the number of genes and/or samples in the initial
bicluster seeds)

p8 the overlap threshold for the obtained biclusters

p9 model-based parameters, e.g., parameters for prior
distributions, or tree depth

The operations allowed when defining parameter p6 are comparisons,
additions, removals, and splits for genes (or respectively samples).
doi:10.1371/journal.pone.0090801.t004
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relevant annotations such as functional description of the genes,

the gene locations, Entrez Gene ID, GO terms, InterPro

descriptions, gene structure, and experimentally determined

transcript control regions. Note that as mentioned previously,

the gene-based evaluation methods are external benchmarks

hence their results are dependent on the quality and the

completeness of the database that they use. As for instance, since

the GO-sig is dependent on the GO categories provided by the

Gene Ontology Consortium [34] changes in the data-base can

affect the GO-Sig results. Moreover, large overlaps on the genes of

the biclusters extracted by an algorithm can bias the GO-Sig

results in favoring these algorithms.

Running time. In addition to the quality of the extracted

(bi)clusters, it is also important that the analysis is done in a

reasonable amount of time. Thus, we compared the running time

of the studied algorithms.

Using these four benchmark measures we evaluated 13

biclustering methods: SAMBA [13], OPSM [40], Plaid [41,42],

Additive and Constant MSBE [30], ISA [43,44], CTWC [19],

BiMax [11], FABIA [21], QUBIC [45], FLOC [14], CC [7],

BiMine [46], as well as the two most popular one-way clustering

methods, k-means [47] and hierarchical [48]. All these methods

were able to extract at least one (bi)cluster from our data. Note

that in addition to the mentioned methods, we also executed

Figure 2. Sample-based (i.e. sample differentiation) and gene-based benchmarks (i.e. GO-Sig and TiGER-Sig) for thirteen
biclustering and two clustering methods for the Multi-tissue type (A) and the breast tumour (B) data.
doi:10.1371/journal.pone.0090801.g002
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Treebic [49] on our data but after running of the algorithm no

biclusters were discovered from any of our data. In this respect, we

will only report the running time of the algorithm in the results

section.

Parameter settings
The Euclidean distance metric was used for the k-means method

and the Pearson distance for the hierarchical method. The cluster

number threshold for both was also set to 10 when clustering the

genes. For clustering of the samples the threshold was set to 5 for

the multi-tissue type gene-expression data and 3 for the breast

tumor. Moreover, within the hierarchical clustering we used the

complete linkage method. In SAMBA the overlap prior factor was

set to 0.1. The responding probes to hash was set to 100 and the

hash kernel size (minimal and maximal) was set to 4. The hash-

tables are the data structures used by the algorithm to store the

converging biclusters (i.e. weighs of the edges of a bipartite graph

in which the nodes represent a selection of genes and samples)[13].

The number of the accepted biclusters in each iteration for the

OPSM method was set to 10. For the Plaid model the row and

column release probabilities were set to 0.7 and the maximum

number of layers to 40.

In the additive and constant MSBE biclustering methods the a
parameter (the threshold for the applied similarity score) was set to

0.4, b (the bonus for the similarity score) to 0.5, and c (the quality

and size threshold of the biclusters) to 1.2. The ISA method was

run on 100 initial points, with gene and sample score thresholds set

to 2. The parameters for the CTWC method were set as follows:

the minimum gene size was set to 15 while the sample size was set

to 5. The minimum size of the genes and the samples of the Bimax

biclusters were set to 2. We ran the FABIA method to achieve 40

biclusters while the other parameters were set to their default

values. We ran BiMine with minimum sample size of 13 and the

threshold for the Average Spearman’s r~0:2. The residue

threshold for the FLOC method was set to 0.01, the sample and

gene initial probabilities were set to 0.4, the minimum sample size

of a bicluster was set to 13 and the minimum gene size was set to

15. The d parameter was set to 50.0 and a to 1.5 for the CC

algorithm. Moreover, the CC algorithm was set to extract 40

biclusters. The parameters for the QUBIC method were set to

their default values i.e., the quantile discretization was set to 0.06,

the number of ranks and filtering overlapping blocks were set to 1,

minimum sample size was set to 2, the conservation parameter of

the blocks was set to 0.95 and the number of the reporting blocks

was set to 100. Bicluster results with sample or gene sizes smaller

than 10 were ignored in our analysis. The number of bicluster

results for methods that extracted large number of biclusters, e.g.

BiMine (4301 biclusters) and SAMBA (102 biclusters), was limited

to 40. After ignoring bicluster results with gene and sample sizes

less than 10, the biclusters for each of these methods were sorted in

decreasing order based on their column size (number of discovered

samples) and the top 40 were chosen for further study. This

filtering simplified the analysis by limiting the number of the

results and also improved the results by excluding the smaller size

biclusters which either highly overlap larger biclusters or their size

of samples or genes are too small to detect any reliable gene

expression patterns.

Results

The results for the sample-based and gene-based evaluations of

the 13 biclustering and 2 clustering methods on the multi-tissue

type data and the breast tumor data are illustrated in Figures 2A

and 2B, respectively. The biclustering and clustering methods

were chosen based on their availability, ease of installing and

execution, and also based on the fact that they were able to find at

least one (bi)cluster in our datasets. All values were converted to

percentage scale. Given that the most common evaluation method

for the biclustering algorithm is the GO-Sig and the main goal of

most biclustering algorithms is to identify gene-sets that are co-

expressed across a subset of samples rather than differentiating the

sample-types, in Figure 2A we have ordered the bicluster

algorithms based on their GO-Sig values. Moreover, to simplify

the comparison, we used the same order of biclusters in Figures 2A

and 2B. Here we first describe how the biclustering methods

performed in the multi-tissue type data and then describe how the

performance values changed in the breast tumor data.

Multi-tissue type data
For the heterogeneous data, three biclustering methods feature

sample differentiation values larger than 80%: Plaid (96.2%),

SAMBA (89.5%), and CTWC (86.5%), as shown in Figure 2A.

This indicates that these methods are able to distinguish the

particular sample types in the multi-tissue type data. The sample

differentiation values given by the hierarchical clustering (72.5%)

and k-means (59.5%), as well as those given by constant MSBE

and FABIA biclustering methods, were also relatively high

(,60%).

The GO enrichment analysis indicated that k-means (100%),

hierarchical (100%), and SAMBA (97.5%) generated a high

percentage of gene sets that were significantly annotated.

Additionally, a relatively high proportion of the OPSM (80%)

and Plaid (85%) biclustering results were also enriched. The

TiGER-Sig analysis also showed that Plaid (65%), QUBIC (50%),

additive MSBE (46.1%), hierarchical clustering (40%), and k-

means (40%) algorithms discover gene-sets significantly enriched

with genes specific to the studied samples.

Breast tumor data
The sample differentiation and the GO-Sig measurements of

the biclustering methods ISA, FABIA, FLOC, CC, and BiMine

were clearly improved for the more homogenous Breast tumor

data comparing to their performance for the heterogeneous multi-

tissue type data, see Figures 2A and 2B. In contrast, the GO-Sig of

the two conventional clustering methods (k-means and heirarch-

ical) were decreased. However, as opposed to the Hierarchical

clustering the k-means differentiated the two breast tumor subtypes

(ER+/PR+/HER2+ and ER2/PR2/HER22) and the healthy

breast samples accurately (99%). FABIA (93%), CTWC (91%),

and Plaid (89%) biclustering methods also differentiated the

various cancer sub-types very well. The 5 methods that discovered

gene-lists in which the highest percentage feature significant

common GO annotations are FLOC (85%), SAMBA (73%),

Hierarchical (70%), ISA (63%), and FABIA (55%). Moreover,

more than half of biclusters discovered by SAMBA (67%) and

Plaid (55%) significantly overlapped genes that were reported by

the CancerGenes to be related to cancer. When we executed

Bimax on the breast tumor data the algorithm did not converge in

a reasonable time (720 hours) hence we could not extract any

biclusters from the data. In addition to estimating the fraction of

the (bi)clusters that featured similar GO annotations, we also

studied the significantly common GO categories that were

extracted by GO analysis of the bicluster results. We found that

gene-lists discovered by the CTWC, FABIA, ISA, Plaid, SAMBA,

and hierarchical clustering were significantly enriched with GO

terms: cell cycle, M phase of the cell cycle, mitosis, cell division,

proliferation, and response to stress. Moreover, gene-lists discov-

ered by CTWC, FABIA, ISA, and SAMBA were annotated with
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immune response. A subset of these GO categories (i.e. cell cycle,

M phase and immune response) were also reported by Wang et al.

[8] as the results of GO analysis on biclusters extracted from breast

tumor data. The gene-lists discovered by other (bi)clustering

methods that we studied were annotated to a smaller subset of the

mentioned GO terms.

Running time
The running time of the 13 biclustering and 2 clustering

algorithms that worked successfully on our two micro-array data

are illustrated in Figure 3. The algorithms were executed on a

computer with Intel Quad CPU (Q9650), 15.6 GB memory and

operating system Ubuntu 10.04 LTS (the Lucid Lynx). However,

since we could not run the software package for QUBIC locally,

we used the online application on their servers. In ascending order

and based on the mean of the amount of time that took each

algorithm to extract (bi)clusters from the 2 data, the 8 methods

that ran in less than 10 minutes (600 secs) are: k-means clustering

method (3 secs for multi-tissue type data, and 0.8 secs for breast

tumour subtype data), MSBE-Additive (40 secs, 13 secs), MSBE-

Constant (44 secs, 13 secs), QUBIC (92 secs, 17 secs), ISA

(10 secs, 240 secs), SAMBA (99 secs, 180 secs), Plaid (212 secs,

78.8 secs).

Discussion

Clustering is a powerful approach to extract biologically

relevant information from the high-throughput data. While

clustering techniques, such as k-means or hierarchical clustering,

are able to find similarities of genes over all conditions (or

conditions over all genes), biclustering methods search for local

patterns that may feature important biological or medical

implications. Here we have compared 15 (bi)clustering methods

by analyzing different aspects, such as their approach and

parameter settings. Moreover, we have introduced several

evaluation measures for comparing the performance and applica-

tion of these biclustering methods.

Our results show that Plaid, SAMBA, CTWC, hierarchical

clustering, constant MSBE, and FABIA methods best distin-

guished the various sample-types in the multi-tissue type gene

expression matrix. Moreover, the GO enrichment analysis

indicated that the gene-sets generated by the k-means, SAMBA,

hierarchical clustering, OPSM, and Plaid methods were signifi-

cantly annotated with similar Gene Ontology categories when they

were applied on the multi-tissue type data. However, OPSM

discovered biclusters with relatively high mean overlap on their

genes (55%). This can bias the GO-Sig results in favoring OPSM

algorithm. The TiGER-Sig analysis on the multi-tissue data also

confirmed that the Plaid, QUBIC, additive MSBE, hierarchical

clustering, and k-means discovered gene-sets significantly enriched

with genes that are specific to our studied samples. The high

performance of the one-way clustering methods on the multi-tissue

data was expected since the heterogeneity of the samples can favor

methods that extract non-overlapping sets of genes or samples

from the data (e.g. k-means and hierarchical clustering). On breast

cancer data, k-means best differentiated the two breast tumor

subtypes (ER+/PR+/HER2+ and ER2/PR2/HER22) and the

healthy breast samples. FABIA, CTWC, and Plaid differentiated

the samples almost as good as the k-means. The gene-sets

generated by FLOC method were also most frequently enriched

with similar GO categories in the breast tumor data analysis.

However, similar to OPSM in multi-tissue type data analysis, we

believe that the high GO-Sig of this method is biased by the high

mean overlap (55%) of the genes discovered by FLOC. A

considerable fraction of the results generated by SAMBA,

hierarchical and ISA were also significantly annotated with similar

Gene Ontology categories. Taken together, we found that no

single method performs the best in all measurements and on both

data.

When comparing the performance of the (bi)clustering methods

on the two data sets of our study we realized that in the more

homogeneous breast tumor data the GO-sig of the two conven-

tional clustering methods (and the sample differentiation of the

hierarchical clustering) have decreased. Also, when applied on the

breast tumor data set (with more homogeneous samples compar-

ing to the multi-tissue type data) all benchmarks for CC, FLOC,

and BiMine (and sample-differentiation and GO-Sig of FABIA)

increased while all benchmarks for the Qubic, MSBE-A, MSBE-C

and Plaid decreased. It is worth mentioning that, except FABIA,

all the biclusters with improved performance (i.e., CC, FLOC,

BiMine) were members of the CMB (Correlation Maximization

Biclusters) class. FABIA seeks for Variance Minimized Biclusters

although classified as PGM because of its use of probabilistic and

generative models. The methods with declined performances were

of different classes: Qubic, MSBE-A and MSBE-C methods are

VMB (Variance Minimization biclusters); The Plaid model is

PGM (Probabilistic and Generative Methods); and OPSM is

CMB.

Our results are in line with other biclustering comparison

studies. For instance, Hochreiter et al. [21] developed the method

FABIA and used the Jaccard index as the similarity measurement

in combination with the Munkres algorithm to estimate the sample

differentiation. They used three data sets for testing and their

results are similar to ours: in multi-tissue type data set, Plaid not

only distinguishes sample types better than FABIA, but differen-

tiates the samples better than all their studied biclustering

methods. Moreover, when they run the algorithms on breast

tumor data the situation reverses and FABIA performs better than

Plaid. All these were also observed in our results. In another study,

K. Eren et al. [25] reported that when running a collection of

biclustering methods on a data set constructed of rat peripheral

and brain regions samples, a high fraction of the biclusters

generated by the Plaid method and a low percentage of those

generated by the Bimax seem to feature similar GO annotations

compared to other available methods.This result is in line with our

multi-tissue type data analysis. Overall, Plaid performed robustly

when tested on Breast tumour (GDS3716), Human skeletal

muscles GDS3715, C blastomere mutant embryos (GDS1319),

Rat lung SM exposure model GDS1027, Rat peripheral and brain

regions GDS589 studied by K. Eren et al.; and performed equally

good when executed on the multi-tissue data and breast tumour

samples studied by S. Hochreiter et al. As mentioned previously,

Plaid together with SAMBA also performed acceptable in the

multi-tissue and breast tumour samples that we studied.

To conclude, taking into consideration our analysis and the

results reported by K. Eren et al. and S. Hochreiter et al. as well as

the limitations and pitfalls of the evaluation methods, biclustering

methods such as Plaid and SAMBA are useful for extracting

relevant subsets of genes and samples from microarray experi-

ments as long as the samples are well defined and annotated, the

contamination of the samples is limited, and the samples are well

replicated. Moreover, our results indicate that biclustering

algorithms such as Plaid and SAMBA find more relevant gene-

sets comparing to the clustering algorithms when the samples are

not highly heterogeneous. This suggests that in studies where

different samples feature common active biological processes and

genes are also active in several biological processes (e.g. cancer
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studies), biclustering algorithms could discover more relevant

genes comparing to one-way clustering methods.
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6. Nikkilä J, Törönen P, Kaski S, Venna J, Castrén E, et al. (2002) Analysis and

visualization of gene expression data using self-organizing maps. Neural

networks 15: 953–966.

7. Cheng Y, Church G (2000) Biclustering of expression data. In: Proc Int Conf

Intell Syst Mol Biol. volume 8, pp. 93–103.

8. Wang YK, Print CG, Crampin EJ (2013) Biclustering reveals breast cancer

tumour subgroups with common clinical features and improves prediction of

disease recurrence. BMC genomics 14: 102.

9. Reiss D, Baliga N, Bonneau R (2006) Integrated biclustering of heterogeneous

genome-wide datasets for the inference of global regulatory networks. BMC

bioinformatics 7: 280–302.

10. Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data

analysis: A survey. IEEE/ACM Transactions on Computational Biology and

Bioinformatics 1: 24–45.

11. Prelic A, Bleuler S, Zimmermann P, Wille A, Buhlmann P, et al. (2006) A

systematic comparison and evaluation of biclustering methods for gene

expression data. Bioinformatics 22: 1122–1129.

12. Sheng Q, Moreau Y, De Moor B (2003) Biclustering microarray data by Gibbs

sampling. Bioinformatics 19.

13. Tanay A, Sharan R, Shamir R (2002) Discovering statistically significant

biclusters in gene expression data. Bioinformatics 18: S136–S144.

14. Yang J, Wang H, Wang W, Yu P (2005) An improved biclustering method for

analyzing gene expression profiles. International Journal on Artificial Intelli-

gence Tools 14: 771–789.

15. Murali T, Kasif S (2002) Extracting conserved gene expression motifs from gene

expression data. In: Pacific Symposium on Biocomputing 2003: Kauai, Hawaii,

3–7 January 2003. World Scientific Pub Co Inc, pp. 77–88.

16. Hartigan J (1972) Direct clustering of a data matrix. Journal of the American

Statistical Association : 123–129.

17. Wang H, Wang W, Yang J, Yu P (2002) Clustering by pattern similarity in large

data sets. In: Proceedings of the 2002 ACM SIGMOD international conference

on Management of data. ACM, pp. 394–405.

18. Yoon S, Nardini C, Benini L, De Micheli G (2005) Discovering coherent

biclusters from gene expression data using zero-suppressed binary decision

diagrams. IEEE/ACM Transactions on Computational Biology and Bioinfor-

matics : 339–354.

19. Getz G, Levine E, Domany E (2000) Coupled two-way clustering analysis of

gene microarray data. Proceedings of the National Academy of Sciences of the

United States of America 97: 12079–12084.

20. Tang C, Zhang L, Zhang A, Ramanathan M (2002) Interrelated two-way

clustering: an unsupervised approach for gene expression data analysis. In:

Bioinformatics and Bioengineering Conference, 2001. Proceedings of the IEEE

2nd International Symposium on. IEEE, pp. 41–48.

21. Hochreiter S, Bodenhofer U, Heusel M, Mayr A, Mitterecker A, et al. (2010)

FABIA: factor analysis for bicluster acquisition. Bioinformatics 26: 1520–1527.

22. den Bulcke TV (2009) Robust algorithms for inferring regulatory networks based

on gene expression measurements and biological prior information. Ph.D. thesis,

Katholieke Universiteit Leuven.

23. Kilpinen S, Autio R, Ojala K, Iljin K, Bucher E, et al. (2008) Systematic

bioinformatic analysis of expression levels of 17,330 human genes across 9,783

samples from 175 types of healthy and pathological tissues. Genome biology 9:

R139.

24. Autio R, Kilpinen S, Saarela M, Kallioniemi O, Hautaniemi S, et al. (2009)

Comparison of affymetrix data normalization methods using 6,926 experiments

across five array generations. BMC bioinformatics 10: S24.
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