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Abstract
One of the most important challenges in agriculture is to determine the effectiveness and

environmental impact of certain farming practices. The aim of present study was to deter-

mine and compare the taxonomic composition of the microbiomes established in soil follow-

ing long-term exposure (14 years) to a conventional and organic farming systems (CFS and

OFS accordingly). Soil from unclared forest next to the fields was used as a control. The

analysis was based on RT-PCR and pyrosequencing of 16S rRNA genes of bacteria and

archaea. The number of bacteria was significantly lower in CFS than in OFS and woodland.

The highest amount of archaea was detected in woodland, whereas the amounts in CFS

and OFS were lower and similar. The most common phyla in the soil microbial communities

analyzed were Proteobacteria (57.9%), Acidobacteria (16.1%), Actinobacteria (7.9%), Ver-
rucomicrobia (2.0%), Bacteroidetes (2.7%) and Firmicutes (4.8%). Woodland soil differed

from croplands in the taxonomic composition of microbial phyla. Croplands were enriched

with Proteobacteria (mainly the genus Pseudomonas), while Acidobacteria were detected

almost exclusively in woodland soil. The most pronounced differences between the CFS

and OFS microbiomes were found within the genus Pseudomonas, which significantly

(p<0,05) increased its number in CFS soil compared to OFS. Other differences in micro-

biomes of cropping systems concerned minor taxa. A higher relative abundance of bacteria

belonging to the familiesOxalobacteriaceae, Koribacteriaceae, Nakamurellaceae and gen-

era Ralstonia, Paenibacillus and Pedobacter was found in CFS as compared with OFS.

On the other hand, microbiomes of OFS were enriched with proteobacteria of the family

Comamonadaceae (genera Hylemonella) and Hyphomicrobiaceae, actinobacteria from the

familyMicrococcaceae, and bacteria of the genera Geobacter,Methylotenera, Rhizobium
(mainly Rhizobium leguminosarum) and Clostridium. Thus, the fields under OFS and CFS

did not differ greatly for the composition of the microbiome. These results, which were also
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confirmed by cluster analysis, indicated that microbial communities in the field soil do not

necessarily differ largely between conventional and organic farming systems.

Introduction
Soil microorganisms can serve as bioindicators of anthropogenic stress experienced by the soil
during agricultural use [1]. For a long period of time, biologically valuable soil microorganisms
have been studied by isolation and cultivation in laboratory [2]. The next-generation sequenc-
ing technologies have intensified exploration of soil microbial diversity and allowed to identify
biological indicators, not only among the microbes that can be cultured in vitro, but also
among the bacteria and archaea which cannot be cultured [3].

One of the most important challenges of modern agriculture is to determine the effective-
ness and environmental impact of systems based on organic or conventional farming (OFS and
CFS respectively). Organic farming is considered ecologically friendly and to have less damag-
ing effects on the ecosystem, whereas conventional agriculture is thought to cause significant
changes in biocenoses due to the intensive inputs of synthetic fertilizers [4,5,6]. Productivity in
CFS is generally higher than in OFS, but the negative impact on the environment associated
with the use of a particular type of farming system is debated [7,8,9].

The DOK (short for the German words dynamic, organic and conventional, respectively)
experiment is one of the most comprehensive studies on the long-term effects of diverse agri-
cultural techniques on the ecosystem [10]. Studying the soil microbial diversity by pyrosequen-
cing and analysis of the taxonomic markers for bacteria and fungi Hartmann et al. (2014)
found that organic fertilizer amendments had a positive effect on the composition of microbial
communities and on the α-diversity parameters. Organic matter inputs increased the richness
and decreased evenness indices [10]. This effect has been found also in other studies [11,12].
On the other hand, significant increase in richness can lead to positive or neutral effects on
evenness in systems with organic fertilizer amendment [13,14,15]. The fluctuations in α-diver-
sity parameters are often explained by predominance of the copiotrophic microorganisms,
whose growth is stimulated by organic fertilizers [10,16]. But this statement is equitable only in
the short-time experiments, particularly it was shown that copiotrophic bacteria are temporar-
ily stimulated by the addition of organic fertilizers to soil. In the long-run, under stable condi-
tions, the ratio of oligotrophic to copiotrophic bacteria may be greater in OFS than in CFS [17].

Indeed, taxonomic analyses indicate at the phylum level that Proteobacteria and Firmicutes
tend to dominate in the organic farming systems, while Actinobacteria, and to a lesser extent
Acidobacteria, predominate in conventionally managed croplands and natural environments
[18,19]. High abundance of the plant growth-promoting bacteria (PGPB), mainly the genera
Rhizobium, Bradyrhizobium,Mesorhizobium, Burkholderia, Stenotrophomonas, Pseudomonas,
Sphingomonas and Rhodoplanes, has been documented among the proteobacteria in OFS
[13,16,18,2]. Firmicutes in croplands are represented by bacteria capable of degrading various
complex organic materials and include, e.g., the genera Bacillus, Clostridium, Epulopiscium,
Paenibacillus and Solibacillus [10]. These data obtained by the modern molecular techniques
are partially consistent with the data obtained using bacterial cultivation techniques [20].

Microbial dynamics associated with certain land-use practices must be considered together
with the spatial and temporal variations in microbial composition, occurring in soil as a result
of plant growth and seasonal changes. Spatial fluctuations in soil microbial communities derive
from the unequal distribution of the organic compounds within individual soil aggregates or
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horizons [21,22,23] and on the different distances from the plant roots [24,25]. As it was
shown by van Diepeningen and co-workers the composition of soil microbial community oscil-
lated, depending on the distance remaining from the root. These wavelike patterns were
detected both for oligotrophic and copiotrophic bacteria both in OFS and CFS soils but were
significantly stronger in conventional croplands [24].

One of the main advantages of employing the pyrosequencing techniques in biodiversity
studies is the improvement of knowledge about the impact of agriculture on unculturable
microorganisms. The most pronounced effect on soil microbiome revealed in the DOK experi-
ment was the impact of organic fertilizers to the abundance of Acidobacteria in soil. In vitro
cultivation methods for this bacterial phylum are lacking for most of its members, except in
rare attempts to define the role of these bacteria in the agricultural systems managed with
organic fertilizers amendments [26]. Among acidobacteria, genera Cand. Solibacter and Cand.
Koribacter have been found exclusively associate with CFS, whereas Chloracidobacteria and the
RB25 group have been found associated with OFS in previous studies [10].

The aim of this study was to compare long-term impacts of OFS and CFS on microbial
diversity in soil. In the experimental station Karila (Mikkeli, Finland) where OFS and CFS have
been carried out in adjacent fields for 14 years. The aim was to compare the taxonomic struc-
ture of microbiomes in OFS and CFS and to identify microbes specifically inhabiting these
ecosystems.

Materials and Methods

Soil sampling
Field experiments were carried out under permission of the Natural Resources Institute Fin-
land (formerly MTT AgriFood Research Finland). The field studies did not involve endangered
or protected species.

Sampling was done at once from CFS and OFS fields in the experimental station Karila
(Mikkeli, Finland) during the season of active plant growth in July 2011. The fields had been
cleared from pine-spruce forest in the beginning of 20th century and therefore soil samples
were collected from the pine-spruce forest next to the fields included for comparison (Table 1).
The soil type was a coarser fine sand in both sampling fields. According to US soil taxonomy
soil was sandy Aquic Haplocryod. Soil samples were taken from the top soil layer (10 cm)
using soil drill (Ø 1 cm).

At each sampling site three circles (Ø 1 m) were marked and 10 soil subsamples were taken
from inside each circle and combined. Hence, three samples (replicates) were obtained for
analysis from each type of soil (woodland, CFS and OFS). The distance between the sampling
sites was 45 m in average. All samples were immediately transported to the laboratory and

Table 1. Summary of the cultivation history of the fields sampled in the experimental station “Karila”
(Mikkeli, Finland). For details, see S1 Table.

Year CFS OFS

1928 The forest was cut down

1997–2010 Application of the CFS, regular
input of mineral fertilizers

Application of the OFS, regular organic fertilization with
cow slurry and green manure

1997–2006 Sowing of spring cereals, black
currant (in one part of the field)

Crop rotation in 4 steps (1997–2010): 1)spring cereal
with ley 2) 3 years of clover-grass ley 3) spring cereal
4)vetch-oats2007 Bare fallow, glyphosate was used

2008–2010 Ley with oats

doi:10.1371/journal.pone.0145072.t001
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stored at -70°C. Coordinates of the sampling sites were the following: woodland soil sample
1 (N61°40'32.46", E27°13'53.70"), 2 (N61°40'32.04", E27°13'55.80") and 3 (N61°40'31.86", E27°
13'57.54"); OFS soil sample 1 (N61°40'29.64", E27°13'40.44"), 2 (N61°40'30.00", E27°13'44.40")
and 3 (N61°40'30.42", E27°13'48.96"); and CFS soil sample 1 (N61°40'38.22", E27°13'50.04"),
2 (N61°40'37.50", E27°13'51.24") and 3 (N61°40'36.30", E27°13'53.16").

The cultivation history of the fields in Karila is presented in Table 1. Details of the cultiva-
tion practices during the last three growing seasons prior to sampling are provided in S1 Table.
At the time of sample collection timothy grass (Phleum pratense) and meadow fescue (Festuca
pratensis) were grown as a mixture in both sampled fields (OFS and CFS). Besides analysis of
the microbiome, the soil samples from OFS, CFS and woodland were subjected to agrochemical
analyses (Table 2).

DNA extraction
DNA was extracted from 0.2 g of soil using PowerSoil DNA Isolation Kit (Mobio Laboratories,
Solana Beach, CA, USA), which included a bead-beating step, according to the manufacturer’s
specifications. Homogenization of the samples was performed using FatsPrep (MP Biomedi-
cals, Santa Ana, CA, USA). The purity and quantity of DNA were tested by electrophoresis in
0.5× TAE buffer on 1% agarose. DNA concentrations were measured at 260 nm using
SPECTROStar Nano (BMG LABTECH, Ortenberg, Germany). The average DNA yield was
2–5 μg DNA with the concentration of 10–50 ng/μl.

Quantitative PCR analyses
Relative abundances of bacterial and fungal small subunit rRNA gene copies were analyzed by
quantitative PCR (qPCR) (reaction volume 25 μl) using iQ™ SYBR Green Supermix (BIO RAD,
Hercules, USA) and 10 ng of sample DNA. For bacteria, the forward primer Eub338 and
reverse primer Eub518 were used [27]. The forward primer arc915 and the reverse primer
arc1059r were used for archaea [28]. To estimate bacterial and archaeal small-subunit rRNA
gene abundances, standard curves were generated using a 10-fold serial dilution of a plasmid
containing a full-length copy of 16S rRNA gene belonging either to the Escherichia coli or
FG-07 strain of Halobacterium salinarum (courtesy of G. Jurgens, University of Helsinki).

All qPCR reactions were run in triplicate. The reaction was carried out in iCycler (BIO
RAD, Hercules, USA) using the following: 94°C for 15 min, followed by 40 cycles of 94°C
for 30 s, 50°C for 30 s and 72°C for 30 s. Melting curve analyses were done to verify that the
amplified products were of the expected size. Fungal and bacterial gene copy numbers were

Table 2. Agrochemical properties of soil samples.

CFS OFS WOOD

Ca (mg/kg) 1247,33±129,90 1087,00±86,31 242,33±23,13

P (mg/kg) 14,70±1,79 10,50±1,22 3,33±0,26

K (mg/kg) 135,73±17,25 69,76±8,92 72,70±9,67

Mg (mg/kg) 146,67±28,18 117,33±11,21 45,13±5,07

pH 6,67±0,09 5,77±0,07 4,43±0,03

Conductivity 0,83±0,07 0,63±0,15 0,37±0,03

Total N 0,27±0,02 0,34±0,03 0,21±0,01

Total C 4,80±0,05 5,49±0,09 5,63±0,12

CFS–conventional farming system, OFS–organic farming system, WOOD–woodland.

doi:10.1371/journal.pone.0145072.t002
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estimated using a regression equation for each assay relating the cycle threshold (Ct) value to
the known number of copies in the standards.

Statistical analysis of the qPCR data was carried out using one-way ANOVA in
STATISTICA10 Enterprise (www.statsoft.com). Statistical significance was tested by Fischer’s
least significant difference (LSD) and Bonferroni adjusted p-values.

Bar-coded pyrosequencing of bacterial and archaeal communities
The purified DNA templates were amplified with universal multiplex primers F515 5’-
GTGCCAGCMGCCGCGGTAA-3’ and R806 5’-GGACTACVSGGGTATCTAAT-3’ [29] tar-
geting the variable region V4 of bacterial and archaeal 16S rRNA genes. Each multiplex primer
contained the adapter, 4-bp key (TCAG), 10-bp barcode and primer sequences. The expected
length of the amplification product was 400 bp. Purification, pooling and pyrosequencing of
the amplicons were performed with reagents according to manufacturer’s instructions (Roche,
Branford, USA). Pyrosequencing was carried out using GS Junior system (Roche).

Bioinformatics of the pyrosequencing-derived dataset
The raw sequences were processed using QIIME ver. 1.8.0 [30]. To reduce sequencing errors,
the multiplexed reads were first filtered for quality and grouped according to barcode
sequences. Sequences were omitted from the analysis if they were less than 200 bp, had a qual-
ity score less than 25, contained uncorrectable barcodes, primers, ambiguous characters or a
homopolymer length equal or greater than 8 bp. All non-bacterial ribosomal sequences and
chimeras were also removed from the database. In total, 17 311 sequences were obtained with
an average of 1923 sequences per library. The dataset was subjected to the normalization proce-
dure resulting in 1100 sequences per sample. The minimum, median and maximum lengths of
sequences were 200, 355 and 313 bp, respectively. Similar sequences were clustered into opera-
tional taxonomic units (OTUs) with a minimum identity of 97% using de novo and closed refer-
ence algorithms. A representative set of sequences was chosen by selecting the most abundant
sequence from each OTU. Representative sequences from each OTU were subjected to RDP
naïve Bayesian rRNA Classifier [31] with a confidence level of 80% and aligned using PyNast
[32] and Greengenes database [33]. Aligned sequences were used to build a distance matrix
with a distance threshold of 0.1 and phylogenetic tree necessary for downstream analysis.
Sequence data were archived in SRA database with accession SUB473223.

To compare microbial communities the alpha and beta diversity analyses were performed.
To estimate alpha diversity, the indices for richness (observed species, ChaoI) and evenness
(PD_whole tree, Shannon evenness, Simpson index) were calculated. The t-test was performed
to verify the observed differences. For beta diversity the weighted Unifrac metrics [34] was
used to calculate the amount of dissimilarity (distance) between the compared bacterial com-
munities. The results were presented in PCoA analysis using QIIME ver. 1.8.0 [30]. All esti-
mates were measured for the normalized data (normalization was carried out up to the
smallest number of sequences present in the sample).

The multiple matrix regression based on Mantel permutations [35] implemented in the
phytools R package (http://www.phytools.org) was conducted to reveal the relationships
between community composition and different agrochemical properties of soil. To reduce fac-
tor space dimensionality (by removing redundant variables) we performed multiple pairwise
tests for Spearman rank-order correlation. Significant dependency observed between pH and
P allowed us to remove the latter from our feature set.

The abundances of OTUs were compared between samples by calculating the median rela-
tive change values for all groups of triplicates. A positive median indicated an increase in
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abundance, whereas a negative median was taken as evidence for decline of abundance. A basic
permutation test was used to infer significance, whereas a jackknife-like resampling approach
was applied to test the stability of median estimates.

Results

Land use effects on edaphic soil properties
The agrochemical properties of cropland soils managed according to the two different farming
systems were rather similar, but differed from the woodland soil despite of the similar soil type
(Table 2). The woodland soil had the highest content of organic matter and C/N index, whereas
the lowest C/N value was observed in CFS. Soil pH was lowest in the woodland. As for the
main biogenic elements, woodland soil was rich in sulfur and manganese, while the croplands
were higher in magnesium, calcium and phosphorus (Table 2).

Relative quantities of bacteria and archaea estimated by qPCR
The amounts of the bacterial and archaeal biomass estimated by qPCR were expressed as the
copy number of rRNA operons per gram of soil and used for comparing the relative abun-
dances of microorganisms in the soil samples. The copy number of ribosomal operons in the
genomes of microorganisms varies and is, in average, 4.09 for bacteria and 1.76 for archaea
according to the rrnDB database [36]. The experimental data on the average copy numbers of
E. coli andH. salinarum rRNA operons in soil samples were used to calculate the abundance of
bacterial and archaeal communities, respectively. The average number of bacteria in soil was
8.37·108 for CFS, 1.56·109 for OFS and 2.19·109 for woodland (Fig 1). Archaea were about three
folds of magnitude less abundant and their average numbers were 8.15·105 for CFS, 2.41·106

for OFS, and 1.37·107 for woodland (Fig 1). These results showed that the population densities
of bacteria and archaea were lowest in CFS and highest in woodland (p<0.05). This tendency
was particularly noticeable for archaea, whose numbers in the woodland were 2 orders of mag-
nitude higher than in the croplands. The number of bacteria in OFS was significantly higher
than in CFS (p< 0.05), whereas the total counts of archaea did not vary between CFS and OFS
(Fig 1).

α-biodiversity of the soil microbial communities
The biodiversity within each individual sample was estimated using richness (number of
observed species, Chao1) and evenness (Shannon evenness, Simpson) indices (Table 3).

Woodland samples had the highest percent of coverage (the number of OTUs to chao1 ratio
expressed as a percentage) per library (82.7% in average). The coverage values for OFS and
CFS samples were 65.1% and 65.8%, respectively. The observed species richness and Simpson
index of dominance were not significantly different between the samples (Table 3).

Microbial community composition
At the phylum level there were 22 major bacterial taxa present in most of the soils Proteobac-
teria (57.9% in average), Acidobacteria (16,1%), Actinobacteria (7,9%), Verrucomicrobia
(2,0%), Bacteroidetes (2,7%) and Firmicutes (4,8%). The phyla with relative abundance less
than 1% were considered rare. They included Crenarchaeota, Armatimonadetes, BHI80-139,
Chlamydiae, Elusimicrobia, Fibrobacteres, GAL15, Nitrospirae, TM6, TM7 and WPS-2. Some
phyla, such as Fibrobacteres, BHI80-139, TM6 and TM7, were found only in croplands. The
portion of organisms with unknown taxonomy ranged from 0.6 to 2.1% and was the highest in
CFS.

Soil Prokaryotic Communities of Farming Systems
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At the phylum level, only minor differences were found between the bacterial communities
of CFS and OFS, whereas the differences between woodland soil and croplands were more
apparent (Fig 2). Proteobacteria were among the most abundant phyla in croplands, whereas
Acidobacteria dominated in the woodland soil (Fig 2). In general, different microbial taxa in
woodland soil were more evenly represented, including Firmicutes, Actinobacteria, Nitrospira,
Gemmatimonadetes and Chloroflexi.

The microbiomes of croplands and woodland soils differed markedly in the composition of
Proteobacteria (Fig 2). Woodland soil was dominated by Alphaproteobacteria and Gammapro-
teobacteria, while in croplands Betaproteobacteria and Gammaproteobacteria were substituting
Alphaproteobacteria. Bacteria from the families Pseudomonadaceae and Enterobacteriaceae
accounted for more than 80% of the gammaproteobacteria. The family Pseudomonadaceae was
almost exclusively represented by the genus Pseudomonas (Fig 3). The abundance of bacteria
of this genus varied between the croplands (16.0% in CFS and 13.2% in OFS). In the woodland
soil the number of pseudomonads was only 5.3%. On the other hand, the proteobacterial family
Sinobacteriaceae counted for more than 7.2% in the woodland soil, as compared with only
1.7% in OFS and CFS. Similarly, betaproteobacteria of the genus Burkholderia and alphapro-
teobacteria of the family Bradyrhizobiaceae and the genus Rhodoplanes were substantially
more common in the woodland soil than in cropland soils (Fig 4). Among the most notable dif-
ferences in the microbial taxonomic composition between woodland and croplands was the
much higher prevalence of the phylum Acidobacteria in woodland, in particular, bacteria of the

Fig 1. The number of bacteria and archaea per gram of soil, estimated by quantitative PCR. The raw
data on the number of 16S rRNA genes per gram of soil, calibrated to the E. coli andH. salinarum 16S rDNA
copy number, were translated to the number of prokaryotic cells per gram of soil by use of the information on
the average number of 16S rRNA copies in bacterial and archaeal genomes deposited in rrnDB database
[36]. Error bars indicate standard deviation (n = 3).

doi:10.1371/journal.pone.0145072.g001

Table 3. Alpha-diversity parameters of soil microbiomes.

Sample ID Farming systema

CFS OFS WOOD

PD_whole_tree 30,25±0,87 32,39±0,87 22,24±0,57

Shannon 6,58±0,19 6,83±0,19 6,72±0,08

Simpson 0,96±0,01 0,97±0,01 0,98±0

Chao1b 406,53±39,8 450,97±39,8 264,57±9,05

Number of OTUs 267,33±11,67 293,67±11,67 218,67±3,71

Shannon evennessb 0,82±0,02 0,83±0,02 0,86±0,01

a CFS, conventional farming system; OFS, organic farming system; WOOD, woodland.
bThe alpha-diversity parameters indicated significant differences (p < 0,05).

doi:10.1371/journal.pone.0145072.t003

Soil Prokaryotic Communities of Farming Systems

PLOSONE | DOI:10.1371/journal.pone.0145072 December 18, 2015 7 / 16



family Koribacteraceae (mainly Candidatus Koribacter, Figs 3 and 4), the order Ellin6513 and
Solibacterales (Fig 4).

The main bacterial genera found in soil microbiomes are shown in Fig 3. The most pro-
nounced differences between the CFS and OFS microbiomes were within the genus Pseudomo-
nas, which were significantly (p<0,05) more abundant in CFS soil, as compared with OFS.
Other statistically significant (p<0,05) differences in the taxonomic composition between CFS
and OFS microbiomes were minor and found among the bacterial genera with frequencies
rarely exceeding 1% of all taxa. Compared with OFS, CFS had higher relative abundances of
the actinobacteria belonging to the family Nakamurellaceae, acidobacteria of the family

Fig 2. Abundance ratios of the most common bacterial phyla in the soil in organic (OFS) vs.
conventional (CFS) farming systems, and the woodland vs. farmland systems (wood vs. FS; FS
combines OFS and CFS samples). Circle size indicates the average abundance of the phylum.

doi:10.1371/journal.pone.0145072.g002

Fig 3. Heatmap comparison of the microbiomes in croplands (CFS and OFS) and the woodland. Colors
mark the average relative abundance (in number of sequences per sample) of each bacterial genus within
the sample. Only identified genera with total counts exceeding 5 sequences per library are presented.

doi:10.1371/journal.pone.0145072.g003
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Koribacteraceae, proteobacteria of the groups SC-I-84, Ellin6067, Oxalobacteriaceae (particu-
larly the genus Janthinobacterium) and Ralstonia and bacteria, belonging to the genera Paeni-
bacillus and Pedobacter. Microbial community in OFS was enriched with proteobacteria of the

Fig 4. OTUs analyzed in a bootstrappedmaximum likelihood phylogenetic tree and their abundance presented in a table. Pairwise tests indicated
either an increase (+) or a decrease (–) in abundance between samples of the organic farming system (OFS), the conventional farming system (CFS) and the
woodland (Wood). Blank cells indicate insufficient data. The significance of difference was assessed using a permutation test, INS indicates insignificant
difference.

doi:10.1371/journal.pone.0145072.g004
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families Comamonadaceae (in particular bacteria of the genera Hylemonella), Sinobacteraceae,
Geobacteraceae (Geobacter sp.) andHyphomicrobiaceae, actinobacteria from the familyMicro-
coccaceae and bacteria from the generaMethylotenera and Clostridium (Fig 4). In OFS samples,
the relative densities of the alphaproteobacterial population were found to be increased, which
(according to the overall genera composition presented on Fig 3) can be entirely associated
with the genus Rhizobium (mainly Rhizobium leguminosarum).

β-diversity analysis
The Unifrac distance matrices were tested to determine if land use had a significant effect on
the bacterial and archaeal communities. According to the regression analysis (Table 4),
unweighted unifrac distances could be quite precisely predicted based on the data on Ca, Mg,
pH and total N in the soil (model R squared ~ 0.95, p-level< 0.0005).

The community composition analysis as well as the regression results were summarized in
PCoA analysis. The croplands formed a separate group clearly separated from the woodland
soil (Fig 5). CFS and OFS microbiomes were closer to each other, but there was a trend suggest-
ing a closer relationship of OFS than CFS with woodland soils in the composition of micro-
biome, as supported by the high percent of explained variation (76,51%) on the corresponding
axis.

Table 4. Multiple matrix regression analysis results of the main agrochemical properties of investigated soils.

Intercept Ca K Mg pH Conductivity Total C Total N

Coefficientsa

6,06E-01 4,34E-05 -5,43E-06 2,07E-04 4,90E-02 2,70E-02 -2,51E-02 9,37E-02

p-levelsb

0,00042 0,02491 0,95206 0,00491 0,0022 0,13100 0,17583 0,04021

aModel R squared = 0.9488065.
bModel p-level = 0.0004200042.

doi:10.1371/journal.pone.0145072.t004

Fig 5. PCoA analysis performed for the weighted unifrac distances of soil microbiomes.Wood, woodland soil; CFS, conventional farming system;
OFS, organic farming system. The axes show the percentage of explained variation in unifrac distances.

doi:10.1371/journal.pone.0145072.g005
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Discussion
The highest C/N value and Shannon evenness parameter were observed in the woodland soil as
compared with cropland soils, suggesting a more stable microbial community in the woodland
than cropland soil. Cropland microbiomes seemed less stable and represented transitional type
of the microbial communities, including a few dominant groups [16]. This conclusion is sup-
ported by the parameters of α-diversity, which were generally higher in the woodland. The
overall community composition, e.g., the presence of physiologically diverse microbiomes in
woodland differed from croplands containing mainly copiotrophic bacteria. Thus, regardless
of the OFS or CFS practiced, microbiomes in cropland systems were less stable and likely
dependent on the external flow of organic matter and macronutrients.

We didn’t find any noticeable differences in α-diversity parameters between OFS and CFS
samples, despite of the different farming practices. This result contradicts with the data
obtained in a few previous studies reporting on increased richness and decreased evenness
parameters of soil microbiomes in OFS [10,11,12].

The results of quantitative PCR revealed a higher total bacterial and archaeal abundance in
woodland and OFS soil compared to relatively low amount of microorganisms in CFS soil.
These findings may correlate with the changes in the pore-space structure of the soil. Cropland
soils usually have big pores with high connectivity, favoring the growth of fungi, whereas
woodlands tend to have small isolated pores, creating favorable conditions for development of
bacteria [37]. The increased number of bacteria in OFS soil may be also be taken as indication
of the inputs of organic fertilizers, which carry not only the various types of organic com-
pounds, but also the indigenous bacteria of manure that may remain in soil for a certain period
of time.

Comparison of woodland and cropland soil microbiomes revealed significant differences in
the composition of soil bacterial taxa at the phylum level. Woodland microbiome was domi-
nated by acidobacteria including bacteria belonging to the groups Koribacteraceae, Ellin6513
and Solibacteraceae, considered as oligotrophs in some reports [38]. Increasing numbers of
acidobacteria in woodland are likely associated with low pH, as proposed in recent studies
[16,19]. Other groups of oligotrophic bacteria were also abundant in woodlands including
hemo- and phototrophic bacteria from the groups Rhodoplanes, Nitrospira, Rhodospirillaceae
and Bradyrhizobiaceae [2]. They are known to fix atmospheric nitrogen, which is an advantage
in woodland soil due to the smaller content of available forms of nitrogen, as compared with
cropland soils [39]. The presence of oligotrophic bacteria, especially those contributing to auto-
trophic groups, may indicate high levels of functional diversity leading to diversification of eco-
logical niches. Among other oligotrophic soil bacteria the significant increase in the amount of
the genus Burkholderia was detected. The representatives of this genus are known to degrade
recalcitrant organic matter in soil.

In contrast, the cropland soils were dominated by copiotrophic bacteria from the phyla Pro-
teobacteria, including the orders Pseudomonadales and Enterobacteriales. These bacteria are
typical for agroecosystems due to regular mixing of soil and the introduction of nutrients,
as well as specific nutritional substrates, such as manure, silage and xenobiotics, whose biode-
gradability is well described for the Pseudomonas group [40]. Predominance of the bacteria
belonging to Pseudomonas in croplands has been described in several papers using classical
microbiological approaches, as well as the new-generation sequencing methods [16,41]. Pseu-
domonads might be used as the primary bioindicators of the ecological status of the soil due to
several reasons: a) they are clearly responding to the changes in the edaphic characteristics of
the soil, b) they have high population sizes, and c) they can be detected using in vitro cultiva-
tion methods and modern molecular methods [16,41,42].
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Among the most pronounced differences in the composition of soil microbiomes of crop-
lands soils was the significant increase in the relative amounts of pseudomonads in CFS soils as
compared with OFS. Thus, it seems possible to use pseudomonad’s diversity data to distinguish
not only woodland and cropland soils but CFS and OFS soils as well. These results are sup-
ported by other studies, where it was shown that fluorescent pseudomonads are suppressed in
OFS soils [43,44].

Other fluctuations in the certain bacterial groups inhabiting two types of croplands con-
cerned the bacterial genera, whose relative amounts rarely exceeded 1% of the total bacterial
counts. Under the conditions of CFS the proportion of bacteria capable of biodegradation of
various xenobiotics increased, including the genera Ralstonia, Pseudomonas, Paenibacillus and
Pedobacter. Another significant finding was the statistically supported increase in the relative
abundance of the bacteria from the family Koribacteriaceae in CFS compared to OFS, which
agrees with results of Hartmann et al. [10]. Thus, we can speculate on the valuable ecological
properties of these bacteria in cropland system supplied with mineral fertilizers.

OFS microbiome was dominated by several groups of bacteria, whose appearance in the soil
may be caused by the imputes of the spectrum of organic compounds. Particularly this may be
concerned as a reason for the increase rates of the bacteria, belonging to the generaMethylote-
nera and Clostridium. Methylotrophic bacteria from the generaMethylotenera are capable for
the utilizing of the methane and its derivatives that accumulate in soil as a result of decomposi-
tion of the introduced organic matter [45,46]. Members of the genus Clostridium are known to
be one of the main anaerobic decomposers of the soil organic matter [47]. The increase in the
proportion of clostridia in OFS indicates appearance of anaerobic zones in the soil, which gen-
erally form within the soil aggregates [48]. The increase in the proportion of nitrogen-fixing
bacteria (Rhizobium sp.) and some bacterial genera of the PGPR-group (e.g. the bacteria from
the familyHyphomicrobiaceae) in OFS soil agrees with previous studies [49,50] and can be
explained by the increasing demand for growth factors and mineral elements exhibited by the
plant in the absence of mineral fertilizers [51].

The soil microbial communities in cropland soils differed greatly from the microbiome in
the soil of the woodland, which was once (ca. 100 years earlier) declared from forest to arable
fields. In contrast, the differences between the CFS and OFS microbiomes were much less pro-
nounced, affecting the community composition mainly at the genus level. These conclusions
are largely supported by the PCoA analysis, in which OFS and CFS microbiomes are clearly
separated from woodland group, whereas the differences between the two cropland systems are
minor. Regression analysis showed that the differences observed in microbial composition
could be explained by soil chemical properties, among which the soil pH seemed to be the
most significant parameter at the phylum level. The amount of biological macroelements, such
as Ca and Mg, could be treated in turn as predictors of genus-level variance in the composition
of cropland microbiomes. Lower amounts of these mineral nutrients in OFS soil may be one of
the reason for the appearance of plant growth promoting bacteria in the corresponding micro-
biomes, which also agrees with previously reported data [10,13,16].

It is worth mentioning that the data presented in this study are likely dependent on the
applied methods of soil sampling, DNA sequencing and bioinformatics analysis. It is well
known that soil is highly heterogeneous and sampling may not capture its entire variability.
Hence, the results may not be able to explain all the spatial variance in microbiome of the stud-
ied habitat. Furthermore, in this study we didn’t investigate the seasonal dynamics of microbial
communities, which is likely to exist. Other limitations of the molecular studies of soil micro-
biomes, such as DNA-extraction and PCR biases [52] also must be considered when interpret-
ing the results of the study.
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Keeping the aforementioned limitations in mind, we may summarize the main conclusions
as follows. Comparison of the soil microbiomes in two cropping systems (CFS and OFS) with
the microbiome in soil of woodland revealed major differences in the agrochemical parameters
of soil and the taxonomic composition of microbiomes. Higher C/N ratios and α-diversity
parameters as well as the presence of many oligotrophic bacteria in woodland indicate active
participation of microorganisms in the deposition of the organic matter increasing its availabil-
ity for further biodegradation. Croplands represent systems depending partially on the influx
of organic or mineral fertilizers, which seems to lead to the predominance of bacteria capable
of biodegrading xenobiotics in CFS soils and degrading various organic compounds in OFS
soils. Additionally due to the relatively low concentrations of the available mineral macronutri-
ents, OFS soils seem to be dominated by plant growth promoting bacteria. Generally, the use of
OFS or CFS had only minor influence on microbial biodiversity in the fields of this study,
affecting primarily the genus-level composition of microbiomes. The results provide valuable
new information, indicating that carefully managed conventional and organic farming systems
may maintain similarly diverse microbial communities, which creates prospects for further
research in this area.
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