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Abstract 

Upon surgery, local inflammatory reactions and postoperative infections cause complications, 

morbidity, and mortality. Delivery of human adipose mesenchymal stem cells (hASC) into the 

wounds is an efficient and safe means to reduce inflammation and promote wound healing. 

However, administration of stem cells by injection often results in low cell retention, and the 

cells deposit in other organs, reducing the efficiency of the therapy. Thus, it is essential to 

improve cell delivery to the target area using carriers to which the cells have a high affinity. 

Moreover, the application of hASC in surgery has typically relied on animal-origin components, 

which may induce immune reactions or even transmit infections due to pathogens. To solve these 

issues, we first show that native cellulose nanofibers (nanofibrillated cellulose, NFC) extracted 

from plants allow preparation of glutaraldehyde cross-linked threads (NFC-X) with high 

mechanical strength even under the wet cell culture or surgery conditions, characteristically 

challenging for cellulosic materials. Secondly, using a xenogeneic free protocol for isolation and 

maintenance of hASC, we demonstrate that cells adhere, migrate and proliferate on the NFC-X, 

even without surface modifiers. Cross-linked threads were not found to induce toxicity on the 

cells and, importantly, hASC attached on NFC-X maintained their undifferentiated state and 

preserved their bioactivity. After intradermal suturing with the hASC decorated NFC-X threads 

in an ex vivo experiment, cells remained attached to the multifilament sutures without displaying 

morphological changes or reducing their metabolic activity. Finally, as NFC-X optionally allows 

facile surface tailoring if needed, we anticipate that stem-cell-decorated NFC-X opens a versatile 

generic platform as a surgical bionanomaterial for fighting postoperative inflammation and 

chronic wound healing problems. 
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1. Introduction 

Wound healing encompasses a series of cellular and molecular processes, such as 

inflammation and cell division, which act in repairing damaged tissues and re-establishing their 

functions. Non-effective wound healing after injury increases the risk of infection. In particular, 

after surgery, local inflammatory reactions as well as postoperative infections are the main 

causes of complications, inducing additional costs and reduced quality of life.1,2 In some cases, 

the wound healing process fails and is trapped in a chronic inflammatory state. This can be 

especially dramatic in patients suffering from comorbidities.3,4 Also, tissues may be vulnerable, 

e.g., after modern oncological treatment modalities, and recovery can be complicated by wound 

healing problems. The field of wound care is constantly developing new advances in 

pharmacological therapy.5,6 However, none of the achievements has totally eradicated the 

postoperative inflammatory reaction.7  

Human adipose mesenchymal stem cells (hASC) are regarded as an efficient and safe tool to 

reduce inflammation and promote wound healing, if proper administration is mastered.1,2,8 These 

stem cells are attractive due to their immunomodulatory properties and their accessibility from 

autologous or allogeneic sources.9 ASC have been demonstrated to promote wound healing in 

animal models.2,9 Furthermore, in clinical trials, hASC have already been injected into chronic 

non-healing wounds with promising results, for example, in patients suffering from fistulas in 

Crohn’s disease.5,10 However, the efficacy of any stem cell therapy depends on the ability to 

deliver and retain cells at the target area under proper conditions. Cell administration by injection 

typically results in low cell retention, since after the procedure, the majority of the cells will 
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circulate via bloodstream and then deposit in other organs.11,12 Moreover, there exists a large 

inter-individual variation regarding the results for the same procedure. 

One way to improve the efficiency of stem cell therapies is to increase the cell retention rate in 

the injured area, for example, using more effective cell carriers. Potential candidates are the 

surgical sutures, which have already been coated with antibiotics or proteins to fight against local 

infection and promote healing.13,14 Recently, a commercially available biodegradable suture, 

Vicryl® (polyglactin 910), has been used as a carrier for delivering ASC to the site of tracheal 

anastomosis in in vivo mice models.2 Also, in recent in vitro and ex vivo work, hASC cultured on 

such sutures have been demonstrated to survive and maintain their metabolic activity after 

suturing.1 

The state-of-the-art research on hASC applications in preclinical studies and surgery, including 

the aforementioned experiments with commercially available sutures as cell carriers, has relied 

on standard cell culture practices based on the use of animal-origin reagents, i.e., bovine serum. 

These components represent a significant potential source of pathogens, which may induce 

immune rejection or transmit infections.15 The importance of the zoonosis risk in therapeutics 

has also been stressed by FDA and other organizations.16 To address this problem, we have used 

a recently developed protocol that allows the isolation and maintenance of hASC without using 

animal-origin reagents, facilitating the clinical translation of new procedures or devices.17 

In addition, the cell carrier material may affect stem cell regulation.18 Stem cells respond to the 

nanoscale surface features of materials through alterations in cell adhesion.19,20 Furthermore, 

material properties such as stiffness, strength and surface roughness have a crucial role in cell 

maintenance and differentiation. Stem cells are also sensitive to the chemical structure of the 

surface, for example, the type and distribution of functional groups or hydrophilic and 
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hydrophobic domains.21 In this regard, the intrinsic affinity of hASC to adhere and proliferate 

over hydrophilic and rough surfaces has been recently reported, increasing the variety of 

materials to be used as culture platforms or supports for these cells.22  

Nanofibrillated cellulose (also denoted as microfibrillated cellulose) belongs to nanocelluloses, 

which are nanofibers, having lateral dimensions of a few nanometers and a length up to 

micrometers.23 Due to their native crystalline internal structure involving densely hydrogen-

bonded parallel cellulose polymer chains, they show a high modulus of tens of GPa and a 

strength of 2–6 GPa.24,25 Given their mechanical properties, sustainability, and 

functionalizability, NFC and nanocelluloses in general have recently attracted considerable 

interest towards a wide range of applications, such as reinforcement in nanocomposites, food 

packaging, sensor materials, aerogels, conductive structures, transparent films, and fibers.26–34 In 

biomedical applications, NFC has been investigated, for example, in scaffold synthesis, 

stabilization of nanosuspensions in drug formulations, drug carriers, aerogels, and films.35–38 

NFC is widely available from wood and other plants, thus being particularly attractive in this 

context as an animal-origin-free biomaterial. In wound dressings, another type of nanocellulose, 

from bacterial origin, has been shown to promote healing and reduce pain.39,40 Recently, wood-

based NFC hydrogels have also succeeded in biotechnology applications such as cell culture, 

human pluripotent stem cell maintenance, and 3D differentiation of progenitors.41–43 NFC forms 

hydrogels upon dispersing in aqueous media, and due to their strongly shear-thinning rheological 

properties, they can be easily extruded through a nozzle.44 

Here, we present a new mechanically robust carrier made of extruded NFC threads for 

delivering hASC into injured areas. For biomedical applications with wet conditions, NFC has to 

be cross-linked to improve the wet strength. We show that cross-linking the NFC with 
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glutaraldehyde does not alter biocompability, once the resulting NFC-X threads are carefully 

washed. We also demonstrate that cross-linked threads are mechanically robust enough to pass 

through different tissues (muscle, fat and skin) – even after being exposed to cell culture 

conditions for more than a week. We show that hASC have a good adhesion and proliferation 

rate on NFC-X even without the coating with extracellular matrix (ECM) promoters. We provide 

evidence that the cells attached on the threads maintain their undifferentiated characteristics and 

immunomodulatory properties for 7–10 days, and even longer, acting as a biocompatible cell 

culture substrate. Finally, we demonstrate that cells remain attached to braided NFC-X threads 

after suturing in an ex vivo wound model, maintaining their metabolic activity. The complete 

process may be performed within a reasonable period of time considering future autologous 

clinical procedures preserving optimal cell quality. These results open the possibilities for a new 

generation of highly reproducible, zoonosis free, functionalized nanobiomaterials for biomedical 

applications. 

2. Materials and methods 

2.1. Extrusion of NFC threads 

NFC (GrowDex™; UPM-Kymmene Corporation) was received from UPM as a 1.47-wt.% 

hydrogel, the preparation of which is described elsewhere.41 NFC hydrogel (typically 2 ml) was 

extruded into an ethanol bath (200 ml) using a Fab@Home experimental 3D printer, typically 

with a 16G flat-tipped needle. A spiral-shaped extrusion path was used at a constant extrusion 

speed of 40 mm s−1. The resulting gel filament had a diameter of approximately 1 mm. The gel 

was kept immersed in ethanol for 15 minutes to exchange water in the gel to ethanol. The 

filament was then transferred onto a filter paper and dried in room conditions. The resulting 

threads had a typical diameter of 0.1 mm. 
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2.2. Cross-linking of the threads 

 Glutaraldehyde (Sigma-Aldrich, Grade II), citric acid monohydrate (Sigma-Aldrich, 99.5–

102%), sodium citrate tribasic dihydrate (Riedel-de Haën, ≥99.5%), sodium hydroxide (Sigma-

Aldrich, ≥98%) and zinc nitrate (Riedel-de Haën, ≥98%) were used as received. A solution (200 

ml) was prepared with 2 wt.% glutaraldehyde and 0.75 wt.% zinc nitrate, and the pH was 

adjusted to 4.2 with citric acid buffer (30 mM). NFC threads were immersed in the solution for 

an hour, then removed from the solution and cured for 30 minutes at 130°C. After this period at 

atmospheric pressure, the oven was pumped to a vacuum of 0.1 mbar to remove any evaporated 

glutaraldehyde, and evacuated immediately. The pumping-evacuating cycle took 10 minutes; 

thus, the samples spent a total of 40 minutes at an elevated temperature. 

2.3. Tensile testing 

For tensile testing, threads were cut to 20-mm pieces. To prevent slipping, each end of the 

thread samples was glued between two 6-mm squares of sandpaper (P600) using Loctite 

Precision Glue. The sample span in the tensile tester was 10 mm, and the pulling speed was 1.0 

mm min−1. Before and during measurement, the samples were kept at 50% relative humidity, 

except the threads that were soaked in water. At least six samples of each thread were measured 

using a Kammrath & Weiss tensile tester with a 100 N load cell. The thread cross-section area 

was estimated by weighing a length of NFC thread and using a literature value (1.5 g cm−³) for 

density to calculate the cross-section. To enable direct comparison between each thread in dry 

and wet state, the data from wet samples is reported using the same cross-section area as their 

dry counterparts, and swelling is not taken into account. The experimental error estimates given 

with the data were calculated as 2 x the standard error of mean. The average curves shown in 
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Fig. 1c are constructed by first calculating the average strain at break, linearly extrapolating the 

datasets that break before average, and finally calculating average stress at each point. 

2.4. hASC isolation and culture 

Human adipose stem primary cell lines were generated from lipoaspiration procedures from 

healthy donors, aged between 18 and 35, following written informed consent and Research 

Ethical Board approval by Centro de Investigación Principe Felipe, Valencia, Spain. All the 

donors were previously screened for Human Immunodeficiency Virus, hepatitis C and other 

infectious diseases. hASC were isolated and maintained following the protocol described by 

Escobedo-Lucea et al.9 After reaching the confluence, the cells were harvested with Tryple 

(Invitrogen) and seeded on the threads. In order to detect the presence of 60 different 

Mycoplasma species, PCR was performed using Universal Mycoplasma Detection Kit (ATCC). 

The reactions were carried out after hASC isolation and routinely during the cell culture in our 

laboratory, with negative results. 

2.5. Cell seeding on NFC and NFC-X threads 

After synthesis, the threads were washed at 4°C degrees in sterile PBS during 72 hours. 

Washing buffer was replaced by fresh for ten times. After drying, threads were sterilized by 

autoclave. Sterile NFC and NFC-X were optionally coated with laminin or CELLstart substrate 

(Life Technologies) during 2 hours at 37 °C and distributed in individual wells on Costar® 

Ultralow Attachment cell culture plates. The threads were maintained in sterile hASC culture 

media before cell seeding. In order to determine the optimal cell seeding concentration, different 

densities were tested: 25,000, 50,000, 100,000, 200,000 and 500,000 cells per cm of thread. 

Every other day, the threads where transferred to a new well and the floating cells remaining in 

the old ones were counted. Based on this estimation as well as the cell attachment observed by 
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DAPI nuclear staining, a density of 200,000 cells/cm was selected. In case of normal controls 

cultured on plastic (Falcon), an analogous density (cells per squared centimeter) was seeded 

following hASC growth ratio established earlier.17 Medium was also changed every other day. 

Experiments were conducted after 7 or 10 days in culture at 37°C and 5% CO2. All studies were 

performed with four hASC lines (n=4). 

2.6. Scanning electron microscopy (SEM) 

Samples were fixed at 37°C in 2.5% glutaraldehyde for 30 minutes. Then, threads containing 

cells were washed carefully 4 times with PBS, fixed and contrasted with 1% osmium during 1 

hour. After washing in distilled water, samples were dehydrated in alcohol gradient. Once in 

70% alcohol specimens were dehydrated through critical point treatment under controlled 

conditions with CO2, 31°C, and 73 atm in an Autosamdri machine. SEM images were taken on a 

SEM-FEG Hitachi S-4800 equipment (University of Valencia, Spain). 

2.7. Transmission electron microscopy (TEM) 

For fine ultrastructural analysis, the hASC adhered on the thread were serially washed in a 0.1 

M phosphate buffer (PB; pH 7.4) solution, prior to their fixation for TEM. Fixation was 

performed in 3% glutaraldehyde solution in PB for 30 minutes at 37°C and postfixed in 2% 

OsO4 in PB. Dehydration was achieved by a graded series of ethanol solutions and a final rinse 

with propylene oxide (Lab Baker, Deventry, Holland). Finally, samples were embedded in 

araldite (Durkupan, Fluka) overnight. Following polymerization, embedded samples were 

detached from the chamber slide and glued to Araldite blocks. Serial semi-thin (1.5 µm) sections 

were cut with an Ultracut UC-6 (Leica, Heidelberg, Germany), mounted onto slides and finally 

stained with 1% toluidine blue. Ultrathin (0.07 µm) sections were prepared with the Ultracut and 

stained with lead citrate. Photomicrographs were obtained under a transmission electron 
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microscope (FEI Tecnai Spirit G2), using a digital camera (Morada, Soft Imaging System, 

Olympus). 

2.8. Cell attachment over NFC-X thread: in vivo microscopy experiments 

Microdrop culture technique was used for the analysis of hASC attachment over the NFC-X 

threads. Briefly, the monofilament threads were placed inside 35-mm Hydrocell low attachment 

culture plates (CellSeed). These plates avoid cell attachment on their surface; thus, the only 

surface allowing attachment would be the thread. The hASC could only attach between 

themselves or over the thread. hASC were detached, counted and their cytoplasm was stained 

with 5 µl of Vybrant DiL (Catalog number: V22855 Thermo Scientific) to facilitate their 

visualization under the in vivo confocal microscopy assay. Vybrant Dil staining was performed 

following the instructions from the provider. A 20-µl micro-droplet of culture media containing 

7500 cells was dispensed over the thread, and covered with mineral oil for embryo culture 

(Sigma-Aldrich) to prevent evaporation. The cultures were incubated at 37°C and 5% CO2 inside 

a Sanyo incubator equipped with an Olympus LCV100 incubation imaging confocal system. The 

evolution of the cultures was recorded for 24 hours. Dil was imaged using a 561-nm laser. 

2.9. TUNEL assay and cell staining 

Click-iT TUNEL imaging assay (Life Technologies) was used to detect percentage of 

apoptotic cells, according to manufactured instructions. Briefly, the cells were fixed with 4% 

PFA in PBS followed by a permeabilization with 0.25% TritonX-100. The next step was the TdT 

incorporation of EdUTP into double strain DNS strand breaks, followed by fluorescent detection 

of EdUTP with click chemistry. The nuclei were counterstained with DAPI and α-tubulin 

(Sigma-Aldrich) or CD90 were used to stain cell cytoplasm. Positive control apoptotic hASC 
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were prepared by incubation with DNAse according with provider’s recommendations. All the 

samples were examined under confocal microscopy (Zeiss).  

2.10. Assessment of cell proliferation using WST-8 tetrazolium salt 

Cell survival was assessed by 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-

disulfophenyl)-2H-tetrazolium(WST-8) assay. NFC, NFC-X, and Nylon threads were cutted in 

5-mm pieces and placed inside a low attachment 96-well plate (CellSeed). The number of viable 

hASC seeded per well was 10.000 cell/mL. WST-8 assay was carried out in four independent 

experiments using Cell Count Reagent SF, based on WST-8 (Nacalai Tesque, Kyoto, Japan) 

according to the manufacture's instructions. Absorbance at 450 nm was measured in a 

SpectraMax® M2e multimode microplate reader and SoftMax® Pro Software (Molecular 

Devices) at 1, 3, 5, and 7 days after culture. The influence of phenol red and tetrazolium was 

removed by subtracting the absorption value of a blank solution from the absorption value of 

each well. 

2.11. Detection of hASC proliferation by Ki-67 expression.  

Briefly, 105 cells were seeded per each 1-cm monofilament threads of NFC and NFC-X to 

detect cell proliferation. The same number of cells was seeded on glass culture chambers. After 

incubation at 5% CO2 and 37°C for 24 h and 36 h, cultures were fixed with 4% 

paraformaldehyde (PFA) at room temperature for 10 minutes and permeabilized by incubation 

with 0.1% Triton X-100 in PBS for 15 min and then blocked for 1 hour at room temperature with 

a buffer solution composed of 1% Bovine Serum Albumin (BSA) and 0.3M Glycine in 0.1% 

Tween (all from Sigma-Aldrich). Subsequently, cultures were incubated with a monoclonal 

antibody against KI-67 directly conjugated with APC (dilution 1:50; Milli-Mark cat. number 

FCMAB103AP) at 4°C overnight. Then, samples were washed with 0.1% Tween in PBS. Actin 
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filaments were stained by incubation with Phalloidin Alexa 488 (Dilution 1:50; Thermo 

Scientific) at room temperature for 15 minutes, and washed five times with PBS. Coverslips 

were affixed to glass slides using Prolong® Diamond antifade reagent containing DAPI (Thermo 

Scientific). Fluoresce images were captured using an Olympus FV1200 confocal microscope 

(Tokyo, Japan). 

2.12. RT-PCR analyses 

hASC seeded on NFC and NFC-X threads were analyzed for CD90, CD73, CD166, CD29, 

CD44, CD45, perilipin (PLIN), adiponectin and adducing 1 (ADD1), using RT-PCR techniques 

and specific primers.17 Undifferentiated hASC, human peripheral Blood Mononuclear Cells 

(hPBMC) and commercial cDNA from human fat (hFAT) (Stratagene) were used as positive 

controls. Total RNA was extracted using the RNeasy kit (Qiagen) following manufacturer’s 

instructions and treated with DNAse (Qiagen). Total RNA obtained was checked by 

spectroscopy using NanoDrop 2000c Spectrophotometer (Thermo Scientific) to assess the 

quantity and purity acquired. An A260/A280 ratio between 1.8 and 2.0 was deemed optimal to 

accept the sample for experimental procedures. Total RNA was then converted to cDNA through 

reverse transcription using the High Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems). The reaction mixture contained 2 µg RNA, 2 µL RT buffer 10X, 2 µL random 

primers 10X, 0.8 µL dNTPs and 1 µL enzyme, and DEPC H2O to reach a final volume of 20 µL . 

PCR using the synthesized cDNA was performed to determine the presence or absence of 

different transcripts using an Eppendorf PCR machine with β-2-microglobulin as internal 

control. 
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2.13. RT-qPCR studies 

For quantitative real-time PCR (QRT-PCR), 5 µg of RNA was converted into cDNA, and a 

series of diluted samples were used for 40-cycle PCR with Light Cycler 480 SYBR Green I 

Master (Kit no. 04707516001) in a Lightcycler 480 (Roche Diagnostics, Mannheim) instrument. 

Reactions (20 µL in total) contained 1 µL cDNA, 10 µM each primer, and 4 µM probe; and were 

run using the default Lightcycler 480 program. Standard curve using multiple dilutions of the 

control cDNA sample were generated to check the primers, determine the optimal conditions and 

threshold values. Individual samples were analyzed in triplicate using the probe of interest and 

an internal control expected to be unchanged between samples (an undifferentiated hASC line). 

From the Ct values, the relative expression ratio (R) of an unknown sample versus the control 

was determined, and expressed in comparison to that of the housekeeping/reference gene β-2 

microglobulin. 

2.14. Detection of differences in cytokine secretion by Protein Array 

We compared the differences on the cytokine release pattern of cells seeded over plastic and 

over NFC-X. The experiment was performed twice using a total of six hASC lines in pools of 

two samples (n=3).  

Seven days after seeding, cultures were washed three times with Hank´s balanced salt solution 

(HBSS, Life Technologies) and media was replaced by basal mesenchymal culture media for 24 

hours. After this time the supernatant was collected, centrifuged at 400g for 5 min (to remove 

cell debris) and stored at -80°C until analysis. A control containing media without cells was 

included in order to detect and normalize the concentration of cytokines in the culture media. 

The porosity of the thread could, in principle, increase the retention of proteins; thus, culture 

media without cells maintained with NFC-X was also introduced as an additional control 
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condition. The controls (n=1) were obtained after 24h incubation of the basal media added to the 

NFC-X and plastic. 

To determine the cytokine profile, the cytokine (human) antibody array AA0077 (Abnova) was 

used following the instructions from the provider. Pixel integrated density was determined using 

ImageJ software.45 Normalized expression levels were calculated using the positive spots and the 

background and converted into relative values dividing every condition (NFC-X without cells, 

hASC on plastic, and on NFC-X threads) by the controls (plastic without cells). 

2.15. Surgical “hands on” mechanical strength testing using pig tissue 

NFC and NFC-X decorated tensile testing in vivo were performed at the Centro de Investigación 

Principe Felipe (CIPF) in three female Large White pigs. Animals were used for non-related 

surgery educational programs non-related with this project; Animals were previously housed 

trying to reduce the stress by transport, and anesthetized. After 12 h of solid starvation the 

animals were sedated through intramuscular administration of 10 mg kg−1 Dexmedetomidine 

(Dexdomitor, Esteve, Barcelona, Spain) and Azeperone (Strespil, Esteve, Barcelona, Spain). 

Anesthesia was then induced by intravenous administration of 1% Lipuro (BBRaun, Vetcare, 

Barcelona, Spain), through a 22 G catheter placed in the ear's lateral vein, in a dose-response 

regimen (2–3 mg kg−1) to allow proper endotracheal intubation. In addition, the animals were 

connected to an anesthetic machine (Primus®, Draeger Medical) and anesthesia was maintained 

with sevofluorane (Sevorane®, Abbott Laboratories, Madrid, Spain) (2.7% in 1 l min−1 O2) 

through a circular circuit attached to a ventilator (Ohmeda 7800, Datex Ohmeda, Helsinki, 

Finland). Surgical analgesia was achieved through the administration of fentanyl (Fentanest, 

Kernpharma, Barcelona, Spain) at an infusion rate (0.3 µg kg−1 h−1). Animals were closely 

monitored by hemodynamic and ventilator parameters during surgery. During the educational 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 15

procedure, they were subjected to anastomosis and intestinal resections principally; thus, those 

procedures did not affect our testing or results. Once finalized the surgical training and before 

euthanasia induction by pentobarbital overdose, our “hands-on” tests were performed.  

2.16. Survival of cells after suturing “ex vivo” pigskin samples with multifilament 

sutures 

For this analysis, multifilament sutures (n=5), were prepared by braiding NFC-X threads 

manually in groups of 8 or 7 filaments. Once prepared, hASC (2 × 10�) were seeded in 9-cm 

sutures, following the protocol described by Reckhenrich et al.1 After one week in culture, the 

hASC decorated sutures were passed intradermally three times through ex vivo pigskin. Then, 

these sutures and their controls were cut in 1cm pieces and placed in 96 well plates. 

Mitochondrial metabolic activity of the cells remaining in the sutures was examined after the 

process and 24 hours later by incubation with WST-8 (tetrazolium salt, Nacalai Tesque) for 3–4 

hours at 37°C. This assay is based in the extracellular reduction of WST-8 by NADH produced 

in the mitochondria. The levels of reduced compound were measured using a Spectramax M2e 

microplate reader (Molecular Devices) at 450 nm. Cell morphology was studied in detail using 

TEM following the protocol previously described. The corresponding suture controls were also 

included in the study. 

3. Results and discussion 

3.1. Mechanical strength of NFC under wet conditions was increased by chemical 

cross-linking 

Threads of nanofibrillated cellulose were prepared by utilizing a modified Fab@Home Model 

2 3D printer to extrude NFC hydrogel into an ethanol coagulation bath, followed by drying in air 

(Figure 1a). The diameter of the resulting threads could be tuned by the nozzle chosen and the 
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speed in the extrusion setup. Threads with a diameter of 0.1 mm and 0.2 mm were typically 

made (Figure1b). The NFC threads had a tensile strength of 275 MPa, an elastic modulus of 13 

GPa, and a strain at break of 9.5% in the dried state (Figure 1c). This result indicates that the 

native NFC used in this study forms particularly ductile structures in comparison to the 

previously reported NFC fibers and films.33,34,46–49 The results of tensile tests in dried state are 

summarized in Table 1. 

However, under the wet hydrated state, relevant for surgical applications, the NFC threads 

have unacceptably low mechanical strength (Table 1). Thus, in order to improve the wet strength 

of NFC macrofibers, the threads were chemically treated with glutaraldehyde, which covalently 

cross-links NFC nanofibers.50 In the dry state, the mechanical properties of these cross-linked 

NFC threads (NFC-X) were quite similar to the non-modified NFC threads, as shown in Figure 

1c. The cellulose nanofibrils bind strongly together with a dense network of hydrogen bonds, and 

the additional covalent bonds from the cross-linking by glutaraldehyde made the NFC-X threads 

slightly more brittle without significantly affecting the elastic modulus. In contrast, the cross-

linking resulted in a pronounced improvement on the mechanical properties in the wet state, 

where the hydrogen bonding between cellulose nanofibers is disturbed by water. Therein, the 

NFC-X threads soaked in water were able to retain up to 40% of the dry-state tensile strength of 

NFC, resulting in a wet strength in the range of strongest human tendons.51 Furthermore, the 

elongation at break of NFC-X decreased only slightly when soaked in water. Intriguingly, the 

NFC-X threads consist of intertwining cross-linked NFC nanofibers, and the architecture 

resembles “nanoyarns” (Figure 1c). Importantly, the washing procedure allowed removing the 

potentially unbound glutaraldehydes, rendering good biocompatibility, to be discussed shortly. 

Despite of their lower strength, NFC threads were maintained as controls in the following 
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experiments to evaluate cell adhesion and biosafety of NFC itself, without the glutaraldehyde 

treatment. 

 

3.2. NFC-X threads can be passed through different tissues 

In order to evaluate the manipulation of the threads in a more practical setting, “hands-on” 

testing was performed. To recreate necessary conditions required for hypothetical in vivo studies, 

hASC were seeded on NFC and NFC-X threads and maintained at 37°C, 95% humidity and 5% 

CO2. After one week embedded in culture media and exposed to hASC metabolism, threads were 

tested in muscle, dermis and epidermal layers in both post-mortem and in-vivo pig tissues during 

a non-related surgical procedure. The results indicate that whereas non-modified NFC was too 

weak to be handled after 7 days under cell culture conditions (Video S3), NFC-X was much 

stronger, and the monofilament thread could be pulled through skin and manipulated in vivo and 

also in post-mortem tissues. Tests with NFC-X are shown in Videos S4 and S5. These results 

further imply that our approach enables the cellulosic material to be removed from the body if 

required. 

 

3.3. Stem cells attach and divide on the nanocellulose threads 

To test the affinity of hASC for the threads prepared, the cells were cultured over NFC and 

NFC-X for 7 days. The process is illustrated in Figure 2a. Figure 2b shows SEM micrographs of 

the threads before cell seeding. Note that NFC and NFC-X threads are composed of porous 

nanofiber networks with topological features having similarities to the ECM (additional details in 

Fig. S2a).  
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After seeding, the cells attached on both NFC and NFC-X surfaces (Figure 2c). In contrast to 

their counterparts on NFC, which show a non-homogeneous distribution, hASC grew more 

homogeneously along the surface of the NFC-X threads: whereas the cells attached to NFC were 

observed to be round and small, hASC on NFC-X assumed an elongated fibroblast-like shape, 

characteristic of mesenchymal cells.17,52 This observation highlights the importance of the 

surface roughness and topographical features of the material in cell adhesion and growth (Figure 

S4). Cell adhesion was also confirmed by cytoplasmic actin filament staining using phalloidin. 

Cell nuclei were counterstained with 4´,6-Diamidino-2-phenylindole (DAPI). The results (Figure 

3, and Videos S1 and S2) show that hASC were able to attach on the thread surfaces. Generally, 

the characteristic elongated fibrillar features shown by phalloidin staining were more profuse for 

hASC seeded on NFC-X than on NFC (Figure 3a). Figure 3b shows transversal 3D projections of 

hASC decorated threads showing their cytoplasm stained with CD90 and nuclear TO-PRO®, 

further illustrating the attachment and distribution of growing hASC on the surface of threads. 

The cell adhesion over NFC-X mono-filaments was also recorded and analyzed. Videos S6 and 

S7 show that during the first 2 hours of culture, cells start to form aggregates that are able to 

attach and colonize the surface of the material. The cells continue attaching even after 24 hours. 

It is important to note that hASC have a good adhesion on NFC-X even without the coating 

with extracellular matrix (ECM) promoters, which are usually required for other artificial 

scaffolds. However, if required, the dense set of surface hydroxyl groups on NFC allows facile 

chemical modification to additionally fine-tune the bioadhesion. 

Additionally, cell proliferation over NFC and NFC-X was assessed by the detection of Ki-67 

expression using immunocytochemistry (Figure 4a) and also through the analysis of 

mitochondrial activity using WST-8 (tetrazolium salt) reduction. Figure 4b shows the evolution 
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of the metabolic activity of the hASC on both types of threads for one week. Cells were able to 

grow over NFC, NFC-X or Nylon without significant differences after 7 days in culture. Cultures 

over plastic were also included in the assay. As expected, the hASC exhibited higher 

proliferation ratio on plastic than over the threads due to the higher area available for growth and 

the specific culture treatment (Data not show but available upon request).  

 

3.4. Glutaraldehyde cross-linking of NFC did not induce toxicity on hASC 

The biocompatibility of the NFC hydrogel has been reported before.41–43 In this work, the 

nanocellulose material was cross-linked with glutaraldehyde for improved wet strength. 

However, even though glutaraldehyde is commonly used in the preparation of medical 

bioprostheses and protein stabilization, it has been reported that this aldehyde may be released 

from some cross-linked biomaterials inducing toxicity.53,54 To remove glutaraldehyde from NFC-

X threads, the threads were washed repeatedly for 72 hours before cell seeding. To exclude the 

possible cytotoxicity induced during the in vitro cultivation with the threads, transmission 

electron microscopy (TEM) analysis of cell ultrastructure (Figure 3c) and terminal 

deoxynucleotidyl transferase-mediated (dUTP) nick-end-labeling (TUNEL) assay studies55 were 

performed (Figure 3d). TEM studies show that, in all conditions, all nuclei exhibited packed 

chromatin and well developed nucleoli (Fig. 3c and S6a). Regarding the abundance of cytoplasm 

organelles and their feature, no differences between NFC, NFC-X threads, or their counterparts 

over plastic were detected. Mitochondria were elongated with prominent cristae, which 

corresponds to cells with normal metabolic functions.56 Rough endoplasmic reticulum (rER) 

appeared covered by ribosomes. Smooth endoplasmic reticulum (sER) was well organized and 

not dilated. Cellular signals compatible with toxicity as phagocytic vesicles, swollen or abnormal 
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mitochondria or autophagy vacuoles were absent in cells over NFC and NFC-X. Altogether, the 

detailed morphology studies indicated the absence of toxicity traces in the cells after their culture 

on the NFC-X threads.57  

The quantification of apoptotic cell death assay was performed by TUNEL (Figure 3d, 

S7a and S8). We observed extremely low overall percentages of TUNEL-positive cells 

undergoing apoptosis after one week in culture: NFC, 2.25 ± 0.11; NFC-X, 2.21 ± 0.26; control, 

1.54 ± 0.12 (mean ± SEM). There was no statistically significant difference in the number of 

cells between the NFC, and NFC-X groups (n=4, p > 0.05). The results confirmed that the 

washing steps performed before the cell seeding were adequate to reduce residual traces of 

glutaraldehyde to a non-toxic level. 

 

3.5. NFC-X threads maintain hASC undifferentiated profile and functionality 

Stem cell differentiation can be triggered by culture over certain surfaces or other alterations in 

the surrounding niche.58 Importantly, the immunomodulatory properties of hASC diminish until 

disappear during stem cell differentiation process towards terminally differentiated cell types. 

Therefore, after ten days in culture, cells over the NFC-X threads were monitored by RT-PCR 

for transcriptional evidence of genes associated with undifferentiated state of mesenchymal stem 

cells (CD90, CD73, CD166, CD29, CD44). On the other hand, to detect differentiation 

processes, we assessed the lack of expression of hematopoietic gene marker CD45 as well as 

some genes involved in adipocyte maturation PLIN, adiponectin and ADD. Beta-2-

microglobulin was introduced as housekeeping gene (Figure 5a). Quantitative PCR for these 

genes confirmed the absence of differences between the cells cultured over plastic and on the 

NFC-X (Figure 5b). Additionally, CD90 expression in cell cytoplasm was also traced using 
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immunocytochemistry (Figure 5c). After ten days in culture over NFC-X, hASC maintained their 

mesenchymal undifferentiated profile. Taking into consideration the future use of NFC-X threads 

in clinical practice, seven to ten days would be a reasonable time window for the extraction of 

autologous or heterologous cells and their delivery in optimal conditions. However, hASC 

maintained in an undifferentiated state in the presence of nanocellulose and cross-linked 

nanocellulose for longer than 4 passages during a series of experiments not related to this work 

(data not shown but available under request). 

Undifferentiated mesenchymal stem cells secrete a broad panel of growth factors and cytokines 

with trophic, immunomodulatory, antiapoptotic and proangiogenic properties. However, this 

paracrine profile varies according to their initial activation by different stimuli.59 To assess cell 

functionality after culture, the effect of the NFC-X threads on the hASC bioactivity was studied 

in vitro. Protein array analysis was conducted for 60 cytokines that intervene in several different 

processes as immunomodulation, angiogenesis or differentiation (see Table S1 for the full list of 

cytokines) to detect possible changes on the cytokine pattern released from the hASC after their 

contact with the NFC-X. The position of the cytokines in the array is shown in Figure S11. A 

level of cytokine expression detected in each condition was compared using plastic without cells 

as control. 

Figure 6a and 6b show the comparison between the paracrine cytokine pattern secreted by the 

hASC over NFC-X and their counterparts maintained on plastic. To assess the effect of NFC-X 

(without cells) on the cytokine pattern, the culture media was incubated for 24h with an NFC-X 

thread. The cytokines present in the basal media were the same in both conditions; plastic or 

NFC-X without cells. After the array exposition, a slightly lower signal intensity was perceived 

for IGFBP3 (3C) and VEGF-D (5J) (Figure 6b, white bars). The differences may be due to the 
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porosity of the nanocellulose material. Apart from these we consider that the incubation with 

NFC-X it is not altering the composition of the basal culture media, allowing the comparison of 

the cytokines secreted by hASC on plastic or over NFC-X.  

The cytokine pattern secreted by hASC after one week in culture was similar on both plastic 

and NFC-X. However, hASC maintained over plastic released high levels (<2-fold changes) of 

Osteoprotegerin, IGFBP6, GRO, TIMP2 and TIMP-1, while hASC cultured over NFC-X 

secreted relevant amounts (<1.5-fold changes) of FGF-4, VEGF-D, IGFBP3, G-CSF, IL12P40, 

Angiopoietin-2, AgRP, Fas-TNFRSF6 but specially IL-8 (10-fold changes), ACRP30(5-fold 

changes), µPAR and ENA-78 (<2-fold changes each one). 

Even though cytokines are not the only molecules involved in tissue regeneration and 

immunomodulation processes, our results indicate that the culture over NFC-X does not induce 

major changes in the pattern of molecules secreted. On the contrary, cytokines involved in 

immunomodulation and wound healing are secreted by hASC over NFC-X in high levels as 

demonstrated by the signal detected for IL-8, which modulates inflammation and reduces wound 

contraction,1 Acrp30, an anti-inflamatory adipokine,60 µPAR, involved in plasminogen 

activation, tissue regeneration and wound healing,61 or ENA-78 that regulates neutrophils and 

has also angiogenic properties.62 The full list of cytokines showing different expression between 

NFC-X and plastic, as well as their function is shown in Table S2. From the point of view of the 

future potential of the stem-cell-decorated NFC-X threads on immunomodulation and wound 

healing processes, these results show that the bioactivity of mesenchymal stem cells was not 

compromised after the culture over the NFC-X thread. Our results are consistent with previous 

work that has shown an unchanged pattern of angiogenic cytokines involved in wound healing 

released by hASC after their culture on Vicryl sutures.1 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 23

3.6. The NFC-X fibers can optionally be surface modified in order to tune cell binding 

It was shown above that NFC-X threads support cells attachment and growth, maintaining their 

undifferentiated properties, without the need to involve any additional surface treatments on the 

threads. Next, we show that the NFC-X fibers can be optionally biofunctionalized. Since 

artificial bioscaffolds are often coated using extracellular matrix (ECM) proteins to promote cell 

binding, we also tested coating the threads with human laminin (LM) and CELLstart(CS) to 

optionally tune the cell adhesion by adding specific interactions with the cells.63 The results 

show that the nanofibrous surface morphology of NFC-X was maintained after the coating 

(Figure S2b). Cells over coated NFC-X threads were found to spread across the thread similarly 

to the non-coated surfaces, implying an apparently good material–cell adhesion (Figure S3, S4, 

and S5). The optional coatings were also found to support the undifferentiated state (Figure S9). 

 

3.7. Cells on decorated NFC-X multifilament threads remain attached after suturing. 

In order test if the cells would remain viable in nanocellulose sutures after a suturing process, 

an ex vivo suturing assay was performed using NFC-X multifilament threads. After one week in 

culture, decorated NFC-X sutures were pulled through pig skin three times. The quantity of cells 

remaining in the sutures after the procedure was indirectly measured through the reduction of 

tetrazolium salt by their mitochondria. Figure 7 shows the comparison between metabolic 

activity of the cells remaining in the decorated NFC-X sutures after crossing the skin and their 

controls. The mitochondrial metabolic activity of hASC in the threads was lower after the 

suturing, suggesting that some cells are damaged or detached during the process. However, the 

differences between the controls and the sutures pulled through skin were not significant 3.5 

hours after the procedure. In order to detect variations caused by cell death after the possible 
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damages, the sutures were maintained in culture and the measurements were repeated. The 

results show that 24 hours after the procedure, the metabolic activity in both groups of sutures 

increased. The reduction of tetrazolium salt seems lower in samples pulled through the skin than 

in controls, but none of the detected differences is statistically significant (Figure 7a). This is 

consistent with previous observations in a study where hASC were cultured on Vicryl sutures.1 

Finally, cell morphology after suturing was analyzed using TEM (Figure 7b), further confirming 

that cells survived the suturing. 

4. Conclusions 

Threads of nanofibrillated cellulose were fabricated and decorated with human adipose 

mesenchymal stem cells, which have been shown to improve wound healing if properly 

administered. To increase their strength under wet conditions, NFC threads were chemically 

modified using glutaraldehyde, resulting in the highest wet strength reported for NFC-based 

materials. The hASC, isolated and maintained without the use of animal-origin reagents, were 

capable to homogeneously attach and grow on the cross-linked threads, even without additional 

coating components. The NFC-X threads supported cell growth without altering their 

characteristics or inducing toxicity. The time required for the hASC to reach culture confluence 

on the threads is reasonable (7 days); thus, it would be feasible to prepare the cells from the 

patient’s own adipose tissue before surgery. Ultrastructural and metabolic studies performed 

after ex vivo surgical tests using multifilament NFC-X sutures confirmed that hASC remained on 

the material after passing through the tissue three times. The cells maintained their mitochondrial 

metabolic function and their morphology was comparable to normal functional cells. 

We see these results opening new possibilities in personalized medicine. In particular, hASC 

decorated NFC-X provides a xenogeneic-free tool for delivering stem cells into injured areas in a 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 25

precise manner that might be useful to reduce postoperative inflammation and help in the 

treatment of chronic wounds, expanding the possibilities of NFC in biomedical applications. 
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Figure 7 
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Figure Captions and Tables 

Figure 1. (a) Schematics for the preparation of NFC threads and their cross-linking with 

glutaraldehyde for NFC-X threads. (b) Photograph of a NFC thread. (c) Tensile stress-strain 

curves for NFC and NFC-X threads in dry state and soaked in water for 24h. 

Figure 2. (a) Schematics illustrating the process to decorate NFC and NFC-X threads with 

hASC. (b) SEM images of the surface of NFC and NFC-X before seeding the cells. Scale bars 50 

µm (left) and 2 µm (right). (c) SEM images showing cell adhesion and growth on NFC and 

NFC-X. The distribution of cells on NFC is non-homogeneous, whereas on NFC-X, the cells 

assume an elongated shape characteristic of mesenchymal cells. Labels: T, thread; c, cells. Scale 

bars 100 µm (left) and 10 µm (right). 

Figure 3. (a) Immunocytochemistry shows the attachment of the cells on the thread surface. 

Especially on NFC-X, hASC exhibit elongated cytoplasmic intermediate filaments (stained red 

with phalloidin). Nuclei were counterstained in blue with DAPI. Scale bars 50 µm. (b) 

Transversal projection shows the distribution of the cells along the thread surface. Cell 

cytoplasm was stained against CD90 (green) to evidence the undifferentiated status. Nuclei were 

counterstained with TOPRO® (magenta). Scale bars 50 µm. (c) Representative TEM images of 

hASC cultured on plastic, over NFC and on NFC-X for one week, showing the absence of 

toxicity signs. Right images (scale bars 2 µm) are magnifications of the left images (scale bars 5 

µm). Labels: M, mitochondrion; N, nucleus; Nu, nucleoli; rER, rough endoplasmic reticulum;*, 

lipid droplet; arrow, smooth endoplasmic reticulum. (d) TUNEL labeling assay shows a low 

overall level of apoptosis, indicating that the chemical cross-linking does not induce toxicity on 

the threads (n= 4 hASC lines). Data are shown as mean ± SEM. 
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Figure 4. (a) Immunocytochemistry against ki-67 demonstrating the presence of cells 

proliferating over NFC and NFC-X sutures. Fluorescent APC conjugated Ki-67 (red) expressed 

in the nuclei of mitotic cells. Actin filaments in the cytoplasm have been stained with phalloidin 

(green). Nuclei appear counterstained with DAPI (blue). Scale bars 50 µm. (b) Metabolic 

activity of NFC and NFC-X decorated sutures during one week in culture. 

Figure 5. (a) RT-PCR data showing the expression of undifferentiated mesenchymal stem cell 

markers (CD90, CD73, CD166, CD29, CD44). Differentiation markers for the hematopoietic 

gene CD45 and the adipocyte-associated genes PLIN, adiponectin and ADD1 were checked, 

with negative results. hASC cultured on plastic (Pl) were used as a control, and beta-2-

microglobulin (B2M) as control gene. cDNA from different human tissues was also included as 

positive controls for the different genes analyzed. Human mature fat (hFAT) for adipocyte 

differentiation markers; human peripheral blood mononuclear cells (hPBMC) for CD45, and 

undifferentiated hASC. (b) RT-qPCR comparing the expression levels of CD90, CD73, CD29 

and CD166 in hASC cultured over plastic (Pl) and over NFC-X (c) Fluorescent CD90 labeling 

(green) shows the undifferentiated hASC on the thread surface. Nuclei have been counterstained 

in blue with DAPI. Scale bars 50 µm. 

Figure 6. (a) Human cytokine antibody arrays were performed to compare the cytokine levels of 

the supernatant media seeded over plastic and on NFC-X. Four different conditions were studied: 

NFC-X without cells (Figure S10b); hASC seeded over plastic (left) and over NFC-X (right); 

and plastic without cells (Figure S10b). The factors that decreased or increased considerably are 

highlighted with blue or red boxes, respectively. The corresponding coordinates of the expressed 

cytokines are as follows: Acrp30 (1F), AgRP (1G), Angiopoietin-2 (1H), ENA-78 (2D), 

Fas/TNRSF6 (2E), FGF-4 (2F), GRO (2K), GCSF (2H), IGFBP-3 (3C), IGFBP-6 (3D), IL12-
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p40 (3I), IL-8 (3N), Osteoprotegerin (4I), TIMP-1 (5B), TIMP-2 (5C), uPAR (5G), VEGF-D 

(5I). (See the full layout of the array in Figure S11). The functions of the cytokines as well as 

their identities are detailed in Table S2. Three independent experiments using 2 pools of two 

different hASC lines each one (6 in total) were performed (See the additional arrays in Figure 

S10b). (b) A chart representing the relative integrated densities of cytokine expression spots with 

respect to NFC-X without cells. Plastic with cells is marked in white, and NFC-X with cells in 

grey (n=3). 

Figure 7. (a) Cell survival and morphology after suturing with NFC-X decorated threads. To 

evaluate the effect of mechanical stress during suturing, metabolic activity of decorated NFC-X 

sutures was determined after suturing in an ex vivo model using pig skin and compared with the 

metabolic levels expressed in control sutures seeded and maintained in the same conditions. No 

significant differences were observed immediately after the procedure or 24 hours later. (b) 

Comparison between the morphology of the cells remaining in the suture after the ex vivo 

experiments and the corresponding controls. The cell density is lower in the samples used for the 

suturing but cell morphology is similar in both conditions. The cytoplasm is rich in elongated 

mitochondria (M) characteristic functional and metabolic active cells and contains also few lipid 

droplets (*). No evidences of vacuoles or pyknosis suggesting cell death were detected. Nu= 

Nucleoli; N= nuclei. Scale bars in images: 10 µm (left) and 2 µm (right). 
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Table 1. Mechanical properties of NFC and NFC-X threads in dry state or soaked in water. 

Sample Tensile strength 
(MPa) 

Strain at break  
(%) 

Elastic modulus 
(GPa) 

Modulus of 
toughness (MJ m−3) 

NFC dry 275 ± 25 9.5 ± 1.0 13.1 ± 1.1 17.9 ± 3.2 

NFC wet 2.0 ± 0.6 1.4 ± 0.2 0.20 ± 0.05 0.02 ± 0.01 

NFC-X dry 227 ± 29 6.6 ± 1.2 13.1 ± 2.0 10.5 ± 2.7 

NFC-X wet 111 ± 20 5.2 ± 1.2 4.0 ± 0.6 3.4 ± 1.3 

 

Supplementary data  

Figures S1-S11, Tables S1-S2, and Videos S1-S7. 

 




