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Abstract

Background

Cryopreservation of ovarian tissue has been widely accepted as an option for fertility preser-

vation among cancer patients. Some patients are exposed to chemotherapy prior to ovarian

tissue cryopreservation. Consequently, assessment of the developmental capacity of

human ovarian tissue after chemotherapy is of primary importance.

Materials

In order to study the impact of previous chemotherapy on in vitro development and viability

of ovarian follicles, quality control samples from 34 female cancer patients at median age of

15 years (range 1-35), cryopreserved for fertility preservation before (n = 14) or after (n =

20) initiation of chemotherapy, were thawed and cultured for 7 days. The morphology and

developmental stages of ovarian follicles were studied by light microscopy before and after

culture. Possible associations between follicular densities, age and exposure to alkylating

agents, expressed as cyclophosphamide equivalent dose (CED) were tested.

Results

Exposure to chemotherapy significantly impaired the survival and development of ovarian

follicles in culture. After seven days, significantly higher densities of intermediary, primary

and secondary follicles and lower densities of atretic follicles was detected in the samples

collected before chemotherapy. Increasing dose of alkylating agents was identified by multi-

variate linear regression analysis as an independent predictor of a higher density of atretic
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follicles, whereas increasing age of the patient predicted a better outcome with less follicle

atresia and a higher density of maturing follicles.

Conclusion

This study provides quantitative in vitro evidence of the impact of chemotherapy on devel-

opmental capacity of cryopreserved human ovarian tissue. The results indicate that fertility

preservation should be carried out, if possible, before initiation of alkylating agents in order

to guarantee better in vitro survival of ovarian follicles. In addition, ovarian samples from

younger girls show lower viability and fewer developing follicles in culture.

Introduction
Infertility is one of the late effects of cancer treatment among female survivors. Cryopreserva-
tion of ovarian tissue has been widely accepted as an option for fertility preservation [1]. It is
the only option available for pre-pubertal girls and women who cannot delay the start of che-
motherapy [1;2]. To achieve fertility, the follicles in the cryopreserved ovarian tissue ought to
undergo full maturation from primordial follicles to antral follicles containing fully mature
oocytes. At present, only patients with cancers associated with a low risk of ovarian metastasis
are considered for auto-transplantation of ovarian tissue [3–5]. For the time being, it is not
regarded safe to perform auto-transplantation on patients with high risk of ovarian metastasis,
such as those with hematological cancers, because of possibility to reseeding malignant cells
into cured patients [3–5].

Maturation of ovarian follicles and oocytes in vitro is a promising but challenging strategy
to overcome the problems of cancer contamination. Even though there is progress in the proce-
dures [6–9], full maturity with fertilizable oocytes has so far not been feasible in humans. In
experimental animals, such as rodents, the procedure is shorter. The first live mouse was born
from in vitromatured oocytes in 1996 [10], followed by large numbers of healthy offspring
after merely improving the culture conditions [11]. New culture methods with using inhibitor
of phosphatase and tensin homologue (PTEN) have been successfully used in activation of the
primordial follicles in vitro and generation of fertilized egg in mouse [12]. Now, after the
encouraging data on the mouse oocyte maturation, the in vitromethods need to be refined so
that they can be applied to human follicles. We and others have successfully used PTEN inhibi-
tor in cultures of human ovarian follicles during the first day of culture to promote follicle acti-
vation and development to the secondary stage [13;14].

The sterilizing effect of chemotherapy on the ovary is well known [15;16] and most oncolo-
gists recommend cryopreservation of ovarian tissue before initiation of chemotherapy [3].
Childhood cancers and hematological malignancies require prompt initiation of cancer therapy
and the patients are therefore often exposed to chemotherapy prior to ovarian biopsy [17–19].
Up to date, there is no data regarding the effect of chemotherapy on in vitro development and
survival of ovarian follicles in cryopreserved human ovarian tissue, despite its high importance
for the feasibility of obtaining oocytes from the cryopreserved tissue.

In the present study, we used in vitro tissue culture to evaluate developmental capacity of
cryopreserved human ovarian tissue taken as quality control samples for fertility preservation
of children and young women with cancer. The study was conducted with special emphasis on
the effects of chemotherapy with alkylating agents on the in vitro development and viability of
ovarian follicles.
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Materials and Methods

Tissue donors
Patients for fertility preservation were recruited at the Children's Hospital, University
Central Hospital of Helsinki, Finland, the Department of Gynecology, Oslo University Hos-
pital, Norway and the Department of Gynecology, University Hospital of Tampere, Finland
[17].

Adult patients in the Oslo University Hospital and the University Hospital of Tampere were
offered cryopreservation of ovarian tissue as a part of the fertility preservation program, which
provided them with a full range of fertility-saving options. The participants signed an informed
consent form for quality control of ovarian tissue including morphological analysis and in vitro
culture. Ethical approval was therefore not necessary. All samples were anonymized before
access and start of analysis.

In the Children's Hospital, Helsinki fertility preservation was performed as a part of
research protocol approved by the Ethics Committee of Helsinki University Central Hospital.
All age-appropriate patients or guardians provided their written informed consent for partici-
pation in the study.

Parental written consent was obtained from all patients under 18 years old.
Ovarian tissues used for control of the culture method were donated by four healthy

women undergoing Cesarean section at Karolinska University Hospital, Stockholm, Sweden.
They had signed an informed consent form for donation of a small piece of tissue for this
research. The study and the consent form had been approved by The Regional Ethics Board
in Stockholm.

The study samples were consecutive quality-control material for fertility preservation from
patients with hematological and solid cancers (Helsinki, n = 19; Oslo, n = 13; Tampere n = 2)
(Table 1) at median age of 15 years (range 1–35) at the time of biopsy. It was not possible to
select tissue donors on the basis of age. Of the total of 34 samples obtained, 14 were collected at
the time of diagnosis before chemotherapy and 20 after initiation of chemotherapy. The
median age of healthy controls was 33 years (range 31–36).

The hospitals’medical records were used to collect information regarding the patients; i.e.
age, diagnosis, type of treatment, timing and cumulative doses of chemotherapeutic agents.
Cumulative exposure to alkylating agents was assessed by calculating the cyclophosphamide
equivalent dose (CED), as described before [20]. Except for one, all patients treated with che-
motherapeutic drugs received alkylating agents, cyclophosphamide being a major treatment
element (Table 1). The interval between last dose of chemotherapy and ovarian biopsy was less
than 56 days for all patients treated with chemotherapy (Table 1).

Ovarian tissue cryopreservation and thawing
Ovarian tissue was biopsied by laparotomy or laparoscopy and transported on ice to the labo-
ratory in cold phosphate-buffered saline prior to cryopreservation. Ovarian tissue from each
patient was prepared in the laboratory by cutting the ovarian cortex into small pieces. Cryo-
preservation of ovarian tissue was carried out by using a slow freezing method with either pro-
panediol (PrOH) or ethylene glycol (EG) as cryoprotectant agent depending on the
cryopreservation protocol used in the respective hospital. The protocols for freezing of human
ovarian tissue have been described earlier [21;22]. A programmable freezer was used and the
tissue specimens were stored in liquid nitrogen. The cryopreserved pieces were thawed accord-
ing to the reverse cryopreservation procedure [21;23;24]. The procedure took place at room
temperature under a laminar flow hood in sterile conditions before transfer to culture medium.
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Table 1. Controls and cancer patients who underwent biopsy before or after chemotherapy.

ID Age (y) Cryo-protectant Cancer diagnosis CEDa (mg/m2) Interval form last chemotherapy to ovarian biopsy (day)

Healthy donors

1 32 PrOH - - -

2 36 PrOH - - -

3 33 PrOH - - -

4 31 PrOH - - -

Patients biopsied before chemotherapy

5 15 PrOH Neuroblastoma - -

6 12 EG Ewing Sarcoma - -

7 24 EG Ewing Sarcoma - -

8 16 EG Osteosarcoma - -

9 19 PrOH Non-Hodgkin Lymphoma - -

10 20 EG Hodgkin Lymphoma - -

11 23 EG Hodgkin Lymphoma - -

12 14 EG Hodgkin Lymphoma - -

13 22 PrOH Acute Lymphocytic Leukemia - -

14 15 PrOH Burkitt’s Lymphoma - -

15 35 PrOH Acute Myeloid Leukemia - -

16 15 PrOH Aplastic Anemia - -

17 19 PrOH Acute Lymphocytic Leukemia - -

18 19 PrOH Acute Lymphocytic Leukemia - -

Patients biopsied after chemotherapy

19 3 PrOH Neuroblastoma 7000 14

20 1 PrOH Neuroblastoma 16640 55

21 2 PrOH Neuroblastoma 7200 30

22 12 PrOH Ewing Sarcoma 31560 21

23 10 EG Rhabdomyosarcoma 8540 14

24 15 PrOH Non-Hodgkin Lymphoma 4100 18

25 20 PrOH Non-Hodgkin Lymphoma 6200 35

26 1 PrOH Acute Lymphocytic Leukemia 2000 28

27 9 EG Burkitt’s Lymphoma 4300 20

28 11 PrOH Acute Lymphocytic Leukemia 6000 21

29 16 PrOH Acute Lymphocytic Leukemia 2000 18

30 5 PrOH Acute Lymphocytic Leukemia 3600 11

31 5 PrOH Acute Lymphocytic Leukemia 4000 17

32 13 PrOH Acute Lymphocytic Leukemia 4684 30

33b 6 PrOH Acute Myeloid Leukemia 0 30

34 15 PrOH Acute Lymphocytic Leukemia 7300 9

35 7 PrOH Acute Lymphocytic Leukemia 4400 50

36 24 EG Acute Lymphocytic Leukemia 4800 21

37 8 PrOH Acute Lymphocytic Leukemia 6000 30

38 5 PrOH Rhabdomyosarcoma 10248 17

PrOH = propanediol, EG = ethylene glycol
aExposure to alkylating agents is indicated by cumulative Cyclophosphamide Equivalent Dose (CED).
bTreated with non-alkylating agents,

doi:10.1371/journal.pone.0133985.t001
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Ovarian tissue culture
Ovarian tissue culture was based on an established method as previously described
[6;13;25;26]. The thawed ovarian cortical tissue was cut into pieces of 2–3 × 3–4 × 1.5 mm3.
One piece was fixed in Bouin’s solution for histology. The remaining pieces were immediately
cultured at 37°C in a humidified atmosphere containing 5% CO2, in 0.5 ml Dulbecco’s Modi-
fied Eagle’s Medium with Glutamax (Gibco, Invitrogen Inc.) supplemented with human serum
albumin (10%; Vitrolife, Goteborg, Sweden), glutamine (3mM), follicle-stimulating hormone
(0.5IU/ml; Gonal-F Serono Nordic Inc.), insulin-transferrin-selenium (1%; Invitrogen Inc.)
and antibiotic/antimycotic (50IU/ml; Invitrogen Inc.). All samples were treated with phospha-
tase and tensin inhibitor (1 μM; Calbiochem, Merck Chemicals Ltd.) for the first 24 hours of
the culture period to activate the growth of ovarian follicles. The culture medium was changed
daily. The cultured ovarian tissue pieces were fixed in Bouin’s solution after seven days.

Histology
The fixed ovarian tissue samples were placed in 70% alcohol after 24 h and stored at 4°C. To
analyze the development of ovarian follicles by light microscopy, the dehydrated ovarian tissue
strips were embedded in paraffin, sectioned (4 μm), and stained with hematoxylin and eosin
(HE). Two persons counted the number of follicles at each developmental stage in all sections
and controlled the results by use of an inter-observer variation method. To avoid double count-
ing, each follicle was followed through neighboring sections.

Follicles were classified as primordial, intermediary, primary and secondary (Fig 1) [26;27].
They were further classified as intact, influenced and atretic in order to evaluate the quality of
the ovarian cortical pieces (Fig 1). Intact follicles were defined as those with an intact basement
membrane attached to granulosa cells and without contraction of the cytoplasm or any pykno-
tic nuclei. The oocytes were in close contact with the surrounding granulosa cells, and the gran-
ulosa cells were without pyknotic nuclei or any signs of shrinkage or swelling. Influenced
follicles were defined as those having intact nuclei and membranes of the oocyte, with less than
50% detachment of the oocyte from surrounding granulosa cells and/or less than 10% vacuoli-
zation in cytoplasm, and less than 50% atretic granulosa cells. The follicles were defined as atre-
tic if the nucleus or more than 50% of any of the follicle structures described above were
pyknotic. All intact and influenced primordial, intermediary, primary and secondary follicles
were evaluated separately in each category.

The volume (V) of ovarian cortices was calculated by summing the number (n) of sections,
of area Amm2 and thickness 0.004 mm: V (mm3) = (A1+A2+. . .+An) × 0.004. The areas were
measured by using Nikon's NIS-Elements with ×4 magnification. The densities of each type of
follicle in the ovarian cortex were then calculated as the total number of follicles divided by the
total volume and expressed as the number of follicles/mm3 of ovarian tissue [28].

Statistical analysis
SPSS statistical software version 21 was used to analyze the data. All data are presented as
median and interquartile range (IQR). The Mann–Whitney U test was used to compare follicle
densities in tissue samples removed before chemotherapy vs. those removed after initiation of
chemotherapy. The entire study material was included in Spearman’s rank correlation analysis
to assess univariate correlations between follicular density and age, and follicular density and
CED. Follicular densities of the entire study material were further entered as dependent vari-
ables, and age, CED and cryoprotectant agents (PrOH or EG) as independent variables in mul-
tiple linear regression analysis. All tests of significance were two-tailed and p-values� 0.05
indicated statistical significance.
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Results
The viability and developmental stages of a total of 17,212 non-cultured follicles and 41,231 fol-
licles after seven days of culture were analyzed in tissues from 34 cancer patients and four
healthy donors. Of a total of 34 samples, 33 were evaluated after thawing and 34 after seven
days of culture. The results are based on ovarian follicular density (Table 2). Developmental
stages from primordial to secondary follicles were observed after culture (Fig 1).

Viability and development of ovarian follicles in control tissue
The samples from the four healthy donors were evaluated independently as controls for the
culture method. Median density (IQR) of total, intact and atretic follicles were before culture
20 (31), 20 (31), 17 (10) and after culture 23 (17), 11 (5), 7 (8) per mm3, respectively. Median
density of primordial, intermediary, primary and secondary follicles were before culture 6 (21),
6 (11), 6 (2), 0 (4) and after culture 4 (4), 4 (7), 6 (6), 1 (2) per mm3, respectively. The propor-
tion of atretic follicles increased from 0% to 30% (P = 0.014) while the proportion of intact fol-
licles decreased from 100% to 47% (P = 0.021) after the seven days of culture. No changes in
the proportion of more developing follicles-primary and secondary follicles- were observed in
culture (35% before and 40% after seven days of culture).

Viability and development of follicles in ovarian tissue collected before
and after the initiation of chemotherapy
Median follicular densities before and after culture are shown in Table 2. Before culture, the
density of primordial follicles was similar in ovarian samples collected before and after the ini-
tiation of chemotherapy, however, more atretic follicles and fewer follicles in primary or sec-
ondary stages were seen in samples exposed to chemotherapy (Table 2). After seven days of
culture the majority of follicles in samples collected after the initiation of chemotherapy had

Fig 1. Representative images of ovarian cortex before and after seven days of culture (magnification
×40), from a 15-year-old girl with lymphoma and no chemotherapy (A,B), and from a 2-year-old girl
with neuroblastoma exposed to CED of 7200 mg/m2 (C,D). a) Intact primordial follicle, b) intact secondary
follicle, c) influenced primordial follicle, d) atretic follicle.

doi:10.1371/journal.pone.0133985.g001
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entered atresia (Table 2). Significantly higher densities of intermediary, primary and secondary
follicles were detected in the samples collected before chemotherapy (Table 2).

The proportion of atretic follicles increased in culture. This was observed both in the sam-
ples not exposed (8% before and 53% after seven days of culture, P = 0.004) and exposed to
chemotherapy (before 41%, after 86%, P = 0.070). The decrease in the proportion of intact folli-
cles was more notable in samples exposed to chemotherapy (before 46%, after 6%, P<0.001)
than in samples that were not exposed (before 82%, after 28%, P = 0.001). No changes in the
proportions of more developing follicles-primary and secondary follicles- were detected in the
samples that were not exposed to chemotherapy (before 17%, after 17%), while proportions of
more developing follicles were decreased in the samples collected after exposure to chemother-
apy (before 8%, after 5%, P = 0.014).

Effects of age and ovarian exposure to alkylating agents on viability and
development of ovarian follicles
Patients who had not received chemotherapy before ovarian biopsy were significantly older
than those who had received chemotherapy (Tables 1 and 2, Fig 2). Exposure to alkylating
agents, expressed as CED, varied significantly between the patients (Tables 1 and 2). Spear-
man’s rank correlation analysis was performed to identify if age or CED correlated to follicle
densities using 33 samples before and 34 samples after seven days of culture (Table 3). Increas-
ing age correlated significantly with an increasing density of developing follicles and with a
lower density of total and atretic follicles both before and after seven days of culture (Table 3).
Increasing exposure to CED correlated with an increased density and proportion of atretic

Table 2. Median and interquartile range (IQR) of follicle densities in cryopreserved human ovarian tissue before and after seven days of culture.

No chemotherapy n = 14 Median (IQR) Chemotherapy n = 20 Median (IQR) P-value

Age (y) 19.0 (7.3) 8.5 (9.5) 0.000

CEDa (mg/m2) 0.0 5400 (3250) 0.000

Follicle density before culture (per mm3)

Total follicles 155 (179) 263 (569) 0.194

Intact 103 (110) 85 (148) 0.434

Influenced 5 (37) 26 (75) 0.128

Atretic 0 (27) 74 (305) 0.004

Primordial 76 (86) 98 (183) 0.957

Intermediary 20 (41) 23 (43) 0.372

Primary 15 (11) 4 (9) 0.005

Secondary 0 (2) 0 (0) 0.785

Follicle density after 7 days of culture (per mm3)

Total follicles 67 (103) 297 (417) 0.027

Intact 11 (34) 2 (9) 0.011

Influenced 7 (32) 6 (16) 0.500

Atretic 42 (64) 291 (407) 0.004

Primordial 9 (19) 5 (14) 0.192

Intermediary 8 (16) 2 (6) 0.023

Primary 7 (18) 0 (2) 0.001

Secondary 1 (3) 0 (0) 0.000

a Cumulative Cyclophosphamide Equivalent Dose.

doi:10.1371/journal.pone.0133985.t002
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follicles before and after culture (Table 3). Increased CED also correlated with a decreased den-
sity of developing follicles after culture (Table 3).

Multivariate linear regressions were performed to adjust for differences in age, cryoprotec-
tant agents (PrOH or EG) and exposure to CED between the groups. Multivariate linear regres-
sion analysis identified increasing age of the patient as the only independent predictor of lower
total density of follicles in ovarian samples before culture (Table 4). After culture for seven
days, both age and exposure to alkylating agents independently predicted viability of ovarian
follicles. Increasing age predicted a lower density of total and atretic follicles, while exposure to
increasing CED predicted higher density of total and atretic follicles. Increasing age was the
only independent predictor of higher density of the differentiating primary and secondary

Fig 2. Relationship between follicle density and age before and after seven days of culture in controls
(circles) and cancer patients with (triangles) and without (squares) chemotherapy.

doi:10.1371/journal.pone.0133985.g002

Table 3. Spearman’s rank correlation analysis of age and cumulative Cyclophosphamide Equivalent Dose (CED) and their association with follicle
densities after seven days of culture.

Age CED

Rho P-value Rho P-value

Before culture

Total follicles -0.362 0.038 0.342 0.052

Intact follicles -0.050 0.784 0.029 0.873

Influenced follicles -0.275 0.121 0.367 0.036

Atretic follicles -0.532 0.001 0.474 0.005

Primordial follicles -0.156 0.386 0.198 0.269

Intermediary follicles 0.345 0.049 -0.328 0.062

Primary follicles 0.060 0.739 -0.016 0.930

Secondary follicles -0.103 0.567 -0.098 0.588

After 7 days of culture

Total follicles -0.563 0.001 0.345 0.046

Intact follicles 0.409 0.016 -0.281 0.108

Influenced follicles 0.046 0.796 -0.073 0.681

Atretic follicles -0.646 0.000 0.413 0.015

Primordial follicles 0.096 0.591 -0.157 0.376

Intermediary follicles 0.590 0.000 -0.439 0.009

Primary follicles 0.351 0.042 -0.250 0.154

Secondary follicles 0.592 0.000 -0.519 0.002

Rho = Spearman's rank correlation coefficient

doi:10.1371/journal.pone.0133985.t003
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follicles after seven days of culture (Table 4). The cryoprotectants PrOH or EG were not signifi-
cantly associated with follicle densities when adjusted to other factors in the regression model
(Table 4).

Discussion
The aim of ovarian tissue cryopreservation is to increase the chance of fertility in cured cancer
patients, either via transplantation or in vitro culture. To achieve the goal, the evaluation of the
developmental capacity of cryopreserved tissue is of primary importance. This study provides
the first quantitative evidence of the impact of alkylating agents on in vitro viability and devel-
opmental capacity of ovarian tissue that was cryopreserved for fertility preservation. We dem-
onstrated that previous chemotherapy significantly impaired the survival and development of
the ovarian follicles in culture. The cyclophosphamide equivalent dose was an independent
predictor for the density of atretic follicles. The study demonstrates that the youngest patients,
exposed to the highest cumulative doses of alkylating agents, had the highest probability of
increased follicular atresia and the lowest probability of developing follicles after culture.

Previous analyses of clinical histological samples and the results of xenotransplantation
studies show that chemotherapy, in particular with alkylating agents, induces atresia of ovarian
follicles [29–31]. Patients who received chemotherapy presented with significantly lower pri-
mordial follicle counts in morphological analysis and decreased estrogen production in vitro
[32]. Cyclophosphamide is one of the most widely used alkylating agents. It is known to have
an adverse effect on rapidly dividing cells and it damages DNA repair mechanisms [33]. In the
ovary, granulosa cells surrounding the oocytes are an important target of alkylating agents
[15;34]. DNA damage can lead to apoptosis of proliferating granulosa cells and decrease inter-
cellular communication between them and the oocyte [35]. Alkylating agents may also directly

Table 4. Multivariate linear regression analysis of follicle densities using age, cumulative Cyclophosphamide Equivalent Dose (CED) and propane-
diol (PrOH) as predictors after 7 days of culture.

Outcome variable Predictor B SEB P-value

Before culture

Total follicles Age -32.62 15.80 0.046

R2 adj = 20% CED 0.02 0.02 0.213

PrOH -11.59 259.30 0.965

After 7 days culture

Total follicles Age -15.23 7.24 0.044

R2 adj = 22% CED 0.02 0.01 0.013

PrOH 106,55 220.47 0.632

Atretic follicles Age -15.81 7.00 0.031

R2 adj = 24% CED 0.03 0.01 0.006

PrOH 82,14 212.20 0.701

Primary follicles Age 0.66 0.22 0.004

R2 adj = 12% CED 0.00 0.00 0.473

PrOH -0.83 6.57 0.900

Secondary follicles Age 0.14 0.03 0.000

R2 adj = 17% CED -0.00 0.00 0.590

PrOH -0.33 0.953 0.733

B = Regression coefficient, SEB = Standard Error, R2 adj = Adjusted R-squared

Only significant differences are indicated.

doi:10.1371/journal.pone.0133985.t004
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cause DNA and RNA damage and therefore affect even non-dividing ovarian follicles [35;36].
It has also been suggested that ovarian exposure to cyclophosphamide may trigger dormant fol-
licle activation, resulting in burnout of the follicular reserve [15;37].

As pre-pubertal girls have more primordial follicles than adults, it has been assumed that
their follicle cohort has a higher maturation potential and better survival capacity after cancer
treatment [38;39]. However, this hypothesis has been questioned after a recent in vitro study
suggesting that there may be key differences in follicular recruitment and development between
the ovaries of young girls and adults. The capacity of primordial follicles to be activated and
reach the secondary stage of development may be age-dependent [40]. The present results con-
firm decreased in vitro viability and development of ovarian follicles from very young girls.
Increased age correlated with fewer follicles, more developing and fewer atretic follicles after
culture. A study on mouse ovaries revealed two classes of primordial follicles; the first wave,
which are activated immediately after they are formed, and adult primordial follicles, which are
activated gradually during reproductive life [41]. These two primordial follicle pools have been
shown to differ in their developmental dynamics and location in the maturing ovary [42]. Our
results may indicate that a similar situation exists in humans. A decreased rate of activation
and development of follicles in ovaries from young girls may reflect compromised develop-
mental competence in vitro. Presently no international consensus exists on the age at which
reproductive potential is actually reached making it unclear how recommendations for fertility
preservation can be effectively applied to cancer patients younger than 18 years old [1].

The present study population was small and heterogeneous with a significant difference in
the median age of patients who underwent chemotherapy versus those who did not. Ideally,
the effect of chemotherapy should have been studied in groups of comparable age and com-
pared to age-matched control tissue. This was not possible because of the clinical nature of the
samples available. The fact that first-line therapy seldom associates with subfertility among
pre-pubertal girls delays the decision of fertility preservation. Childhood cancers also require
prompt initiation of cancer therapy often before ovarian biopsy. For ethical reasons, it was not
possible to collect age-matched tissue from healthy young girls. The healthy control ovarian tis-
sue cultures were from few adult samples. Their performance in in vitro conditions was compa-
rable with those in previous [6;13;25]. In order to decrease the effect of skewed study
populations, the entire study material was included in multivariate analysis to adjust for differ-
ences in age, use of cryoprotectant agents and exposure to CED. The analysis identified CED
and age as independent predictors of follicle survival. No independent effect on viability of the
follicles was found to be associated with the use of either PrOH or EG as cryoprotectants dur-
ing slow freezing. This is in agreement with the results of previous studies [26;43].

In conclusion, the results of this study demonstrate that exposure to an increased cumula-
tive dose of alkylating agents prior to ovarian cryopreservation decreases survival of cultured
human ovarian follicles. Therefore, if possible, fertility preservation should be carried out
before initiation of chemotherapy. The findings further confirm that the capacity of ovarian
follicles to survive and develop in culture may be reduced among young girls. The results of the
present study can have implications for future implementation, timing and quality control of
fertility-preservation methods.
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