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Abstract

Studies using the placental transcriptome to identify key molecules relevant for preeclamp-
sia are hampered by a relatively small sample size. In addition, they use a variety of bioinfor-
matics and statistical methods, making comparison of findings challenging. To generate a
more robust preeclampsia gene expression signature, we performed a meta-analysis on
the original data of 11 placenta RNA microarray experiments, representing 139 normoten-
sive and 116 preeclamptic pregnancies. Microarray data were pre-processed and analyzed
using standardized bioinformatics and statistical procedures and the effect sizes were com-
bined using an inverse-variance random-effects model. Interactions between genes in the
resulting gene expression signature were identified by pathway analysis (Ingenuity Path-
way Analysis, Gene Set Enrichment Analysis, Graphite) and protein-protein associations
(STRING). This approach has resulted in a comprehensive list of differentially expressed
genes that led to a 388-gene meta-signature of preeclamptic placenta. Pathway analysis
highlights the involvement of the previously identified hypoxia/HIF1A pathway in the estab-
lishment of the preeclamptic gene expression profile, while analysis of protein interaction
networks indicates CREBBP/EP300 as a novel element central to the preeclamptic placen-
tal transcriptome. In addition, there is an apparent high incidence of preeclampsia in women
carrying a child with a mutation in CREBBP/EP300 (Rubinstein-Taybi Syndrome). The 388-
gene preeclampsia meta-signature offers a vital starting point for further studies into the rel-
evance of these genes (in particular CREBBP/EP300) and their concomitant pathways as
biomarkers or functional molecules in preeclampsia. This will result in a better understand-
ing of the molecular basis of this disease and opens up the opportunity to develop rational
therapies targeting the placental dysfunction causal to preeclampsia.
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Introduction

Preeclampsia, defined as the development of high blood pressure in combination with protein-
uria after 20 weeks of gestation, is a common (incidence 2-8%) and potentially severe preg-
nancy complication for both mother and child [1]. At present, apart from delivery of placenta
and fetus, there is no definite treatment for preeclampsia. Although preeclampsia clinically
manifests during the second half of gestation, it most likely originates at the time the early pla-
centa develops.

The molecular mechanisms that play a role in the development of preeclampsia are largely
unknown. Over the past decades, much research has been dedicated to identify preeclampsia-
specific molecules that can either serve as a biomarker for prognostic/diagnostic purposes, or
that play a functional role in the disease and hence are potential therapeutic targets. The main
approach that has been used for this purpose is the analysis of gene expression in the placenta
of normotensive and preeclamptic pregnancies. This has resulted in the identification of factors
unquestionably associated with preeclampsia, such as soluble Vascular Endothelial Growth fac-
tor receptor 1 (sSFLT1) [2] and soluble Endoglin [3].

We have recently performed a systematic review and meta-analysis on 30 studies reporting
lists of differentially expressed genes (DEGs) in relation to preeclamptic placenta [4]. This gene
list-driven approach resulted in a 40-gene preeclamptic signature that, apart from identifying
most of the genes known to be associated with preeclampsia, singled out 14 genes not previ-
ously associated with preeclampsia. Although this literature-based approach resulted in an
overall picture of genes differentially expressed in the preeclamptic placenta and in the identifi-
cation of potential novel biomarkers, the number of genes included in the meta-signature was
limited due to a high degree of between-study variability. Apart from the fact that focus of the
individual research groups may have driven the reported gene lists, inconsistencies in the pre-
eclampsia-specific gene signatures are largely due to the relatively limited sample size used in
most studies, combined with differences in experimental approach, and bioinformatics and sta-
tistical methods. Recently, two papers described meta-analyses of preeclampsia RNA microar-
ray studies. Although these studies by their nature increase the sample size and resolve some of
the disadvantages of the reported gene list-driven meta-analysis, they do not, or only partly,
deal with aspects like quality assessment and uniformity of data analysis [5, 6].

For the current study we retrieved the original microarray data from 11 independent pla-
cental mRNA microarray experiments. Microarray data were subjected to quality analysis, pre-
processed and analyzed using standardized bioinformatics and statistical procedures. This
resulted in a comprehensive preeclampsia gene signature, which upon further analysis led to
the identification of a novel pathway associated with preeclampsia.

Materials and Methods
Dataset acquisition

Datasets were identified by systematic review [4], searching the NCBI Gene Expression Omni-
bus [7] and the EBI ArrayExpress [8] functional genomics data repositories using the term
“preeclampsia” and close derivatives. Datasets from platforms that interrogated more than
10,000 genes and did not completely pool samples were selected. In addition, we generated one
dataset in our laboratory [9]. If available, data was directly obtained from the data repositories.
For studies identified by systematic review without publicly available data, authors were con-
tacted to provide original data. An overview of datasets is shown in Tables 1 and 2.
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Data processing and meta-analysis

The meta-analysis was performed according to the stepwise approach described in [29]. In
brief, original data was retrieved where possible and subsequently pre-processed using state-of-
the art methods for each of the platforms included. Samples of low quality were removed using
the quality criteria calculated by the R package arrayQualityMetrics. Effect sizes (Hedges’ g)
and their variances were calculated for each gene in each dataset. Dataset-specific effect sizes
were combined using an inverse-variance random-effects model. As a final step, a leave-one-
out-analysis was performed to increase the robustness of the resulting meta-signature. Details
of the analysis are provided as Supplementary Methods in S1 text.

STRING 9.1 [30] was used for protein-protein association analysis. All 388 genes from the
meta-signature were used as input for STRING analysis and a network was built based on high
confidence (0.8) evidence from experimental protein-protein interaction and curated
databases.

KEGG Pathway analysis was performed using Graphite [31]. The 388 gene meta-signature
was used as input. Pathways were considered significantly enriched at g-values < 0.05.

GSEAPreranked was used for gene set enrichment analysis [32]. All 8612 genes of the meta-
analysis were ranked according to their mu-value and used as ranked gene list. Enrichment
scores were calculated based on the standard GSEAPreranked settings and the curated gene set
database (c2.all.v5.0.entrez.gmt, 4530 gene sets). Gene sets were considered significantly
enriched at FDR g-values < 0.05.

Ingenuity Pathway Analysis (Qiagen) Upstream Regulator Analysis was performed to iden-
tify upstream regulators that can explain the observed 388 gene meta-signature. Analysis was
performed using standard settings. The resulting activation z-score was used to infer the activa-
tion states of the predicted regulator. A z-score of > 2 (activated) or <-2 (inhibited) was con-
sidered significant.

Gene Expression Barcode: RNA microarray data for human placentas of different gesta-
tional ages was obtained from the NCBI Gene Expression Omnibus (accession GSE9984). Sam-
ples were pre-processed and barcoded as described by the Gene Expression Barcode 3.0 using
the R package frma [33]. Probesets were mapped to official gene symbols using the R package
hgu133plus2.db

Results

For the current meta-analysis, we included 11 different studies representing a total of 151 nor-
motensive and 132 preeclamptic placenta samples (Table 1). Nine studies (covering 91 normo-
tensive and 82 preeclamptic samples) were not included (Table 2) because authors did not
respond to our request for data (5 instances) or because authors did not wish to share their
data (3 instances). One author was not able to recover the original data files.

Quality analysis of the microarray data resulted in the removal of 28 samples. One dataset
[18] consisted of two batches, which induced systematic differences in gene expression levels
and that were therefore treated as two independent datasets. Meta-analysis was performed on
12 datasets (covering placentas from 139 normotensive and 116 preeclamptic pregnancies)
combining the effect sizes using an inverse-variance random-effects model. The meta-analysis
was performed on the 8,612 genes available on all platforms, resulting in the identification of
688 differentially expressed genes in preeclamptic versus normotensive placenta (Fig 1). To
increase the robustness of the meta-signature, an additional leave-one-out-analysis was per-
formed which reduced the number of genes to 388 (Benjamini-Hochberg-based corrected p-
value<0.05), of which 214 were overexpressed in preeclamptic placentas compared to
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Table 1. Datasets included in the meta-analysis.

Data Set Data source (first author)

Authors® (Centlow) [10]
Authors® (Enquobahrie) [11]
Authors® (Hoegh) [12]
GSE54618 (Jebbink) [9]
Authors® (Kivinen) [13]
GSE30186 (Meng) [14]
GSE4707 (Nishizawa) [15]
GSE24129 (Nishizawa) [16]
GSE10588 (Sitras) [17]

© 00 N O g B~ ODN =

10A

10B

11 GSE14722 (Winn) [19]
Total

GSE25906 (Tsai) [18]

number of samples

reported after QC

NT PE NT PE Platform probes with Gene ID
20 15 19 11 Custom, OPERON 13010
18 18 15 16 Custom, OPERON 13010
32 32 32 32 Affymetrix HG U133A 19955
12 12 11 11 lllumina HumanHT-12 v4 37463
6 8 6 7 Affymetrix HG U133 plus 2.0 41245
6 6 6 5 lllumina HumanHT-12 v4 37463
4 10 2P 7 Agilent Whole Genome Oligo Microarray G4112A 29777
8 8 8 8 Affymetrix Human Exon 1.0 ST array 21929
26 17 24 16 ABI Human Genome Survey Microarray v.2.0 26396
8 7 8 7 . 27303
09 16 o8 16 lllumina Human-6 v2

11 12 9 9 Affymetrix HG U133A 19955

151 132 139 116

GSE = GEO accession number, NT = normotensive, PE = preeclampsia, QC = Quality Control

3each sample represents 3 pooled placentas

Psamples that are also present in dataset 8 were excluded from dataset 7

Coriginal data was provided by the authors.

doi:10.1371/journal.pone.0132468.t001

placentas from normotensive pregnancies. A detailed list of the 388 genes and the correspond-
ing statistics is shown in S1 Table, corresponding forest plots are shown in S1 Fig.
Comparison of the current 388-gene meta-signature with the gene list-driven signature of
40 genes we previously obtained from published gene lists reported as being differentially
expressed in preeclamptic placenta [4] shows that most of the literature-based genes are also
included in the 388-gene signature (S2 Table). In total, 12 genes from the gene list-driven

Table 2. Studies excluded in the meta-analysis.

number of samples

First author NT PE Platform?®
Ahr [20] 4 3 University Health Network Hu19k2 (cDNA)
Guller [21] 6 3 Affymetrix HG U133 plus 2.0
Jarvenpaa [22] 3 2 Affymetrix HG U133 plus 2.0
Kang [23] 16 17 Codelink Human Whole Genome Bioarrays
Lee [24] 13 13 Agilent Human 4X44K Oligomicroarrays Chip
Liu [25] 28 24 CapitalBio, OPERON
Mayor-Lynn [26] 6 3 lllumina HumRef-12 v3
Varkonyi [27] 10 12 Agilent Human 4X44K Oligomicroarrays Chip
Zhou [28] 5 5 CapitalBio, OPERON

91 82

NT = normotensive, PE = preeclampsia
@platform names were obtained from description in cited publication.

doi:10.1371/journal.pone.0132468.t002
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Fig 1. Volcano plot of DEGs. Volcano plot showing the standardized mean difference and the adjusted p-
value for the 8,612 genes included on all platforms. The red dots represent genes differentially expressed
(adjusted P<0.05) in the preeclamptic versus normotensive placenta. The symbol-marked dots indicate the
five genes with the largest negative or positive standardized mean difference.

doi:10.1371/journal.pone.0132468.g001

signature were not included in the meta-signature from our current analysis. Six of these were
not represented by a gene-specific probe on some platforms (INHBA, CGB, F5, HTRA4,
PVRL4, RDH13). Calculation of the standardized mean difference (mu) based on the studies
that did contain a gene-specific probe for these six genes shows that all are differentially
expressed. Two of the 12 genes (HSD17B1, VIM) were among the 688 differentially expressed
genes in the initial meta-signature, but were removed in the leave-one-out-analysis, and four
genes (CGA, IGFBPI, PGF, TNFSF10) were not significantly differentially expressed in our
meta-analysis on the original microarray data. For those genes in the gene list-driven signature
that were also differentially expressed in the current analysis, the direction of differential
expression was identical except for SOD1, SPP1 and VIM. SODI and VIM, which have been
described in the literature both as being upregulated and downregulated in the preeclamptic
placenta, are definitely downregulated in the current analysis. In fact, SOD1I is one of the most
strongly downregulated genes in the preeclamptic placenta, as shown in S1 Table. The only
genuine discrepancy is the direction of SPPI. Although reported as being upregulated in the
preeclamptic placenta in three different publications, our current meta-analysis identifies SPP1
as a gene downregulated in preeclampsia.

Two recent studies also performed a meta-analysis on microarray data exclusively. Vaiman
et al [6] analyzed six datasets (corresponding to dataset 6, 7, 8,9, 10 and 11 in this paper) and
used vote counting to identify genes that were consistently upregulated or downregulated in
the majority of studies. Moslehi et al [5] analyzed four datasets (corresponding to dataset 7, 8,
9, and 11 in this paper) and performed their meta-analysis by averaging p-values and fold dif-
ferences. After removal of the genes not included in our 8,612 gene universe, 77% (57 out of
74) of the DEGs reported by Vaiman et al are included in our current 388-gene meta-signature,
while the overlap with the Moslehi study is 44% (123 out of 281) as shown in Fig 2.

To further identify preeclampsia-related pathways or networks within our 388-gene meta-
signature, the STRING network of both physical and functional interactions between proteins
was used [30]. By employing a stringent confidence score of 0.8 and experiments plus curated
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Current study  Vaiman et al

Moslehi et al

Fig 2. Overlapping genes with previous meta-analyses. Venn diagram of the DEGs from the current study
and the previously published studies. DEGs were extracted from the publications [5, 6] and only genes within
the gene universe of our study were included in the comparison.

doi:10.1371/journal.pone.0132468.9002

databases as active prediction methods, 112 interactions between proteins encoded by meta-
signature genes were observed (S2 Fig). CREBBP is a hub in this network, with 13 direct pro-
tein interactions and 23 interactions in total (Fig 3).

As shown in Fig 4, CREBBP (adjusted p-value = 0.004, mu = -0.549) and its functionally
similar paralogue EP300 (adjusted p-value = 0.038, mu = -0.388; present in the 688 differen-
tially expressed gene list, but removed in leave-one-out-analysis) [34], are consistently downre-
gulated in almost all individual datasets.

Parallel approaches using pathway analysis resulted in a large number of pathways that are
enriched in the 388-gene meta-signature with a consistent enrichment for the hypoxia/HIF1A
pathway in Ingenuity Pathway Analysis, Graphite, and Gene Set Enrichment Analysis
(Table 3).

To obtain information if the genes listed in the meta-signature are also expressed earlier
during gestation, we performed a Gene Expression Barcode analysis on a microarray data set
including 1* and 2™ trimester placentas [35]. As shown in $4 Table most of the meta-signature
genes are expressed above background (z-score > 3 in 2™%, and even 1% trimester placenta.

Discussion

We established a robust 388-gene meta-signature in what is presently the most complete meta-
analysis of the preeclamptic placental transcriptome. Our meta-analysis not only greatly
increases the number of samples included as compared to the individual studies, but also
largely resolves the between-study variation in bioinformatics and statistical analysis, which
was one of the major inconsistencies reported in our previous gene list-driven meta-analysis
[4].

Recently, several other approaches to summarize placental mRNA expression data in rela-
tion to preeclampsia have been reported. As mentioned above, we previously performed a
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Fig 3. Protein interaction network analysis indicates a central role for CREBBP in the preeclamptic
placenta. All 388 genes were used as input for STRING analysis and a network was built (S2 Fig). Shown
are the details of CREBBP interactions based on high confidence (0.8) evidence from experimental protein-
protein interaction (blue lines) and curated (purple lines) databases. Proteins are indicated by nodes labeled
with the encoding gene symbol. The network is enriched in interactions (p = 2.17E-13) [30].

doi:10.1371/journal.pone.0132468.g003

systematic review and vote-counting-based meta-analysis on published preeclampsia lists of
DEGs from both genome-wide microarray and smaller scale mRNA expression studies [4].

CREBBP EP300
Dataset 11 — - Dataset 11 ———
Dataset 10B —— Dataset 10B ——
Dataset 10A —_— Dataset 10A —
Dataset 9 —— Dataset 9 ———
Dataset 8 —_—— Dataset 8 e
Dataset 7 Dataset 7
Dataset 6 e Dataset 6 —_—
Dataset 5 —_— Dataset 5 —_—
Dataset 4 —.— Dataset 4 ——
Dataset 3 Dataset 3
Dataset 2 —— Dataset 2 ———
Dataset 1 ——— Dataset 1 ——
Meta analysis - Meta analysis -
I T T T 1 I T T T 1
-3 -2 -1 0 1 2 -2 -1 0 1 2 3
standardized mean difference standardized mean difference

Fig 4. CREBBP/EP300 expression in individual studies. Forest plots for CREBBP and EP300. Squares are proportional to weights used in the meta-
analysis, and the lines represent the 95% confidence interval. The diamond represents the standardized mean difference (log2 scale).

doi:10.1371/journal.pone.0132468.9004
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Table 3. Pathway analysis.

Ingenuity Upstream Regulator Analysis®

Upstream Regulator Molecule Type Predicted Activation State Activation z-score
HIF1A transcription regulator Activated 4.163
PDGF BB complex Activated 3.400
CREB1 transcription regulator Activated 3.392
PPARG ligand-dependent nuclear receptor Activated 3.085
CSF3 cytokine Activated 2.961
Graphite Pathway Analysis

Pathway q-value
HIF-1 signaling pathway 0.0000
Fc gamma R-mediated phagocytosis 0.0003

Gene Set Enrichment Analysis (top of the ranked gene list) #
Gene Set Name Size® NES® FDR g-val
SEMENZA_HIF1_TARGETS 31 2.517 0.000
ELVIDGE_HYPOXIA_BY_DMOG_UP 109 2.470 0.000
MENSE_HYPOXIA_UP 70 2.461 0.000
LEONARD_HYPOXIA 41 2.450 0.000
ELVIDGE_HIF1A_AND_HIF2A_TARGETS_DN 83 2.437 0.000
ELVIDGE_HYPOXIA_UP 140 2.398 0.000
ELVIDGE_HIF1A_TARGETS_DN 72 2.301 0.000
WANG_ADIPOGENIC_GENES_REPRESSED_BY_SIRT1 17 2.253 0.000
WINTER_HYPOXIA_METAGENE 187 2.240 0.001
FARDIN_HYPOXIA_11 25 2.212 0.001

@ For the Graphite Pathway Analysis all the significant pathways are shown. For Ingenuity Upstream Regulator Analysis the top 5 activated upstream
regulators, and for Gene Set Enrichment Analysis the top 10 gene sets overrepresented at the top of the meta-signature are shown. A full list of all

significant results is presented in S3 Table.

bSize: Number of genes in the gene set after filtering out those genes not in the expression dataset.

°NES: Normalized enrichment score.

doi:10.1371/journal.pone.0132468.t003

Most genes in the resulting gene list-driven meta-signature are also included in our current
388-gene meta-signature. Genes not included in our current meta-signature had a lower num-
ber of votes and mainly originate from older studies. The current meta-analysis clearly gener-
ates many additional DEGs compared with the literature-based approach.

The 388-gene meta-signature we currently present shows considerable overlap (77%; odds
ratio = 82.86, P<2.2:107'°, Fisher’s exact test) with the genes in the meta-signature of Vaiman
and colleagues, and with the meta-signature reported by Moslehi and colleagues (44%; odds
ratio = 23.67, P<2.2-107'%, Fisher’s exact test). However, our current approach has generated
many more DEGs. Possible reasons for this are multiple and include (i) an increase in statistical
power by the larger number of studies included in our meta-analysis, (ii) renormalization of
the original data using an uniform set of state-of-the-art methods whenever possible, and (iii)
use of stringent quality control criteria to detect and discard low-quality arrays. Differences in
meta-analysis techniques used also impact the meta-signatures obtained. Combining effect
sizes using an inverse-variance random-effects model has several advantages compared to the
meta-analysis techniques used by the other two studies [29]. Particularly important is the
incorporation of between-study heterogeneity into the study weights, since the 11 studies
included in our meta-analysis are geographically (eight different countries) and technically
(eight different platforms, 10 different laboratories) diverse.
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Higher statistical power of the current meta-analysis compared to the individual studies
leads to discovery of novel genes/pathways as illustrated by CREBBP (Fig 4). CREBBP is down-
regulated in preeclamptic placenta in most studies, but with wide confidence intervals. How-
ever, its association with preeclampsia is exposed by combining all studies in the current meta-
analysis.

There are two obvious issues that have limited the full potential of the current analysis. (i)
Of the 20 suitable studies identified, only seven had submitted their data to a publicly available
repository; the data of four additional studies were obtained directly from the authors.
Although the acquired original data represents the majority of samples, it is disappointing that
from almost half of the studies data did not become available.

(ii) In order to obtain summary statistics and p-values based on data from all studies, only
the genes present on all platforms were taken into account. This results in a large decrease of
the gene universe in the current analysis (8,612 genes) compared to the more than 20,000
genes located on most of the microarray platforms included. In particular, the inclusion of the
Operon platforms (representing approximately 13,000 Entrez gene IDs) dramatically decreases
the number of genes in the intersection.

A shortcoming of the current meta-analysis (but also for all preeclampsia placental gene
expression studies) in relation to both function of gene products and their potential role as pre-
dictors in preeclampsia is the timing of the gene expression pattern. All mRNA microarray
data included in the current meta-analysis are generated from placentas at delivery, while the
initial defects leading to preeclampsia occur earlier during pregnancy [1, 36]. Based on data
from one of the few microarray data sets on early gestation placenta, we show that the majority
of the meta-signature genes is expressed during the 1* and 2™ trimester. CREBBP shows clear
placental expression from 1°*' trimester onwards, but the level of EP300 mRNA expression in
the early placenta is less pronounced. Novel developments allowing the quantification of pla-
cental RNAs in maternal blood offers the enticing opportunity to study placental gene expres-
sion in ongoing pregnancy [37].

A further asset would be the coupling of individual gene expression data to more extensive
clinical parameters. The method and time of delivery and the use of antihypertensive drugs,
among other things, are likely to affect placental gene expression. Preeclampsia, as a heteroge-
neous condition consists of several subtypes with different etiology and degree of placental
contribution [38]. Unfortunately, most of the datasets available for the current study are not
accompanied by sufficient individual clinical information to allow more detailed placental
transcriptome to clinical phenotype coupling.

Identification of functionally relevant pathways from the large number of genes in the pre-
eclampsia-placental signature is a major challenge. Building networks based on protein-protein
interactions can help to identify these functionally relevant pathways. Even when using a rather
conservative approach, a protein-protein interaction network within our preeclampsia meta-
signature emerges with CREBBP as key protein within this network. CREBBP interacts with
several proteins well known to be associated with preeclampsia, such as NFE212 [39, 40], LEP
[41] and VEGF/FLT1 [42], but also with proteins not-yet related to preeclampsia. CREBBP
and EP300 are transcriptional/epigenetic regulators involved in many physiological and patho-
logical processes [43]. Although their functions appear to be largely redundant, differences
have been reported [34]. Even though CREBBP/EP300 were not identified as DEGs in the other
two published meta-analyses, their involvement in preeclampsia was suggested based on asso-
ciation with differentially expressed transcription factors by Vaiman and colleagues [6].

Mutations in CREBBP and EP300 are causative for Rubinstein-Taybi syndrome (RSTS,
OMIM 180849 and 613684). RSTS is a rare (approximately 1 in 100,000 newborns) autosomal
dominant congenital disorder characterized by mental retardation, dysmorphic facial features,
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Fig 5. Ingenuity Pathway Analysis identifies HIF1A as the most prominently activated upstream regulator. Thirty four out of 388 genes are direct
HIF1A downstream targets according to the Ingenuity Knowledge Database. Arrows indicate the predicted relationship: orange = leads to activation (23
genes), blue = leads to inhibition (1 gene), grey = effect not predicted (9 genes), yellow = findings inconsistent with the state of downstream molecule (1
gene). Red symbols indicate genes upregulated in preeclamptic placenta, green symbols indicate genes downregulated in preeclamptic placenta. Intensity
of the coloring is related to the level of up/downregulation.

doi:10.1371/journal.pone.0132468.9005

postnatal growth deficiency, and skeletal abnormalities [44]. Almost all mutations occur de
novo and range from large deletions to point mutations. There is no clear genotype-phenotype
correlation, but loss of the CREBBP/EP300 histone acetyltransferase activity appears to be
essential for the development of RSTS [45]. Interestingly, there have been frequent reports of
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preeclampsia-complicated pregnancies in mothers giving birth to a RSTS affected child [46-
51]. Thus, the fetal genotype not only causes RSTS in the neonate but also influences placenta
function resulting in an increased incidence of preeclampsia in the mother. If we translate
these observations and our meta-analysis results to non-RSTS women, it appears that
decreased CEBBP/EP300 levels are detrimental for placenta functioning, resulting in an
increased probability for the mother to develop preeclampsia.

Analysis of canonical pathways and gene expression patterns clearly indicated a prominent
role for hypoxia in the establishment of the preeclamptic gene meta-signature, a conclusion
that was also drawn by Moslehi et al, based on the DEGs from their meta-analysis [5].

Preeclamptic placentas are compromised by hypoxia/ischemia, and the effect on gene
expression is largely mediated via HIF-1o [52]. More than 10% of the upregulated meta-signa-
ture genes are direct targets of HIF-1a (Fig 5). CREBBP/EP300 is an important transcriptional
coactivator of HIF-1a [53-56]. As a result, decreased CREBBP/EP300 levels may impair the
placenta’s capacity to respond to low oxygen, resulting in a further decline of its (preeclamptic)
condition.

Conclusions

The robust 388-gene signature of differentially expressed genes in the preeclamptic placenta
serves as a starting point to investigate their function in the development of preeclampsia. This
will result in a better understanding of the molecular basis of this disease and opens up the
opportunity to develop rational therapies targeting the placental dysfunction causal to
preeclampsia.

Supporting Information

S1 Fig. Forest plots of meta-signature genes. Forest plots of the 388 differentially expressed
genes in the preeclamptic placenta ordered on the absolute value of the standardized mean dif-
terence (see S1 Table). Squares are proportional to weights used in the meta-analysis, and the
lines represent the 95% confidence interval. The diamond represents the standardized mean
difference (log2 scale).

(PDF)

S2 Fig. STRING protein interaction analysis. All 388 genes from the meta-signature were
used as input for STRING analysis and a network was built based on high confidence (0.8) evi-
dence from experimental protein-protein interaction (blue lines) and curated (purple lines)
databases. Proteins are indicated by nodes labeled with the encoding gene symbol. Two genes
(CEBPA and SEPP1) are not present in the used STRING version 9.1. The network is enriched
in interactions (p = 0.007) using the intersection of 8,612 genes present on all platforms as
background. Additional cluster analysis was used to color the nodes of the interaction net-
works. Yellow nodes represent proteins that have no protein-protein interaction at this confi-
dence setting.

(PDF)

S1 Table. 388-gene preeclampsia meta-signature.
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40-gene meta-signature.
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