
RESEARCH ARTICLE

Delineating Species with DNA Barcodes: A
Case of Taxon Dependent Method
Performance in Moths
Mari Kekkonen1,2*, Marko Mutanen3, Lauri Kaila1, Marko Nieminen4, Paul D. N. Hebert2

1 Finnish Museum of Natural History, University of Helsinki, Zoology Unit, University of Helsinki, Helsinki,
Finland, 2 Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada, 3 Department of
Genetics and Physiology, University of Oulu, Oulu, Finland, 4 Metapopulation Research Centre, Department
of Biosciences, University of Helsinki, Helsinki, Finland

* kekkonen@uoguelph.ca

Abstract
The accelerating loss of biodiversity has created a need for more effective ways to discover

species. Novel algorithmic approaches for analyzing sequence data combined with rapidly

expanding DNA barcode libraries provide a potential solution. While several analytical

methods are available for the delineation of operational taxonomic units (OTUs), few studies

have compared their performance. This study compares the performance of one morpholo-

gy-based and four DNA-based (BIN, parsimony networks, ABGD, GMYC) methods on two

groups of gelechioid moths. It examines 92 species of Finnish Gelechiinae and 103 species

of Australian Elachistinae which were delineated by traditional taxonomy. The results reveal

a striking difference in performance between the two taxa with all four DNA-based methods.

OTU counts in the Elachistinae showed a wider range and a relatively low (ca. 65%) OTU

match with reference species while OTU counts were more congruent and performance

was higher (ca. 90%) in the Gelechiinae. Performance rose when only monophyletic spe-

cies were compared, but the taxon-dependence remained. None of the DNA-based meth-

ods produced a correct match with non-monophyletic species, but singletons were handled

well. A simulated test of morphospecies-grouping performed very poorly in revealing taxon

diversity in these small, dull-colored moths. Despite the strong performance of analyses

based on DNA barcodes, species delineated using single-locus mtDNA data are best

viewed as OTUs that require validation by subsequent integrative taxonomic work.

Introduction
After little progress over a long interval, the past decade has seen the development of several
analytical methods which employ DNA sequences to delimit species boundaries [1–10]. An-
other innovation, DNA barcoding [11,12], was originally developed for specimen identification
using a standardized segment of the mitochondrial genome (a 648bp region of the cytochrome
c oxidase subunit I, COI), but its utility for species discovery was soon recognized [13–16]. The
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coupling of novel analytical methods with the rapid increase in data provided by DNA barcod-
ing is creating a tremendous opportunity for taxonomists and biodiversity scientists. Large bar-
code datasets enable the delineation of hundreds or even thousands of putative species (i.e.,
operational taxonomic units, OTUs) simultaneously, allowing species recognition to proceed
far more rapidly than through morphological approaches. Faced with accelerating losses of bio-
diversity, this increase in the efficiency of taxonomic workflows is acutely needed. Initial OTU
delineation generates a good estimate of species diversity and provides a framework for subse-
quent taxonomic revisions (e.g., [17]).

Some methods available for species delineation are inappropriate for use with single-locus
data (e.g., bpp [5]). Other methods, those requiring a priori defined groups (e.g., Population
Aggregation Analysis [18]), cannot be employed for species discovery. However, a number of
analytical approaches can be used for species delineation with single-locus data and they can
be divided into three primary categories: clustering, tree-based and character-based. Clustering
methods, the dominant category, employ diverse algorithms to recognize boundaries in dis-
tance matrices. This category includes, for instance, statistical parsimony networks (referred to
here as TCS [19,20]), jMOTU [7], Clustering 16S rRNA for OTU Prediction (CROP [6]), Auto-
matic Barcode Gap Discovery (ABGD [8]), and Barcode Index Number (BIN [9]). By compari-
son, tree-based methods, such as the Generalized Mixed Yule Coalescent (GMYC [3,4,21]),
and Poisson Tree Processes (PTP [10]), employ a gene tree as input for the analysis. The third
category, character-based methods, employs diagnostic base substitutions as a basis for deci-
sions. To our knowledge, Character Attribute Organization System, CAOS [22–24] is the only
available character-based method for testing species boundaries, although it also requires a pri-
ori defined groups so it cannot be used for their discovery. Cluster and tree-based approaches
have become the dominant approaches used in studies of species delineation (bacteria [25],
corals [26], molluscs [27–33], millipedes [34], spiders [35], insects [36–43], amphibians [44],
bats [45], orchids [46]).

The relative performance of differing algorithmic approaches to species delineation has
been examined in a few past studies. For example, it has been noted that GMYC produces
more OTUs than TCS or ABGD [3,8,47,28,36,37] (but see [39]). When clusters recognized by
GMYC have been compared with morphospecies, the conclusions have been variable. Early re-
sults showed high congruence between morphology and GMYC [3,4,36], but subsequent stud-
ies have indicated that GMYC often delivers a higher species count than morphology
[29,44,45,48]. The largest comparison to date [9] examined one tree-based (GMYC) and four
clustering (BIN, ABGD, jMOTU, CROP) methods with eight datasets comprising over 3000
species and close to 19000 DNA barcode sequences. This study revealed high performance for
all methods with BIN slightly outperforming the other clustering methods, but similar to
GMYC. In accordance with other studies, GMYC produced more splits than alternate meth-
ods. Zhang et al. [10] proposed that tree-based methods should outperform clustering methods
in species assemblages lacking a ‘barcode gap’, the break between intra- and interspecific pair-
wise distances that underpins the success of DNA barcoding [12]. The lack of a gap is generally
linked to recently diverged species with little genetic diversification, often coupled with incom-
plete lineage sorting and introgression [49,50]. In addition, it should be noted that incomplete
lineage sorting and/or introgression generally lead to the failure of all methods based on the
analysis of mitochondrial sequence divergences.

Although previous studies have provided a basic understanding of the performance of vari-
ous species delineation methods, their behavior with different taxonomic groups has seen little
investigation. The datasets examined by Ratnasingham and Hebert [9] involved large taxo-
nomic assemblages (e.g., moths and butterflies of eastern North America) or comprehensive
taxon coverage for a particular geographic region (e.g., geometrid moths of Bavaria). Their
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results showed some differences among higher taxa (e.g., North American plusiine moths), but
much more detailed investigation of these effects is merited. This study extends past work by
comparing the performance of five methods with two groups of moths, Finnish gelechiines and
Australian elachistines. The Finnish gelechiine fauna includes 180 species belonging to 49 gen-
era ([51], J. Kullberg, pers. comm.), while the Australian elachistines include 148 species in
three genera [52]. Both subfamilies are members of the Gelechioidea, one of the largest radia-
tions within the Lepidoptera, and provide a well-defined set of reference species established fol-
lowing detailed morphological and ecological studies [52–54]. Because these moths are
generally small and dull-colored, they are very difficult for taxonomic studies so there are
many undescribed species [55–57]. The two groups do have one difference; the Australian ela-
chistines present a challenge for DNA barcoding due to their close affinities and supposed re-
cent origins [58], while barcodes have successfully discriminated many European gelechiines
(e.g., [14,59,60]). The adoption of DNA barcode-based methods for the delineation of species
in the Gelechioidea and other taxa sharing their biological attributes has great potential to ac-
celerate species delineation. Executing identical analyses with two datasets, one more challeng-
ing than the other, provides an opportunity to evaluate the performance of the differing
methods in this context.

This study employs four commonly used methods for DNA-based species delineation, in-
cluding one older but still widely used approach, statistical parsimony networks (TCS), and
three recent methods: Barcode Index Numbers (BIN), Automatic Barcode Gap Discovery
(ABGD) and Generalized Mixed Yule Coalescent (GMYC). These methods were selected for
inclusion based on their general popularity and their strong performance in a previous study
[9]. BIN analysis always generates only one number of OTUs for each set of DNA sequences,
while the other approaches do not because key parameter values (TCS and ABGD) or input
trees (GMYC) can vary. In addition to comparing the performance of these DNA-based ap-
proaches, we obtained results from a morphology-based analysis using external characters. We
study differences between the outcomes for two datasets, considering both the count and com-
position of the putative species (OTUs) produced by each analysis. Finally, we evaluate the per-
formance of the methods with singletons, as well as monophyletic and non-monophyletic (i.e.,
para- and polyphyletic) species.

Materials and Methods

Taxon sampling
Specimens of 92 species of Australian Elachistinae were sampled from the Australian National
Insect Collection (ANIC) and the Finnish Museum of Natural History (MZH). Specimens of
103 species of Finnish Gelechiinae (tribes Teleiodini, Gelechiini and Gnorimoschemini) were
sampled from the private collection of M.M. during 2008–2012 (17 of the latter specimens
were collected from Denmark, Estonia, France, Latvia, Russia and Sweden). One additional ela-
chistine specimen was analyzed from the Agricultural Scientific Collections Unit (ASCU), and
three specimens of gelechiines from the private collection of Erkki Laasonen. Three to five
specimens per species were usually sampled when available, targeting recently collected indi-
viduals from diverse geographic localities. Relatively few specimens of each taxon were ana-
lysed to maximize the species coverage. Larger sample sizes were examined for a few species
whose taxonomic status is controversial. One or two legs were removed from dry pinned speci-
mens for DNA extraction. Specimens were identified by L.K. (Elachistinae) and M.M. (Gele-
chiinae) following the taxonomy of Kaila [52] and Huemer and Karsholt [53,54], respectively.
BOLD Sample and Process IDs, GenBank accession numbers and other details of our sequence
data can be retrieved from S1 Table.
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DNA extraction, PCR amplification and sequencing
DNA extraction, PCR, and sequencing were performed at the Canadian Centre for DNA Bar-
coding following standard high-throughput protocols [61]. The first round of PCR employed
the primers LepF1 and LepR1 [11] which generate a 658bp amplicon that spans the barcode re-
gion of COI. In cases of failure, two additional PCR reactions were carried out to recover
306bp and 407bp amplicons using a standard primer set [62]. If one of these reactions was suc-
cessful, an effort was made to obtain a barcode compliant record (>497bp) by amplifying
shorter regions of COI using the primer sets described in Hebert et al. [63]. All sequences were
aligned using the BOLD Aligner in the Barcode of Life Data Systems (BOLD [64]) and then in-
spected visually for stop codons and frameshift mutations in MEGA5 [65].

Comparison between datasets
Several attributes were studied to expose differences between the two datasets. Intra- and inter-
specific pairwise distances were calculated in the BOLD workbench employing the “Barcode
Gap Analysis” tool, and visualized using the “sppDist” function in SPIDER [66] available in R
[67]. The incidence of monophyly was quantified using the “monophyly” function of SPIDER.
Pairwise distances for all sequences included in the analysis were calculated using a K2P dis-
tance model in MEGA5.

Morphological sorting
In order to simulate the process of species recognition through morphological sorting, we re-
cruited an experienced lepidopterist (M.N.) without previous knowledge of Australian elachis-
tines or Finnish gelechiines to sort pinned specimens into OTUs using external morphology,
mainly wing patterns, an approach similar to that employed in previous studies (e.g., [43]).
The test collection included from one to five specimens of 96 species of Elachistinae and 83
species of Gelechiinae with representatives of most species that were used for DNA barcoding
and a few additional taxa (Table 1). The individuals included were not DNA barcode vouchers,
but other similarly identified museum specimens.

OTU delineation based on DNA barcodes
The Barcode Index Number System (BIN [9]), statistical parsimony networks (TCS [19,20])
and Automatic Barcode Gap Discovery (ABGD [8]) rely on pairwise sequence distances be-
tween specimens to determine the number of OTUs within a dataset. The RESL algorithm,
which forms the basis of the BIN system, employs a three-stage procedure which starts with
single linkage clustering using a fixed 2.2% threshold. This phase is followed by Markov clus-
tering, which aims to improve the accuracy of the OTUs, and finally the Silhouette criterion
compares the different clustering schemes from Markov clustering and chooses the option
with the highest Silhouette score. ABGD employs a two-phase system which initially divides se-
quences into OTUs based on a statistically inferred barcode gap (i.e., initial partitioning), and
subsequently conducts a second round of splitting (i.e., recursive partitioning). ABGD has
three key parameters: (i) X, which is an estimate of relative gap width, and (ii) minimum and
(iii) maximum values of prior intraspecific divergence (P), which are used to detect the barcode
gap. The default P-values typically produce a range of OTU counts. TCS produces the most
parsimonious solution for a particular cut-off value (90–99% cut-off values are available) by
combining pairs of specimens with the lowest genetic distances. The procedure continues until
the cut-off value is exceeded. The higher the cut-off, the smaller the number of steps needed to
exceed it and the greater the count of unconnected networks recognized. In other words,

Taxon Dependent Performance of DNA-Based Delineation Methods
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Table 1. Reference species, their monophyly on a DNA barcode gene tree, and the match of OTU composition in four DNA-basedmethods (BIN,
TCS with 95% cut-off, GMYCwith two Bayesian starting trees, ABGDwith K2P, X = 1, Initial partition) and sorting relying on external morphology.

Dataset Species Monophyly BIN TCS 95% GMYC Yule GMYC Coal. ABGD K2P Morpho

Gelechiinae Altenia perspersella mono M M M M M MIX

Aroga velocella mono M M M M M MIX

Athrips amoenella mono M M M M M M

Athrips mouffetella mono M M M M M M

Athrips pruinosella mono S S M M M S

Athrips tetrapunctella mono M M M M M ME

Carpatolechia alburnella mono M M M M M S

Carpatolechia decorella singleton M M M M M N/A

Carpatolechia epomidella mono M M M M M M

Carpatolechia fugitivella mono M M M M M MIX

Carpatolechia notatella mono M M M M M MIX

Carpatolechia proximella mono M M M M M M

Caryocolum amaurella* mono S S S S S ME

Caryocolum blandella mono M M M M M N/A

Caryocolum blandelloides mono M M M M M ME

Caryocolum blandulella mono M M M M M MIX

Caryocolum cassella mono M M M M M ME

Caryocolum cauligenella mono M M M M M MIX

Caryocolum fischerella mono M M M M M MIX

Caryocolum fraternella mono M M M M M MIX

Caryocolum junctella singleton M M M M M MIX

Caryocolum kroesmanniella mono M M M M M MIX

Caryocolum petrophila mono M M M M M MIX

Caryocolum petryi mono M M M M M M

Caryocolum pullatella mono M M M M M MIX

Caryocolum schleichi mono M M M M M S

Caryocolum tischeriella singleton M M M M M M

Caryocolum tricolorella mono M M M M M S

Caryocolum vicinella mono M M M M M M

Caryocolum viscariella mono M M M M M MIX

Chionodes continuella mono M M M M M MIX

Chionodes distinctella* mono S S S S M MIX

Chionodes electella mono M M M M M MIX

Chionodes fumatella* non-mono S S S S S MIX

Chionodes holosericella mono M M M M M ME

Chionodes ignorantella mono M M M M M N/A

Chionodes luctuella mono M M M M M S

Chionodes lugubrella mono M M M M M S

Chionodes nubilella mono M M M M M ME

Chionodes tragicella mono M M M M M M

Chionodes viduella mono M S S M M M

Chionodes violacea mono M M M M M MIX

Cosmardia moritzella mono M M M M M N/A

Exoteleia dodecella mono M M M M M MIX

Filatima incomptella mono M M M M M M

Gelechia cuneatella mono M M M M M M

(Continued)
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Table 1. (Continued)

Dataset Species Monophyly BIN TCS 95% GMYC Yule GMYC Coal. ABGD K2P Morpho

Gelechia hippophaella mono M M M M M M

Gelechia jakovlevi mono M M M M M M

Gelechia muscosella mono M M M M M ME

Gelechia nigra mono M M M M M MIX

Gelechia rhombella mono M M M M M S

Gelechia sabinellus mono M M M M M S

Gelechia sestertiella mono M M M M M M

Gelechia sororculella mono M M M M M M

Gelechia turpella mono M M M M M M

Gnorimoschema epithymella mono M M M M M MIX

Gnorimoschema herbichii* mono S S S S M M

Gnorimoschema nordlandicolella mono M M M M M MIX

Gnorimoschema streliciella mono M M M M M MIX

Gnorimoschema valesiella mono M M M M M ME

Klimeschiopsis kiningerella mono M M M M M ME

Neofriseria peliella* mono S S S S M M

Neofriseria singula mono M M M M M N/A

Neotelphusa sequax mono M M M M M MIX

Parachronistis albiceps mono M M M M M N/A

Prolita sexpunctella mono M M M M M MIX

Pseudotelphusa paripunctella mono M M S M M M

Pseudotelphusa scalella mono M M M M M M

Psoricoptera gibbosella mono M M M M ME N/A

Psoricoptera speciosella mono M M M M ME N/A

Recurvaria leucatella mono M M M M M M

Scrobipalpa acuminatella mono M M M M M MIX

Scrobipalpa artemisiella* mono ME ME M ME ME MIX

Scrobipalpa atriplicella mono M M M M M ME

Scrobipalpa bryophiloides* mono S S S S M N/A

Scrobipalpa murinella mono M M M M M ME

Scrobipalpa nitentella mono M M M M M MIX

Scrobipalpa obsoletella mono M M M M M MIX

Scrobipalpa pauperella mono M M M M M MIX

Scrobipalpa proclivella singleton M M M M M N/A

Scrobipalpa salicorniae mono M M M M M S

Scrobipalpa samadensis mono M M M M M MIX

Scrobipalpa stangei* mono ME ME M ME ME S

Scrobipalpopsis petasitis mono M M M M M S

Scrobipalpula diffluella singleton M M M M ME ME

Scrobipalpula psilella mono M M M M ME MIX

Stenolechia gemmella mono M M M M M N/A

Teleiodes flavimaculella mono M M M M ME MIX

Teleiodes luculella mono M M M M ME S

Teleiodes wagae singleton M M M M M ME

Teleiodes vulgella mono M M M M M M

Teleiopsis diffinis mono M M M M M M

Elachistinae Elachista aepsera mono M M M M M ME

(Continued)
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Table 1. (Continued)

Dataset Species Monophyly BIN TCS 95% GMYC Yule GMYC Coal. ABGD K2P Morpho

Elachista alacera singleton M M M M M ME

Elachista aluta singleton ME ME M M M N/A

Elachista anolba* singleton ME ME ME ME ME ME

Elachista aposematica singleton M M M M M N/A

Elachista asperae mono M M S M S MIX

Elachista averta* non-mono ME ME ME ME ME N/A

Elachista bidens singleton M M M M M N/A

Elachista campsella singleton M M M M M ME

Elachista carcharota* mono S S S S S ME

Elachista catagma* non-mono ME ME ME ME ME ME

Elachista catarata mono M M M S S MIX

Elachista cerebrosella mono M M S M M N/A

Elachista chilotera singleton M M M M M M

Elachista coalita mono M M M M M MIX

Elachista corbicula singleton M M M M M ME

Elachista crenatella mono M M M S M ME

Elachista crocospila mono M M M M M MIX

Elachista crumilla mono M M M M M S

Elachista cyanea mono M M M M M MIX

Elachista cycotis mono M M M M M ME

Elachista cylistica*1 singleton ME ME ME ME ME ME

Elachista cynopa mono M M M M M MIX

Elachista delira mono M M M M M ME

Elachista deusta*3 non-mono ME ME ME ME ME ME

Elachista dieropa mono M M M M M MIX

Elachista diligens mono M M M M M MIX

Elachista discina* mono S M MIX S S MIX

Elachista effusi*3 non-mono ME ME ME ME ME M

Elachista elaphria mono M M M M M MIX

Elachista epartica singleton M M M M M N/A

Elachista eriodes mono M ME M M M M

Elachista etorella*1 non-mono MIX MIX MIX MIX MIX MIX

Elachista euthema singleton M M M M M N/A

Elachista evexa mono M M M S M ME

Elachista faberella*1 mono ME ME ME ME ME M

Elachista filiphila mono M M M M M M

Elachista flammula mono M M M M M S

Elachista flavicilia*3 non-mono ME ME ME ME ME MIX

Elachista floccella mono M M M M M MIX

Elachista fucosa singleton M M M M M ME

Elachista gemadella singleton M M M M M ME

Elachista gerasmia* non-mono ME ME MIX MIX MIX MIX

Elachista gladiatrix*1 mono ME ME ME ME ME MIX

Elachista gladiograpta*1 mono ME ME ME ME ME MIX

Elachista glomerella singleton M M M M M M

Elachista habrella singleton M M M M M MIX

Elachista ictera singleton M M M M M N/A

(Continued)
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Table 1. (Continued)

Dataset Species Monophyly BIN TCS 95% GMYC Yule GMYC Coal. ABGD K2P Morpho

Elachista ignicolor mono M M M M M S

Elachista illota mono M ME M M M MIX

Elachista lachnella*2 mono M M M M M ME

Elachista levipes mono M M M M M ME

Elachista ligula singleton M M M M M MIX

Elachista litharga* non-mono ME ME ME ME ME MIX

Elachista magidina mono M M M M M MIX

Elachista melanthes*2 non-mono MIX MIX MIX MIX MIX M

Elachista menura mono M M M M M MIX

Elachista merista mono M M M M M ME

Elachista micalis singleton M M M M M ME

Elachista mundula mono M M M M M ME

Elachista mutarata mono M M M M M MIX

Elachista nielsencommelinae singleton M M M M M S

Elachista nodosae*2 non-mono ME ME MIX MIX MIX MIX

Elachista nr. ophthalma* singleton ME ME ME ME ME ME

Elachista ophelma* mono ME ME ME ME ME MIX

Elachista ophthalma* non-mono ME ME ME ME ME MIX

Elachista opima singleton M M M M M M

Elachista paragauda*1 non-mono ME ME ME MIX ME MIX

Elachista paryphoea*1 non-mono ME ME ME ME ME ME

Elachista patania singleton M M M M M N/A

Elachista patersoniae mono M M M S M S

Elachista peridiola mono M ME M M M M

Elachista pharetra singleton M M M M M M

Elachista phascola mono M ME M M M M

Elachista physalodes* non-mono ME ME ME ME ME MIX

Elachista platina mono M M M M M S

Elachista platysma* non-mono ME ME MIX ME MIX ME

Elachista polliae mono M M M M M ME

Elachista protensa singleton M M M M M N/A

Elachista ruscella singleton M M M M M MIX

Elachista sapphirella mono M M M M M MIX

Elachista sarota mono M M M M M ME

Elachista scitula singleton M M M M M N/A

Elachista seductilis mono M M M M M M

Elachista sp. ANIC1 singleton M M M M M N/A

Elachista sp. ANICLK1* singleton ME ME ME M M N/A

Elachista sp. ANICLK3* singleton ME ME ME M M N/A

Elachista sp. ANICLK4 singleton M M M M M N/A

Elachista sp. ANICLK6 singleton M ME M M M N/A

Elachista spathacea*1 non-mono ME ME ME ME ME ME

Elachista sphaerella singleton ME ME M M M S

Elachista spinodora singleton M M M M M ME

Elachista spongicola*1 non-mono ME ME MIX ME ME MIX

Elachista stictifica mono ME ME ME ME ME MIX

Elachista strenua mono M M M M M MIX

(Continued)
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selecting a high cut-off value produces a high species count and vice versa. The Generalized
Mixed Yule Coalescent (GMYC [3,4,21]) differs strongly from the other methods because it is
a model-based approach, aiming to discover the maximum likelihood solution for the thresh-
old between the branching rates of speciation and coalescent processes on a tree. The number
and composition of OTUs is inferred by counting the lineages crossing the threshold.

The BIN analysis was done using a stand-alone version of RESL which is scheduled for pub-
lic release in the near future. Standard BIN assignments are available on BOLD v3.6 (http://
www.boldsystems.org), but they are generated through the analysis of all barcode sequences on
BOLD, meaning that the results are not strictly comparable with those obtained with other
methods (because they are based on a more inclusive dataset). Statistical parsimony networks
were calculated using software TCS v1.21 [20] with separate analyses for ten cut-off values
(90%- 99%). ABGD analyses were performed on 24–25 March 2013 on the web interface
(http://wwwabi.snv.jussieu.fr/public/abgd/). Because the default value for relative gap width
(X = 1.5) did not produce a result for either dataset, two lower values (X = 0.8, 1.0) were used.
1.0 was the highest value that could be applied as ABGD did not produce results for the Gele-
chiinae dataset with X = 1.1. ABGD provides the option of using three distance metrics: Jukes-
Cantor (JC [68]), Kimura 2 parameter (K2P [69]) and simple p-distances. We conducted anal-
yses using all three metrics with both values (0.8, 1.0) of X, resulting in six analyses per dataset.
All results using prior limits for intraspecific divergence ranging from P = 0.001–0.1 were re-
corded. Defaults were employed for all other parameter values.

GMYC requires a fully-resolved ultrametric chronogram as input. In order to test the effect
of different input trees on GMYC, we calculated chronograms using three approaches: un-
weighted pair group method with arithmetic means (UPGMA [70]) and two Bayesian infer-
ence gene trees constructed with a Yule pure birth model [71,72] and constant size coalescent
[73] tree priors. UPGMA trees have rarely been used with GMYC analyses [25,74], likely re-
flecting concerns with their effectiveness in phylogeny estimation (e.g., [75]), but they are an
attractive option because of their speed and simplicity. The UPGMA trees used in this study
were constructed in MEGA5 using a K2P distance model. Model selection for Bayesian analy-
ses was performed a priori with jModeltest v.0.1.1 using the Akaike information criterion
(AIC) [76] and a posteriori with Bayes factors implemented in Tracer v.1.5 [77]. GTR+G+I was
the preferred model for Elachistinae with both methods, and for the Gelechiinae with Bayes
factors, but not with jModeltest where HKY+G+I was preferred. As GTR+G+I was the second
ranked option for jModeltest, the same model was employed for both datasets. The fit of clock

Table 1. (Continued)

Dataset Species Monophyly BIN TCS 95% GMYC Yule GMYC Coal. ABGD K2P Morpho

Elachista synethes mono M M M S S MIX

Elachista tetraquetri*3 singleton ME ME ME ME ME N/A

Elachista toralis*1 mono ME ME ME ME ME M

Elachista toryna mono M M M M M MIX

Elachista velox mono M ME M M M MIX

Elachista velutina mono M M M M M MIX

Elachista zophosema* mono ME ME ME ME ME ME

Perittia daleris mono M M M M M ME

Elachista aurita, E. cerina, E. chloropepla, E. commoncommelinae, E. festina, E. impiger, E. mystropa, E. propera, E. ravella, Neofaculta ericetella, Perittia
antauges, and Pexicopia malvella were used in sorting based on morphology, but were not included in the DNA-based delineation. M: MATCH, ME:

MERGE, S: SPLIT, MIX: MIXTURE, mono: monophyletic, non-mono: either para- or polyphyletic.

doi:10.1371/journal.pone.0122481.t001
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models and tree priors were also estimated using Bayes factors with preference for the uncorre-
lated relaxed lognormal clock model over a strict clock and coalescent tree prior over Yule
prior. Bayesian inference trees were constructed using BEAST [78,79]. XML files (S1–S4 Ap-
pendices) were made with the BEAUti v1.7.1 interface with the following settings: GTR+G+I
substitution model; empirical base frequencies; 4 gamma categories; all codon positions parti-
tioned with unlinked base frequencies and substitution rates. An uncorrelated relaxed lognor-
mal clock model was used with rate estimated from the data and ucld.mean parameter with
uniform prior employing 0 as the lower and 10 as the upper boundary. All other settings em-
ployed defaults. The length of the MCMC chain was 40 000 000 sampling every 4000. All
BEAST runs were executed in BioPortal [80] and the resultant ESS values and trace files of
runs were evaluated in Tracer. Two independent runs were combined using LogCombiner
v.1.7.1 with 20% burn-in. Maximum clade credibility trees with 0.5 posterior probability limit
and node heights of target tree were constructed in TreeAnnotator v1.7.1. Both single- and
multiple-threshold GMYC analyses were conducted in R with the packages APE [81] and
SPLITS [82]. All analyses related to GMYC were performed with haplotype data collapsed in
ALTER [83].

Direct examination of OTU composition
A simple comparison of OTU counts to the number of reference species can be misleading be-
cause similar results can be produced by varying levels of congruence between species and
OTU boundaries if splits and merges are counterbalanced. In order to acquire a deeper insight,
we estimated the correspondence between the boundaries of OTUs and reference species by as-
signing each OTU as a MATCH, SPLIT, MERGE or MIXTURE [9]. A MATCH results when
the specimens assigned to an OTU include all those assigned to a reference species. By contrast,
a SPLIT represents the case where members of a reference species are divided into two or more
OTUs, while a MERGE represents the case where two or more reference species are assigned to
a single OTU. MIXTURES involve more complex cases where members of two or more refer-
ence species are involved in both merger and splitting. Each OTU can only be assigned to one
of these categories.

The performance of each method with singletons as well as with monophyletic and non-
monophyletic species was studied by dividing datasets according to the results of the mono-
phyly analysis by SPIDER (see Comparison between Datasets), and conducting a direct exami-
nation of congruence as described above. No additional OTU delineation analyses were
executed with partitioned data.

Results
A total of 562 full-length sequences (654bp; the original length 658bp is reduced by the BOLD
aligner as it removes the first and three last bases) were recovered. These included 307 se-
quences (187 haplotypes) from 92 species in 25 genera of Gelechiinae and 255 sequences (178
haplotypes) from 103 species (including 6 undescribed species) in two genera of Elachistinae
(Table 1). These datasets provide coverage for all Finnish gelechiine species in the tribes Teleio-
dini, Gelechiini and Gnorimoschemini, and for 65.5% of all Australian elachistines. We only
included full-length sequences to minimize the possible effects of missing bases on the out-
comes of subsequent analyses. All sequences are available in public databases (for GenBank ac-
cessions see S1 Table; BOLD dataset DS-GELEELA, DOI: 10.5883/DS-GELEELA). The
number of samples per species varied from 1–19 in the Gelechiinae (mean = 3.34) and from
1–14 in the Elachistinae (mean = 2.47).
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Dataset comparison
Intraspecific distances in the Gelechiinae varied from 0.00% to 2.94% (mean = 0.39%,
SE = 0.01) while distance to the nearest neighbor (NN) species ranged from 0.92% to 11.25%
(mean = 6.33%, SE = 0.02) so there were few cases of overlap between intra- and interspecific
distances (Fig 1). A similar pattern was observed in the Elachistinae with intra-specific dis-
tances ranging from 0.00% to 2.3% (mean = 0.28%, SE = 0.01), while NN distances varied from
0.00% to 11.02% (mean = 3.48%, SE = 0.03) (Fig 1). Because these distance measures reflect
past decisions on species boundaries (which may be incorrect), they may be biased, but this ef-
fect can be reduced by calculating pairwise distances without a priori grouping. This analysis
confirmed that the average distance among all sequences was lower for Australian elachistines
(mean = 0.099) than for Finnish gelechiines (mean = 0.13) (Fig 2). The proportion of mono-
phyletic groups was also very different: 99% of the Gelechiinae species were monophyletic (85
monophyletic, 1 non-monophyletic, 6 singletons), but only 75% of the Elachistinae (52 mono-
phyletic, 17 non-monophyletic, 34 singletons).

Morphological sorting
The number of putative species resulting from morphological sorting was close to the reference
count for both the Gelechiinae (91 vs. 83 reference species) and the Elachistinae (97 vs. 96).

Fig 1. Intra- and interspecific distances (K2P) at COI for 92 species of Finnish Gelechiinae and 103
species of Australian Elachistinae.

doi:10.1371/journal.pone.0122481.g001
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However, the composition of the OTUs showed a poor match with accepted taxonomy (Fig 3).
Only 29% of the Gelechiinae species were correctly assigned, and 17% of the Elachistinae. As
well, a very high proportion (40%) of the OTUs in both subfamilies represented MIXTURES of
two or more species.

OTU counts
OTU counts produced by the DNA-based delimitation methods ranged from 90 to 122 for the
Gelechiinae (Figs 4a, 5a and 5b) and from 27 to 159 for the Elachistinae (Figs 4b, 5a and 5b).
Only one method generated the same OTU count as the number of reference species (92) for
the Gelechiinae: Automatic Barcode Gap Discovery with relative gap width (X = 1.0) and prior
intraspecific divergence (P = 0.0215). None of the methods generated the same OTU count as
the number of reference species (103) for the Elachistinae. The relative number of OTUs versus

Fig 2. Pairwise distances (K2P) at COI without a priori grouping for 92 species of Finnish Gelechiinae
and 103 species of Australian Elachistinae.

doi:10.1371/journal.pone.0122481.g002

Fig 3. Sorting based on external morphology for 83 species of Finnish Gelechiinae and 96 species of
Australian Elachistinae.OTU composition is evaluated against reference species.

doi:10.1371/journal.pone.0122481.g003
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Fig 4. OTU counts for 92 species of Finnish Gelechiinae and 103 species of Australian Elachistinae sorted by methods. BIN, parsimony networks
(TCS) with 90–99% cut-off values, ABGD with JC and K2P distance metrics, two X-values (0.8, 1) and a range of P-values (below the results), and GMYC
with three starting trees (UPGMA, Bayesian with Yule and coalescent tree priors) and two models (single- and multiple-threshold). Dashed lines indicate
reference species count (92/103). (a) Gelechiinae, (b) Elachistinae.

doi:10.1371/journal.pone.0122481.g004
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the reference species count varied between the two datasets: most OTU counts for the Gelechii-
nae were higher than the reference count of 92 species (Fig 6a), whereas most for the Elachisti-
nae were lower than the reference count of 103 species (Fig 6b).

BIN: BIN generated a single outcome for each dataset, recognizing 97 OTUs for the Gele-
chiinae, and 84 for the Elachistinae. (Fig 4a and 4b). In general, the BIN results followed the
same pattern as the other methods with a higher OTU count than the reference sequence count
for the Gelechiinae and a lower OTU count for the Elachistinae (Fig 4a and 4b). When com-
pared with the other methods, the BIN results were approximately in the middle of the perfor-
mance plots (orange bars in Fig 6a and 6b).

TCS: TCS was used with all available cut-off values (90–99%, resulting in ten outcomes. As
expected, the lowest cutoff (90%) always generated the fewest clusters while the highest (99%)
generated the most (Gelechiinae: 95–113, Elachistinae: 72–94) (Fig 4a and 4b). The relative

Fig 5. OTU counts for 92 species of Finnish Gelechiinae and 103 species of Australian Elachistinae resulting from ABGD. (a) Initial partitions, (b)
recursive partitions. figures below the results indicate prior intraspecific divergence (P) values (in reverse order by distance metric).

doi:10.1371/journal.pone.0122481.g005
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position of the OTU counts differed between the two datasets: the TCS results were scattered
among those for the other methods in the Gelechiinae, while those for the Elachistinae had low
values (green bars in Fig 6a and 6b). All results from TCS were higher than the reference spe-
cies count for the Gelechiinae, but lower for the Elachistinae (black vs. green bars in Fig 6a and
6b).

Fig 6. Ranked OTU counts for 92 species of Finnish Gelechiinae and 103 species of Australian Elachistinae. Black bars and dash lines show the
reference species count. (a) Gelechiinae, (b) Elachistinae.

doi:10.1371/journal.pone.0122481.g006
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ABGD: ABGD was used with two values of relative gap width (X) and three distance metrics
(p, JC, K2P). All OTU counts resulting from varying values of prior intraspecific divergence
(P) were recorded (Fig 5a and 5b). All analyses produced zero OTUs for the Gelechiinae when
P = 0.0599 and the initial partition with 90 OTUs was reached when P = 0.0359. All distance
metrics behaved similarly with the Gelechiinae generating OTU counts ranging from 90 to 122
(X = 0.8) and from 90 to 115 (X = 1.0) (Figs 4a, 5a and 5b). The pattern changed with the Ela-
chistinae dataset (Figs 4b, 5a and 5b). The two values of X produced differences for the initial
partitions: either one (X = 1.0) or two (X = 0.8) OTU counts were generated by the initial parti-
tion (Fig 5a). ABGD behaved similarly with recursive partitions (Fig 5b), but there were differ-
ences between the three distance metrics. P-distance produced OTU counts ranging from 27 to
138 (X = 0.8) and from 110 to 125 (X = 1.0), while JC (X = 0.8: 60–122; X = 1.0: 88–117) and
K2P (X = 0.8: 76–122; X = 1.0: 94–118) generated more constrained counts when X = 0.8 (Fig
5a). ABGD was the only method to produce the same OTU count as the number of reference
species for the Gelechiinae with high prior intraspecific divergence value (P = 0.0215). By con-
trast, the closest match (100 OTUs) for the Elachistinae was generated by two low P-values
(0.00278 and 0.00167) (Fig 6a and 6b).

GMYC: GMYC was used with three input trees: UPGMA and two Bayesian chronograms
constructed in BEAST with Yule and coalescent tree priors. The results of both single- and
multiple-threshold models were recorded (Table 2), although only one analysis indicated a bet-
ter fit for the multiple-threshold model (UPGMA starting tree with Elachistinae; χ2 = 93.22, d.
f. = 21, P<<0.001). The likelihood ratio test was highly significant for all analyses, indicating
rejection of the null model (OTU count = 1). The single-threshold model generally produced
lower cluster counts than the multiple-threshold for the Gelechiinae and the starting trees con-
structed in BEAST resulted in lower counts than the UPGMA trees (Fig 4a). All GMYC analy-
ses recognized more OTUs than the reference species count for the Gelechiinae (97–111 OTUs
vs. 92 species) (purple bars in Fig 6a). GMYC behaved differently with the Elachistinae dataset.
The single-threshold analysis based on an UPGMA starting tree recognized 159 OTUs, which
was far more than the other analyses (Fig 4b). The multiple-threshold model based on the
UPGMA tree also generated a high OTU count (110), whereas the GMYC analyses with

Table 2. Results of the Generalized Mixed Yule Coalescent (GMYC) analyses.

Dataset Input tree Analysis Clusters (CI) Entities (CI)

Gelechiinae UPGMA Single 58 (56–58) 108 (103–111)

Multiple 62 (62–62) 110 (96–110)

BEAST, Yule Single 61 (59–61) 102 (96–108)

Multiple 65 (65–65) 111 (107–113)

BEAST, Coalescent Single 59 (57–60) 97 (93–109)

Multiple 64 (56–64) 107 (89–109)

Elachistinae UPGMA Single 14 (14–14) 159 (159–159)

Multiple 45 (42–45) 110 (108–111)

BEAST, Yule Single 43 (41–44) 93 (89–96)

Multiple 44 (42–44) 96 (92–96)

BEAST, Coalescent Single 42 (41–45) 96 (81–98)

Multiple 39 (38–49) 94 (77–94)

Clusters: OTUs delineated by GMYC with more than one specimen, Entities: singleton OTUs delineated by GMYC, CI: confidence interval, BEAST:

Bayesian gene tree reconstructed in BEAST, Yule: Yule tree prior, Coalescent: coalescent tree prior, Single: single threshold model, Multiple: multiple

threshold model.

doi:10.1371/journal.pone.0122481.t002
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Bayesian trees were more stable, recognizing from 93 to 96 OTUs (Fig 4b). The reference spe-
cies count was between UPGMA and BEAST results (black vs. purple bars in Fig 6a and 6b).

Method performance based on OTU composition
The percentage of MATCHES was generally higher for the Gelechiinae (63–96%) than for the
Elachistinae (46–77%; logistic regression: estimate = -1.29, n = 67, P<0.0001), reflecting the in-
creased proportion of MERGES and MIXTURES for the Elachistinae (Fig 7a and 7b). The re-
sults generated by ABGD with p-distance were excluded from these statistical tests due to the
strongly discordant results generated by this method for the Elachistinae (MATCH: 18–70%).
The highest percentage of MATCHES was produced by ABGD for both datasets, but with very
different P-values (Gelechiinae: p-distance, JC, K2P, X = 0.8, P = 0.0215; Elachistinae: JC,
X = 1, P = 0.001) (Table 3, Fig 7a and 7b). ABGD also generated the lowest percentage of
MATCHES for the Elachistinae (Fig 7b), while the poorest result for the Gelechiinae was pro-
duced by the multiple-threshold GMYC with UPGMA input tree (Fig 7a).

BIN: BIN produced a high percentage of MATCHES for the Gelechiinae (90%), but substan-
tially less for the Elachistinae (67%).

TCS: TCS generated a varying proportion of MATCHES depending on the cut-off value.
The highest percentage (91%) of MATCHES for the Gelechiinae was obtained with 92% and
93% cut-off values, while the best result (70%) for the Elachistinae was obtained with a cut-off
value of 98%.

ABGD: The initial partition produced 89% MATCHES for the Gelechiinae irrespective of
distance metric or value of relative gap width. The highest percentage of MATCHES was gener-
ated by P = 0.0215 (X = 0.8, 96%; X = 1.0, 93%) and the lowest by P = 0.001 (X = 0.8, 83%;
X = 1.0, 84%). By contrast, the two values of relative gap width and the different distance met-
rics had clear effects on the performance of ABGD for the Elachistinae. The two initial parti-
tions produced by X = 0.8 differed in their percentage of MATCHES (P = 0.001–0.00278: 64–
71%; P = 0.00464–0.00215: 18–57%). X = 1.0 generated only one initial partition, which was
the same as the partition with lower P-values of X = 0.8. JC (46–77%) and K2P (57–75%) gen-
erated a similar percentage of MATCHES, although JC was more variable. P-distance per-
formed very poorly (18–70%), especially with P-values from 0.00464 to 0.0215. The most
congruent outcome with the reference species (77%MATCHES) was produced by P = 0.001
with JC and X = 1, but the same P-value generated also the second highest percentage of
MATCHES with K2P and both values of X.

GMYC: The single-threshold model in GMYC clearly outperformed multiple-threshold
model when used with the Bayesian input trees. The pattern was very similar for both datasets,
but the difference was larger for the Gelechiinae (single-threshold: 91% MATCHES, multiple-
threshold: 71–72%) than for the Elachistinae (single-threshold: 66–67%, multiple-threshold:
65%). The performance of the UPGMA starting tree was weaker than the Bayesian gene trees
for both datasets, but the tree priors caused only a minor difference (Gelechiinae: UPGMA, sin-
gle-threshold: 85%, multiple-threshold: 63%; BEAST with Yule tree prior, single-threshold:
91%, multiple-threshold: 72%; BEAST with coalescent tree prior, single-threshold: 91%, multi-
ple-threshold: 71%; Elachistinae: UPGMA, single-threshold: 51%, multiple-threshold: 61%;
BEAST with Yule tree prior, single-threshold: 67%, multiple-threshold: 65%; BEAST with coa-
lescent tree prior, single-threshold: 66%, multiple-threshold: 65%).

Singletons, mono- and non-monophyletic species
Most singletons in the Gelechiinae dataset matched with their corresponding reference species
(BIN, all TCS, all GMYC with single-threshold, most ABGD with X = 0.8: 100%), whereas the
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Fig 7. Method performance for 92 species of Finnish Gelechiinae and 103 species of Australian Elachistinae. (a) Gelechiinae, (b) Elachistinae.

doi:10.1371/journal.pone.0122481.g007
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Table 3. Comparison of the performance of four analytical methods (ABGD, BIN, GMYC, TCS) ranked by the number of MATCHES.

Dataset Method Parameters MATCH SPLIT MERGE MIXTURE

Gelechiinae GMYC UPGMA multiple 58 17 17 0

GMYC BEAST, coalescent multiple 65 15 12 0

GMYC BEAST, Yule multiple 66 16 10 0

TCS 99% 74 16 2 0

ABGD p-distance, X = 0.8 P = 0.001 75 15 2 0

ABGD p-distance, X = 0.1 P = 0.001 76 12 4 0

ABGD JC, K2P, X = 0.8 P = 0.001 76 14 2 0

TCS 98% 77 13 2 0

ABGD JC, K2P, X = 1.0 P = 0.001 77 11 4 0

GMYC UPGMA single 78 14 0 0

TCS 97% 79 11 2 0

TCS 96% 80 10 2 0

ABGD p-distance, X = 1.0 P = 0.00278 80 8 4 0

ABGD JC, K2P, X = 1.0 P = 0.00278 80 8 4 0

ABGD p-distance, X = 0.8 P = 0.00278 81 9 2 0

ABGD JC, K2P, X = 0.8 P = 0.00278 81 9 2 0

TCS 91% 82 6 4 0

TCS 94% 82 8 2 0

TCS 95% 82 8 2 0

ABGD p-distance, X = 0.8 P = 0.0359* 82 2 8 0

ABGD p-distance, X = 0.1 P = 0.0359* 82 2 8 0

ABGD JC, K2P, X = 0.8 P = 0.0359* 82 2 8 0

ABGD JC, K2P, X = 1.0 P = 0.0359* 82 2 8 0

ABGD p-distance, X = 1.0 P = 0.00464 82 6 4 0

ABGD JC, K2P, X = 1.0 P = 0.00464 82 6 4 0

TCS 90% 83 5 4 0

BIN 83 7 2 0

ABGD p-distance, X = 0.8 P = 0.00464 83 7 2 0

ABGD JC, K2P, X = 0.8 P = 0.00464 83 7 2 0

ABGD p-distance, X = 1.0 P = 0.0129 83 5 4 0

ABGD JC, K2P, X = 1.0 P = 0.0129 83 5 4 0

TCS 92% 84 6 2 0

TCS 93% 84 6 2 0

GMYC BEAST, Yule single 84 8 0 0

GMYC BEAST, coalescent single 84 6 2 0

ABGD p-distance, X = 0.8 P = 0.0129 85 5 2 0

ABGD JC, K2P, X = 0.8 P = 0.0129 85 5 2 0

ABGD p-distance, X = 1.0 P = 0.0215 86 2 4 0

ABGD JC, K2P, X = 1.0 P = 0.0215 86 2 4 0

ABGD p-distance, X = 0.8 P = 0.0215 88 2 2 0

ABGD JC, K2P, X = 0.8 P = 0.0215 88 2 2 0

Elachistinae ABGD p-distance, X = 0.8 P = 0.0215* 19 0 84 0

ABGD p-distance, X = 0.8 P = 0.0215 25 0 78 0

ABGD p-distance, X = 0.8 P = 0.0129 41 0 62 0

ABGD JC, X = 0.8 P = 0.0215* 47 0 56 0

ABGD JC, X = 0.8 P = 0.0215 50 0 53 0

ABGD JC, X = 0.8 P = 0.0129 52 0 51 0

(Continued)
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Table 3. (Continued)

Dataset Method Parameters MATCH SPLIT MERGE MIXTURE

ABGD JC, X = 0.8 P = 0.00774 53 0 49 1

GMYC UPGMA single 53 39 5 6

TCS 90% 55 1 45 2

TCS 91% 57 1 43 2

TCS 92% 59 1 41 2

ABGD K2P, X = 0.8 P = 0.0129* 59 1 41 2

TCS 93% 60 1 40 2

ABGD K2P, X = 0.8 P = 0.00464 60 3 38 2

ABGD p-distance, X = 0.8 P = 0.00464 61 4 36 2

ABGD K2P, X = 0.8 P = 0.0129 61 1 39 2

ABGD K2P, X = 0.8 P = 0.00774 61 1 39 2

TCS 94% 62 1 38 2

GMYC UPGMA multiple 63 9 20 11

TCS 95% 64 1 36 2

ABGD JC, X = 0.8 P = 0.00464 64 2 35 2

ABGD p-distance, X = 0.8 P = 0.00278* 66 13 18 6

ABGD p-distance, X = 1.0 P = 0.00278* 66 13 18 6

ABGD p-distance, X = 1.0 P = 0.00278 66 13 18 6

GMYC BEAST, coalescent multiple 67 7 25 4

GMYC BEAST, Yule multiple 67 5 23 8

TCS 96% 68 2 31 2

ABGD p-distance, X = 1.0 P = 0.001 68 16 11 8

GMYC BEAST, coalescent single 68 7 23 5

ABGD p-distance, X = 0.8 P = 0.00278 69 13 15 6

TCS 97% 69 2 30 2

BIN 69 2 30 2

GMYC BEAST, Yule single 69 3 24 7

TCS 99% 70 5 23 5

ABGD K2P, X = 0.8 P = 0.00278* 70 5 23 5

ABGD K2P, X = 1 P = 0.00278* 70 5 23 5

ABGD K2P, X = 1 P = 0.00278 71 6 20 6

TCS 98% 72 3 24 4

ABGD p-distance, X = 0.8 P = 0.001 72 17 5 9

ABGD JC, X = 0.8 P = 0.00278* 73 2 26 2

ABGD JC, X = 1 P = 0.00278* 73 2 26 2

ABGD K2P, X = 0.8 P = 0.00278 73 8 17 5

ABGD JC, X = 0.8 P = 0.00278 74 7 18 4

ABGD JC, X = 1 P = 0.00278 74 5 20 4

ABGD JC, X = 1 P = 0.00167 74 5 20 4

ABGD K2P, X = 1 P = 0.001 76 6 10 11

ABGD JC, X = 0.8 P = 0.001 77 8 8 10

ABGD K2P, X = 0.8 P = 0.001 77 9 7 10

(Continued)
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percentage of MATCHES varied much more for the Elachistinae (Fig 8a and 8b). BIN and TCS
with 95% cut-off produced a similar percentage of MATCHES for the Elachistinae (74% and
76%, respectively). Other results of TCS varied from 68% (90% cut-off) to 88% (99% cut-off).
The highest percentage of MATCHES for the Elachistinae was produced by GMYC with
UPGMA starting tree and single-threshold model (94%) (S2 Table); the rest varied from 76%
(UPGMA, multiple-threshold) to 88% (BEAST with coalescent prior, single-threshold) (Fig 8a
and 8b). The results of ABGD spanned a wide range from 26% (p-distance, X = 0.8, P = 0.0215
Initial) to 94% (JC, X = 0.8, P = 0.001; K2P, X = 0.8, P = 0.001) (Fig 8a and 8b).

The examination of mono- and non-monophyletic (i.e., para- or polyphyletic) species re-
vealed that none of the methods was effective in delimiting non-monophyletic taxa. The only
exception was ABGD with small P-values, which managed to deliver one or two MATCHES.
On the other hand, ABGD also produced a high number of MIXTURES together with these
MATCHES. As only one species in the Gelechiinae dataset was non-monophyletic and six
were singletons, the difference was minor between the analyses including all data and only
monophyletic species (all data: mean = 86.5%; monophyletic: mean = 87.3%; logistic regres-
sion: estimate = 0.07, n = 58, P = 0.4207). However, the performance was significantly im-
proved for the Elachistinae (all data: mean = 63.9%; monophyletic: mean = 73.9%; logistic
regression: estimate = 0.47, n = 76, P<0.0001) (Fig 9a and 9b). The taxon-dependent pattern in
general performance remained even after removing all non-monophyletic species and single-
tons as the percentage of MATCHES was still significantly higher for the Gelechiinae than for
the Elachistinae dataset (Fig 9a and 9b; logistic regression: estimate = -0.89, n = 67, P<0.0001).
The performance of individual methods when non-monophyletic species and singletons were
excluded was rather similar to the performance revealed by all data (Fig 9a, 9b and S3 Table).

Discussion
This study has compared the performance of five species delineation methods (BIN, TCS,
ABGD, GMYC, and external morphology) with two groups of Lepidoptera: Finnish Gelechii-
nae and Australian Elachistinae. The difference between the groups was evident as the Gele-
chiinae had a wider barcode gap (Fig 2) and included more monophyletic species than the
Elachistinae. The Gelechiinae also seem more morphologically diverse as indicated by their as-
signment to 25 genera, while all but one of the 92 species of Australian elachistines are in a sin-
gle genus. Our results reveal a striking difference between the two taxa in the effectiveness of
varied delineation methods in recovery of current species boundaries. Performance was gener-
ally higher for all methods with the Gelechiinae than the Elachistinae. The range between the

Table 3. (Continued)

Dataset Method Parameters MATCH SPLIT MERGE MIXTURE

ABGD JC, X = 1 P = 0.001 79 5 10 9

BIN has a single OTU estimate for each dataset, while GMYC has 6 and TCS has 10. There are 36 outcomes for ABGD for the Gelechiinae (JC and K2P

are combined as the results were identical) and 32 for the Elachistinae. Description of parameters and MATCH, SPLIT, MERGE and MIXTURE categories

are provided in the Material and Methods.

BEAST: Bayesian gene tree reconstructed in BEAST, Yule: Yule tree prior, Coalescent: coalescent tree prior, Single: single threshold model, Multiple:

multiple threshold model, JC: Jukes-Cantor substitution model, K2P: Kimura two parameter substitution model, X: relative gap width, P: prior intraspecific

divergence value,

*: initial partition.

doi:10.1371/journal.pone.0122481.t003
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Fig 8. Performance with singletons for 6 species of Finnish Gelechiinae and 34 species of Australian Elachistinae. (a) Gelechiinae, (b) Elachistinae.

doi:10.1371/journal.pone.0122481.g008
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Fig 9. Performance with monophyletic species for 85 species of Finnish Gelechiinae and 52 species of Australian Elachistinae. (a) Gelechiinae, (b)
Elachistinae.

doi:10.1371/journal.pone.0122481.g009
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lowest and highest OTU counts was smaller, and the percentage of MATCHES was also higher
for the Gelechiinae than for the Elachistinae. The higher proportion of MATCHES for the
Gelechiinae remained evident when monophyletic species and singletons were studied sepa-
rately, although the performance improved in all methods.

Explaining the differential success in species delineation between
Gelechiinae and Elachistinae
The direct examination method depends upon the reliability of the species boundaries in the
reference species. Cases of discordance between the boundaries of reference species and OTUs
can arise in two ways. They can reflect errors between true species boundaries and those recog-
nized by current taxonomy. In these cases, the reference species have been wrongly delineated,
and a discordant OTU might reveal the true species boundary. Mistakes caused by taxonomic
errors can be corrected when discovered. However, cases of discordance can also arise due to
biological factors when a reference species corresponds with the true species boundary, but
OTU delineation methods cannot recover it because of weaknesses in the analytical method or
in the underlying data.

Taxonomic errors reflect the subjectivity that is often involved in drawing the line between
two species. In addition to errors caused by insufficient knowledge of the focal taxa, taxonomic
errors can arise through the use of unsuitable characters. For instance, an inappropriate reli-
ance on wing venation led to oversplitting in one species complex of European elachistids [84].
As a general rule, the accuracy of species delineation improves as a particular group experi-
ences recurrent study.

One major biological factor is the age of species. Young species tend to have unclear bound-
aries because processes such as hybridization and introgression are ongoing. As ecological dif-
ferences can arise very rapidly via divergent selection [85,86], their use in species diagnosis can
enhance the discovery of young species. Because DNA barcodes are single-locus data from the
mitochondrial genome, they usually cannot recover OTUs which follow true species bound-
aries in cases where introgression is prevalent [87]. In general, the delineation of such species is
challenging for all methods and a combination of several types of characters coupled with a
careful sampling scheme is required (e.g., [88,89]). However, this approach is not an option for
the first phase of species discovery when synoptic methods, such as DNA barcodes, are the
best tools.

In addition to taxonomic and biological factors which influence the precision of the refer-
ence species, the sampling scheme can also impact the performance of the delineation methods.
Optimally, a sufficiently large number of specimens covering the whole geographic distribution
of each species would be included, and the study would include all known species of the focal
clade. Unfortunately, this optimal scenario is rarely feasible, especially when a high number of
poorly-known species is included. However, it should be noted that including a small number
of specimens per species and/or sampling only distantly related species may artificially improve
the congruence between species and OTUs. Restricted geographic sampling can have a similar
effect, although the impact of geographical distance on the intraspecific variance has shown
taxon-dependence [90–92]. Hausmann et al. [93] studied the performance of the BIN system
in the well-studied geometrid moths with a large-scale sampling scheme, covering most parts
of Europe. They reported rather poor performance (67% MATCHES), but concluded that
many cases of discordance reflected flaws in the current taxonomy rather than problems with
the method. Restricted intraspecific sampling can also raise the number of singletons in the
data, which might affect the method performance. However, no effect of this type was discov-
ered here (see Fig 8) or in a previous study evaluating the performance of GMYC [48].
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Eight species of Gelechiinae and 32 species of Elachistinae were delineated differently in this
study than in current taxonomy (i.e., three or four out of four methods produced discordant re-
sults, see species marked with asterisks in Table 1). To evaluate the effect of the sampling
scheme, these species were studied for their number of BINs (i.e., OTUs delineated by the
RESL algorithm) on BOLD (results in S4 Table). As these BINs are based on all sequence data
on BOLD, the sampling effort was increased for most gelechiine species. No conflicts between
the results in this study and the BINs were revealed. As additional specimens were available for
seven of eight species from various parts of Europe and North America, sampling-based error
is an unlikely explanation. Instead, it is possible that these reference species, especially the five
species which were SPLIT in this study, each reflect a case of overlooked species and, thus, the
discordance observed between current species boundaries and OTUs reflects a taxonomic
error. However, two gelechiine species (Scrobipalpa artemisiella and S. stangei) were MERGED
in the same OTU here as well as in the same BIN on BOLD. This case of discordance might be
due to a biological factor as these species can easily be separated by morphology and have dif-
ferent life histories. Sampling-based error could not be evaluated for one gelechiine species
(Scrobipalpa bryophiloides) as no additional sequences were available.

The examination of the BIN records on BOLD provided only a few additional records for
the Australian Elachistinae so the effect of sampling could not be evaluated. However, many
discordant results for the Elachistinae species were MERGES, leading to a higher number of
specimens per OTU. As a consequence, the overall sample size per OTU was larger for the Ela-
chistinae than the Gelechiinae. Seventeen elachistine species formed three groups with highly
discordant results between the reference species and the delineated OTUs (see asterisks with
numbers in Table 1). E. lachnella was included to this comparison, because it was MERGED in
the same BIN with E. nodosae. This discordance between the result of this study and the BIN
was due to one intermediate E. nodosae specimen on BOLD. As these three groups included
36, 12, and 10 sequences, sampling effort was not low so sampling-based error is unlikely. In-
stead, both biological and taxonomic factors may explain the observed discrepancy. These spe-
cies were originally delineated based on ecological traits (in particular phenology, host plant
selection and the shape of leaf mines that their larvae produce) which were correlated with
small, but consistent morphological differences, a pattern compatible with their recent origin.
Their young age is further supported by the distribution of pairwise genetic distances in Fig 2.
However, as these species were described very recently (2011), they have not yet experienced
critical re-examination so the species hypotheses cannot be considered as fully robust. As well,
their young age might reflect taxonomical complications such as introgression which would
make species boundaries difficult to interpret.

Fourteen Elachista species, which were originally delineated based on morphological differ-
ences, were MERGED with their sister species. In one case (E. ophelma and E. catagma), the
representatives of each species formed a distinct subcluster within the shared OTU. Two other
species (E. gerasmia and E. physalodes) showed a similar pattern, but one specimen was
grouped with the subcluster otherwise comprised solely of its sister species. In three cases, the
subcluster of one species was nested within its sister species (E. anolba and E. averta; E. zopho-
sema and E. litharga; E. stictifica and E. platysma). Two pairs (E. ophthalma and E. nr.
ophthalma; E. sp. ANICLK1 and E. sp. ANICLK3) included undescribed, but morphologically
distinct species, which were MERGED with their sister species. These cases may also reflect
both biological and taxonomic factors associated with recently diverged taxa. Only two Ela-
chista species were designated as SPLITS (E. carcharota and E. discina). The split within E.
carcharota was associated with large geographical distance (western vs. eastern Australia), the
specimens were originally deemed conspecific because morphological differences were not ap-
parent. E. discina was divided into two OTUs from sites in proximity. Both cases of SPLITS
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may reflect problems introduced by the small number of samples per species, but the possibility
of overlooked cryptic species cannot be excluded.

Method performance
Some general patterns in method performance were present regardless of the taxon. BIN, TCS
with cut-off value 95%, and GMYC with Bayesian input trees and the single-threshold model
produced similar results for both datasets (97–102 OTUs, 89–91%MATCHES for Gelechiinae;
81–96 OTUs, 62–67%MATCHES for Elachistinae). GMYC analyses based on Bayesian trees
and BIN performed slightly better than TCS (95% cut-off), especially with the Elachistinae. As
the performance of GMYC and BIN was similar for the Elachistinae, there was no evidence to
support Zhang et al.’s [10] contention that tree-based approaches are superior for taxa with a
narrow barcode gap.

The performance of GMYC was found to be very sensitive to the starting tree. UPGMA
trees produced poor results with regard to both OTU count and composition (Figs 4–6,
Table 3). Similar sensitivity has been reported in previous studies, which have tested this meth-
od with different trees [39,40,48,94]. Tang et al. [94] noted that starting trees transformed to
ultrametric by post hoc branch smoothing (e.g., by employing function ‘chronopl’ in R) per-
form especially poorly. This feature complicates the use of GMYC with large datasets, because
computationally expensive BEAST trees seem to be the only reliable option. Another notewor-
thy feature of GMYC is the weak performance of the multiple-threshold model which was also
detected in a previous simulation study [21].

ABGD produced both the highest and some of the lowest percentages of MATCHES for
both datasets. As different prior intraspecific divergence (P) values (when used with default pa-
rameters) lead ABGD to generate variable OTU counts, it would be optimal to choose a fixed
P-value to gain just one result. P = 0.01 has been proposed [8], and this value performed well
for the Gelechiinae (90–92% MATCHES), but poorly for the Elachistinae (50–59%
MATCHES). We conclude that the adoption of one P-value can result in either high or low
performance, depending on the focal group. Without a fixed P, ABGD generates a range of out-
comes, meaning that the user must choose the ‘correct’ result, compromising the objectivity of
this DNA-based method.

ABGD also showed considerable sensitivity to the distance metric adopted. The results with
p-distance were most discordant, but K2P and JC also produced variable results for the Elachis-
tinae. Similar discordance was observed in a study on Australian hypertrophine moths [17]. As
the effect of distance metric on barcoding results is minor [95], the divergent OTU counts aris-
ing from the use of different distance metrics in ABGD seems to reflect a methodological prob-
lem. Puillandre et al. [8] have noted that ABGD requires 3–5 specimens per species for ideal
performance, but this criterion is difficult to meet, especially if the number of taxa is unknown.
As this issue has been discussed earlier [17], we only point out that our intraspecific sampling
was mostly below this minimum level, but the general performance was still mainly congruent
with the other tested methods.

External morphology vs. DNA barcodes
Groupings based on external morphology has been the primary method for species delineation
for centuries. The results from the morphological sorting in this study generated a low percent-
age of MATCHES for both subfamilies and a high proportion of MIXTURES, a particular chal-
lenge for subsequent taxonomic work. Although this test involved low sample sizes, it still
provides an estimate of the relative efficacies of OTU designation via external morphology ver-
sus DNA-based methods. As with many other gelechioid moths, both elachistines and
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gelechiines are small and dull-colored, often lacking clearcut differences in external morpholo-
gy. Furthermore, many elachistine species are sexually dimorphic [52], which might have con-
tributed to the lower number of MATCHES for the Elachistinae. As the superfamily
Gelechioidea includes many undescribed species, the need for efficient tools to expedite taxo-
nomic workflows is of high importance. The present study reveals that the sole reliance on ex-
ternal morphology for the initial phase of taxonomic work will slow progress. We do expect
that performance would have been improved if sorting had been done by an experienced gele-
chioid taxonomist, but this is not a general solution because many insect groups lack experts.

Conclusions
Our results affirm the general effectiveness of current algorithmic methods for species delinea-
tion together with DNA barcodes as a tool for initial species discovery. Such analyses will be
particularly useful for poorly-known groups with constrained external phenotypic variation.
However, we urge careful selection of methods and parameters (and starting trees where appli-
cable) as the same approach can produce results whose quality varies depending on the focal
taxon, parameter values, and distance metrics. Furthermore, a parameter value which provides
a high-quality outcome in one group can generate poor results for another. The combined use
of several methods provides one way to obtain a more robust estimate of species boundaries
[96]. Because the focal taxa are generally poorly known in studies aiming to delineate putative
species, little information on evolutionary history is usually available. Examination of the
width of the barcode gap with pairwise distances without a priori grouping does provide a pre-
liminary estimate of the levels of divergence for the group under study, a potential aid to the in-
terpretation of results.

Some authors have indicated that DNA barcode-based methods are not useful in the ab-
sence of prior knowledge on the focal group (e.g., [91]), but we disagree. Due to its speed, sim-
plicity and objectivity, the analysis of DNA barcode data with species delineation methods is
the most feasible tool for large-scale screening of poorly-known biodiversity. It provides an ac-
celerated start for subsequent studies which can employ broader sampling and examine
more characters.
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