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Abstract

Intermolecular interactions are ubiquitous, and their intricate network plays a decisive
role in most of the phenomena encountered in our everyday lives. The focus of this
thesis is on the London dispersion forces, a component present in all interactions
between atoms and molecules, and often the most important one at long intermolec-
ular distances. The quantum-mechanical origin of these forces can be traced to the
correlated fluctuations of the molecular charge distributions, which however render
the dispersion interactions challenging to calculate accurately, due to the high-level
electronic structure methods required. The aim of the research presented in this
thesis is to investigate the dispersion interactions, and to develop a viable method
for modeling them.

The systems studied in the accompanying research articles mainly encompass
small clusters of coinage (Cu, Ag, and Au) and volatile (Zn, Cd, and Hg) metals.
The long-range forces present in these clusters are calculated by means of highly
correlated electronic structure methods, and the interaction potentials are used to
develop a simple but effective model, capable of accurately describing the dispersion
interactions in a variety of systems. Some original theoretical considerations are also
elaborated. A novel formula is derived for the tensor describing all intermolecular
interactions, and it is applied to investigate the long-range interaction potential of
coinage metal–hydrogen clusters.

The method developed to account for the dispersion energy is a pair-potential
model, where the total intermolecular London forces are calculated by means of
atomic dispersion coefficients describing the magnitude and orientation dependence
of the interaction. The coefficients are calculated based on small model systems, and
they are used to compute the dispersion energy in larger clusters at no additional
cost. Encouraging results are also obtained for the computed orientation averaged
interaction potentials. All things considered, the publications included in this thesis
indicate that the methods proposed and implemented to analyze the studied systems
are capable of accurately modeling the non-covalent forces in a straightforward
fashion.
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Chapter 1

Introduction

Nonideal gases taught us a general truth:
Electrically neutral bodies attract.

V. Adrian Parsegian
Van der Waals Forces

Nature provides many examples of the importance of van der Waals (vdW) forces:1
they help certain lizards and spiders to adhere to smooth surfaces,2–5 and trigger the
coagulation of small interstellar dust particles that eventually form celestial bodies.6
At the microscopic level, they play an essential role in a myriad of phenomena such
as the stability of molecular solids and layered materials,7–10 or the double-helical
structure of DNA.11–14 These weak long-range intermolecular forces result from the
permanent or transient distortions in the molecular electric charge distributions.15
The most important contribution16 generally stems from the London dispersion inter-
action,17 which derives from the spontaneous correlated fluctuations in the electron
densities of the constituent molecules. Due to the Heisenberg uncertainty principle,
these fluctuations of quantum-mechanical origin are present in all molecules.15 Dis-
persion effects thus constitute a ubiquitous component of intermolecular forces, and
dominate the interaction of nonpolar molecules, permitting substances such as noble
gases to exist in the solid or liquid state.

Dispersion forces are difficult to quantify experimentally: although direct measure-
ments utilizing Rydberg atoms are possible,18 the vdW interaction is too small to be
explicitly detected between two ground state atoms.19 This renders theoretical calcu-
lations and predictions crucial for the determination of long-range forces. However,
as an electron correlation effect, dispersion interactions require advanced electronic
structure calculations in order to be accurately modeled. Some rudimentary methods
even completely ignore the London forces,20–24 which introduces problems for large
systems, where elaborate calculations are unfeasible.

Several different approximations and methods of computation25–34 have been
developed for the dispersion interactions since the seminal work of London.17 These
range from simple experimental formulas to intricate a posteriori corrections, and
various explicit ab initio methods, able to resolve the vdW dispersion forces with
varying degrees of accuracy and computational cost. However, a common source
of difficulties is that the strength of the interaction varies with the orientation and
size of the constituent molecules, and this anisotropy and inconstant nature of the
interactions often induces inaccuracies and increases the computational demands
necessary to properly account for them.

In this thesis, the computational and theoretical aspects of dispersion and other
intermolecular forces are examined. The studied systems encompass small coinage

1



2 CHAPTER 1. INTRODUCTION

and volatile metal clusters, the interactions of which are analyzed via high-level
electronic structure calculations, and some novel theoretical considerations. The
elements at the focal point of investigation, i.e., the group 11 (Cu, Ag, Au) and
group 12 (Zn, Cd, Hg) metals, are intricately connected with dispersion interactions
in a particularly interesting fashion. The former group has epitomized the concept of
metallophilic interactions,35–39 the unusually strong van der Waals dispersion forces
caused by relativistic effects, first discovered in coinage metal clusters. The volatile
metals, on the other hand, provide an exceptional and important field of research
due to their bonding, which changes with increasing cluster size from dispersion
driven to covalent and ultimately metallic.40–45 It is therefore evident that long-range
interactions are indispensable for the proper description of the chemistry of these
metals.

The purpose of this research is to develop a simple but accurate model for
dispersion interactions, which could also be used to include these forces in larger
systems, decreasing the required computational costs. The scheme presented in this
thesis for the computation of the van der Waals interactions is based on an atomic
pair dispersion potential model. Accurate ab initio methods are utilized to calculate
the potential energy surfaces of the studied metal clusters at long intermolecular
distances, and the total interaction energy is divided into contributions arising from
dispersion, electrostatic, and induction effects. The pair-potential model is least-
squares fitted to the total dispersion energy to recover a set of interatomic coefficients
describing the interaction. The properties of these vdW parameters are studied,
and they are used to reliably model the dispersion effects in various metal clusters.
Encouraging results are also obtained for orientation averaged dispersion energies.
On the whole, the obtained results indicate that the procedure described is able to
accurately account for the non-covalent interactions present in the studied coinage
and volatile metal systems.

Some novel theoretical contributions for the description of intermolecular forces
are also presented in this thesis. A combinatorial equation is derived for the tensor
governing the long-range interaction potential between molecules, and it is utilized to
study the dispersion interactions in clusters composed of coinage metal and hydrogen
dimers. Several examples are also provided for other possible applications of the
presented formulation, which is simple to use, but general enough to encompass
arbitrary long-range intermolecular interactions.

This thesis is organized in the following fashion. Chapter 2 provides an overview
of the electronic structure methods used in this thesis, while Chapter 3 focuses more
closely on the theoretical aspects of intermolecular interactions. The results obtained
are summarized in Chapter 4, and the concluding remarks are presented in the final
chapter.



Chapter 2

Electronic Structure Theory

Electronic structure theory—the pith of computational chemistry—is an integral
part of this thesis. The current chapter provides an overview of the methods used to
probe the intermolecular interaction energy, on which all further calculations of the
dispersion interactions are based.

2.1 Schrödinger Equation

The behavior of a quantum-mechanical system of non-relativistic particles in time-
independent potentials is governed by the Schrödinger equation

ĤΨ = EΨ, (2.1)

which gives the total energy E of the system as the eigenvalue of the Hamiltonian
operator Ĥ. The corresponding eigenfunction Ψ is called the wave function, and it
contains all possible information about the quantum state it describes. In atomic
units∗ (a.u.), the Hamiltonian of a system composed of electrons and nuclei is

Ĥ = −1

2

∑
i

∇2
i −

1

2

∑
A

∇2
A

mA

+
∑
i>j

1

|ri − rj|
+
∑
A>B

ZAZB
|RA −RB|

−
∑
i,A

ZA
|ri −RA|

, (2.2)

where the indices i and j run over the electrons, and A and B over the nuclei. The
mass and charge of a nucleus are indicated by m and Z, while the positions of
the nuclei and electrons are denoted by R and r, respectively. The terms of the
Hamiltonian describe the kinetic and potential energies of the particles, and eq. (2.2)
can also be written as

Ĥ = T̂e + T̂N + V̂e,e + V̂N,N + V̂N,e, (2.3)

where T̂ and V̂ are the operators for kinetic and potential energies, and the indices e
and N refer to electrons and nuclei, respectively.

In general, the Schrödinger equation cannot be solved analytically, and several
approximations are needed to resolve the problem. Because of the large difference
in mass, the heavy nuclei have much smaller velocities than the electrons, which
rapidly adapt themselves to the nuclear motion. The electrons essentially perceive the
nuclei as frozen in space, which allows the Schrödinger equation to be separated into
distinct parts describing the electronic and nuclear wave functions. This separation,

∗In atomic units, which are used throughout this thesis, the elementary charge e, electron mass me, reduced
Planck’s constant ~, and Coulomb’s constant 1/(4πε0) are all unity by definition.
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4 CHAPTER 2. ELECTRONIC STRUCTURE THEORY

known as the Born–Oppenheimer approximation,46 reduces the problem to solving
the electronic Schrödinger equation

Ĥelψel = (T̂e + V̂e,e + V̂N,N + V̂N,e)ψel = Eelψel (2.4)

for a fixed set of nuclear geometries. The electronic wave function ψel has only a
parametric dependence on the positions of the nuclei, but is independent of their
momenta. Furthermore, since the nuclear–nuclear repulsion term V̂N,N is constant for
frozen nuclei, it only shifts the eigenvalues, but does not otherwise affect the solution
of the electronic Schrödinger equation.

Even with the Born–Oppenheimer approximation, the Schrödinger equation
remains difficult to solve accurately, since the exact wave function is unknown.
However, the task is facilitated by the variational principle47,48

〈E〉 =
〈Φ| Ĥ |Φ〉
〈Φ|Φ〉

≥ E0, (2.5)

according to which the expectation value of the energy, 〈E〉, of any trial wave function
Φ is an upper bound to the true ground state energy E0. This allows the best wave
function of a given form to be found by minimizing the energy with respect to the
parameters of the trial function.

The variational principle also leads49 to another property of the quantum system,
known as the Hellmann–Feynman theorem,50–52 which is especially useful in calculat-
ing intermolecular forces in molecules. This theorem, obeyed by all variational wave
functions,53 relates a variation of a parameterized Hamiltonian to a corresponding
change in energy, according to

dEλ
dλ

=

〈
Ψλ

∣∣∣∣dĤλ

dλ

∣∣∣∣Ψλ

〉
, (2.6)

where the energy Eλ, the normalized wave function Ψλ, and the Hamiltonian Ĥλ all
depend on the continuous parameter λ.

2.2 Hartree–Fock Method

The Coulombic repulsion of the electrons is one of the main reasons why the electronic
Schrödinger equation is so difficult to solve, since it prevents the Hamiltonian from
being separable into distinct components for each electron. One of the simplest
techniques developed to overcome this obstacle is the Hartree–Fock (HF) method,
in which the electron repulsion term is replaced by a mean field so that a given
electron only feels the average effect of its neighbors. This procedure enables the
N -electron Schrödinger equation to be recast as N coupled one-electron equations,
whose solutions are used to approximately represent the electronic wave function ψel

as a Slater determinant54,55

ΦHF(x1,x2, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣
φ1(x1) φ2(x1) · · · φN(x1)
φ1(x2) φ2(x2) · · · φN(x2)

...
... . . . ...

φ1(xN) φ2(xN) · · · φN(xN)

∣∣∣∣∣∣∣∣ , (2.7)

where the functions φi are one-electron spin orbitals, and xk denotes the spin and
spatial degrees of freedom of electron k. This representation fulfills the antisymmetry
requirement

ψel(. . . ,xi, . . . ,xj, . . . ) = −ψel(. . . ,xj, . . . ,xi, . . . ), (2.8)



2.3. ELECTRON CORRELATION METHODS 5

which states that since electrons are indistinguishable fermions, the wave function
must change sign if any two electron coordinates are interchanged.

With the restriction that the spin orbitals remain orthonormal, the variational
minimization of the energy of a single Slater determinant leads to the Hartree–Fock
equations

F̂ φi = εiφi (2.9)

for the spin orbitals φi and the orbital energies εi. The Fock operator F̂ describes
the kinetic energy of an electron together with the attraction to all the nuclei and
the average repulsion to all other electrons.53 Because this operator depends on
all the occupied orbitals, it couples the HF equations requiring them to be solved
iteratively. This process, known as the self-consistent field (SCF) method, begins
with an initial guess for the spin orbitals. The new orbitals, which in turn serve as an
initial guess for the next round of iterations, are calculated based on eq. (2.9), and
the procedure is repeated until convergence. The number of optimized spin orbitals
is usually greater than the number of electrons in the system, in which case only
the orbitals with the lowest energies are occupied, i.e., used to construct the Slater
determinant while the rest, the virtual orbitals, remain unoccupied.

The main source of error in the HF method is that it does not treat the electrons
as discrete point particles, as a result of which the electronic energy of the system is
in reality lower than that given by HF theory. The difference between the energies,
known as the correlation energy, is mostly due to the fact that the mean field
approximation allows the electrons to get too close to each other on average, leading
to an overestimation of the Coulombic repulsion between the particles.56 Even though
the Fermi correlation—the tendency of electrons with parallel spins to avoid each
other due to the antisymmetry principle—is included in the HF theory, the missing
Coulomb correlation renders it too inaccurate for many chemical applications. This
shortcoming has lead to the development of more advanced methods, which are
better capable of describing the physical nature of the electrons.

2.3 Electron Correlation Methods

Many schemes developed to calculate the correlation energy are based on the premise
that allowing electronic excitations to the virtual orbitals can improve the wave
function and hence the energy. This is due to the fact that the wave function ψel of
the system can be expanded as a linear combination of Slater determinants:

ψel = a0Φref +
∑
i=1

aiΦi, (2.10)

where Φref is a reference state, which is used to construct the excited determinants
Φi by replacing one or more of the occupied orbitals with virtual ones. The reference
state is normally taken to be the Hartree–Fock determinant ΦHF, since it usually
accounts for about 99 % of the correct answer.57 If the representation in eq. (2.10)
includes all possible determinants that can be formed in a given one-electron basis,
it is an exact solution to the electronic Schrödinger equation in that basis. Such an
approach is taken in the full configuration interaction method (FCI), which hence
recovers all of the correlation energy, but is impossible for all but the smallest systems
due to the extreme computational resources required.

The simplest way to make the electron correlation problem tractable is to truncate
the series in eq. (2.10) and ignore all high-order excitations, which contribute little
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to the wave function. This method is known as configuration interaction (CI), but
it is unfortunately not well suited to the study of intermolecular interactions, since
ignoring some of the high-order excitations renders it impossible to calculate the
energies of systems of differing sizes with the same accuracy. This problem is solved
by the more accurate coupled cluster (CC) approach where an exponential wave
function ansatz

ΦCC = eT̂Φref =
∞∑
k=0

T̂ k

k!
Φref (2.11)

is used. The operator

T̂ =
n∑
i=1

T̂i (2.12)

is a sum of excitation operators T̂i, which produce all excitations of order i from
the reference state. This method has several variants, which are named based on
the orders of the excitation operators retained in eq. (2.12). One of the simplest
practical variants is the coupled cluster singles and doubles (CCSD) method, where
excitations up to second order are included. Because of the Brillouin theorem,58
the singly excited determinants alone do not improve the energy, although they are
usually included in the CC ansatz since their number is relatively small, and they can
indirectly affect the energy through coupling with other determinants.53 A drawback
of the coupled cluster method is that its standard formulation is not variational.56
Furthermore, it is computationally demanding, and the triply excited determinants
are often already too expensive to be rigorously included.

Besides an explicit determinant expansion such as that in eq. (2.10), the effects of
electron correlation can be included by means of perturbation theory.53,56,59 The idea
is that a complicated system can often be treated as a perturbed version of a simpler
idealized model, whose solutions are known. Mathematically, the Hamiltonian H is
split as

H = H0 + λH ′, (2.13)
where H0 is the Hamiltonian for the simple system, and H ′ represents a perturbation,
whose strength is indicated by the parameter λ. If the perturbation is small enough,
the solutions to the full problem can be expressed as corrections to those of the
reduced system by means of a power series in λ.

One of the most common methods based on perturbation theory is the Møller–
Plesset (MP) theory,60 in which H0 is taken to be the sum of the one-electron Fock
operators, whereas H ′ contains all other correlation effects. This approach introduces
a hierarchy of methods called MPn, where n signifies the order upto which the
perturbations are included. Since MP1 only recovers the Hartree–Fock energy EHF,
the lowest MP level of practical use is MP2, which essentially models the effects of
double electronic excitations.53 The corresponding energy can be expressed as53

EMP2 = EHF +
occ∑
i<j

vir∑
a<b

〈φiφj||φaφb〉2

εi + εj − εa − εb
, (2.14)

where φα is a spin-orbital with an energy εα, and the term in the brackets represents
an antisymmetrized electron repulsion integral in the so-called physicist’s notation
(see pp. 95–96 of ref. 53). Møller–Plesset calculations beyond the second level are
less common due to the uncertain convergence of the perturbation expansion, and
in particular since the higher-order corrections are often characterized by a less
favorable cost–accuracy ratio.59
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Perturbation theory can also be used in conjunction with other methods in order
to improve accuracy at a reduced computational cost. Most electronic structure
calculations in this thesis have utilized the CCSD(T) method, where the effect of the
triple excitations is approximately included via perturbation theory.

2.4 Basis Sets

For many-electron systems, the exact form of the molecular orbitals is unknown,
although in some simple cases they can be represented numerically. However, in
order to efficiently represent the electron distribution in a molecule, the molecular
orbitals need to be expressed in terms of simple analytic functions. A method known
as linear combination of atomic orbitals (LCAO) is frequently used to represent the
molecular orbitals φi as

φi =
∑
α

ciαϕα, (2.15)

where each ϕα is an atomic orbital composed of one or more basis functions, which
together constitute a basis set.

The angular part of all one-electron basis functions can be described by spherical
harmonic functions, since they are an exact angular solution for a one-electron system
in any central potential.59,61 In a Slater-type orbital (STO), the radial part has the
form59

RSTO
lζ (r) = Alζr

le−ζr, (2.16)

where Alζ is a constant depending on the parameters l and ζ. Although reminiscent
of the solutions of the hydrogen-like one-electron problem, this functional form
is challenging due to the excessive computational cost of the entailing molecular
integrals. By expanding the basis functions in terms of Gaussian primitives

RGTO
lα (r) ∝ rle−αr

2

, (2.17)

the integral evaluation can be hastened even though more functions are needed in
order to reach the same accuracy.59

The basis sets used in this thesis are predominantly of the valence triple-zeta
quality, meaning that each valence atomic orbital is composed of three basis functions.
Additionally, polarization and diffuse functions were used in order to increase accuracy
and flexibility. The polarization functions have higher angular momenta than the
occupied atomic orbitals, enabling them to better describe the anisotropic electron
distribution due to bonding. The slowly decaying diffuse functions can capture
long-range interactions, and are thus crucial for their proper description.

For heavy elements, the number of basis functions required to rigorously treat
all electrons can significantly hinder the calculations. Increasing atomic numbers
also engender more prominent relativistic effects due to their polynomial scaling
with respect to the nuclear charge.62,63 However, it is often unnecessary to treat the
core electrons explicitly, since they typically remain relatively inactive in chemical
interactions. Significant computational speedups can therefore be gained, if the inert
core is modeled by a suitable pseudopotential, which can also be fitted to include
scalar relativistic effects.64,65 In the present study, this approach of relativistic
pseudopotentials was utilized for all metal atoms.



Chapter 3

Intermolecular Interactions

Long-range forces are characterized by an inverse polynomial dependence on the
intermolecular distance, as opposed to the much faster exponential decay of the
interactions due to wavefunction overlap. The precise range of separations covered by
these forces varies with the system: the intermolecular distance should be sufficiently
large to disregard the antisymmetrization of the total wavefunction, but small enough
to ignore the retardation effects66 due to the finite speed of light.

Based on their physical origin, the long-range interactions can be divided into
electrostatic, induction, and dispersion forces. The former two can be described by
classical mechanics, where as the latter requires quantum-theoretical considerations.
This thesis is centered on the efficient computational modeling of dispersion interac-
tions, even though it is necessary to account for the other long-range forces as parts
of the total interaction energy.

3.1 Coulombic Interactions

As atoms and molecules are partly composed of charged particles—the electrons and
protons—they can interact with each other via the associated Coulombic forces. In
a pair of interacting molecules, the charge cloud around each monomer reciprocally
feels the effect of the other one, which leads to an interaction between them. This
also alters the molecular charge distributions of the monomers, which in turn leads to
higher-order interactions. The end result is a host of intricately coupled forces, which
are ultimately responsible for all long-range intermolecular interactions between
molecules.

In the following mathematical treatment, the Einstein summation convention is
adopted for repeated Greek indices, which are used as placeholders to indicate the
Cartesian coordinates x, y, or z. In this notation, the summation over all possible
values is implied for the repeated index values. For example, a dot product in the
Cartesian coordinates could be represented as a · b = aαbα ≡ axbx + ayby + azbz,
where the latter terms are the Cartesian components of the vectors a and b.

Potential Produced by a Molecule

Consider a localized charge distribution composed of discrete point charges, which
is nonvanishing only inside a sphere of a given radius s. According to classical
electrodynamics, the associated electric potential V (R), at some point R outside the
sphere, can be expanded in powers of 1/R. The potential produced by a collection

8



3.1. COULOMBIC INTERACTIONS 9

of point charges, ei, at the locations ri is67

V (R) =
∑
i

ei
|R− ri|

=
∑
i

ei

∞∑
n=0

(ri · ∇)n

n!

1

|R− ri|

∣∣∣∣
ri=0

=
∑
i

ei

(
1

R
− riα∇α

1

R
+

1

2
riαriβ∇αβ

1

R
− · · ·

)
,

(3.1)

where R = |R|, riα stands for a Cartesian component of the vector ri, and ∇ is the
differential operator.

It is common to write eq. (3.1) in terms of traceless tensors, as the trace does not
contribute to the overall potential, since the Coulomb kernel satisfies the Laplace
equation. For example, the tensor riαriβ can be replaced with the traceless quantity
Mαβ = riαriβ − r2

i δαβ/3 without altering the potential, because δαβ∇αβR
−1 = 0.

In general, the rank n traceless tensors M (n)
αβ...ν can be constructed from the solid

spherical harmonic functions of degree n, and written as68

M
(n)
αβ...ν =

(−1)n

(2n− 1)!!
r2n+1
i ∇αβ...ν

1

ri
, (3.2)

where ri = |ri|. By inserting eq. (3.2) into eq. (3.1), the potential can be expressed as

V (R) =
∞∑
n=0

(−1)n

(2n− 1)!!
T

(n)
αβ...νξ

(n)
αβ...ν , (3.3)

where the rank n tensors

ξ
(n)
αβ...ν =

(−1)n

n!

∑
i

eir
2n+1
i ∇αβ...ν

1

ri
(3.4)

T
(n)
αβ...ν = ∇αβ...ν

1

R
(3.5)

are known as the multipole moment and the interaction tensor, respectively. Due to
the Laplace equation and the invariance with respect to the order of the derivatives,
they are totally symmetric and traceless with respect to contraction of any two
indices. Instead of the ξ-notation, the low-order multipole moments are usually
referred to by their common names and symbols. The moments with n = 1− 4 are
called the dipole, quadrupole, octupole, and hexadecapole, and possess the associated
symbols µ, Θ, Ω, and Φ, respectively.

Even though the molecular charge distributions formally extend to infinity, the
expansion can still be performed for them under certain conditions. The electronic
wave function is usually expanded in terms of Gaussian orbitals, and in such a case
the expansion is well defined as long as the radius s is large enough to include all
the centers of the orbitals, which are usually located at the nuclei.69

Molecule in an External Potential

The energy of a molecule in a general non-uniform external potential φ(r) is described
by the operator70

H′ =
∑
i

eiφ̂(ri), (3.6)
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where the summation runs over all the electrons and nuclei, with charges ei located
at points ri. Similar to eq. (3.1), the Taylor expansion of this potential is

φ(r) = φ(0) + φα(0)rα +
1

2
φαβ(0)rαrβ + · · · , (3.7)

where
φαβ...ν(0) ≡ ∂n

∂rα∂rβ · · · ∂rν
φ(r)

∣∣∣∣
r=0

(3.8)

For potentials of molecular origin, eq. (3.7) can be written in terms of traceless
multipole moment tensors as

φ(r) =
∞∑
n=0

1

(2n− 1)!!
ξ

(n)
αβ...νφαβ...ν(0) (3.9)

Interaction Potential

The Coulombic interaction between molecules can be calculated based on eqs. (3.3)
and (3.9). Consider a unit charge at the point ra relative to molecule A, centered
at the location A, and an analogous point charge relative to molecule B. The
corresponding interaction potential is

V AB(R) =
1

|(B + rb)− (A + ra)|
=

1

|R− ra + rb|
, (3.10)

where R = B − A. The generalization to several point charges is obtained by a
trivial summation over the charges. If the derivative notation analogous to eq. (3.8)
is adopted for V AB(R), the Taylor expansion with respect to molecule B, i.e., around
the point rb = 0 is

V AB(R) =
∞∑

nB=0

1

(2nB − 1)!!
ξB(nB)
στ...ω V

AB
στ...ω(R)

∣∣∣∣
rb=0

(3.11)

where the derivatives are taken with respect to the components of rb, and ξ
B(nB)
στ...ω

signifies the rank nB multipole moment of molecule B. Since

∂nB

∂rbσ∂rbτ · · · ∂rbω
V AB(R)

∣∣∣∣
rb=0

=
∂nB

∂Rσ∂Rτ · · · ∂Rω

V AB(R)

∣∣∣∣
rb=0

(3.12)

the expansion in eq. (3.11) can also be written as

V AB(R) =
∞∑

nB=0

1

(2nB − 1)!!
ξB(nB)
στ...ω ∇στ...ω

1

|R− ra|
, (3.13)

where the derivatives are now taken with respect to the components of R. After
inserting the expansion in eq. (3.3), the potential becomes

V AB(R) =
∞∑

nA=0

∞∑
nB=0

(−1)nA

(2nA − 1)!!

1

(2nB − 1)!!
ξ
A(nA)
αβ...ν T

AB(nA+nB)
αβ...νστ...ω ξB(nB)

στ...ω , (3.14)

where the interaction potential is now expressed in terms of local multipoles of the
molecules, coupled together by the rank nA + nB interaction tensor TAB(nA+nB)

αβ...νστ...ω .
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Spherical Representation

The Cartesian representation of the Coulombic interactions is straightforward, but
it has some drawbacks. For example, the rank n interaction tensor and multipole
moments have 3n Cartesian components, but not all of them are independent due to
the symmetry and tracelessness requirements.70,71 Furthermore, the Cartesian tensors
are not ideally suited to the description of multipole moments, which are essentially
harmonic homogeneous polynomials, as is reflected by their close relationship to the
spherical harmonic functions.70,72

It would be advantageous to formulate the potential expansion in terms of harmonic
functions, as they can more closely reflect the essence of the tensors at hand. For
example, consider the number of independent tensor components. The dimension of
the space of homogeneous harmonic polynomials of degree n in N variables is73

dimHn(RN) =

(
N + n− 1

N − 1

)
−
(
N + n− 3

N − 1

)
, (3.15)

which is also the number of independent components in a totally symmetric traceless
tensor of rank n, as can be ascertained by a simple counting argument. Since a
totally symmetric tensor is invariant with respect to permutations of the indices, the
only factor that distinguishes between different components is the total amounts of
the various indices. For example, the components Txxy, Txyx, and Tyxx are not all
independent: since their index sets are composed of two x’s and one y, the equality
Txxy = Txyx = Tyxx holds. As the amount of indices is equal to the rank, the number
of independent components in a totally symmetric rank n tensor in N dimensions
is the same as the number of N -tuples of non-negative integers, whose sum is n.
According to an elementary theory in combinatorics,74 this number is given by the
binomial coefficient

(
N+n−1
N−1

)
. The number is further reduced by the tracelessness

requirement, i.e., that the contraction of any two indices vanishes. By the same
argument as before, the remaining n − 2 indices lead to

(
N+(n−2)−1

N−1

)
additional

restraints. The difference of these two binomial coefficients thus gives the number
of totally symmetric traceless rank n tensors in N dimensions, which amounts to
2n+ 1 in the three dimensional space.

The spherical expansion of the interaction potential can be performed by replacing
the Taylor series by an expansion given by the spherical harmonic addition theorem.75
For the potential in eq. (3.10) this expansion takes the form70

V AB(R) =
∞∑
l=0

l∑
m=−l

(−1)mRl,−m(ra − rb)Il,m(R), (3.16)

as long as |R| > |ra − rb|. The functions Rl,m and Il,m are respectively known as
the regular and irregular solid harmonics, and in spherical coordinates they can be
expressed in terms of the spherical harmonic functions Y (m)

l (θ, ϕ) as

Rl,m(r, θ, ϕ) =

√
4π

2l + 1
rlY

(m)
l (θ, ϕ) (3.17)

Il,m(r, θ, ϕ) =

√
4π

2l + 1
r−l−1Y

(m)
l (θ, ϕ). (3.18)

An addition theorem for the solid harmonics70,76 can be used to further expand the
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term Rl,−m(ra − rb), which results in

V AB(R) =
∑
l1,l2

m1,m2,M

(−1)l1

√
(2L+ 1)!

(2l1)!(2l2)!

(
l1 l2 L
m1 m2 M

)
ξAl1,m1

ξBl2,m2
IL,M(R), (3.19)

where L = l1 + l2, and
(
l1 l2 L
m1 m2 M

)
is a Wigner 3-j symbol.76 For the molecule A,

composed of point charges ea at locations ra, the spherical multipole moments are
defined as

ξAl,m =
∑
a∈A

eaRl,m(ra), (3.20)

and analogously for molecule B.
The multipole moments characterized by the indices l and m in eq. (3.20) are

complex if m 6= 0, due to the corresponding property of the solid harmonics. It is
often more convenient to work with real functions obtained from linear combinations
of the solid harmonic functions. By replacing m with a new label κ, which can take
the values70,77 lc, . . . , 1c, 0, 1s, . . . , ls, and introducing the functions

Rl,kc =
1√
2

[
(−1)kRl,k +Rl,−k

]
(3.21)

Rl,ks =
1

i
√

2

[
(−1)kRl,k −Rl,−k

]
, (3.22)

where 0 ≤ k ≤ l, the real spherical multipole moments can be calculated as

ξAl,κ =
∑
a∈A

eaRl,κ(ra). (3.23)

Another inconvenience with the spherical representation presented thus far is that
it is formulated in terms of the global coordinate system. The multipole moments
are normally considered in the local frame, i.e., as molecule fixed. For example, in
the local frame, the dipole moment of a molecule is the same regardless of how it is
oriented in space. However, in the global coordinate system, the orientation of the
vectors, and hence the multipole moments, change as the molecule rotates.

The effect of the rotations can be accounted for in different ways. One method is
to use the Wigner rotation matrices to transform the multipole moments from the
global to the local frame,70 which, however, leads to rather complicated expressions
in terms of multiple summations over the elements of said matrices. A simpler
method77 is based on including the rotations already in the formula describing the
interaction potential. In the local frame the potential is

V AB(R) =
1

|R− R̂Ara + R̂Brb|
, (3.24)

where R̂X = R̂(φX , θX , ϕX) is a rotation matrix describing the orientation of the
molecule X in terms of the Euler angles (φX , θX , ϕX). A spherical expansion of this
potential leads to77

V AB(R) =
∑
l1,l2

∑
κ1,κ2

(−1)l1

(2l1 − 1)!!

1

(2l2 − 1)!!
ξAl1,κ1T

AB
l1,κ1,l2,κ2

ξBl2,κ2 , (3.25)

where all quantities are expressed in terms of real functions in the local frames. The
interaction tensor in the spherical basis is77

TABl1,κ1,l2,κ2 = Rl2,κ2(R̂
−1
B ∇R)Rl1,κ1(R̂

−1
A ∇R)

1

R
, (3.26)
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where the solid harmonic functions have the vector derivative operator ∇R as a part
of their arguments.

Polarizabilities

The multipole moments describing the charge distribution of a molecule are not
invariable, and can change due to an external potential such as that produced by
another molecule. The external field and its gradients cause a distortion in the
molecular electric charge distribution, which in turn induces additional multipole
moments in the molecule. The total observed multipole moment of a given rank
is thus a sum of the static moment and all the induced moments. The coefficients
characterizing the induced moments are known as polarizabilities, and they describe
how the molecular charge distribution is distorted, or polarized, in an external field.78

In terms of the multipole moments and polarizabilities, the energy E of a molecule
in an external potential V (r) can be written as a perturbation series70,79

E = E(0) +
∑
l1κ1

ξl1κ1Vl1κ1 −
1

2!

∑
l1κ1l2κ2

αl1κ1,l2κ2Vl1κ1Vl2κ2

+
1

3!

∑
l1κ1l2κ2l3κ3

βl1κ1,l2κ2,l3κ3Vl1κ1Vl2κ2Vl3κ3 − · · · ,
(3.27)

where E(0) is the energy of the free molecule, and the spherical derivatives of
the potential are defined in terms of the solid harmonic function Rlκ as Vlκ =
[(2l− 1)!!]−1Rlκ(∇)V (r)|r=0. The regular multipole–multipole polarizability αl1κ1,l2κ2
describes the linear response of the molecule to the external field, while the higher
order terms, known as hyperpolarizabilities, account for the nonlinear effects.70,78,80
The polarizability also describes the multipole moments ξl1κ1 induced by the field
Vl2κ2 as70

∂E

∂Vl1κ1
= ξl1κ1 −

∑
l2κ2

αl1κ1,l2κ2Vl2κ2 + · · · , (3.28)

where the static value ξl1κ1 is recovered at the limit of vanishing external potential.
The polarizability tensors are totally symmetric, meaning that αl1κ1,l2κ2 also char-
acterizes the multipole moment ξl2κ2 induced by the field Vl1κ1 . For example, the
dipole–quadrupole polarizability α1κ1,2κ2 describes the quadrupole moment induced
by the electric field V1κ1 as well as the dipole moment induced by the field gradient
V2κ2 .

The effects of polarizable molecular electric charge distributions appear in the
second order of the perturbation expansion in eq. (3.27), and standard second order
perturbation theory can be used to express the multipole–multipole polarizability
as70

αl1κ1,l2κ2 =
∑
m6=0

〈0| ξ̂l1κ1 |m〉 〈m| ξ̂l2κ2 |0〉+ 〈0| ξ̂l2κ2 |m〉 〈m| ξ̂l1κ1 |0〉
Em − E0

. (3.29)

The lowest-order polarizability tensor is the dipole–dipole polarizability, since the
charge terms (l1 = 0 or l2 = 0) are scalars, whose matrix elements vanish between
orthogonal states. In Cartesian coordinates, the dipole–dipole polarizability can be
written as

ααβ =
∑
m6=0

〈0| µ̂α |m〉 〈m| µ̂β |0〉+ 〈0| µ̂β |m〉 〈m| µ̂α |0〉
Em − E0

, (3.30)
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and an analogous definition in terms of the Cartesian multipole moments is also
possible for the higher-order terms, although the Cartesian formulas are usually
defined81 with an additional factor of [(2l − 1)!!]−1 when l1 = l2 = l.

If the external electric field is not static but periodic, and oscillates with an
angular frequency ω, time-dependent perturbation theory must be used to describe
the interaction of a molecule with the field.80 The effect of the oscillating field is
that the polarizabilities become dynamic, i.e., dependent on the frequency ω. The
dynamic dipole–dipole polarizability is80

ααβ(ω) =
∑
m6=0

εm (〈0| µ̂α |m〉 〈m| µ̂β |0〉+ 〈0| µ̂β |m〉 〈m| µ̂α |0〉)
ε2
m − ω2

, (3.31)

where εm = Em − E0. Formulas analogous to eq. (3.31) can also be derived for the
higher-order dynamic polarizabilities, and the static formulas are recovered when
ω = 0.80

3.2 Perturbative Multipole Expansion

At long distances, intermolecular interactions represent a tiny fraction of the total
energy of the system, which poses demands of accuracy and precision for the associated
electronic structure calculation. The silver lining is that such a situation is well
suited for a perturbative treatment, as the short-range electron exchange effects can
be neglected for well separated molecules.70 The only interaction thus results from
the Coulombic forces between the particles of the monomers,82 described by the
perturbing Hamiltonian70

H ′ =
∑
a∈A

∑
b∈B

eaeb
rab

, (3.32)

where the summations are over all particles (electrons and nuclei) of molecules A and
B. The charges of the particles are indicated by ea and eb, and rab is the distance
between them.

By expressing the potential in eq. (3.32) in terms of electric multipoles, the
interaction can be described in terms of monomer properties. The perturbation
becomes83

H ′ =
∑
nA,nB

(−1)nA

(2nA − 1)!!

1

(2nB − 1)!!
ξ̂
A(nA)
αβ...ν T

AB(nA+nB)
αβ...νστ...ω ξ̂B(nB)

στ...ω , (3.33)

where ξ̂A(nA)
αβ...ν is the rank nA multipole moment operator for the molecule A. The

Cartesian components of this operator are specified by the nA subscripts αβ . . . ν,
each of which can take the value of x, y or z. The tensor TAB(nA+nB)

αβ...νστ...ω describes
dependence of the interaction on the orientations of the monomers. For molecules A
and B, respectively centered at points A and B, it is of the general form

T
AB(n)
αβ...ν = ∇α∇β · · · ∇ν

1

R
, (3.34)

where R = |B−A|.

Polarization Approximation

The assumption of negligible electron exchange allows the electrons of the system
to be assigned to the constituent molecules. For two interacting molecules A and
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B, the unperturbed Hamiltonian H0 is a sum of the individual Hamiltonians HA

and HB, which describe the monomers in terms of their respective electrons. The
unperturbed system can thus be described via the wavefunctions ψAm = |m〉 and
ψBn = |n〉 as product states |mn〉 = |m〉 |n〉. With the perturbation given in eq. (3.33),
Rayleigh–Schrödinger perturbation theory84 can be used to derive the interaction
energy Eint. In case of closed-shell molecules in a non-degenerate ground state |00〉
of the system, this results in the expansion

Eint = E − EA − EB = E(1) + E(2) + · · · , (3.35)

where EA and EB are the unperturbed energies of molecules A and B, and E is the
total energy. In the context of intermolecular forces, eq. (3.35) is also referred to as
the polarization approximation.85,86

The perturbative corrections can be expressed as70

E(1) = 〈00|H ′ |00〉 (3.36)

E(2) = −
∑
mn6=00

〈00|H ′ |mn〉 〈mn|H ′ |00〉
(Em − E0) + (En − E0)

, (3.37)

where Ek is the energy associated with the state |k〉, and the summation is over
states for which m 6= 0 ∨ n 6= 0. Since the perturbation H ′ was of Coulombic
origin, its expectation value, E(1), is equal to the electrostatic interaction energy
Eelst. The second-order correction is composed of separate parts describing induction
and dispersion:

E(2) = EA
ind + EB

ind + Edisp, (3.38)

where EA
ind is the induction energy for molecule A, and EB

ind is the analogous quantity
for molecule B. Their sum-over-states expressions result from eq. (3.37) by setting
n = 0 and m = 0, respectively. The dispersion energy is

Edisp = −
∑
m6=0
n6=0

〈00|H ′ |mn〉 〈mn|H ′ |00〉
(Em − E0) + (En − E0)

, (3.39)

where the summation is restricted to states with m 6= 0∧ n 6= 0, signifying that both
molecules A and B are excited.

High-Order Interactions

If the perturbation series is continued further, higher-order corrections to the induc-
tion and dispersion energies result.87–92 The third-order energy can be represented
as91,93

E(3) = E
(3)
ind + E

(3)
disp + E

(3)
ind−disp, (3.40)

where the first two terms on the right hand side represent contributions mainly due
to the interaction of mutually polarized molecular charge clouds, along with nonlinear
polarization effects.88,91 The coupled induction-dispersion energy E(3)

ind−disp represents
a modification to the dispersion interaction; it arises when the charge distribution of
one molecule is distorted by the static field of the other.88,91,92

The multipole expansion can be continued to arbitrary orders, but in practice
the physical significance of the higher order terms is often questionable. This is
partly due to the fact that the perturbative multipole expansion does not necessarily
converge,94–100 and even in the third order a thorough description of the interactions
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might require the inclusion of the terms due to electron exchange.93 On the other
hand, as the multipole expansion is essentially a power series in R−1, the higher
order terms have an increasingly steep distance dependence, signifying that they
are only meaningful at small intermolecular distances. However, at such distances
the underlying perturbative treatment ceases to apply, as the wave function overlap
effects begin to dominate the interaction—it is therefore uncommon to apply the
expansion to high orders.

Pairwise Additivity

Most long-range forces are not pairwise additive, but additional perturbative cor-
rections emerge when more than two systems simultaneously interact with one
another.70,101,102 Only the electrostatic interactions are free of these many-body
contributions, which affect the induction and dispersion energies to varying degrees.
While the non-additivity effect in the dispersion energy is seldom significant, pair-
potentials completely fail to describe the induction interactions. The reason for this
failure is that the induction energy between two molecules is proportional to the total
electric field, which can be drastically altered by the static fields of the surrounding
molecules.

The second-order dispersion energy is strictly pairwise additive, but in the third
order of perturbation theory, non-additive terms arise. The most important of these
is the three-body Axilrod–Teller–Muto103,104 (ATM) term

EATM = C9
1 + 3 cos θ1 cos θ2 cos θ3

R3
1R

3
2R

3
3

, (3.41)

where C9 is a positive constant, and Ri and θi are the side lengths and interior angles,
respectively, of the triangle formed by three interacting species. It is noteworthy
that the geometrical factor in eq. (3.41) permits both attractive and repulsive
interactions, where as the second order dispersion energy is always strictly negative.
The ATM term is sometimes referred to as the triple-dipole term, as it stems
from the dipole terms of the multipole expansion. Higher-order multipoles produce
additional terms101,105–107 to the non-additive third-order energy, but they do not
generally contribute significantly to the total intermolecular interaction energy at
long distances.

3.3 Electrostatic Interaction

Out of all the long-range intermolecular interaction terms, the quantum-mechanical
electrostatic and induction forces are perhaps the easiest to understand, since they
correspond to their classical analogues, and quantum theory is only required to give
an expression to the multipole moments and polarizabilities, which describe the
strength of the interaction.70

The electrostatic energy, Eelst, is the lowest-order term in the polarization approx-
imation, and it is caused by the interaction between the permanent charge clouds
of the molecules. This interaction is present among most interacting species: only
molecules with spherically symmetric charge distributions, such as rare gas atoms,
do not experience the electrostatic force, because they have no electrical multipole
moments. In principle, the electrostatic energy can be calculated directly from the
definitions in eqs. (3.32) and (3.36). The downside is that such a procedure does not
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yield a functional form of the electrostatic energy, and the calculation would thus
have to be repeated if the geometry of the system changes.

Instead of the impractical direct approach, the multipole expansion can be used
to obtain convenient approximations of the electrostatic term at large intermolecular
distances. Usually only a few terms are required for an accurate approximation, and
the required multipole moments and interaction functions can be calculated once
and for all, and tabulated for later use. An explicit functional form of the interaction
is recovered as well. However, this method is valid only for well separated molecules,
although in some cases a distributed formulation of the multipoles can be used to
circumnavigate this limitation.108–110

In the polarization approximation, the electrostatic energy can be calculated as the
expectation value of the perturbing Hamiltonian H ′ with respect to the unperturbed
states. In practice, this amounts to replacing the multipole moment operators in
H ′ with their corresponding eigenvalues, i.e., the multipole moments themselves.
In the Cartesian or spherical basis, the electrostatic interaction terms can thus be
calculated from eqs. (3.14) and (3.25), respectively.

Symmetry and group theory can be used to determine the possible non-zero
multipole moment components of a molecule, and thus simplify the treatment of the
electrostatic interactions.80,102,111,112 Most molecules studied in this thesis are linear
or symmetric tops, and possess dihedral symmetry, meaning that they cannot have
a dipole moment.102 The lowest-order electrostatic interaction term between these
molecules is thus the quadrupole–quadrupole interaction. A general quadrupole has
five non-vanishing independent components, resulting in a sum of 25 terms for the
quadrupole–quadrupole interaction. However, this number is greatly reduced in the
case of symmetric tops, whose quadrupole moments can be described by a single
component.112 If the local z-axis is aligned with the highest-order rotation axis, this
component is Θ ≡ Θzz in the Cartesian basis, which equals the Θ2,0 component
in the spherical basis.70,111 The corresponding interaction energy in the spherical
notation is

EΘΘ =
1

9
ΘATAB2,0,2,0ΘB, (3.42)

where the orientation dependence of the interaction is included in the tensor TAB2,0,2,0,
which can be calculated from eq. (3.26), or looked up from tabulated values.70,77
Based on this value, the explicit form of the interaction can be calculated from70,101

EΘΘ =
3ΘAΘB

4R5

[
1− 5 cos2 θA − 5 cos2 θB − 15 cos2 θA cos2 θB

+2 (4 cos θA cos θB − sin θA sin θB cosϕ)2] , (3.43)

where R = |R| is the distance between the centers of mass of the molecules. The
angles specify the orientations of the molecules with respect to the vector R, as
depicted in fig. 4.1 on page 22.

Given the non-vanishing multipole moments of the molecules, a similar analysis can
be used to derive all the other electrostatic interaction terms as well. The majority of
the molecules studied in this thesis contain an inversion center, and can thus only pos-
sess multipoles of even rank.112 The most important higher-order electrostatic terms
for such systems are the quadrupole–hexadecapole and hexadecapole–hexadecapole
interactions, with distance dependences of R−7 and R−9, respectively. In general,
the distance dependence for the electrostatic interaction between multipoles of ranks
l1 and l2 is R−l1−l2−1, because the corresponding T tensor is obtained by l1 + l2 fold
differentiation of the function R−1.
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3.4 Induction Interaction

The electric potential of one molecule can cause the redistribution of the electric
charge, i.e., electrostatic induction, in another molecule nearby. The induced multi-
pole moments, which describe the extent of the redistribution, result in additional
intermolecular interaction terms, separate from the electrostatic interactions caused
by the static moments. These effects occur in the second order of the long-range
perturbation theory, and are thus generally weaker than the electrostatic interactions.
In the systems studied in this thesis, the induction contributions have been found
insignificant, mostly due to the steep distance dependence (R−8 for the leading-order
term) of the interactions, and the nonpolar nature of the molecules under inspection.
In general, the leading-order induction energy of a molecule in an external potential
V is70,80,101

Eind = −1

2
FαααβFβ + · · · , (3.44)

where ααβ is the polarizability of the molecule, and Fα and Fβ are the components
of the electric field F = −∇V , evaluated at the center of mass of the molecule. The
expansion in eq. (3.3) can be used to express the electric field produced by another
molecule in terms of its static multipole moments, and the explicit formula for the
energy can be derived from the intermolecular interaction tensor, as was the case for
the electrostatic interactions. Stone and Tough have used the spherical tensor theory
to derive an expression for the induction energy, applicable to arbitrary systems.113

3.5 Dispersion Interaction

The electrostatic and induction interactions result from the electromagnetic forces
caused by permanently distorted molecular charge clouds. However, the electrons of
all atoms and molecules are in constant motion, which produces transient oscillations
in the electron density, leading to temporary fluctuating distortions in the charge
clouds. The distortions in different molecules can interact with each other, resulting
in an eventual synchronization of the oscillations and an attractive force between the
molecules. The associated interaction energy is referred to as the dispersion energy,
due to the connection to the physical mechanism responsible for the dispersion of
light in a gas.101

The synchronization of coupled oscillators is common in classical physical and
biological systems, and experienced, for example, by metronomes placed on a freely
moving platform.114 However, unlike for the electrostatic and induction energies,
where quantum-mechanics was only required to give an expression for the multi-
pole moments, no classical counterpart exists for the dispersion energy. A simple
explanation for this was provided by London,15 based on a model originally due to
Drude.115 In this model, an atom is represented by a nucleus and an electron cloud
bound to it by a harmonic potential. If the charges of two interacting oscillators are
artificially displaced from their rest positions, transient electric dipoles are formed,
and the system becomes coupled through the dipole–dipole interaction. Classically,
the two atoms in their equilibrium positions would not interact with each other,
and the system would have a minimum energy of zero regardless of the coupling.
However, a quantum-mechanical particle cannot lie absolutely at rest because of the
zero-point motion due to Heisenberg’s uncertainty principle.116,117 The interaction
between the transient dipoles is thus present in all atoms and molecules even if they
do not possess permanent multipole moments. The resulting decrease of the total
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energy, compared with the zero-point energies of the uncoupled atoms, turns out
to be proportional to the second power of the strength of the coupling.15,70,101 In
the case of the dipole coupling, this strength vanishes as the inverse third power
of the intermolecular distance R,70 which leads to a dispersion energy contribution
Edisp ∼ R−6.

The Drude model offers a straightforward explanation for the dispersion force,
but it is only an approximation, since in reality the negative charge distribution
around the interacting atoms is slightly distorted, producing a static polarization of
the atoms towards each other. According to Feynman,51 it is the attraction of each
nucleus to its own distorted negative charge distribution, which is responsible for the
van der Waals force, as opposed to interaction of the dipoles with each other.

A more satisfactory description can be obtained by means of perturbation theory.
In the polarization approximation, the dispersion energy is given according to
eq. (3.39) as a second order correction to the energy, and calculated via a sum over
the excited states of the interacting molecules. In terms of the multipole expansion,
the dispersion energy is obtained by replacing the interaction operator H ′ with its
expanded form, i.e., either the Cartesian expression in eq. (3.33) or the spherical
equivalent based on eq. (3.25). In fact, the expansion produces a range of terms, each
proportional to some inverse power of the intermolecular distance. The lowest-order
term in the dispersion interaction is produced by the dipole–dipole term, which can
be expressed in Cartesian coordinates as70,102

E
(6)
disp = −

∑
m6=0
n6=0

〈00| µ̂AαTABαβ µ̂Bβ |mn〉 〈mn| µ̂Aγ TABγδ µ̂Bδ |00〉
(Em − E0) + (En − E0)

= −TABαβ TABγδ
∑
m6=0
n6=0

〈0| µ̂Aα |m〉 〈m| µ̂Aγ |0〉 〈0| µ̂Bβ |n〉 〈n| µ̂Bδ |0〉
(Em − E0) + (En − E0)

.

(3.45)

Even in charged molecules there are no dispersion terms corresponding to the total
charge q, since it is a scalar, and its matrix elements between orthogonal eigenstates
vanish.

The sum-over-states formula in eq. (3.45) is impractical, since it requires knowing
the transition dipole moments to all discrete and continuum states.102 A more
convenient method is based on the work of Casimir and Polder,66 and relies on the
integral identity70,101,102

1

a+ b
=

2

π

∫ ∞
0

ab

(a2 + ω2)(b2 + ω2)
dω, (3.46)

valid for positive values of a and b. This formula allows eq. (3.45) to be written as

E
(6)
disp = − 2

π
TABαβ T

AB
γδ

∫ ∞
0

∑
m6=0

εm 〈0| µ̂Aα |m〉 〈m| µ̂Aγ |0〉
ε2
m + ω2

∑
n6=0

εn 〈0| µ̂Bβ |n〉 〈n| µ̂Bδ |0〉
ε2
n + ω2

dω

= − 1

2π
TABαβ T

AB
γδ

∫ ∞
0

αAαγ(iω)αBβδ(iω) dω,

(3.47)

where αAαγ(iω) and αBβδ(iω) are components of the polarizability tensor at an imaginary
frequency, and εm = Em − E0. For spherically symmetric atoms, there is only one
independent component,80 ᾱ = (αxx + αyy + αzz)/3, of the polarizability tensor, and
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ααγ(iω) = ᾱ(iω)δαγ. For such systems, the leading-order dispersion energy is thus
reduced to70,102

E
(6)
disp = − 1

2π
TABαβ T

AB
αβ

∫ ∞
0

ᾱA(iω)ᾱB(iω) dω

= − 1

R6

3

π

∫ ∞
0

ᾱA(iω)ᾱB(iω) dω.

(3.48)

The orientation dependence of the dispersion interaction is more complicated be-
tween linear molecules, as they have two independent polarizability components: one
along the molecular axis, and another parallel to it, denoted α‖ and α⊥, respectively.
The corresponding explicit form of the dispersion interaction can be written as70

E
(6)
disp =− C6

R6

{
1 +

γ202

2

(
3 cos2 θ1 − 1

)
+
γ022

2

(
3 cos2 θ2 − 1

)
+
γ22

2

[
(2 cos θ1 cos θ2 − sin θ1 sin θ2 cosϕ)2 − cos2 θ1 − cos2 θ2

]}
,

(3.49)

where the angles describing the orientation of the system are defined as in fig. 4.1 on
page 22. The dispersion coefficients are70,113

C6 =
3

π

∫ ∞
0

ᾱA(iω)ᾱB(iω) dω (3.50)

C6γ202 =
1

π

∫ ∞
0

∆αA(iω)ᾱB(iω) dω (3.51)

C6γ022 =
1

π

∫ ∞
0

ᾱA(iω)∆αB(iω) dω (3.52)

C6γ22 =
1

π

∫ ∞
0

∆αA(iω)∆αB(iω) dω, (3.53)

where ᾱ = (α‖ + 2α⊥)/3, and ∆α = α‖ − α⊥.
The higher-order dispersion interactions can be analyzed in a similar manner, in

terms of the molecular polarizabilities. The spherical formulation allows the total
dispersion energy to arbitrary order to be written as70

Edisp = − 1

2π

∑
l1,l2,l3,l4
κ1,κ2,κ3,κ4

TABl1κ1,l2κ2T
AB
l3κ3,l4κ4

∫ ∞
0

αAl1κ1,l3κ3(iω)αBl2κ2,l4κ4(iω) dω, (3.54)

where the orientation dependence is encompassed by the spherical T tensors.



Chapter 4

Results

The articles included in this thesis are centered around the computation and mod-
eling of dispersion and other long-range interactions in coinage and volatile metal
clusters. The total interaction energies of the model systems are calculated at long
intermolecular distances, and divided into different physical contributions based on
the polarization approximation. The electrostatic interactions are expressed in terms
of the multipole expansion, and explicitly taken into account, while the induction
interactions are found to be largely overshadowed by the leading order electrostatic
and dispersion terms.

Articles I and II present a pair-potential approach to express the dispersion energy
in terms of orientation-dependent interatomic van der Waals coefficients, which
are calculated from small model systems. In Article III, the resulting coefficients
are shown to accurately account for the dispersion energy in larger volatile metal
clusters. Even the calculated isotropic dispersion coefficients manage to provide a
faithful representation of the dispersion interactions, while the orientation dependent
coefficients further improve the results. Theoretical aspects of the long-range interac-
tions are explored in the final article. Concepts drawn from combinatorics and the
geometric Clifford algebra are used to express the intermolecular interaction tensor
in a novel form, which offers a simple and effective route to the formulas governing
the long-range interactions in arbitrary systems. An implementation of the results
along with some explicit examples are provided, and the formulation is applied to the
calculation of intermolecular effects in systems composed of hydrogen and coinage
metal clusters.

4.1 Studied Systems

The majority of the systems studied in this thesis are small dimer–dimer clusters
composed of coinage and volatile metals. The geometry of the dimer systems is
schematically represented in fig. 4.1. The global z-axis is aligned with the line
connecting the centers of mass of the two dimers, distance R apart. The local z-axes
of the dimers are aligned with the bond axes. For example, the ΘCu

zz component of
the quadrupole moment thus always refers to the component along the Cu–Cu bond,
regardless of the orientation.

Besides the dimer clusters, some larger systems have been studied as well. In
Article I, the silver–naphthalene system was used to calculate the silver–carbon
dispersion coefficients. Three different clusters were used, of which one is depicted
in fig. 4.2. The structures of the volatile metal clusters studied in Article III are
presented in fig. 4.3. The orientation of the coordinate axes is similar to the dimer–

21



22 CHAPTER 4. RESULTS

dimer clusters. For the nonlinear clusters, the local z-axis is oriented along the
normal of molecular plane.

Figure 4.1: The coordinates describing the relative orientation of two dimers.

Figure 4.2: Schematic representation of one of the silver–naphthalene clusters studied. The other
two examined clusters have the silver dimer co-linear with the x-axis, and the z-axis.
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Figure 4.3: Schematic representation of the volatile metal clusters studied. The cadmium and
mercury clusters possess an analogous structure. The intermolecular distance R is measured between
the centers of mass of the monomers.

4.2 Theoretical Model

Based on their origin, the interactions occurring in the studied systems can be
divided into two classes. At short intermolecular distances, the most important
contributions stem from wave function overlap, and the exchange forces due to the
antisymmetrization of the total wave function. At distances where these exponentially
decaying forces can be neglected, the polarization approximation can be used to
represent the total interaction potential V as a power series

V =
∑
i

Ci
Ri
, (4.1)

where the coefficients Ci are in general functions of the orientation of the system, and
the electric properties of the monomers, such as multipole moments or polarizabilities.
For the interactions between two homonuclear diatomic molecules, the angular
variations in the potential can be described via coupled spherical harmonic functions
as118–121

V (R, θ1, θ2, ϕ) =
∑
l1,l2,l

Vl1,l2,l(R)Gl1,l2,l(θ1, θ2, ϕ), (4.2)

where the coordinates θ1, θ2, and ϕ are defined as in fig. 4.1. The coupled spherical
harmonics are calculated as

Gl1,l2,l(θ1, θ2, ϕ) =
4πil1−l2−l

〈l1, 0, l2, 0|l, 0〉
√

2l1 + 1
√

2l2 + 1
min(l1,l2)∑

m=−min(l1,l2)

Y
(m)
l1

(θ1, ϕ)Y
(−m)
l2

(θ2, 0) 〈l1,m, l2,−m|l, 0〉 ,
(4.3)

where 〈l1,m, l2,−m|l, 0〉 is a Clebsch–Gordan coefficient,76 and the functions Y (m)
l

are the regular spherical harmonic functions. In the present form, the G functions
are undefined for odd values of l1 + l2 + l, but such terms do not arise in the cases



24 CHAPTER 4. RESULTS

studied due to the high symmetry of the dimers.113 The normalization is such that
|G| = 1 when the local and global axes are aligned, i.e., θ1 = θ2 = ϕ = 0.

As the long-range interaction potential physically arises form the various Coulom-
bic interactions, the G functions can be used to describe them. In general, any scalar
function depending on the relative orientation of two molecules, described by the
Euler angles Ω1 and Ω2, can be expanded in terms of the complete set of functions113

Sk1,k2l1,l2,l
= il1−l2−l

∑
m1,m2,m

(
l1 l2 l
m1 m2 m

)
D

(l1)
m1,k1

(Ω1)∗D
(l2)
m2,k2

(Ω2)∗Cl,m(θR, φR), (4.4)

where D(l1)
m1,k1

(Ω1) is a Wigner rotation matrix element,76 and Cl,m(θR, φR) is a Racah
spherical harmonic function76 in terms of the orientation of the intermolecular vector
R. Symmetry considerations can be used to prove that the nonzero values of k1 or
k2 are not required to describe the interactions between linear molecules, and odd
values of l1 or l2 are unnecessary for centrosymmetric molecules.113 In the latter case,
it is more convenient to consider the functions

S̄k1,k2l1,l2,l
=

(
l1 l2 l
0 0 0

)−1

Sk1,k2l1,l2,l
, (4.5)

normalized to |S̄k1,k2l1,l2,l
| = 1 if all angles vanish. In this form, the S functions can be

used to describe the intermolecular interaction operator in the local axis system as70

H ′ =
∑
l1,l2

∑
k1,k2

(
l1 + l2
l1

)
ξ̂Al1,k1 ξ̂

B
l2,k2

Rl1+l2+1
S̄k1,k2l1,l2,l1+l2

. (4.6)

For the description of the long-range interactions between a pair of homonuclear
dimers, the functions S0,0

l1,l2,l
with even values of l1 + l2 + l are thus the only ones

required, and if the intermolecular vector R is oriented along the global z-axis, then
θR = φR = 0, and the normalized S functions reduce to the G functions in eq. (4.3).

As for the interactions relevant to this thesis, it can be seen from eq. (4.6) that
the orientation dependent multipole–multipole interaction between two dimers can
be expressed as

EξAl1,0ξ
B
l2,0

(R, θA, θB, ϕ) =

(
l1 + l2
l1

)
ξAl1,0ξ

B
l2,0

Rl1+l2+1
Gl1,l2,l1+l2(θA, θB, ϕ), (4.7)

since a dimer can only have one permanent multipole moment of any order.80 The
leading order dispersion interaction between dimers has a slightly more complicated
form70,113

E
(6)
disp(R, θA, θB, ϕ) = −C6

R6

[
1 + γ2,0,2G2,0,2 + γ0,2,2G0,2,2

+ γ2,2

(
1

15
G2,2,0 +

2

21
G2,2,2 +

36

35
G2,2,4

)]
,

(4.8)

where Gl1,l2,l ≡ Gl1,l2,l(θA, θB, ϕ), and the dispersion coefficients are defined in
eqs. (3.50) to (3.53). Similar expansions are possible for the induction energy
contributions,113 but in the cases studied this thesis, these effects were found to be
negligible, and have mostly been ignored. The leading-order induction contribution
between homonuclear dimers is the quadrupole–induced dipole interaction, whose
magnitude decreases as R−8, i.e., 2–3 orders of magnitude faster than the most
important electrostatic and dispersion terms, which dominate the interactions.
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4.3 Intermolecular Interaction Tensor

In Chapter 3 it was shown how the intermolecular interaction tensor T can be used to
describe all of the long-range intermolecular interactions via perturbation theory. In
Article IV, a novel formula for this tensor was presented as a result of considerations
involving combinatorics122 and the geometric Clifford algebra.123,124 The derived
formula allows the T tensor to be represented in a general vector form, applicable to
both the Cartesian and the spherical bases. The expression obtained is suitable for
both numerical and symbolic analyses, and offers a simple route to the equations
governing the intermolecular interactions in a form which combines the advantageous
properties of the Cartesian and spherical representations.

The Cartesian form of the T tensor in eq. (3.34) is succinct, but not well suited
to all purposes. The idea of the approach presented in Article IV is to utilize this
simple equation to build a more general representation, applicable in a wider context.
Instead of calculating the derivatives only with respect to the Cartesian axes, the
Clifford algebra definition of the directional vector derivative is employed. The
derivative of a scalar function F of a vector variable x in the direction of the vector
a is defined as124

∇aF (x) ≡ a · ∇F (x) = lim
τ→0

F (x + τa)− F (x)

τ
, (4.9)

if the limit exists. This definition allows the derivatives to be taken in the direction
of arbitrary vectors, but the downside is that the symbolic calculation of high-order
directional derivatives might be challenging.

The explicit computation of high-order symbolic derivatives can be circumvented
by adopting the multivariate Faà di Bruno formula for the generalization of the chain
rule for higher derivatives.122 If y = y(x1, x2, . . . , xn) then

∂n

∂x1∂x2 · · · ∂xn
f(y) =

∑
π∈P

f (|π|)(y)
∏
K∈π

∂|K|y∏
i∈K ∂xi

, (4.10)

where P is the set of all partitions of the set {1, 2, . . . , n} and |X| is the cardinality
of the set X. For the interaction between two molecules A and B, with their centers
of mass respectively located at points A and B, the T tensor is essentially composed
of derivatives of the function 1/R, where R = |R| = |A−B|. It is thus advantageous
to apply the Faà di Bruno formula to the vector functions y = y(R) = R2 = R2 and
f(R) = 1/

√
R, so that f(y) = 1/R, since R > 0.

The kth order derivatives of the function f(y) can be calculated based on mathe-
matical induction, and the required directional vector derivatives of the function y(R)
can be obtained directly from the definition in eq. (4.9), as detailed in Article IV. An
important aspect to notice is that the function y(R) has nonvanishing derivatives only
up to second order, which considerably simplifies the calculations. After inserting
the required formulas into eq. (4.10) and simplifying the result, the T tensor can be
expressed in the form

T
(n)
X (R) =

1

Rn+1

∑
π∈IP

(−1)|π|(2|π| − 1)!!
∏
K∈π

{
K1 · R̂ if |K| = 1

K1 ·K2 if |K| = 2
(4.11)

where R̂ = R/R is the unit vector in the direction of R, X = {α,β, . . . ,ν} indicates
the set of vectors in the direction where the derivatives are taken, and n is the number
of elements in X, n = |X|. The permutations IP of X over which the summation is
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performed, are the so-called involution permutations,125 which possess the property
of being their own inverses. In general, only a small subset of all permutations have
this property, which further facilitates the calculations.

Article IV demonstrates various methods to calculate the T tensor and the
permutations required, along with potential applications for the formulas. Particular
attention is given to the vector formulation of the long-range dimer–dimer interactions
between coinage metal and hydrogen clusters. For the quadrupole–quadrupole energy
EΘΘ between two homonuclear dimers, eq. (4.11) can be used used to obtain the
formula

EΘΘ =
3ΘAΘB

4R5

[
5r2

zA

(
7r2

zB
− 1
)
− 5r2

zB
− 20rzArzBczA,zB + 2c2

zA,zB
+ 1
]
, (4.12)

where zA and zB are body fixed unit vectors in the local z direction, rzX = R̂ · zX
(X = A or X = B), and czA,zB = zA · zB. If the coordinate system is fixed as in
fig. 4.1, the dot products are

rzX = cos θX (4.13)
czA,zB = cos θA cos θB + sin θA sin θB cosϕ, (4.14)

which yield the explicit form of the quadrupole–quadrupole interaction energy, given
in eq. (3.43), when plugged back into eq. (4.12). The dispersion energy can be treated
similarly, and the result for two dimers is

E
(6)
disp = −C6

R6

[
1 +

1

2
γ2,0,2

(
3r2

zA
− 1
)

+
1

2
γ0,2,2

(
3r2

zB
− 1
)

+
1

2
γ2,2

(
c2
zA,zB

− 6rzArzBczA,zB − r2
zA

(
1− 9r2

zB

)
− r2

zB

)]
,

(4.15)

where the γ coefficients are as defined in eqs. (3.50) to (3.53). The equivalence to
eq. (4.8) can be seen by inserting the definitions for the dot products in eqs. (4.13)
and (4.14). A further comparison to eq. (4.8) yields the following vector representa-
tions of some of the low-order G functions defined in eq. (4.3).

Table 4.1: Vector Representations of Certain Low-Order G Functions
G functiona Vector Form

G0,0,0 1

G2,0,2
1
2

(
3r2zA

− 1
)

G2,2,0
1
2

(
3c2zA,zB

− 1
)

G2,2,2
3
2

(
r2zA

+ r2zB
+ c2zA,zB

− 3rzA
rzB

czA,zB

)
− 1

G2,2,4
1
8

[
5r2zA

(
7r2zB

− 1
)
− 5r2zB

− 20czA,zB
rzB

rzA
+ 2c2zA,zB

+ 1
]

a The corresponding G functions with indices l1 and l2 swapped are obtained by swapping rzA and
rzB

.

As the previous examples indicate, the combinatorial formulation of the interaction
tensor can be utilized to describe various intermolecular forces in a convenient fashion
using vector calculus. This approach facilitates the change of basis or rotation
convention, and the treatment of rigid motions, as detailed in Article IV. The
equation is also presented in a form which does not require the explicit calculation of
high-order vector derivatives, as opposed to, for example, the expression presented
in eq. (3.26).
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4.4 Multipole Moments and Polarizabilities

The multipole moments and polarizabilities describing the electric properties of
the studied molecules can be calculated from the total interaction potential energy
surface by means of, for example, eq. (4.7). However, the quantities in question can
also be obtained via a simpler method based on a perturbation expansion of the
total energy and its gradients, presented in eqs. (3.27) and (3.28). This technique
is known as the finite field method,81,126–128 and it involves calculating numerical
derivatives of the total energy in the presence of a weak perturbation λξ̂, where ξ̂ is
a multipole moment and λ is a parameter. Should the wave function Ψ satisfy the
Hellmann–Feynman theorem,50,51 the derivative of the energy will correspond to the
expectation value of the multipole moment,

∂E

∂λ
= 〈Ψ| ξ̂ |Ψ〉 , (4.16)

in the limit λ→ 0. Second derivatives can similarly be used to calculate polarizabili-
ties.81,128–130

The electronic structure methods used in this thesis, the Møller–Plesset perturba-
tion theory and the coupled cluster theory, are not variational, so eq. (4.16) does not
exactly hold for them, although the discrepancy becomes smaller as the quality of the
approximate wave function increases, because the Hellmann–Feynman theorem holds
for the exact wave function.53 Despite the differences between the derivatives and the
expectation values, the finite field method has been extensively used,131 and it has
been argued that the derivative method resembles the physical experiment more, and
should be preferred.53,81 In this thesis, the calculations are mostly performed at the
CCSD(T) level, where the multipole moments cannot be calculated as expectation
values, as there is no CCSD(T) wave function, but even in this case, the finite field
method can be used to estimate the desired moment. The downside is that this
technique is susceptible to numerical noise, but if factors such as the numerical
derivative formulas and field strengths are carefully chosen, reliable results can be
obtained in a straightforward fashion.128,130–132

The quadrupole moments Θ, hexadecapole moments Φ, and polarizabilities α,
calculated for the coinage and volatile metal dimers based on the finite field method,
are presented in table 4.2. For the coinage metals, the polarizabilities were not
calculated by the finite field method, but the results of Saue and Jensen133 were used.
These values are reported in table 4.2 for completeness. The quadrupole moments
for the larger volatile metal systems—the trimer, triangle, and square, depicted in
fig. 4.3—are presented in table 4.3.

Table 4.2: Calculated Values for the Quadrupole and Hexadecapole Moment and Polarizability
Tensor Componentsa

Molecule Θ Φ α‖ α⊥

Cu2 5.8160 56.9952 123.8 81.9
Ag2 6.3194 74.9375 156.2 97.0
Au2 6.5719 116.4838 114.2 65.7
Zn2 −0.1494 −10.1507 92.26 71.37
Cd2 −0.3596 −19.0751 121.66 85.50
Hg2 −0.4845 −15.0842 91.75 63.40

aAll values are given in atomic units. For the quadrupole moment 1 a.u. = 4.486551484×10−40 C m2,
for the hexadecapole moment 1 a.u. = 1.256362373× 10−60 C m4, and for the polarizability 1 a.u. =
1.648777273 × 10−41 C2 m2 J−1.134 The polarizability values for the coinage metal dimers were
calculated by Saue and Jensen.133
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Table 4.3: Calculated Values for the Quadrupole Moments of the Volatile Metal Clusters.a
System Trimer Triangle Square
Zn −0.3258 0.1616 0.2477
Cd −0.8234 0.3626 0.5730
Hg −1.1522 0.5282 0.8017

aAll values are given in atomic units.

In order to obtain reliable results, various finite field schemes were utilized in the
calculations, depending on the system and the calculated property. The derivatives
were calculated by means of three- to seven-point numerical central differences
formulas,135 and the field strength of the perturbation was between 1.0×10−3Eh/(ea0)
and 1.0× 10−6 Eh/(ea0) (Eh = 4.359744650× 10−18 J, e = 1.6021766208× 10−19 C,
a0 = 0.52917721067× 10−10 m).134 The utilized parameter values were selected based
on numerical stability and by comparing the finite field results to the corresponding
operator eigenvalues at the Hartree–Fock level. The values for the various electric
properties agree well with other computational results,136–138 and can therefore be
used to accurately represent the corresponding long-range interaction terms.

4.5 Dispersion Interactions

In this thesis, the dispersion interactions play an instrumental role. Despite the
many different schemes developed to account for them,25–34 the accurate calculation
of the van der Waals forces can present difficulties in complicated systems. In the
articles included in this thesis, a pair-potential model for the dispersion interactions
is presented and applied to non-covalent interactions in the studied clusters. For
the volatile metal systems, the vdW interactions of larger clusters are accurately
modeled based on interatomic dispersion coefficients calculated from small reference
systems. Results are also obtained for orientation averaged dispersion energies, which
the pair-pair potential approach is able to describe to a remarkable degree.

Besides the pair-potential approach, Article IV presents a study of the potential
energy surface and the long-range forces of coinage metal and hydrogen clusters in
the confines of the common molecular multipole expansion, performed via application
of the interaction formulas presented in sections 4.2 and 4.3.

Coinage Metal–Hydrogen Clusters

In Article IV, the long-range forces, and especially dispersion interactions were
studied in H2–H2 and M2–H2 (M = Cu,Ag,Au) clusters. The desired interaction
coefficients were calculated from least-squares fits to the potential energy surface,
computed at large intermolecular distances.

The most important factors determining the long-range interaction energy land-
scape of the studied clusters are the dispersion and quadrupole–quadrupole forces.
In terms of the vector approach of section 4.3, the relevant formulas are given in
eqs. (4.12) and (4.15). In the case of the hydrogen clusters, the corresponding
geometry terms yield an accurate representation of the long-range PES, as can be
seen from fig. 4.4. All of the interaction terms are well defined and linear on the
logarithmic scale, indicating the validity of the inverse power series expansion at the
studied distances. The results for the hydrogen–coinage metal clusters, detailed in
Article IV, are similar, although some higher-order fitting terms were necessary to
capture all the relevant interactions.
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Figure 4.4: The long-range interaction potential energy fit for the H2–H2 cluster in a logarithmic
scale, where R is the distance between the centers of mass of the dimers. The orientation dependence
of the fit parameters is given in the legend. The error term is the one standard deviation error of
the least-squares fit. The lines are guides for the eye. 1 hartree = 4.359744650× 10−18 J.134

By comparing the geometry dependence of the fitted PES terms to the equations
governing the long-range intermolecular forces, the desired interaction parameters
can be calculated based on the energy expansion presented in eqs. (4.2) and (4.3). By
expressing the interactions in terms of the coupled spherical harmonic G functions, as
accomplished in eqs. (4.7) and (4.8), the multipole moments and dispersion coefficients
can be related to the fitting parameters. For example, in fig. 4.4, the constant term
describes the part of the potential energy surface without any associated orientation
dependence, i.e., the isotropic component, which is equal to the V0,0,0(R) term of
the energy expansion in eq. (4.2). This term is related to the isotropic dispersion
coefficients as

V0,0,0(R) =
C6

R6
+
C8

R8
+ · · · , (4.17)

and similar relations can also be written for the other interaction parameters, as
described in Article IV.

The dispersion coefficients and multipole moments for the studied clusters were
calculated based on the analysis described. For the H2–H2 system, all of the calculated
parameters fell within 1% of the well known reference values,120,121,139,140 which is
an indication of the accuracy of the present approach. For the coinage metal–
hydrogen clusters, the coefficients resulting from the analysis described are presented
in table 4.4. The electronic structure calculations were performed at the CCSD(T)
level, with the aug-cc-pVTZ-PP141–144 basis set utilized for the coinage metal atoms.
The effects of the basis set convergence were examined for the copper system. The
energies were found to be converged, and the triple-ζ basis set was thus deemed
sufficient for the calculations. The standard errors of the fits for the C6 coefficients
and the multipole moments were approximately 1% and 2%, respectively. The fits for
the C8 coefficients had a larger error of 10%, due to the steep distance dependence of
this term, and the numerical instabilities related to the separation of tiny differences
in the total energy. Despite these margins of error, the obtained coefficients are well
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defined, and manage to reproduce the calculated PES to a satisfactory degree.

Table 4.4: Calculated Intermolecular Interaction Parameters for the Coinage Metal Containing
Clustersa

M C
(H2M2)
6 C

(H2M2)
8 ΘM2 ΦM2

Cu 94.67 5753 5.742 54.37
Ag 120.9 8241 6.298 70.78
Au 116.5 8962 6.535 116.1

a All values are in atomic units. For the C6 constant 1 a.u. = 9.573436258× 10−80 J m6, and for
the C8 constant 1 a.u. = 2.680835190× 10−100 J m8.134

Pair-Potential Model

In the presented pair-potential model, the dispersion energy of a cluster is divided into
interatomic contributions, each with a specific dependence on the system geometry,
as exemplified in fig. 4.5. This procedure enables the total dispersion energy of
the whole system to be written in terms of atomic dispersion coefficients, which
are obtained from a least-squares fit to the computed potential energy surface of
small model clusters. The obtained values can thereafter be used to calculate the
dispersion interactions in larger systems, where the direct computation of the PES is
prohibitively laborious.

Figure 4.5: Schematic representation of the pair-potential dispersion energy model in a silver
cluster. The solid black lines represent the contributing atom pairs. The bond length of the dimers
is r, while R signifies the center-of-mass distance between them.

In the situation depicted in fig. 4.5, the lowest-order dispersion contribution is

E
(6)
disp = −C(AgAg)

6

[
2R−6 + 2

(
R2 + r2

)−3
]
, (4.18)

where C(AgAg)
6 is the effective atom pair dispersion coefficient between two silver

atoms. In general, the pair approximation can be written as

E
(6)
disp =

∑
i

C
(i)
6 R−6

i , (4.19)

where the summation is over the contributing atom pairs, and expressed in terms of
the atom–atom dispersion coefficients C(i)

6 and distances Ri. An explicit expression
applicable to planar dimer–dimer clusters of arbitrary orientation is presented in
Article I.
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In the articles included in this thesis, the interactomic dispersion coefficients
have been obtained by the following procedure. First, the interaction energy of
the metal clusters is calculated as a function of the intermolecular distance, and
the electrostatic energy is subtracted at each point. As the induction contributions
were found to be minimal, the remaining energy is mainly due to the dispersion
effects, which are modeled by the pair-potential formula of eq. (4.19). Finally, the
interatomic vdW coefficients are obtained as least-squares fitting parameters to the
dispersion energy.

By examining the M2–M2 (M stands for Cu, Ag, Au, Zn, Cd, or Hg) metal systems
at the CCSD(T)/aug-cc-pVTZ-PP141–144 level, the C(MM)

6 dispersion coefficients have
been determined for several cluster orientations, specified via the angles depicted
in fig. 4.1. The results, presented in table 4.5, have been obtained from the planar
(ϕ = 0) configurations with θ1 = θ2 = θ, while the considered intermolecular distances
ranged from 10 to 35 Å (1 Å = 10−10 m).

Table 4.5: The Calculated Atomic C6 Coefficients for Group 11 and 12- Dimersa

θ C
(CuCu)
6 C

(AgAg)
6 C

(AuAu)
6 C

(ZnZn)
6 C

(CdCd)
6 C

(HgHg)
6

0◦ 132.49 (28) 226.70 (46) 187.72 (26) 208.62 (41) 349.02 (79) 280.96 (146)
10◦ 139.92 (22) 236.09 (36) 205.26 (16) 209.39 (52) 350.50 (101) 280.08 (135)
20◦ 155.30 (8) 253.86 (19) 240.73 (18) 207.39 (79) 345.12 (141) 273.16 (126)
30◦ 164.68 (10) 263.45 (7) 261.60 (28) 201.05 (96) 332.18 (171) 261.39 (118)
40◦ 158.97 (19) 254.35 (28) 250.27 (27) 191.33 (91) 313.91 (167) 247.33 (102)
50◦ 142.31 (20) 231.39 (41) 216.42 (23) 181.13 (78) 294.83 (144) 233.65 (84)
60◦ 128.57 (22) 212.38 (48) 187.86 (19) 172.91 (65) 279.39 (121) 222.64 (70)
70◦ 128.23 (37) 212.04 (69) 187.51 (36) 167.64 (51) 269.68 (107) 215.70 (59)
80◦ 137.65 (64) 225.85 (106) 209.39 (87) 164.90 (41) 265.11 (102) 212.57 (53)
90◦ 143.35 (77) 234.19 (125) 222.84 (118) 164.04 (39) 263.90 (101) 211.76 (51)

Average 143.15 235.03 216.96 186.84 306.36 243.92
a The C6 coefficients are expressed in eV Å6 (1 eV = 1.6021766208× 10−19 J)134 and the angles in
degrees. The uncertainties of the least-squares fits given in parentheses are one-standard errors in
the least significant digit.

In Article I, the pair-potential method was also applied to the silver–naphthalene
system, depicted in fig. 4.2. The procedure followed a similar approach undertaken
earlier for the silver–benzene system.145 The purpose was to obtain the silver–carbon
dispersion coefficients, which might be used to model the non-covalent interactions in
extended systems, such as Ag clusters adsorbing on a graphite surface.146 However,
this line of research was not followed in this thesis, as the focus of the subsequent
articles shifted towards pure metal clusters. The calculations were performed at the
spin component scaled second order Møller–Plesset perturbation theory (SCS-MP2)
level,147 which largely corrects147,148 the overbinding associated with the regular
MP2 method for certain complex systems.149–151 The obtained C

(AgC)
6 dispersion

coefficients for the orientations specified in fig. 4.2 ranged approximately from 51.5 to
96.0 eV Å6, with an average value of 77.75 eV Å6. Compared to the earlier findings,145
the coefficients varied more with orientation, but the average value was still within
10% of the results obtained from the silver–benzene system.

The orientational variation of the interatomic C6 coefficients is also evident in the
metal systems, as can be seen from table 4.5. The angle dependence of the computed
interatomic dispersion coefficients is shown in figs. 4.6 and 4.7. In both element
groups, clear similarities can be seen in the shapes of the curves, although the volatile
metals show a more tempered behavior. A factor likely to contribute to this effect is
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that the volatile metal dimers are themselves dispersion dominated systems, where
the atoms are more separated152 compared to the coinage metal dimers. A further
correspondence can be found in the relative magnitudes of the vdW parameters: in
both groups, the ordering of the C6 coefficients differs from the atomic number order
of the elements, presumably due to the relativistic effects to polarizability.153

Figure 4.6: The calculated C(MM)
6 (M = Cu,Ag,Au) coefficients for the different coinage metal

clusters. The lines represent least-squares fits in terms of the G functions in eq. (4.3)

Figure 4.7: The calculated C(MM)
6 (M = Zn,Cd,Hg) coefficients for the different volatile metal

clusters. The lines represent least-squares fits in terms of the G functions in eq. (4.3)

The orientation dependence of the interatomic C6 coefficients is well described in
terms of the coupled spherical harmonic functions of eq. (4.3), as can be ascertained
from figs. 4.6 and 4.7. A fit of this type has the additional advantage that it separates
the interaction into constant and geometry dependent parts. The volatile metals
studied in this thesis possess a closed valence shell, and values for their isotropic atomic
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dispersion coefficients can also be obtained from direct calculations on the respective
atom–atom systems. The results in table 4.6 show that the atomic coefficients thus
obtained are in good agreement with the isotropic values obtained from the fits to the
dimer–dimer systems. For both the coinage and volatile metal systems, the isotropic
values are close to the average values of the calculated coefficients.

Table 4.6: Comparison of Group 11 and 12 Dispersion Coefficientsa
Coefficient Isotropic value Average value Atomic

C
(CuCu)
6 141.72 143.15

C
(AgAg)
6 231.49 235.03

C
(AuAu)
6 215.53 216.96

C
(ZnZn)
6 178.77 186.84 175.16

C
(CdCd)
6 290.79 306.36 283.09

C
(HgHg)
6 231.35 243.92 222.18

aAll values are in eV Å6. The isotropic value refers to the constant term of the fits depicted in
figs. 4.6 and 4.7 and the average value to the average of the dispersion coefficients reported in

table 4.5.

4.6 Applications

The interatomic dispersion coefficients presented in this thesis can be utilized in
various situations. In Article II, the pair-potential model is applied to the computation
of orientation averages of the dispersion interactions in the dimer–dimer volatile
metal systems. In Article III, the obtained parameters are employed in calculating
the vdW interactions in larger volatile metal clusters. The results indicate that in
both cases, the atomic dispersion coefficients yield an accurate representation of the
studied interactions.

Orientation Averages

In complicated systems, or in cases where the molecules are free to rotate, an
orientation average of the dispersion interactions is often of particular interest.
The simple unweighted orientation averages of the dispersion energy in the volatile
metal clusters were calculated in Article II. In terms of molecular coefficients, the
dispersion interactions can be expressed as an expansion in the inverse powers of the
intermolecular distance, as in eq. (4.1). In case of the orientation averages of the
dimer–dimer systems, the coefficients of this expansion are linear combinations of the
molecular isotropic dispersion coefficients, and additional terms due to polarizability
anisotropy, such as the γ terms in eq. (3.49). For the rest of this subsection, this
type of expansion is referred to as ‘molecular’, in order to distinguish it from the
pair-potential expansion in terms of atomic dispersion coefficients.

The situation is different, if the energy expansion is performed in terms of the
atomic dispersion coefficients via the pair-potential model. For the geometries studied
in Article II, i.e., those resulting from setting ϕ = 0, and θ1 = θ2 = θ in fig. 4.1, this
model reduces to

Edisp = −
∑
n

C2n

[
2R−2n +

(
r2 +R2 + 2rR cos θ

)−n
+
(
r2 +R2 − 2rR cos θ

)−n]
,

(4.20)
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where r is the monomer bond length, and the energy is characterized by an integer
n ≥ 3. For example, if θ = 90◦, the situation is as depicted in fig. 4.5, and the first
term in eq. (4.20) reduces to eq. (4.18).

The orientation average of the pair-potential model behaves differently compared
to the expansion in terms of the molecular coefficients. Each term in the molecular
expansion has a specific distance dependence, but averaging the general term in
eq. (4.20) over the angle θ results in a series

Ē
(2n)
disp = −2C2n

[
R−2n +

∞∑
k=0

Γ(k + n)2

(k!)2Γ(n)2

r2k

R2k+2n

]
, (4.21)

where Γ is the gamma function. In closed form, this series can be expressed either in
terms of the hypergeometric function 2F1, or the Legendre polynomial of order n, as
shown in Article II. Based on eq. (4.21), the asymptotic long-distance expansion for
the leading order dispersion energy term in the pair-potential model is

Ē
(6)
disp = −C6

(
4

R6
+

18r2

R8
+

72r4

R10
+ · · ·

)
, (4.22)

which contains contributions from various R terms, as opposed to the clear-cut R−6

dependence of the molecular expansion.
The two previously discussed expansions were compared in their ability to model

the calculated orientation averages of the volatile metal clusters. The expansions
were fitted in the least-squares sense to the computed dispersion energies, and the
fit residuals and goodness-of-fit measures were compared for the two models. The
results are presented in fig. 4.8 for the Zn2–Zn2 clusters.

Figure 4.8: Least-squares fits of the pair-potential model Ēdisp (dotted blue curve) and the molecular
expansion (dashed red curve) to the orientation averaged dispersion energy of the Zn2−Zn2 system.

The fits in fig. 4.8 indicate that the pair-potential model is able to describe the
average dispersion energy to a more satisfactory degree, where as the molecular
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expansion model shows clear deviations from the calculated points. This behavior
is due to the higher impact of the close-range points, and is largely corrected
by neglecting some of them. The pair-potential expansion, on the other hand,
is virtually unaffected by this procedure, and can hence describe the orientation
averaged dispersion energy more reliably over a wider range of distances than
the molecular expansion model. This result is surprising, since the latter should
more closely describe the actual physical phenomenon, but it is possible that the
asymptotic expansion of the pair-potential model, eq. (4.21), allows for a more concise
representation of some higher-order terms not present in the truncated molecular
expansion.

Larger Metal Clusters

In Article III, the dispersion coefficients presented in table 4.5 were utilized to
determine the van der Waals interactions of some larger metal systems, i.e., the Zn, Cd,
and Hg clusters, whose structures are presented in fig. 4.3. The procedure employed
consisted of partitioning the total dispersion interaction into dimer contributions,
which were then modeled by using the previously computed coefficients. The process
is schematically depicted in fig. 4.9.

Figure 4.9: Schematic representation of the atomic pair potential model applied to the dimer–
triangle cluster. The colors are used to label different types of atomic pair interactions, and the
dispersion energy terms resulting from them. The factor 1

2 is included to avoid double counting.

In order to properly resolve the dispersion forces, a more flexible model is required
for the pairwise interactions. The vdW coefficients in table 4.5 were calculated for
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geometries with θ1 = θ2 = θ (see figs. 4.1 and 4.9), but in the present application,
nonparallel orientations appear as well, and the fits in fig. 4.7 need to be augmented
in order to account for this fact. In practice, the most important terms in the fits
are linear combinations of functions of type cos(nθ), where n is an even integer. To
include nonparallel configurations, the calculations therefore utilized the simplified
formula

C6 (θ1, θ2) = C̄6 +
∆C6

2
[cos (2θ1) + cos (2θ2)] , (4.23)

where C̄6 is the average value, and ∆C6 is the difference between the maximum and
the average of the dispersion coefficient (see fig. 4.7). The formula in eq. (4.23) also
implicitly depends on the separation of the molecules, as the angles in general change
with intermolecular distance.

For the parallel orientations, eq. (4.23) closely resembles the fits in fig. 4.7.
As a test case for the nonparallel orientations, the atomic dispersion coefficients
C

(MM)
6 (M = Zn,Cd,Hg) were calculated for the T-configuration of the dimers

(θ1 = 0◦, θ2 = 90◦), and compared to the values given by eq. (4.23). The results
in Article III indicate that the two methods were in good agreement: the ab initio
calculated dispersion coefficients were about 1 to 2 percent smaller than the values
calculated based on eq. (4.23).

The ab initio calculated dispersion energies for the studied metal clusters were
compared to the values given by the pair potential model, and the dispersion
corrections given by the DFT-D3 method of Grimme et al.29 The results for the
dimer–triangle case, depicted in fig. 4.9, are presented in fig. 4.10. The comparison
indicates that the pair-potential method is able to faithfully reproduce the calculated
dispersion energies; even the isotropic values from table 4.6 perform remarkably well.
The anisotropic corrections form eq. (4.23) improve the results slightly, the effect
being greatest for the dimer–trimer clusters (see fig. 4.3).

Figure 4.10: Dispersion energy in the Zn dimer – triangle cluster compared with calculations based
on the presented method and various DFT-D3 results.

The DFT-D3 dispersion corrections for the various functionals, depicted in fig. 4.10,
do not yield as accurate results, although it should be noted that the comparison is
biased in favor the pair-potential method, since the same level of theory was used
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to calculate both the reference points and the interatomic dispersion coefficients.
However, it can be ascertained that, in the cases studied, the pair-potential method
is able to give reliable results for the dispersion energies without any additional
electronic structure calculations. Furthermore, the accuracy of the energies thus
obtained is in accordance with the level of theory used to calculate the dispersion
coefficients.

In Article III, the approach presented in this thesis was compared with two other
pair-potential methods—the extended Lennard-Jones (ELJ) model of Pahl et al.,154
and the Tang–Tonnies (TT) potential model.155 The comparison was performed for
the mercury clusters, and the results for the dimer–trimer system are shown in fig. 4.11.
All of the models yield results in reasonable accordance with one another, although
different methods were utilized to obtain the potentials. The ELJ model is the
result of CBS/CCSD(T)+SO level calculations on the mercury dimer, while the TT
method relies on theoretical and experimental results for the dynamic polarizability
of mercury. In both of these methods, the value155 C(HgHg)

6 = 234.2 eV Å6 has been
adopted for the dispersion coefficient, which is in good agreement with the isotropic
value C(HgHg)

6 = 231.35 eV Å6 from table 4.6.

Figure 4.11: Dispersion energy in the Hg dimer–trimer cluster compared with calculations based
on the presented approach, the extended Lennard-Jones (ELJ) model,154 and the Tang–Tonnies
(TT) potential.155



Chapter 5

Conclusions

The forces governing the long-range interactions between molecules are significantly
different from their short-ranged counterparts. The latter are due to the Pauli
exclusion principle, which prohibits electrons with the same spin from occupying the
space where the electron clouds of the interacting molecules overlap. The electron
density in this region is thus diminished, and the incompletely shielded nuclei exert
a repulsive force on each other.101 When the overlap of the electron densities is
small, the long-range components of the intermolecular forces become significant.
Based on physical origin, they divide into three components, of which only one, the
London dispersion force, is present in all molecular interactions. This force plays an
instrumental part in a host of phenomena,2–14 and for simple molecules, it is often
the greatest contributor to the long-range attractive force.16,101

The approach adopted in this thesis for the study of long-range forces relies on
the perturbative series expansion of the intermolecular interaction potential, known
as the polarization expansion.85,86 Furthermore, the Coulombic potentials of the
participating molecules are expanded in terms of electric multipole moments and
polarizabilities, which enable the description of the intermolecular forces solely in
terms of monomer properties. In Chapter 3 it is shown how the different long-range
contributions to the energy naturally emerge as different levels of perturbation, and
their characteristics and properties are discussed.

The research articles included in this thesis are centered around the dispersion
interactions present between small clusters of coinage (Cu, Ag, and Au) and volatile
(Zn, Cd, and Hg) metals. A computational model is presented to quantify these
forces, and its properties and performance are explored in several articles. The ab
initio calculated dispersion energy is partitioned into pair contributions, and the
interaction coefficients describing their magnitudes are extracted from small model
clusters. The determined coefficients depend on the geometry of the system, and in
Article III they are found to model the dispersion interactions more accurately than
the corresponding isotropic parameters. The results obtained for the orientation
averaged dispersion energy, and the volatile metal clusters of Article III indicate
that the method introduced is viable, and capable of accurately accounting for the
London forces in the studied systems.

In Article IV, the long-range interactions are approached from a more theoretical
standpoint. A novel formula is derived for the tensor describing the intermolecular
forces, and it is applied to examine the coinage metal–hydrogen clusters. The
presented equation is based on concepts drawn from combinatorial analysis and the
geometric Clifford algebra, and it allows the convenient vector-based description of
all kinds of long-range intermolecular forces, as attested by the several exemplary
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applications included in Article IV.
On the whole, the theoretical aspects summarized in this thesis, along with the

reviewed literature provide an overview of the most important factors affecting
the intermolecular interactions at long distances. These considerations serve as
a foundation upon which the included research articles are built, describing the
application of the elaborated principles to the quantitative modeling of the of non-
covalent interactions in the studied clusters. The results have confirmed that the
ideas presented in this thesis can be used to construct a simple yet effective method
to gauge the dispersion interactions, and incorporate them as a contribution to the
total interaction energy. This type of procedure, along with the results obtained,
should be especially interesting for the modeling of the London forces in large systems
where the dispersion interactions can be decisive, but highly correlated electronic
structure methods are unfeasible. For the pair-potential model presented in this
thesis, no experimental parameters are required, and after the dispersion coefficients
have been recovered, no additional electronic structure calculations are necessary.
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