
Fontbonne University Fontbonne University 

GriffinShare GriffinShare 

All Theses, Dissertations, and Capstone 
Projects Theses, Dissertations, and Capstone Projects 

2006 

New Families of Embedded Triply Periodic Minimal Surfaces of New Families of Embedded Triply Periodic Minimal Surfaces of 

Genus Three in Euclidean Space Genus Three in Euclidean Space 

Adam G. Weyhaupt 
Indiana University 

Follow this and additional works at: https://griffinshare.fontbonne.edu/all-etds 

 Part of the Mathematics Commons 

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 

License. 

Recommended Citation Recommended Citation 
Weyhaupt, Adam G., "New Families of Embedded Triply Periodic Minimal Surfaces of Genus Three in 
Euclidean Space" (2006). All Theses, Dissertations, and Capstone Projects. 160. 
https://griffinshare.fontbonne.edu/all-etds/160 

https://griffinshare.fontbonne.edu/
https://griffinshare.fontbonne.edu/all-etds
https://griffinshare.fontbonne.edu/all-etds
https://griffinshare.fontbonne.edu/etds
https://griffinshare.fontbonne.edu/all-etds?utm_source=griffinshare.fontbonne.edu%2Fall-etds%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=griffinshare.fontbonne.edu%2Fall-etds%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://griffinshare.fontbonne.edu/all-etds/160?utm_source=griffinshare.fontbonne.edu%2Fall-etds%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages


NEW FAMILIES OF EMBEDDED TRIPLY
PERIODIC MINIMAL SURFACES OF GENUS

THREE IN EUCLIDEAN SPACE

Adam G. Weyhaupt

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements

for the degree
Doctor of Philosophy

in the Department of Mathematics
Indiana University

August 2006



Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy.

Matthias Weber, Ph.D.

Jiri Dadok, Ph.D.

Bruce Solomon, Ph.D.

Peter Sternberg, Ph.D.

4 August 2006

ii



Copyright 2006
Adam G. Weyhaupt

ALL RIGHTS RESERVED

iii



To Julia
— my source of strength, my constant companion, my love forever

and

to Brandon and Ryan
— whose exuberance and smiles lift my spirits daily

and have changed my life in so many wonderful ways.

iv



Acknowledgements

I can not imagine having completed graduate school with a different advisor: thank you,

Matthias Weber, for your encouragement, your guidance, your constant availability, and for

making me feel like a colleague. The following email exchange is typical of my interaction

with him:

Me: . . . I need an infusion of optimism and a fresh pair of eyes.
Him: It’s ok. Can’t promise fresh ice, but as infusion there will be tea.

Especially, thank you for introducing me to the beautiful study of minimal surfaces. Thank

you to the other members of my committee for their improvement of this work; I have

particularly been helped by conversations throughout the years with Jiri Dadok.

My time at Indiana has been enjoyable and fruitful because of innumerable people,

most of whom I will undoubtedly forget to mention. Particularly, I thank Misty Cummings

for ensuring that I (and all the graduate students) haven’t run administratively amuck;

Kent Orr for enjoyable discussions about math and family; and Jennifer Franko, Noah

Salvaterra, and Eric Wilson for being my colleagues and friends through these changing

years (and without whose companionship while studying I might not have passed my Tier

1 exams). Prior to Indiana, my teachers at Marquette Catholic High School and Eastern

Illinois University helped to form me into an academic, especially Peter Andrews, Charles

Delman, Greg Galperin, Lou Hencken, Suzer Phelps, Ira Rosenholz, Rosemary Schmalz,

Margaret Weaver, and Keith Wolcott. Thinking back about you all reminds me that, as a

teacher, nearly everything we do can impact our students.

Education has always been a focus in my life, thanks to my mother and father who have

always encouraged me to “study hard, get a good job”, and do something I enjoy. They

have given me many opportunities and much encouragement through these years, and I am

forever grateful. The memory of my grandfather, Joseph Weyhaupt, encourages me to work

v



harder and supports me when I’m feeling low, and the rest of my family is always there for

me. My own family, Julia, Brandon, and Ryan, have put up with so much through these

years and have always encouraged me and stood with me. You have never been a hindrance,

but rather, have given me three wonderful reasons to continue.

I am grateful to the National Science Foundation, who has funded much of my graduate

existence these five years through a VIGRE fellowship, and to the American Institute of

Mathematics for support at the AIM workshop Moduli Spaces of Properly Embedded Min-

imal Surfaces (thanks also to the organizers for the invitation). I feel “connected” to the

minimal surface community as a result of this workshop. Further financial support for travel

from Indiana University, Rice University, Northwestern University, and the University of

Michigan is appreciated.

vi



Abstract

Until 1970, all known examples of embedded triply periodic minimal surfaces (ETPMS)

contained either straight lines or curves of planar symmetry. In 1970, Alan Schoen discov-

ered the gyroid, an ETPMS that contains neither straight lines nor planar symmetry curves.

Meeks discovered in 1975 a 5-parameter family of genus 3 ETPMS that contained all known

examples of genus 3 ETPMS except the gyroid. A second example lying outside the Meeks

family was proposed by Lidin in 1990. Große-Brauckmann and Wohlgemuth showed in 1996

the existence and embeddedness of the gyroid and “Lidinoid”. In a series of investigations

the scientists, Lidin, et. al., numerically indicate the existence of two 1-parameter families

of ETPMS that contain the gyroid and one family that contains the Lidinoid. In this the-

sis, we prove the existence of these families. To prove the existence of these families, we

describe the Riemann surface structure using branched covers of non-rectangular tori. The

holomorphic 1-forms Gdh, 1
Gdh, and dh each place a cone metric on the torus; we develop

the torus with this metric into the plane and describe the periods in terms of these flat

structures. Using this description of the periods, we define moduli spaces for the horizontal

and vertical period problems so that Weierstraß data (X, G, dh) solves the period problem

if the flat structures of X induced by these 1-forms are in the moduli spaces. To show that

there is a curve of suitable data, we use an intermediate value type argument.
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CHAPTER 1

Introduction

As early as 1762, Lagrange’s newly developed calculus of variations broached the prob-

lem of finding the surface of smallest area with a prescribed space curve as its boundary.

(The general problem of determining the existence and properties of minimizing surfaces

with prescribed space curve boundary is called the Plateau problem.) He derived the par-

tial differential equation which must be satisfied by all such surfaces. Explicit examples of

such surfaces were provided by Euler (the catenoid, shortly before 1762) and Meunsier (the

helicoid, around 1765) [Nit75]. All such area minimizing surfaces have vanishing mean

curvature H. In modern language, the study of “minimal surfaces” is the study of all real

2-dimensional surfaces in R3 with H ≡ 0. Locally, these surfaces minimize area with re-

spect to the boundary (of the local surface patch). All complete minimal surfaces without

boundary are necessarily non-compact.

In this thesis, we are concerned with the study of triply periodic minimal surfaces. A

triply periodic minimal surface is a minimal surface M that is invariant under the action

of a rank 3 lattice Λ. M is, of course, non-compact; we often work with the much more

tractable quotient M/Λ which is compact.

The ultimate goal of the study of triply periodic minimal surfaces is to classify all em-

bedded triply periodic minimal surface of a fixed genus. Many examples are known. The

first examples of a triply periodic minimal surface were given by Schwarz [Sch90] in 1865

when he exhibited the P , D, and H surfaces (see Figure 1.2). Early examples were con-

structed by solving the Plateau problem for non-planar polygons in space, such as on some

of the edges of a cube (see Figure 1.1). After considerable attention in the late nineteenth

and early twentieth centuries, triply periodic minimal surfaces experienced a slow-down of

activity until the late 1960’s, when physical scientists began to investigate them for possible

1



1. INTRODUCTION 2

applications to materials science, biology, and chemistry. Chemists and materials scientists

are now finding triply periodic minimal surfaces in images (on the nanometer scale) of the

interface between two compounds in block co-polymers. They believe that the geometry

of these interfacial surfaces significantly influence the physical properties of the compound

[TAHH88, FH99]. Biologists have identified triply periodic minimal surfaces as mem-

branes in certain cellular structures [DM98].

Figure 1.1. The D surface solves the Plateau problem for the highlighted contour.

Figure 1.2. (left) A translational fundamental domain of the Schwarz P
surface. (right) A fundamental domain of the Schwarz H surface.
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In 1970, Alan Schoen [Sch70], a NASA crystallographer interested in strong but light

materials, showed the existence of 12 previously undiscovered triply periodic minimal sur-

faces. Among these was the gyroid, an embedded surface containing no straight lines or

planar symmetry curves (unlike other known examples at the time) [Kar89, GBW96]. In

his 1975 Ph.D. thesis, Bill Meeks [Mee75] discovered a 5-parameter family of embedded

genus 3 triply periodic minimal surfaces. Specifically,

Theorem 1.1 (Meeks, 1975). There is a real five-dimensional family V of periodic hy-

perelliptic Riemann surfaces of genus three. These are the surfaces which can be represented

as two-sheeted covers of S2 branched over four pairs of antipodal points. There exists two

distinct isometric minimal embeddings for each M3 ∈ V .

The Meeks’ family contained all triply periodic minimal surfaces of genus 3 known at

that time — except for the gyroid. (In fact, most of the members of the Meeks’ family were

previously undiscovered surfaces. Many surfaces in his family have no straight lines and no

planar symmetries.) In 1990, Sven Lidin discovered a related surface, christened by Lidin

the HG surface but commonly called the “Lidinoid” [LL90]. (Minimal surface nomenclature

leaves much to be desired. One of Schoen’s surfaces is typically called “Schoen’s Unnamed

Surface Number 12”. We do not help this any by adopting in this work the notation of

Fogden, Haeberlein, and Lidin in [FHL93].) Although Schoen’s surfaces were studied by

crystallographers and physical scientists early on, it was not until the early 1990’s that

these surfaces entered the mathematical mainstream. In 1995, Große-Brauckmann and

Wohlgemuth [GBW96] proved that the gyroid and Lidinoid are embedded.

The Meeks’ family ensures that every currently known triply periodic minimal surface

except for the gyroid and Lidinoid is deformable, i.e., for each triply periodic minimal

surface M (M not the gyroid or Lidinoid) there is a continuous family of embedded triply

periodic minimal surfaces Mη, η ∈ (−ε, ε) such that M = M0. Note that, in general, the

lattices may vary with η, so that generically Λη1 6= Λη2 (we conjecture that it is never the

case that the lattice is constant in a deformation, see Conjecture 6.1). We are primarily

concerned with the following question:
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main question. Do there exist continuous deformations of the gyroid and the Lidinoid?

In a series of papers, the crystallographers and physical chemists Fogden, Haeberlein,

Hyde, Lidin, and Larsson numerically indicate the existence of two 1-parameter families

of embedded triply periodic minimal surfaces that contain the gyroid and two additional

families that contain the Lidinoid [FHL93, FH99, LL90]. While even accompanied by

very convincing computer-generated images, their work does not provide an existence proof,

and the mathematical landscape is fraught with examples where pictures mislead (see, for

example, [Web98]). Our main result of this thesis, then, is:

Theorem 1.2. There is a one parameter family of minimal embeddings tGη ⊂ R3/Λη,

η ∈ R+, such that tGη is an embedded minimal surface of genus 3.The gyroid is a member

of this family. Furthermore, each tGη admits a rotational symmetry of order 2.

(Note that the t is not a parameter. The “t” stands for “tetragonal”; [FHL93] call

this a tetragonal deformation because crystallographers typically call a deformation of a

cubical lattice tetragonal if the lattice admits an order 2 rotational symmetry throughout

the deformation.) This shows that the gyroid is deformable. Our other two main theorems

prove the existence of a Lidinoid family and an additional gyroid family:

Theorem 1.3. There is a one parameter family of minimal embeddings rLη ⊂ R3/Λη,

η ∈ R+, such that rLη is an embedded minimal surface of genus 3.The Lidinoid is a member

of this family. Furthermore, each rLη admits a rotational symmetry of order 3.

Theorem 1.4. There is a one parameter family of minimal embeddings rGη ⊂ R3/Λη,

η ∈ R+, such that rGη is an embedded minimal surface of genus 3.The gyroid is a member

of this family. Furthermore, each rGη admits a rotational symmetry of order 3.

Since the Lidinoid also admits an order 2 symmetry similar to the gyroid, we would

expect to obtain a family of Lidinoids that preserves an order 2 symmetry. A survey of the

literature seems to turn up no such family; a preliminary analysis shows that this family

would be distinctly different conformally, and we defer its investigation to a future paper.

As a consequence of these results, we have shown:
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All currently known examples of genus 3 triply periodic minimal
surfaces admit deformations.

As far as we know, none of these new examples are members of the Meeks’ family.

1.1. Applications of the flat structure technique to the classification of triply

periodic minimal surfaces

Perhaps the most ambitious problem in the theory of triply periodic minimal surfaces

is to obtain a classification. In addition to constructing families of gyroids and Lidinoids,

we also outline a method for approaching a classification of triply periodic minimal surfaces

using techniques similar to those in the construction of the families. While we do not obtain

any new families with this approach, we are able to classify surfaces that have sufficiently

many symmetries.

Since the surface M/Λ is compact in the flat 3-torus R3/Λ, it is most natural to first

consider a classification by genus.

Theorem 1.5 (Meeks, 1975). If M/Λ ⊂ R3/Λ is a connected triply periodic minimal

surface of genus g, then g ≥ 3.

In early 2006, Martin Traizet [Tra06] showed that

Theorem 1.6. For any flat 3-torus R3/Λ and for any integer g ≥ 3, there exists a

sequence of orientable, compact, embedded minimal surfaces Mn ∈ R3/Λ which have genus

g. Moreover, the area of Mn goes to infinity as n →∞.

(In the case of genus 3 surfaces, Traizet explicitly computes only one example; this is a

known example in the Meeks family. However, Traizet mentions that “we find numerically

that there are other balanced configurations which are not as symmetric as the one we

discussed . . . [t]his confirms the already suspected fact that the space of genus 3 minimal

surfaces in a 3-torus is quite intricate.” It is quite possible that these additional surfaces

are previously undiscovered. Nonetheless, Traizet’s construction method ensures that these

surface come in a family, so our statement about all currently known surfaces admitting

deformations remains true.)
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In this thesis, we concentrate on the topologically most simple case; all surfaces M we

consider have genus 3. There are two types of classification questions we consider. The first

can be loosely described as follows: given a fixed set of symmetries, what genus 3 embedded

triply periodic minimal surfaces admit these symmetries? The flat structure approach is

well-suited to this type of investigation, because the presence of symmetries allows one to

narrow the moduli spaces to consider, creating problems that, in principle, are easier to

solve. In Chapter 3, we obtain a classification for certain fixed symmetries. The motivation

here is the P surface, which provides a model surface with a large number of symmetries.

For example, one of the results we obtain in Chapter 3 is

theorem 3.14. Let M be an embedded triply periodic minimal surface of genus 3 that

admits a rotational symmetry ρ of order 3 about an axis L in R3. Assume that M/Λ admits

a reflection in a plane containing L so that the fixed point set in M/Λ/ρ consists of two

components. Then M is a member of the rPD or rH families.

On the other hand, any complete classification would have to consider surfaces with

essentially no symmetries. Here, the gyroid and Lidinoid families that we have constructed

could be useful examples in the study of such surfaces. In particular, Traizet’s method

of “opening nodes” around a set of “balanced points” [Tra02, Tra06] may be a useful

approach. A full understanding of the families indicated here may provide examples of new

“balanced configuration” that can be exploited using Traizet’s technique. At the very least,

one could hope for a larger family of gyroids than a 1-parameter family.

1.2. Survey of techniques used

Here we briefly indicate some of the techniques employed by others to construct triply

periodic minimal surfaces. Each is useful in certain contexts, but are a modification of

several methods is necessary for constructing gyroid families.

1.2.1. Survey of techniques used by other authors. One method for constructing

triply periodic surfaces is the conjugate Plateau method, a general tool useful in many set-

tings (even in non-Euclidean space forms). It was employed by Karcher [Kar89, Kar05]
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to construct many surfaces and their deformations; surfaces that have fundamental do-

mains bounded by straight lines or planar symmetry curves are well-suited for this method.

Karcher’s method transforms the problem into one of finding a minimal disk with bound-

ary a polygon in R3. Since the gyroid contains neither straight lines nor planar symmetry

curves [Kar89], we cannot make use of this construction.

Meeks obtains his 5-parameter family by exploiting a hidden symmetry that many

surfaces share. Every genus 3 surface can be represented conformally as a two-sheeted

branched cover of S2 with eight branch points (Proposition 2.10). Meeks considers only

those surfaces which are branched over four pairs of antipodal points on the sphere. In

homogeneous coordinates on CP 1 ∼= S2, the antipodal map is represented by z 7→ −1
z .

He then obtains a map f from the 2-fold branch cover of the sphere to C3/L, where L is

a (complex) lattice in C3. That this construction is invariant under complex conjugation

implies the existence of two rank 3 invariant sublattices, namely, representing the real and

imaginary sublattices. Then the maps Re f and Im f provide the two distinct embeddings of

the branched sphere. The period problem is automatically solved because of the invariance

of this sublattice. The 5-parameter family comes from 8 parameters possible from picking

four of the branch points, less 3 parameters since scaling and rotation is not considered a

“deformation” in any reasonable sense. Meek’s method fails to produce gyroid or Lidinoid

examples, however, since neither is in a real or imaginary subspace of their embedding, as

we shall see in the construction of the gyroid in Section 4.2.

A third method involves the modification of certain holomorphic data that describe a

minimal surface. Minimal surfaces are described by three data (called the Weierstraß data):

a meromorphic function G and a holomorphic 1-form dh defined on a Riemann surface X.

G, the Gauß map or stereographic projection of the normal map, is a meromorphic function

on a minimal surface. After choosing a base point p ∈ X, the 1-forms ω1 = 1
2( 1

G − G)dh,

ω2 = i
2( 1

G + G)dh, and w3 = dh parameterize the minimal surface as the image of F : X →

R3 defined by

(1.1) F (z) = Re
( ∫ z

ω1,

∫ z

ω2,

∫ z

ω3

)
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Furthermore, given a Riemann surface, any meromorphic G and holomorphic 1-form dh

that satisfy ω2
1 + ω2

2 + ω2
3 ≡ 0 (and |ω1|2 + |ω2|2 + |ω3|2 6= 0) yield a minimal surface (in

general, this surface is not even immersed). One method of constructing surfaces is to

find compatible G and dh (along with a Riemann surface) that give an immersed minimal

surface. Immersion is accomplished by solving the period problem: closed curves on the

Riemann surface must map under Equation 1.1 to closed curves in space (or, in the case

of triply periodic minimal surfaces, closed curves in the 3-torus). (We make these notions

precise in Section 2.1.) Except in the most simple cases, however, (and certainly for the

gyroid) this period problem is difficult to solve: the required dh alone is determined by an

unwieldy elliptic integral. Constructing a family in this way would require the simultaneous

control of three elliptic integrals, a task best suited for numerical computation.

Finally, a new technique employed by Traizet shows great promise in constructing mini-

mal surfaces. For technical details, we refer the reader to [Tra02, Tra06]. Compare Figures

4.5, 4.14, and 4.20. In each case, as τ → 0, the surfaces limit to a lamination of R3 by planes

with tiny (singular) catenoidal necks placed periodically throughout. Traizet derives a set of

“balancing equations” that, if satisfied by a set of points on k-distinct planes (the balancing

equations have interaction between adjacent planes) can construct a minimal surface family.

To construct the family, Traizet “opens nodes” at the singularities to obtain a Riemann sur-

face. These tiny catenoidal necks are opened using a modification of the implicit function

theorem. The period problem is solved because of the balancing equations. The difficulty,

then, is finding solutions to the balancing equations that yield interesting surfaces. We find

it quite appealing that these “balanced points” can be considered as electrostatic forces in

a stable configuration. Since we have no suggestions of what a “limit of gyroids” might

look like, we have no guidance for finding an appropriate set of points that might yield a

gyroid family. We hope that Traizet’s method could be employed to study the gyroid after

we more fully understand the families we have constructed here.

1.2.2. Overview of proof. We instead construct our family using the flat structure

method introduced in [WW98]. To construct a family of surfaces Mt, we first start with
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an embedded surface M0. This surface will have many symmetries, and we fix a symmetry

that we want the entire family to have; for instance, all Mt will be invariant under rotation

by π about a vertical axis. This gives as an appropriate conformal model for our family of

surfaces a two fold (since the rotation has order 2) branched cover of a torus. In order for

the surfaces to be immersed, we need to solve the period problem, that is, we need closed

cycles on the branched cover of a torus to map to closed cycles on Mt/Λt ⊂ R3/Λt for

some lattice Λt. We introduce the holomorphic 1-forms Gdh, 1
Gdh, and dh; these induce

cone metrics on the torus which allow us to understand the periods of these forms in terms

of Euclidean polygons (these polygons are the development of the cone metric induced

on the torus by the 1-form into the Euclidean plane). We describe two moduli spaces of

polygons – one for the horizontal period problem and one for the vertical period problem;

these spaces have the property that when the developed flat structures are contained in the

moduli spaces, the period problem is solved. The problem of finding a family of surfaces

is therefore reduced to showing that there exists a curve of Weierstraß data (a torus which

gives a conformal model, and a Gauß map and height differential) so that the developed flat

structures are in these moduli spaces. We obtain this curve nonconstructively as the zero

set of a certain map. Embeddedness is a consequence of the continuity of the construction

and the maximum principle for minimal surfaces.

1.3. Outline of dissertation

We begin in Chapter 2 with a discussion of the major tools used to construct the new

families of surfaces: the Weierstraß data, theta functions, and cone structures on tori. We

also include a selection of facts about triply periodic minimal surface that provide a window

into the current status of a classification.

In Chapter 3, we provide a framework for classifying triply periodic minimal surface of

genus 3 using the flat structure technique. After assuming the presence of sufficiently many

symmetries, we are able to classify all embedded, genus 3 triply periodic minimal surfaces

admitting these symmetries.
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In Chapter 4, we begin the heart of the thesis by reviewing several known examples

of triply periodic minimal surfaces. In each case considered here, we obtain a continuous

family of minimal surfaces. This chapter also will construct the gyroid and Lidinoid using

the perspective in Chapter 3 and the tools in Chapter 2. (We relegate some technical details

from the construction of the P surface to Appendix A.) Again, we explore each surface

using flat structures.

In Chapter 5, we set up the moduli spaces used to solve the period problem for each of

the two gyroid families tG and rG and for the Lidinoid family rL. We prove in Chapter 5

the existence of the tG family in detail. The existence of the other two families are proved

similarly, and we indicate any significant differences when describing the moduli spaces.

Finally, Chapter 6 contains a collection of questions and conjectures for future investi-

gation. In particular, we indicate a number of questions that could be used to expand the

classification framework to a more general classification. Also, we indicate here a number

of questions about the gyroid and Lidinoid families.



CHAPTER 2

Preliminaries

Minimal surfaces have been profitably studied both from a geometric viewpoint and

from the perspective of partial differential equations. We take the geometric viewpoint,

where the foundational tool is the ability to describe minimal surfaces using the Weierstraß

data.

2.1. Weierstraß data and the period problem

For this section, we refer the reader to [DHKW92, Oss69, Nit75] for further details

and history. Let Ω ⊂ C denote a simply connected open domain and let h = (h1, h2, h3) :

Ω → C3 be a non-constant holomorphic map so that h2
1 + h2

2 + h2
3 ≡ 0 and |h1(z)|2 +

|h2(z)|2 + |h3(z)|2 6= 0 ∀z ∈ Ω. A direct computation shows that F : Ω → R3 defined by

(2.1) p 7→ Re
∫ p

·
(h1dz, h2dz, h3dz)

is a minimal surface M ⊂ R3. The normal map, N : M → S2 assigns to each point p ∈ M

the normal at p. The Gauß map, G : M → C ∪ ∞ is the stereographic projection of

the normal map. (Of course, all of this discussion of the normal map and stereographic

projection depends upon the choice of orientation and of projection. The results are, of

course, independent of choice.)

To relate Equation 2.1 to the geometry of the surface, note that we can rewrite Equation

2.1 as

(2.2) p 7→ Re
∫ p

·

1
2

(
1
G
−G,

i

G
+ iG, 1

)
dh.

The meromorphic function G in Equation 2.2 is the Gauß map:

(2.3) G = −h1 + ih2

h3
.

11
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(dh is a holomorphic differential, often called the height differential.) Furthermore, given

any minimal surface M , there exists a height differential dh so that it, along with the Gauß

map, provide the above parameterization of a surface patch. Therefore, simply connected

surface patches are fully parameterized.

The following result of Osserman gives us a way to parameterize non-simply connected

surfaces.

Theorem 2.1 (Osserman, [Oss69]). A complete regular minimal surface M having

finite total curvature, i.e.
∫
M |K|dA < ∞, is conformally equivalent to a compact Riemann

surface X that has finitely many punctures.

Notice that since our triply periodic minimal surfaces M are compact in the quotient

M/Λ, they necessarily have finite total curvature and therefore can be parameterized on a

Riemann surface. Instead of using a simply connected domain Ω and meromorphic functions

h1, h2, h3, we instead consider three holomorphic 1-forms ω1, ω2, ω3 defined on a Riemann

surface X, again with
∑

ω2
i ≡ 0 and

∑
|ωi|2 6= 0 (making sense of this first quantity

pointwise and locally). We can then write

(2.4) F : X → R3 by p 7→ Re
∫ p

·
(ω1, ω2, ω3)

with

(2.5) ω1 =
1
2
(
1
G
−G)dh ω2 =

i

2
(
1
G

+ G)dh w3 = dh.

Since the domain is no longer simply-connected, integration of the Weierstraß data over

a homotopically non-trivial loop γ on X is generically no longer zero. This integration leads

to a translational symmetry of the surface.1 We define the period of γ by

(2.6) P (γ) := Re
∫

γ
(ω1, ω2, ω3).

1The surface need not, at this point, be embedded or even immersed, so the term “symmetry” is perhaps
misleading here. More precisely, if F (p) = (q1, q2, q3) ∈ R3 for some choice of path of integration from the
base point to p, then for any other choice of path of integration, F (p) = (q1, q2, q3) +

R
γ
(ω1, ω2, ω3) for some

γ ∈ H1(X, Z).
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In order for a surface to be non-periodic, we must have P (γ) = 0 for all γ ∈ H1(X, Z).

For a surface to be triply periodic with lattice Λ ⊂ R3, we must have

(2.7) P (γ) ∈ Λ ∀γ ∈ H1(X, Z).

Notice that we can write

(2.8) F1(z) + iF2(z) = −
∫ z

·
Gdh +

∫ z

·

1
G

dh,

so we can instead write the periods as

(2.9) P (γ) =


Re

(
−

∫
γ Gdh +

∫
γ

1
Gdh

)
Im

(
−

∫
γ Gdh +

∫
γ

1
Gdh

)
Re

∫
γ dh

 .

Lemma 2.2. Let X be a Riemann surface of genus g. Let G : X → C∪∞ be meromor-

phic, and let dh be a holomorphic 1-form defined on X. Furthermore, assume that

(1) if G has a zero or pole of order k at p, then dh also has a zero at p. Conversely,

if dh has a zero of order k at p, then G must have a zero or pole of order k at p.

(2) there exists a lattice Λ ⊂ R3 such that for all γ ∈ H1(X, Z), P (γ) ∈ Λ.

Then the Weierstraß data (X, G, dh) define an immersed triply periodic minimal surface

of genus g.

Proof. Define ωi as described in Equation 2.5. One trivially checks that
∑

i ω
2
i ≡ 0.

We need only to see that
∑

i|ωi|2 never vanishes. Since

(2.10)
∑

i

|ωi|2 =
1
2

(
|G|+ 1

|G|

)
|dh|,

Condition 1 is precisely what is needed so that the right hand side of Equation 2.10 is

non vanishing. Incidentally, the quantity in Equation 2.10 is the square of the conformal

stretch factor |ds| (hence the reason why it must not vanish). The problem of finding data

so that Condition 2 is satisfied is often called the period problem (or, more violently, killing

periods). �
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The Weierstraß representation immediately indicates the following well-known con-

struction of a minimal surface. Let M0 be a minimal surface defined by Weierstraß data

(X, G, dh).2 We construct a new minimal surface Mθ using Weierstraß data (X, G, eiθdh).

Note that the data still satisfies the requirements of Lemma 2.2, especially that
∑

j e2iθω2
j ≡

0. The family of surfaces Mθ (0 ≤ θ ≤ π
2 ) is called the associate family of M0. (Sometimes

these surfaces Mθ are also called the Bonnet transformation of M0.[Nit75, Bon53] ) Notice

that if the period problem is solved for M0, it will in general not be solved for Mθ, since

PMθ
(γ) is a linear combination of PM0(γ) and PM π

2
(γ), which need not be either zero or in

a lattice. The associate family plays an crucial role in the construction of the gyroid and

Lidinoid.

2.2. Theta functions

One task we undertake is to explicitly write down a meromorphic function on a torus

C/Γ for the Gauß map G. This permits us to do some computations and to generate the

pictures in Chapter 4. We accomplish this with the use of the theta function θ(z, τ). We

refer the reader to Mumford [Mum83] and Weber [Web05] for further details (and caution

the reader to see Equation 2.20 for notation).

The meromorphic functions on C are precisely the (possibly infinitely many) products

and quotients of linear functions. When we seek a similar building block for meromorphic

functions on tori, Liouville’s theorem says we must not expect doubly-periodic holomorphic

functions to build such functions since all doubly periodic holomorphic functions are con-

stant. Instead we seek a formula for a function that is as close to periodic as possible, that

is, periodic in the real direction and periodic in the imaginary direction up to multiplication

by a factor. More precisely, we construct a function f : C → C ∪∞ that satisfies

f(z + 1) = f(z)(2.11)

f(z + τ) = eaz+bf(z).(2.12)

2For the purpose of this paragraph, X could be either an open domain or a Riemann surface.
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By applying both Equations 2.11 and 2.12, we see that on the one hand

(2.13) f(z + τ + 1) = f(z + τ) = eaz+bf(z)

while on the other hand

(2.14) f(z + 1 + τ) = ea(z+1)+bf(z + 1) = eaeaz+bf(z).

Together, Equations 2.13 and 2.14 show that a = 2πin for some n ∈ Z.

Equation 2.11 permits us to write down a complex Fourier series for f :

(2.15) f(z) =
∑
j∈Z

cje
2πijz

We compute both sides of Equation 2.12 using the Fourier series to obtain on the left

side

f(z + τ) =
∑
j∈Z

cje
2πijze2πijτ(2.16)

and on the right side

eaz+bf(z) = e2πinzebf(z)

= e2πinzeb
∑
j∈Z

cje
2πijz

= eb
∑
j∈Z

cje
2πi(j+n)z

= eb
∑
j∈Z

cj−ne2πijz(2.17)

after relabeling the indices. Combining Equations 2.16 and 2.17, we obtain

cje
2πijτ = ebcj−n(2.18)

If n = 0, then f(z) = e2πiz, which while satisfying all of our relations is not a very

interesting function. If n > 0, the coefficients cj grow rapidly and the series (2.15) will

not converge. For n < 0, we will get many different quasi-periodic functions satisfying our

requirements. We will focus on the simplest case n = −1. Then, after setting c0 = 1, we
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can solve for the remaining cj and obtain

(2.19) f(z) =
∑
j∈Z

e−jb−πijτeπij2τ+2πijz

Seeking the simplest such function, we set b = −πiτ to obtain

(2.20) θ0,0(z, τ) := f(z) =
∑
j∈Z

eπij2τ+2πijz

This is commonly referred to as “the” theta function. We will make further normaliza-

tions, though, and set:

(2.21) θ(z, τ) := eπi τ
4
+πi(z+ 1

2
)θ0,0(z +

1
2

+
τ

2
, τ)

The motivation for this normalization is the following lemma which outlines some useful

properties of θ(z, τ):

Lemma 2.3. The function θ(z, τ) has the following useful properties

a) θ(z + 1, τ) = −θ(z, τ)

b) θ(z + τ, τ) = −e−2πi(z+ τ
2
)θ(z, τ)

c) θ(0, τ) = 0 (furthermore, this is a simple zero)

d) θ(z, τ) has no further zeros in [0, 1)× [0, τ) ⊂ R2

Proof. Parts (a) and (b) are a direct computation. Furthermore, one checks directly

that

(2.22) θ(−z, τ) = −θ(z, τ)

showing immediately that θ(0, τ) = 0. We show parts c and d by using contour integration

on the contour σ = σ1 + σ2 + σ3 + σ4 defined in Figure 2.1.
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σ1

σ∗2

σ∗1

σ2

τ

1 2

Figure 2.1. The contour of integration for Lemma 2.3. Zeros of θ(z, τ) are
shown as black dots. The lemma follows once we show that exactly four
zeros are inside the contour.

Next, note that

θ(z + 2τ) = −e−2πi(z+τ τ
2
)θ(z + τ)(2.23)

= e−2πi(z+τ τ
2
)e−2πi(z+ τ

2
)θ(z + τ)(2.24)

= e−4πiτ · e−4πiz · θ(z, τ).(2.25)

To count zeros, we need to compute

(2.26) # of zeros of θ(z, τ) =
1

2πi

∫
σ
(log θ)′.

(In the equations that follow, we drop the variable τ from θ(z, τ) when there is no confusion.)

For σ2 + σ∗2, we have

∫
σ2

(log θ(z))′ +
∫

σ∗2

(log θ(z))′ =
∫

σ2

(log θ(z))′ −
∫

σ2

(log θ(z + 2))′(2.27)

=
∫

σ2

(log θ(z))′ −
∫

σ2

(log θ(z))′
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Since θ(z) is periodic with period 2 in the real direction. For the other two contours:∫
σ1

(log θ(z))′ +
∫

σ∗1

(log θ(z))′ =
∫

σ1

(log θ(z))′ −
∫

σ1

(log θ(z + τ))′(2.28)

=
∫

σ1

(log θ(z))′ −
∫

σ1

(log(e−4πiτ · e−4πiz · θ(z, τ)))′(2.29)

=
∫

σ1

(log θ(z))′ −
∫

σ1

(−4πiτ +−4πiz + log(θ(z)))′(2.30)

= −
∫

σ1

−4πi(2.31)

= 4 · 2πi.(2.32)

Thus, there are precisely four zeros (counted with multiplicity) inside σ. Since we already

know of four zeros in the region, each must be simple, and there cannot be any more

zeros. �

These properties allow us to construct meromorphic functions with prescribed zeros and

poles on the torus C/{1, τ}.

Proposition 2.4. Consider points {pi}n
i=1, {qi}n

i=1 ∈ [0, 1] × [0, τ ] (with the {pi} (and

also the {qi}) not necessarily distinct). Then the function

(2.33) g(z) =
n∏

i=1

θ(z − pi, τ)
θ(z − qi, τ)

has the following properties:

(1) g(z) has a simple zero at pi

(2) g(z) has a simple pole at qi

(3) g(z + 1) = g(z)

(4) g(z + τ) = e2πi
P

i(pi−qi)g(z)

Note that if we choose these points and exponents so that
∑

i(pi − qi) ∈ Z, then g is

doubly periodic with periods 1 and τ , and therefore is well-defined on the torus C/〈1, τ〉.

We will use functions like g(z) later for the Gauß map of our surfaces.
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2.3. Some facts about triply periodic minimal surfaces

We collect here some basic facts about triply periodic minimal surfaces; unless otherwise

stated we refer the reader to Meeks’ groundbreaking work [Mee75, Mee90].

Proposition 2.5 ([Mee75]). If f : Mg → R3/Λ is a triply periodic minimal surface

of genus g ≥ 1, then the normal map N : Mg → S2 represents M as a (g − 1)-sheeted

conformal branched cover of S2.

Proof. By virtue of being a minimal surface, the Gauß map is holomorphic (see Section

2.1). Thus, as a map between Riemann surfaces, N : Mg → S2 is holomorphic, N is a

conformal branched covering map (this is a local property, so it suffices to consider the local

behavior of a holomorphic map). It only remains to determine the degree of N . Since Mg

has mean curvature H ≡ 0, we have K ≤ 0, where K is the Gaußian curvature (product of

the principal curvatures). The Gauß-Bonnet theorem provides the remaining needed step:

−4π deg(N) = −
∫

M
|K|dA for all surfaces

=
∫

M
KdA since K ≤ 0 for minimal surfaces

= 2πχ(M) by Gauß-Bonnet

= 4π(1− g),

which shows that deg(N) = (g − 1). �

Proposition 2.6 ([Mee75]). Let M be a connected, complete, embedded, non-flat triply

periodic minimal surface in R3 invariant under the action of a lattice Λ. Then the genus of

M/Λ is at least 3.

Proof. By Proposition 2.5, M is a (g − 1) degree cover of S2. If g = 2, then M is a

degree one cover of a sphere, and so must have genus 0. If g = 1, then by Gauß-Bonnet,∫
M KdA = 0. Since on a minimal surface K ≤ 0, we must have K = 0, so M is a flat torus.

The genus g 6= 0, since by the Gauß-Bonnet theorem any metric on the sphere must have

Gaußian curvature somewhere positive. �
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By abuse of language, we frequently refer to the genus of M/Λ as the “genus of M”.

Traizet [Tra06] shows that every genus occurs:

Theorem 2.7 (Traizet, 2006). For every lattice Λ and every g ≥ 3, there exists a

complete, embedded, orientable triply periodic minimal surface M with genus(M/Λ) = g.

We study in this paper only surfaces of genus 3. These are, topologically, the most

simple case. We will soon state some facts specific to genus three surfaces. First, we need

the following definition.

Definition 2.8. A Riemann surface X is called hyperelliptic if it can be represented as

a 2-sheeted, branched cover H : X → S2.

Hyperelliptic surfaces have many special properties:

Lemma 2.9. Let X be a hyperelliptic Riemann surface of genus g covered by H : X → S2.

Then:

(1) H has exactly 2g + 2 branch points B = {p1, p2, . . . , p2g+2} (called the Weierstraß

points)

(2) There exists an automorphism ι : X → X such that ι(pi) = pi and that interchanges

the two sheets. ι is called the hyperelliptic involution. Furthermore, ι is the unique

involution that fixes the Weierstraß points.

(3) For every T ∈ Aut(X), T (B) = B

(4) If T ∈ Aut(X) is not ι, then T fixes at most four points.

This is relevant to our discussion of genus 3 surfaces, because:

Proposition 2.10 ([Mee75]). An embedded triply periodic minimal surface f : X →

R3/Λ is hyperelliptic if and only if X has genus 3. Furthermore, if X is hyperelliptic, the

hyperelliptic points can be identified under the embedding f with the order 2 elements of Λ

(inside the additive group R3/Λ).

Lastly, we state a fact about a general (not necessarily triply periodic) minimal surface:
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Proposition 2.11. Let M be a minimal surface patch with boundary. Suppose that ∂M

contains a straight line l, and let RlM denote rotation of M by π about l. Then M ∪RlM

defines a smooth minimal surface. Similarly, if ∂M contains a geodesic in a plane, then

extension of the surface by reflecting in the plane also generates a minimal surface.

2.4. Cone metrics and Schwarz-Christoffel maps on tori

The period problem is, in general, a difficult analytic problem to solve. The method

introduced in [WW98] and described in detail in [WW02] by Weber and Wolf takes this

difficult analytic problem and transfers it to one involving Euclidean polygons. To do this,

they relate the analytic Weierstraß data of a surface (or a purported surface whose existence

is being proven) to cone metrics on the underlying Riemann surface. We introduce in this

section the notion of cone metrics and of a special class of maps that we will use to create

cone metrics.

2.4.1. Cone metrics. Let X be a Riemann surface with charts (Uα, gα), gα : U → C.

We say that (Uα, gα) endows X with a flat structure if the transition maps gαβ : C → C

are Euclidean isometries. When the isometries gαβ are just translations, we call the flat

structure a translation structure.

In general, a Riemann surface will not admit complete flat structures (the Gauß-Bonnet

theorem requires non-zero curvature for all surfaces that are not tori). However, once we

admit certain mild singularities, called cone points, every Riemann surface has (many) flat

structures.

Any Riemann surface with a flat structure can be developed into the plane using the

developing map. The developing map is a well-defined map on the universal cover X̃.

Definition 2.12. Fix a point p ∈ X and a coordinate (U0, g0) containing p. We consider

the universal cover to be the space of all homotopy paths based at p. Define the developing

map

dev : X̃ → C
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as follows: Take any path γ ∈ X. We cover γ with coordinates U0, U1, . . . Uk. In each

coordinate patch Ui, map γ ∩ Ui to C using gi. Since the change of coordinates gi,i+1 are

Euclidean isometries, these developed segments g(γ ∩ Ui) fit together to form a curve in C.

This new curve is dev(γ). We will also sometimes denote this as devγ(p), or, when the

choice of path is clear, the developed image of p.

We are now ready to discuss the singularities our flat structures will be permitted to

have. We remind the reader that the pre-Schwarzian derivative of a function f is f ′′/f ′,

when it exists.

Definition 2.13. A (Euclidean) cone Cθ with angle θ ∈ R is the punctured disk D∗,

together with a flat structure, so that the pre-Schwarzian derivative of the developing map

extends meromorphically to 0 with a simple pole at 0 and residue given by

(2.34) θ = 2π(res0
dev′′(z)
dev′(z)

+ 1).

This rather dense abstract definition is motivated by the following example:

Example 2.14 (Positive cone angle). We will construct a Euclidean cone with positive

cone angle θ > 0. Consider the punctured disk D∗ with a flat structure defined by

g(z) = z
θ
2π

(with the Uα being any covering of D∗ by simply connected subsets). Certainly this is a flat

structure, as the change of coordinates are simply rotations. Notice that continuation of a

point z ∈ D∗ is simply ag(z) + b for a, b ∈ C, so that

(2.35) dev(z) = ag(z) + b.

The pre-Schwarzian becomes

(2.36)
dev′′(z)
dev′(z)

=
ag′′(z)
ag′(z)

=
g′′(z)
g′(z)

=
(

θ

2π
− 1

)
1
z

with residue
(

θ
2π − 1

)
. This defines a cone of angle θ — which agrees with our geometric

intuition of the defined flat structure.
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We call a flat structure with cone singularities a cone metric. When it is apparent from

context that we are dealing with cone metrics, we will often refer to simply a flat structure.

Cone metrics are abundant for Riemann surfaces – every holomorphic 1-form gives rise to a

cone metric structure (recall that a Riemann surface of genus g has g linearly independent

holomorphic 1-forms, see, for example, [GH78]).

Proposition 2.15. Let X be a Riemann surface with meromorphic 1-form ω. Let Uα be

an open covering of X by simply connected sets, with distinguished points pα ∈ Uα. Define

gα : Uα → C by

(2.37) gα(z) =
∫ z

pα

ω.

Then (Uα, gα) endows X with a flat structure (in fact, a translation structure).

Proof. First, note that since Uα is simply connected, the integral
∫ z
pα

ω does not depend

on the choice of pα – changing pα simply adds a constant.

Away from the zeros of ω, gα is invertible so we have

(2.38) gαβ(z) = z +
∫ pα

pβ

ω = z + const,

giving X a translation structure.

Notice that the developing map of the flat structure is given by

(2.39) dev(γ) =
∫

γ
ω.

If ω has a zero or pole at a point p (without loss of generality, we take p = 0), this developing

map extends meromorphically with pre-Schwarzian derivative

(2.40)
dev′′

dev′
(z) =

dω

ω
.

In the neighborhood of a zero or pole, we can locally write

ω = zkh

for a meromorphic function h with h(0) 6= 0. The residue of the pre-Schwarzian becomes

(2.41) res0
dev′′

dev′
(z) = res0

k

z
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giving a cone of angle 2π(k + 1). �

2.4.2. Meromorphic Forms on Tori / Schwarz-Christoffel Maps on Tori. Re-

call that the classical Schwarz-Christoffel map provides a recipe for constructing a function

mapping the upper half plane to any given planar polygon. Specifically, the Schwarz-

Christoffel map

(2.42) f(z) = C1

∫ z ∏
j

(w − tj)ajdz + C2

maps the points tj on the real axis to the vertices of a Euclidean polygon with angles

π(aj + 1), with the upper half plane mapped to interior of the polygon. By adjusting the

location of the tj ∈ R, we can adjust all of the edge lengths in the polygon.

The quotients of triply periodic surfaces that we consider in this paper are parameterized

on tori (note that we are only considering surfaces of genus 3). Since the development of a

cone metric on a torus into the plane is a polygon that is periodic (in a sense we will make

precise soon), we will find it helpful to have a version of Schwarz-Christoffel for tori. Here,

theta functions take the role of the linear functions w − tj .

Definition 2.16. A periodic polygon is a simply connected domain P ⊂ C such that

(1) ∂P has two connected components

(2) each component of ∂P is a piecewise linear curve with discrete vertices

(3) P is invariant under translation by τ ∈ C

An immediate consequence of Conditions (1-3) is that P is conformally equivalent to

an infinite strip R× [0, a] by the Riemann Mapping Theorem, i.e., there exists

f̃ : P → R× [0, a]

that is conformal on the interior, extends continuously to the boundary, and is equivariant,

i.e., f̃(p+1) = f̃(p)+ τ (that this map is periodic by 1 in the domain is achieved by scaling

the strip, which amounts to choosing the appropriate value of the conformal parameter

a ∈ R).
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We denote the vertices of the boundary arcs of P by {qi}i∈Z, with the notational con-

vention that

pi := f̃−1(qi) ∈ R× {0} (resp. R× {a}) if i ≥ 0 (resp. i ≤ 0).

By the Schwarz Reflection Principal, reflection of the domain in the segment pi, pi+1, i ≥ 0

induces a continuous map from R× [−a, a] that fails to be conformal only at the points pi

(and their conjugates in the extended domain). Extending in this way repeatedly gives a

multi-valued map f : C → C that is conformal on simply connected domains that exclude

the reflected images of the pi.

Lemma 2.17. The pre-Schwarzian α := f ′′

f ′ is a well-defined, singled valued holomorphic

1-form on C−{pi} that extends meromorphically to C and is doubly periodic, i.e., α(z+1) =

α(z) and α(z + 2ai) = α(z).

Proof. The proof consists of three parts: 1) showing that α is single valued, 2) show-

ing that α extends meromorphically into the punctures, and 3) showing that α is doubly

periodic.

To show that α is single valued (1), consider the set of images of a point p under

f . These correspond to a choice of analytic continuation along a closed curve γ based at

p. When we analytically continue along γ, each time γ leaves a strip R × [0 + n, a + n]

(n ∈ Z), the image of f (the periodic polygon) is reflected. Since we must enter a strip the

same number of times as we leave it (since γ is closed), we complete an even number of

reflections. Therefore, continuation along γ changes the periodic polygon P to a congruent

polygon f̃(R× [0, a]), so

(2.43) f̃(p) = af(p) + b

for a, b ∈ C (in fact, |a| = 1). Since each of the images of p is related to the others by a

linear map, the pre-Schwarzian α is a well-defined single-valued function.

Secondly (2), we need to show that α extends meromorphically into the punctures. We

direct the reader to [Web04] for details of this computation for the case of non-periodic

polygons. The computation is identical, but we repeat it here for completeness. Without
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loss of generality, we work at a puncture pj = 0. After a rotation, we may assume that the

f(pjpj+1) ⊂ R (rotations do change change the pre-Schwarzian). We introduce the function

(2.44) h(z) = f(z)
αj
π .

Geometrically, the function h maps the semi-neighborhood Br(0)∩R× [0, a] to a topological

disk D in C with D ∩ R ⊂ ∂D. By the Schwarz reflection principal, we may extend to a

well-defined, bounded holomorphic function. Therefore, h extends holomorphically into 0

with a simple zero. Since we are only working locally, we may write h(z) = zh0(z) where

h0(0) 6= 0. Then, writing f(z) = h(z)
π
α . We may then (locally) write

(2.45)
f ′′

f ′
(z) =

(αj/π)− 1
z

+ const. + . . .

Thus, α extends meromorphically into the punctures.

Finally (3), we need to show that α is doubly periodic. Since f(z) = f(z +1), it is clear

that α(z) = α(z + 1). Note that f(z + 2ai) is obtained by f(z) by reflecting the polygon

twice. Therefore, by the same argument as in part (1), α(z + 2ai) = α(z). (We need to

reflect an even number of times for part (1) to work, hence the reason why α is not periodic

with period ai.) �

We will use the following lemma of Mumford to give an explicit expression for the map

f :

Lemma 2.18 (Chapter I, Section 6 of [Mum83]). Let Γ = 〈1, τ〉 be a (real) lattice in

C. Let p1, . . . , pk ∈ C and λ1, . . . , λk ∈ C such that
∑

λi = 0. Then

(2.46) const. +
∑

i

λi
d
dz

log θ(z − pk, τ)

is a doubly periodic meromorphic function on C with simple poles at pi of residue λi.

For the proof, we refer the reader to the excellent introduction to theta functions in

[Mum83]. Finally we are able to prove a version of Schwarz Christoffel on rectangular tori:
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Proposition 2.19. Let P be a periodic polygon with vertices qi, −n ≤ i ≤ n − 1 and

interior angles αi at qi in a bounded fundamental domain. Then there exists points pi,

−n ≤ i ≤ n− 1 and a τ ∈ C ∩ iR such that the multivalued map h : C → C defined by

(2.47) h(z) :=
∫ z

·

n−1∏
i=−n

θ(w − pi, τ)
αi
π
−1

maps the strip R× [0, Im τ ] to P, is conformal on the interior, and is continuous up to the

boundary.

Proof. By the discussion preceding Lemma 2.17, there exists a multivalued map f :

C → C mapping a horizontal strip to P. As in Lemma 2.17, the pre-Schwarzian of f is

denoted by α; α is well-defined on the flat rectangular torus C/〈1, 2ai〉. We seek an explicit

formula for f . Since α is doubly periodic, Lemma 2.18 gives a formula for α in terms of the

residues of α.

To compute the residues of α, we may assume without loss of generality that we are

computing the residues at pi = 0 (since the residues of meromorphic function are invariant

under translation). Consider a small, positively oriented circle γ containing 0 and no other

pj . Recall that the interior angle of P at f̂(pi) is αi.

As noted in the proof of Lemma 2.17, in a neighborhood of pi, analytic continua-

tion along γ produces a map f̃ with the property f̃ = e2πi
(

α
π
−1

)
f + b, so that f̃ ′(z) =

e2πi
(

α
π
−1

)
f ′(z). Then

λi =
1

2πi

∮
γ
α

=
1

2πi
(log f ′)

∣∣∣
γ

=
1

2πi
(2πi)

(
αi

π
− 1

)
=

αi

π
− 1

Since α is doubly periodic, we write

(2.48) α = const. +
∑

i

(αi

π
− 1

) d
dz

log θ(z − ak, 2ai)
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using Lemma 2.18.

To determine the constant, let λ denote the (straight line) curve between 0 + a
2 i and

1 + a
2 i. Then ∫

λ
α = 0(2.49)

since ∫
α =

∫ (
log f ′

)′ = log f ′(2.50)

and f is equivariant. Since our θ(z + 1, τ) = −θ(z, τ) and we are taking the quotient of the

same number of theta functions, the requirement that
∫
λ α = 0 forces the constant to be 0.

Integrating both sides of Equation 2.48, we obtain

f ′ = exp
(
log f ′

)
= exp

( ∫
α

)
= exp

( ∑
i

(αi

π
− 1

)
log θ(z − ak, τ)

)

=
n−1∏
i=−n

θ(z − pi, τ)
αi
π
−1.

Integrating again yields the multivalued map f with the claimed properties. �

Notice that the Schwarz-Christoffel integrand df is a meromorphic 1-form and, therefore,

places a cone metric on the torus. The developing map is exactly f , and the cone-angles

are measured in terms of the pre-Schwarzian α (compare Section 2.4.1).

Example 2.20. Consider the torus defined by C/〈1, τ〉 for some τ ∈ iR. The periodic

polygon shown in Figure 2.2 has alternating interior angles π
2 and 3π

2 .

Define

ω =
(

θ(z, τ)θ(z − τ
2 , τ)

θ(z − 1
2 , τ)θ(z − τ

2 −
1
2 , τ)

) 1
2

dz.

ω defines a meromorphic 1-form on the torus. We can use this 1-form to put a flat structure

with cone points on the torus, as in Section 2.4.1. The cone metric has cone angles π at

the points 1
2 and τ

2 + 1
2 and cone angles of 3π at the points 0 and τ

2 . Developing the domain
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· · ·· · ·

Figure 2.2. The developed image of the lower half of the torus with the
cone metric induced by ω.

R×
[
0, Im (τ)

2

]
into the Euclidean plane, we obtain the periodic polygon shown in Figure 2.2.

The developed image is in fact this polygon (and not another with the same angles) because

the domain is symmetric about a reflection in the line containing 0 and τ
2 , so the developed

image must also share this symmetry. (Notice that because we are only taking “half” of the

cone angle in the region R, the developed images have angles π
2 and 3π

2 . The fact that we get

truly “half” of the cone angle is because the fundamental domain is bounded by a reflective

symmetry of the torus.)



CHAPTER 3

Symmetries and Quotients (Outline of a Classification)

One overarching goal in the study of minimal surfaces is achieving some sort of a classi-

fication. What embedded surfaces exist? What properties do they share? Can we explicitly

write down all the surfaces?

Traizet shows that in every lattice Λ, there exist embedded triply periodic minimal

surface of every genus g ≥ 3. There are no connected triply periodic minimal surface of

genus g ≤ 2. We restrict our attention for the remainder of this thesis to surfaces of genus

3. The most recognized genus 3 triply periodic minimal surface is the Schwarz P surface.

(The P surface actually comes in a family, as we shall see in Section 4.1. We are referring

here to the most symmetric P surface.) We describe the P surface and its symmetries, and

use the P surface as a model surface for the development of a classification outline.

Let C be the piecewise linear space curve obtained by removing two opposite edges from

the 1-skeleton of a regular tetrahedron. Schwarz described his P (for “primitive” lattice)

as the solution to the Plateau problem with contour C. The complete surface is obtained

by rotating this surface patch across straight line segments in the boundary. The lattice Λ

is the cubical lattice 〈e1, e2, e3〉. In Chapter 4 we study the P surface in detail. Figure 3.1

shows two views of the P surface.

The P surface admits the following symmetries:

• An order 2 rotational symmetry about each of the x1, x2, and x3 axes.

• An order 2 rotational symmetry about an axis in the x1, x2 plane containing the

point (1, 1, 0).

• An order 3 rotational symmetry about the line containing the origin and the point

(1, 1, 1) (there are three such similar symmetries).

• An order 4 rotational symmetry about each of the coordinate axes.

30
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Figure 3.1. The Schwarz P surface. In this figure, the xi axes do not
intersect the surface (they go “through the handles”).

• Three reflectional symmetries – one in each plane containing ei and ej .

• An additional three reflectional symmetries – one in each plane containing the xi

axis and a fixed Weierstraß point.

• Reflection about any of the lines it contains

In fact, the P surface is, in some sense, the “most symmetric” triply periodic minimal

surface. We let I(M) denote the isometry group of a triply periodic surface M/Λ ⊂ R3/Λ.

Proposition 3.1 ([Mee75]). If g : M → R3/Λ is a minimal surface, then |I(M)| ≤

|I(P )| = 96, with equality if and only if M is the Schwarz P or D surface. Furthermore,

each isometry of P or D is induced by a symmetry of the surface in space.

Using the P surface as motivation, we outline a classification of surfaces by symmetries.

3.1. Classification by symmetries

We now outline a classification of triply periodic minimal surfaces by isometries of the

surface that are induced by symmetries of R3. For reference, we recall the Riemann-Hurwitz

formula and some of its corollaries (a good reference for this theorem and its corollaries is

[FK92]).
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Theorem 3.2 (Riemann-Hurwitz formula). Let f : N ′ → N be a (non-constant) holo-

morphic map between a compact Riemann surface N ′ of genus g and a compact Riemann

surface N of genus γ. Let the degree of f be n. Define the total branching number of the

mapping to be B =
∑

P∈N ′ bf (P ). Then

g = n(γ − 1) + 1 +
B

2
.

Corollary 3.3 ([FK92], V.1.5). For 1 6= T ∈ Aut(M),

|fix(T )| ≤ 2 +
2g

order(T )− 1
+

2γ order(T )
order(T )− 1

with equality if order(T ) is prime.

Corollary 3.4 ([FK92], proof of V.1.5).

(2g − 2) = order(T )(2γ − 2) +
order(T )−1∑

j=1

∣∣ fix(T j)
∣∣

With these tools, we are able to begin our outline. Our first task is to consider which

Riemann surfaces arise as quotients of a triply periodic minimal surface M by a rotational

symmetry ρ.

Proposition 3.5. Let M be an embedded triply periodic minimal surface admitting a

rotational symmetry ρ with axis of symmetry x3. Then the quotient surface M/Λ/ρ has

genus one.

Proof. We utilize the Riemann-Hurwitz formula. Notationally, N ′ is M/Λ, N is

M/Λ/ρ, and f is the quotient map f : M/Λ → M/Λ/ρ. Note that γ 6= 3, since f is

not degree 1. Similarly, if γ = 2, then by Riemann-Hurwitz

(3.1) 2 = n +
B

2
,

so either n = 2 and the map is unbranched or n = 1 (impossible since rotational symmetries

have order at least 2). If n = 2, then by Corollary 3.3 the map ρ must have 4 fixed points

on M/Λ, implying that f is branched, a contradiction.

Furthermore, the quotient cannot have genus γ = 0, since the height differential dh

is invariant under ρ — therefore it descends holomorphically to the quotient M/Λ/ρ. Of
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course, a surface of genus 0 has no holomorphic differentials, so γ 6= 0. The only remaining

possibility is γ = 1. �

Since we know, a priori, that M is hyperelliptic, the following proposition severely

restricts the order of a symmetry ρ which has M/Λ/ρ a torus. This shows that the P

surface model exhibits all possible rotational symmetries induced by a symmetry of R3.

Proposition 3.6 (Theorem 4, [KK79]). Let X be a hyperelliptic Riemann surface of

genus 3, and let T ∈ Aut(X). If X/〈T 〉 has genus 1, then T has order 2, 3, or 4.

We know, therefore, that any genus 3 surface admitting a rotational symmetry has, as

a conformal model, a branched cover of a torus, and that the order of the symmetry is 2,

3, or 4. This fact is a central theme of this thesis, as we always work with the underlying

torus to deform the conformal structure. By scaling, we can always normalize so that the

torus is C/〈1, τ〉, τ ∈ C. When τ ∈ iR, the torus is rectangular, and this case is much

easier to work with than any others. (The case when the torus is rhombic will be studied

in a future paper, see Conjecture 6.0.5.) We will always assume the presence of sufficiently

many reflectional symmetries so that the quotient torus is rectangular. More specifically:

Lemma 3.7. Let M/Λ be an embedded triply periodic minimal surface with rotational

symmetry ρ. Without loss of generality, the axis of rotation of ρ is assumed to be the x3 axis.

Assume that M/Λ admits a reflection in a plane containing the x3 so that the fixed point

set in M/Λ/ρ consists of two components. Then the quotient torus M/Λ/ρ is rectangular.

Furthermore, dh descends to the quotient torus as either dz or eiπ/2dz.

Proof. The vertical plane of reflection is compatible with the rotation ρ because the

plane contains the x3 axis; therefore, the action of the reflection descends to the quotient.

Thus M/Λ/ρ must admit an orientation reversing symmetry whose fixed point set has two

components — the only such tori are rectangular.

On the developed image of the torus using the cone metric induced by dh, the curves of

planar symmetry lying in the vertical plane will develop to horizontal curves. (To see this

fact, consider the conjugate surface. Here, the vertical symmetry curve is transformed to
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a horizontal straight line. On this line, Re dh is constant, so the developed image must be

vertical. Taking the conjugate surface again to return to our original surface places this line

horizontally.) This line of symmetry of the dh flat structure is horizontal only if dh = eiθdz,

where θ = 0, π
2 . �

We also need a tool to help locate the branch points of the branched covering map on

the torus. To do this, we use Abel’s Theorem to restrict their location:

Theorem 3.8 (Abel’s Theorem). Let Γ be a Z− lattice in C. There is an elliptic

function f on the torus C/Γ with divisor
∑

j njPj if and only if

(1)
∑

j nj = 0

(2)
∑

j njPj ∈ Γ

We are now ready to being our outline of a classification.

3.1.1. Classification of surfaces admitting an order 2 rotation with rectan-

gular quotient torus. Intuitively, we would expect that surfaces admitting only an order

2 symmetry would be “flabbier” than those admitting an order 3 or 4 symmetry. As we

shall see, this is the case, and a classification of surfaces admitting an order 2 symmetry is

somewhat more difficult to control. The assumptions that we make to obtain our results

are a bit stronger than for the other two cases.

Let M/Λ be an embedded genus 3 triply periodic minimal surface and ρ ∈ Aut(M) with

order(ρ) = 2. Using a rigid motion, we orient M so that the axis of rotational symmetry is

the x3 - axis. By Proposition 3.16, M/ρ is a torus, and so by Corollary 3.3 ρ has exactly 4

fixed points (none are Weierstraß points). The fixed points are precisely those points with

vertical normal, and we scale M so that the torus generators are 1, τ with τ ∈ C∩{Im τ > 0}.

The squared Gauß map G2 descends to the quotient torus. The orders of the zeros and

poles are determined by:

Lemma 3.9. G2 has two single order poles and two single order zeros at 0.

Proof. Abel’s Theorem (Part 1) tells us that there must be an equal number of zeros

and poles. Suppose, by way of contradiction, that G2 had a double order zero at 0. Thus
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G has at least a double order zero on the genus 3 surface P . Since dh is the lift of dz and

since dz has no zeros, dh has at most single order zeros on the genus 3 surface in space

(locally, the pullback map looks like z2 at a branch point). However, in order for the metric

on the minimal surface to be non-degenerate and to have no ends, dh must have at least

an order 2 zero, a contradiction. Therefore, G2 can have at most a single order zero. The

same reasoning holds for the single order poles. �

Without loss of generality, one of the branch points can be placed at 0 in the torus

C/〈1, τ〉. Also, we lose no generality by demanding that the branch point at 0 is a zero

of the Gauß map. Unfortunately, Abel’s Theorem does not rigidly restrict the location of

the remaining three branch points. Let 0, a1 + b1i be the location of the branch points

corresponding to zeros of the Gauß map, and let a2 + b2i and a3 + b3i be the location of the

branch points corresponding to poles of the Gauß map. Abel’s Theorem simply requires

that

(3.2)
3∑

j=1

aj + ibj ∈ 〈1, τ〉.

This is a somewhat unsavory conclusion (for classification purposes) in that it allows for

much flexibility in the branch points. In fact, Abel’s theorem does not even force a discrete

set of possibilities for the branch points. It is likely possible to obtain additional minimal

surface families by modifying the location of the branch points. We will use the following

lemma to help restrict the location of the branch points:

Lemma 3.10. Let M/Λ be a triply periodic minimal surface with an order 2 symmetry

so that the quotient is a (branched) torus. If the quotient is fixed under the involution −id

centered at 1
2 + τ

2 , then the four branch points are at 0, 1
2 , τ

2 , and 1
2 + τ

2 .

Proof. Without loss of generality, we translate so that one of the branch points cor-

responding to a zero of G is at 0 ∈ C/〈1, τ〉. Let 1
2 + τ

2 + a + bi denote the location of a

branch point corresponding to a pole of G; suppose that a + bi is not a fixed point of −id.

Then the point 1
2 + τ

2 − a− bi is also a branch point corresponding to a pole of G. Denote
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by c + di the remaining branch point. Abel’s Theorem gives

(3.3) 0 + c + di−
(

1
2

+
τ

2
+ a + bi

)
−

(
1
2

+
τ

2
− a− bi

)
= c + di− 1− τ

which is an element of the lattice 〈1, τ〉 only if c + di is in the lattice, a contradiction (since

then c + di would be equivalent to 0, which is already a branch point). Thus, a + bi must

be one of the four fixed points: 0, 1
2 , τ

2 , or 1
2 + τ

2 . Continuing in this way, all the branch

points must be at fixed points of −id. �

We now have enough tools to prove our first of three classification theorems:

Theorem 3.11. Let M/Λ be an embedded triply periodic minimal surface of genus 3

that admits a rotational symmetry ρ of order 2 about an axis Lin R3. Assume that M/Λ

admits a reflection in a plane containing L axis so that the fixed point set in M/Λ/ρ consists

of two components. Assume further that the branch points of f are at the fixed points of the

involution −id. Then M is a member of the tP, tD, or tCLP families.

Proof. By Lemma 3.10, the locations of the branch points must be at 0, 1
2 , τ

2 , and

1
2 + τ

2 . Without loss of generality, we place a branch point corresponding to a zero of the

Gauss map at at 0. We refer to the location of the other zero as z1, and the poles as p1, p2.

(1) z = τ
2 , p1 = 1

2 , p2 = 1
2 + τ

2 . In Section 4.1, we show that every surface generated by

this Weierstraß data is, in fact, embedded. This data generates the tP family.

(2) z = 1
2 , p1 = τ

2p2 = 1
2 + τ

2 . In Section 4.1.3, we show that every surface generated

by this Weierstraß data is also embedded — this family is called the tD family.

(3) z = 1
2 + τ

2 , p1 = 1
2 , p2 = τ

2 . In Section 4.6, we show prove that this, the tCLP

family, is embedded.

Certainly this data determines the conformal structure of the Riemann surface X as a

double cover of a rectangular torus branched over these points. We can use theta functions

as in Section 4.1 to construct a Gauß map G. We have already shown (Lemma 3.7) that dh

is defined as either dz or idz (on the quotient torus). But notice that rotation of the branch

points by i only yields another case (the conjugate of the tP is the tD family, while the
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tCLP family is self-adjoint). Therefore, a surface is determined uniquely by its quotient

torus and location of the branch points (and choice of dh).

�

3.1.2. Classification of surfaces admitting an order 3 rotation with rectangu-

lar quotient torus. Let M/Λ be a genus 3 triply periodic minimal surface and ρ ∈ Aut(M)

be a rotation of order 3. Using a rigid motion, we orient M so that the axis of rotational

symmetry is the x3 - axis. By Proposition 3.16, M/Λ/ρ is a torus, and so by Corollary 3.3

ρ has exactly 2 fixed points.

Proposition 3.12. Let M be a hyperelliptic Riemann surface with ρ ∈ Aut(M) of order

3. Then every fixed point of ρ is a hyperelliptic point.

Proof. By Lemma 2.9, ρ(B) = B (recall that B is the set of Weierstraß points). We can

view this action as an order 3 action on the eight point set B, so we think of ρ as an order

3 element of the permutation group S8. Since ρ has order three, it must be represented in

S8 as σ1 · σ2, where the σi are disjoint 3-cycles (one is possibly the trivial cycle). In any

case, at least two elements of B are fixed by this action, and ρ fixes only 2 points, so all

fixed points are hyperelliptic. �

Therefore, both fixed points of ρ are Weierstraß points. Notice that the fixed points

are precisely those points with vertical normal, i.e., zeros and poles of the Gauß map G.

By scaling the surface M , we can normalize the torus so that the generators are 1, τ ,

τ ∈ C ∩ {Im τ > 0} (note that the torus is given a flat structure by dh, which descends

trivially to the quotient).

The Gauß map G is not well defined on the quotient torus, but G3 does descend to the

quotient torus. G3 has exactly 1 pole and exactly 1 zero. Without loss of generality, one of

the branch points can be placed at 0 in the torus C/〈1, τ〉. We denote the location of the

pole by p. Abel’s Theorem says that the order of the pole cannot be 1 (since then p ∈ {1, τ}

which each are the location of zeros of the Gauß map). But also, the order cannot be larger

than 2:
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Lemma 3.13. G3 has a double order pole at p and a double order zero at 0. Furthermore,

p = 1
2 , τ

2 , or 1
2 + τ

2 .

Proof. Suppose, by way of contradiction, that G3 had a triple order zero at 0. Thus G

has at least a triple order zero on the genus 3 surface P . Since dh is the lift of dz and since

dz has no zeros, dh has at most double order zeros on the genus 3 surface in space (locally,

the pullback map looks like z3 at a branch point). However, in order for the metric on the

minimal surface to be non-degenerate and to have no ends, dh must have at least an order

3 zero. Therefore, G2 can have at most a double order zero. The same reasoning holds for

the double order pole. The location of p follows directly from Abel’s Theorem. �

By analyzing the possible locations of branch points and restricting the conformal type

of the torus, we are able to prove an order 3 classification theorem:

Theorem 3.14. Let M be an embedded triply periodic minimal surface of genus 3 that

admits a rotational symmetry ρ of order 3 about an axis L in R3. Assume that M/Λ admits

a reflection in a plane containing L so that the fixed point set in M/Λ/ρ consists of two

components. Then M is a member of the rPD or rH families.

Proof. We know that f has exactly two branch points. Without loss of generality, we

place the branch point that corresponds to a zero of the Gauß map at 0. The location of

the other branch point p must be one of:

(1) p = 1
2 . In Section 4.3, we show that every surface generated by this Weierstraß

data is, in fact, embedded. This data generates the rH family.

(2) p = τ
2 + 1

2 . In Section 4.5, we show that this data also generates an embedded triply

periodic minimal surface for every torus. This is the rPD family. This family has

the curious property that it is self-adjoint ; it is possible to continuously deform a

surface into its conjugate without changing the angle of association.

(3) p = τ
2 . Even though the periods close for surfaces with this Weierstraß data, the

surfaces are not embedded. Repeated rotation of the any surface in this family

about its (large number of) straight lines generates surfaces shown in Figure 3.2.
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Figure 3.2. Adjoint surfaces to the rH family are clearly not embedded.

Since these are the only possibilities for the location of branch points, the theorem is

proven. �

3.1.3. Classification of surfaces admitting an order 4 rotation with rectangu-

lar quotient torus. Intuitively, we expect the least flexibility from this case. In fact, we

will show that every family admissible here is in fact already classified. (While it is tempting

to conclude immediately that every family here is also invariant under order 2 and has thus

already been considered, but this is not quite true. While every surface invariant under an

order 4 rotation is also invariant under an order 2 rotation, the theorem we proved for order

2 surfaces is more restrictive than the theorem below.)

Let M/Λ be a genus 3 triply periodic minimal surface and ρ ∈ Aut(M) with order 4.

Using a rigid motion, we orient M so that the axis of rotational symmetry is the x3 - axis.

By Proposition 3.16, M/Λ/ρ is a torus. Notice that since ρ is order 4, ρ2 is order 2, and

the surface is also invariant by ρ2.

Theorem 3.15. Let M/Λ be an embedded triply periodic minimal surface of genus 3

that admits a rotational symmetry ρ of order 4 about an axis L in R3. Assume that M/Λ
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admits a reflection in a plane containing L so that the fixed point set in M/Λ/ρ consists of

two components. Then M is a member of the tP or tD families.

Proof. Since ρ2 is a symmetry of M/Λ of order 2, g : M/Λ → M/Λ/ρ2 has exactly four

branch points, and the quotient torus M/Λ/ρ2 is rectangular because of the presence of an

orientation-reversing symmetry with disjoint fixed point sets (if the sets are disjoint under

identification by 〈ρ〉, then then are disjoint under 〈ρ2〉). The automorphism ρ (obviously)

commutes with ρ2 and so descends to the quotient as an order 2 automorphism of the torus.

Furthermore, this automorphism preserves height (since in space it is a rotation), so it must

leave Re dh invariant. The only order 2 automorphism of the square torus C/〈1, τ〉 that

leaves height invariant is the translation by τ
2 if dh = dz, or by 1

2 if dh = idz. Therefore,

if we place a branch point corresponding to a zero of the Gauß map at 0 and denote the

location of the other zero by z, then:

(1) z = 1
2 . This is precisely the situation studied in Theorem 3.11, where we deter-

mined that this torus generates the tD family.

(2) z = τ
2 . This configuration is also subsumed by Theorem 3.11and is shown to yield

the tP family.

�

3.2. Classification by conformal automorphisms

As a final classification remark, we note that there is, in general, no reason to assume

that a surface admits any symmetries at all. There is another type of automorphism of

surfaces that may be useful in a classification — an isometry of the surface that is not

induced by a symmetry in space. Here, the following may be useful.

Proposition 3.16 (Theorem 1, [KK79]). Let X be a hyperelliptic Riemann surface of

genus 3, and let T ∈ Aut(X). If X/〈T 〉 has genus 0, then T has order 2, 4, 6, 8, 12, or 14.

If order(T ) = 2, then T is the hyperelliptic involution.



3. SYMMETRIES AND QUOTIENTS (OUTLINE OF A CLASSIFICATION) 41

There is some hope that one could deal with these cases using flat structures, even

when there is no symmetry in space that induces the automorphism. We mention other

generalizations of this method in Chapter 6.



CHAPTER 4

Review of Known Examples

We formulate some known examples of triply periodic minimal surfaces and obtain

deformations (1-parameter families) of these surfaces using the flat structure viewpoint.

This serves to introduce the idea and terminology behind our proof of the existence of a

family of gyroids and Lidinoids. For the P surface, we obtain two 1-parameter families, the

tP family that admits an order 2 rotational symmetry, and the rPD family that admits

an order 3 rotational symmetry. For the H surface, we here obtain a single 1-parameter

family of triply periodic minimal surfaces, the rH family, that is invariant under an order

3 symmetry (see Chapter 6 for comments on the probable existence of a second H surface

family). A third family, the tCLP family, preserves the order 2 symmetry inherent in the

CLP surface. During the discussion of the P and H surfaces, we discuss the gyroid and

Lidinoid surfaces; we construct these surfaces from a flat structure perspective, calculate

the periods, and compute many pictures of these somewhat mystifying surfaces. We begin

with the canonical example of a triply periodic minimal surface: the P surface.

4.1. The P Surface and tP deformation

The Schwarz P surface (Figure 1.2) can be constructed in a number of different ways.1

We have described the geometric properties of the P surface in Chapter 3. We now construct

this surface using a flat structure approach from which it will be easy to see that the P

surface admits a deformation. While there are more efficient routes to this deformation, we

take this viewpoint to illustrate the technique used for the gyroid deformation.

1It is not a trivial matter to even see that different methods are generating the same surface. Compare
Figures 1.2 and 4.20 (the second for τ ≈ 1.5). Even though these are the same surface, the difference in
viewpoints makes it difficult to see the similarities.

42
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The P surface admits an order 2 rotational symmetry ρ2 : R3 → R3 with axis the x3

coordinate axis. Since the rotation is compatible with the action of Λ on R3, ρ2 descends

to an order 2 symmetry of the quotient surface P/Λ (abusing notation, we also call the

induced symmetry on the quotient ρ2). ρ2 has four fixed points on P/Λ as illustrated in

Figure 4.3. (The fixed points of a rotation about a vertical axis are exactly those points

with vertical normal. For any genus 3 triply periodic minimal surface, there are at most four

points with vertical normal since the degree of the Gauß map is 2). The quotient P/Λ/ρ2

is a (conformal) torus C/Γ (compare Proposition 3.16 and Corollary 3.3, noticing that ρ2

is not the hyperelliptic involution since it fixes only four points).

The lattice Λ is the cubical lattice generated by the unit length standard basis vectors

{e1, e2, e3}. We restrict the conformal structure of the torus C/Γ by considering reflectional

symmetries. The P surface admits a reflectional symmetry that also commutes with ρ2 –

the reflection in the plane containing x1 and x3. Its fixed point set consists of two disjoint

totally geodesic curves. Since this reflection commutes with ρ2, it descends to the torus

C/Γ as a symmetry which yields two disjoint fixed point sets. The only conformal tori

that admit two disjoint fixed point sets of a single (orientation reversing) isometry are the

rectangular tori (rhombic tori admit orientation reversing isometries with a connected fixed

point set). Therefore, Γ is generated by b ∈ R and τ ∈ i · R. Since the conformal structure

is unchanged by a dilation in space, we may dilate so that we can take Γ = 〈1, τ〉 with

τ = ai, a ∈ R. (Note that the dilation required to achieve this normalization of the torus

may change the lattice Λ so that the generators no longer have unit length.) We do not

currently need to compute the value of a that yields the standard, most symmetric P surface

described in Chapter 3. It can be computed using Schwarz-Christoffel maps, see Appendix

A. The map P/Λ → (P/Λ)/ρ2 = C/Γ is a branched covering map. We can identify (using

the aforementioned symmetries) the location (on the torus) of the branch points of of this

map: branch points corresponding to zeros of G are located at 0 and τ
2 , while branch points

corresponding to poles of G are located at 1
2 and 1

2 + τ
2 .

Since the x3 coordinate is invariant under ρ2, the height differential dh descends holo-

morphically to the quotient torus as reiθdz for some r ∈ R, 0 ≤ θ ≤ π
2 (since dz is, up to a
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constant multiple, the only holomorphic 1-form on C/Γ). Varying r only scales the surface

in space, so r is determined by our requirement that one of the generators of the torus is 1

(we will drop the r for the remainder of this work, since scaling is inconsequential to us).

θ is the important Bonnet transformation parameter (see Section 2.1). For the P surface,

θ = 0. As noted in Section 3.1.1, the squared Gauß map G2 has simple poles and zeros at

the branch points.

We can explicitly write the2 formula for G2 using theta functions (Section 2.2):

(4.1) G2(z) := ρ
θ(z, ai) θ(z − a

2 i, ai)
θ(z − 1

2 , ai) θ(z − 1+ai
2 , ai)

.

The multi-valued function G on C/Γ is obtained by G(z) =
√

G2(z). (That the square

root is justifiable here is the content of Section 2.4.2.) The factor ρ is called the Lopez-

Ros factor3 and gives rise to many interesting deformations of minimal surfaces, most of

which are not embedded [LR91]. If ρ = r1e
iφ, varying φ simply produces a rotation of

the minimal surface in space. We will typically be non-committal about the value of φ and

will use it indirectly to normalize certain quantities. We will also determine the real part r

of ρ by a normalization, although varying r is highly destructive – in general, if a surface

is embedded for ρ = ρ0, modifying ρ will instantly yield a non-immersed surface (à la the

Bonnet transformation). We will determine an appropriate value of ρ in Section 4.1.1.3.

Notice that the torus and the branch points are invariant under the symmetry −id, with

quotient S = (C/Γ)�(−id) a sphere with 4 branch points.

4.1.1. Flat structures. The 1-forms Gdh, 1
Gdh, and dh each place a flat structure on

the torus which, after taking the quotient with −id, descends to the sphere. We study here

the developed image of each flat structure, which we will then use to compute periods. We

study each flat structure independently.

4.1.1.1. dh flat structure for the P surface. Since the dh flat structure descends as eiθdz,

the developed image of the flat structure for the torus is simply the rectangle. Consider

2On a given torus, the locations and orders of the zeros and poles uniquely determine a meromorphic function
up to constant multiple (if you have two such maps, divide them and use Liouville’s Theorem).
3The notation is historical and is unrelated to our symmetry ρ2.
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the “lower half” of the rectangle as a fundamental domain for the action −id, and note

the additional identification induced. One can then see directly the sphere S. The dh

flat structure is, in fact, a rectangle with τ
2 directly above 0. This is because there is a

horizontal plane of reflection that interchanges the zeros and poles of the Gauß map. This

horizontal symmetry curve descends to the quotient torus as a vertical straight line. This

only interchanges the branch points if the torus is oriented so that the points corresponding

to 0 and τ
2 in the developed flat structure have the same imaginary part.

4.1.1.2. Gdh flat structure for the P surface. As noted in Section 2.4.2, the order of the

zeros and poles of the 1-form Gdh produce cone angles on the torus of 3π at each of 0 and τ
2

and of π at each of 0 and 1
2 + τ

2 . The involution −id halves the cone angles in the quotient,

so that on the sphere the cone angles are:

• A cone point of angle 3π
2 at each of 0 and τ

2 .

• A cone point of angle π
2 at each of 0 and 1

2 + τ
2 .

τ
2

0

1

1+τ
2

Figure 4.1. A three-dimensional topological picture of the sphere S with
flat structure induced by Gdh (note that the angles are not drawn correctly).
Cone points are visible at the marked vertices. Thick black lines indicate
cuts made to develop the sphere (tetrahedron) into the plane. Although this
is conformally not the Gdh cone metric, this tetrahedron is conformally the
development of the dh cone metric (since all points are regular for dh).

Developing the sphere with cone metric induced by Gdh gives a hexagon:
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Lemma 4.1. By cutting along the shortest geodesics on the sphere from τ
2 to 0, 0 to 1

2 ,

and from 1
2 to 1

2 + τ
2 and developing into the plane, we obtain a hexagon shown in Figure

4.2. The hexagon has the following properties:

i) the length of li is equal to the length of l∗i for i = 1, 2, 3

ii) the angle between l1 and l2 and the angle between l∗1 and l∗2 are both 3π
4 .

iii) the angle between l1 and l∗1 and the angle between l3 and l∗3 are both π
2 .

Proof. Since T/ − id is a sphere and since ι fixes the branch points of T , the flat

structure induced by Gdh makes T/ι a tetrahedron with cone angle 3π
2 at 0 and w2

2 and

with cone angle π
2 at w1

2 and w1+w2
2 . By making the indicated cuts, we obtain a hexagon

with sides l1, l2, l3, l
∗
1, l

∗
2, and l∗3. We call the points in the developed image corresponding

to 1
2 , 0, τ

2 , and 1
2 + τ

2 ∈ T the points p1, p2, p3, and p4 respectively. By making a translation,

we arrange so that p2 = 0 ∈ C. Each li was identified with l∗i before the cutting, therefore,

the length of li is equal to l∗I . Also, since there is a π
2 cone angle at w1

2 , the angle between

lines l1 and l∗1 must be π
2 (similarly for l3).

Let α denote the angle between l1 and l2 and let α∗ denote the angle between l∗1 and

l∗2. The cone angle at 0 is 3π
2 , therefore, since both p2 and p∗2 correspond to 0 ∈ T , the sum

α + β = 3π
2 .

The torus T is invariant under reflection in the line L through τ
2 and 1

2 + τ
2 . L is totally

geodesic (as the fixed point set of an isometry), and −id(L) = L, therefore, L maps to a

geodesic on the quotient T/− id. Since the quotient has flat structure, L maps to an edge

connecting p3 and p4, and the isometry extends to the quotient tetrahedron by rotating

about the edge. Since this reflection halves the cone angle, the angle between l1 and l2

must be 3π
4 . �

At this point, we have not yet determined the value of a for the torus. What is clear

is that once a is chosen, the entire Gdh flat structure will be fixed. For the moment,

we describe the flat structures and study the period problem with this determinacy still

unresolved.
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4.1.1.3. 1
Gdh flat structure for the P surface. Notice that G2(z + 1

2) and
(

1
G

)2(z) have

precisely the same zeros and poles to the same order. By Liouville’s theorem, the quotient

is constant (since it is holomorphic (no poles) and doubly periodic):

(4.2) G2

(
z +

1
2

)/(
1
G

)2

(z) = r1e
iφ1

By adjusting the Lopez-Ros parameter, we can ensure that this factor is 1, and we do that

for the P surface. Therefore, the 1
Gdh flat structure is simply a translation of the (infinite,

periodic) Gdh flat structure. (We can, in fact, calculate the value of ρ that achieves this

normalization. The value is ρ = 1, and we calculate it in Appendix A.) This is reflected in

the blue outline of the 1
Gdh flat structure in Figure 4.2.

(p,−p)

(0, 0)

(0, q)

(p, p + q)

(2p, q)

(2p, 0)

l2 l∗2

l1 l∗1

l3 l∗3

Figure 4.2. The Gdh (in black) and 1
Gdh (in blue) flat structures for the P

surface. Labeled vertices are for the Gdh flat structure (the corresponding
points on 1

Gdh are obtained by translation by (−p, p).

4.1.1.4. Compatibility of Gdh, 1
Gdh, and dh. We have drawn Gdh and dh both oriented

a specific way, namely, that the dh flat structure is horizontal and that the Gdh flat structure

has the line segment l2 vertical. We have not yet justified the latter of these two assertions.

More generally, any time one prescribes all three data – Gdh, 1
Gdh, and dh, one has to

ensure that Gdh · 1
Gdh = dh2. This compatibility is a serious problem when showing the
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existence of surfaces in general, but the approach taken in Chapter 5 avoids this problem

completely.

For the P surface, one can see that this orientation is correct as follows. There exists a

vertical symmetry plane that interchanges the two zeros of the Gauß map. This reflection

descends to the torus, and the symmetry curve is exactly the horizontal line at y = Im τ
4

(recall we have fixed a fundamental domain of the torus). After a translation, dh is real

on this symmetry curve. Under the flat structure Gdh, this symmetry curve develops to

the line segment from (0, q
2) to (2p, q

2). Again, after a vertical translation,
∫

Gdh is real on

this segment. This is also true for 1
Gdh (the developed flat structure is only a translation of

that for Gdh). Thus we see that both Gdh and 1
Gdh are real on thus segment, and this is

compatible with dh. (The only possible inconsistency is the rotational orientation of Gdh,

so it suffices to check one curve.)

A

A

A

1 1

B

B

B

2

2

3

3

Figure 4.3. P surface with generators for the homology. Fixed points of
ρ2 are shown in red.

4.1.2. The period problem for the P surface. The six cycles shown if Figure 4.3

generate the homology H1(P/Λ, Z). Figure 4.4 shows these cycles on the 2-sheeted branched
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torus, along with cuts to identify this structure with the surface in space. To compute the

periods, we need to compute compute
∫
γ Gdh for each generator γ of the homology (and

the same for 1
Gdh). Since

∫
Gdh is simply the developing map of the Gdh flat structure on

the torus, we can compute in terms of the cycles’ image on the developed flat structure.

To calculate the periods, we first obtain the horizontal contribution from the Gdh and 1
Gdh

flat structures: ∫
A1

Gdh = (1 + i)(p + pi) = 2p · i(4.3) ∫
A1

1
G

dh = (1− i)(p− pi) = −2p · i(4.4) ∫
B1

Gdh = (1 + i)(2p + q)i = (i− 1)(2p + q)(4.5) ∫
B1

1
G

dh = (1− i)qi = q + qi(4.6) ∫
A2

Gdh = (i− 1)(p− pi) = 2p · i(4.7) ∫
A2

1
G

dh = (1− i)(p− pi) = −2p · i(4.8) ∫
B2

Gdh = q + qi(4.9) ∫
B2

1
G

dh = (1 + i)(2p + q)i = (i− 1)(2p + q)(4.10) ∫
A3

Gdh = (−1− i)(p− pi) = −2p(4.11) ∫
A3

1
G

dh = (−1− i)(p− pi) = −2p(4.12) ∫
B3

Gdh = 0(4.13) ∫
B3

1
G

dh = 0(4.14)
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A1

A2

A3

B3B1

Sheet 1

B2

Sheet 2

Figure 4.4. The conformal model of the P surface showing the homology
generators. Cuts to reconstruct the surface by gluing are shown in red.

The vertical periods are easily read off of the torus as simply the difference in the

endpoints of the curves drawn on the torus in Figure 4.3. Recalling that

(4.15) P (γ) =


Re

(
−

∫
γ Gdh +

∫
γ

1
Gdh

)
Im

(
−

∫
γ Gdh +

∫
γ

1
Gdh

)
Re

∫
γ dh


we write (transposing for compactness of notation)

P (A1) = (0, 0, 0)(4.16)

P (A2) = (0, 0, 0)(4.17)

P (A3) = (0, 0, 1)(4.18)

P (B1) = (2(p + q),−2(p + q), 0)(4.19)

P (B2) = (−2(p + q),−2(p + q), 0)(4.20)

P (B3) = (0, 0, 0)(4.21)
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(This last horizontal period is zero due to the 2-fold symmetry of this curve. Since the

cycle continues onto both sheets, we develop from p1 to p4, then rotate 180◦ (to get on the

other sheet), then develop the same length again. This causes the horizontal period for B3

to vanish.) It is immediately clear that these periods generate a 3-dimensional lattice Λ

for all values of p and q. In other words, the period problem is solved no matter what the

actual lengths of the segments in the developed flat structure are. Thus any value of a (and

therefore, any quotient torus) solves the period problem.

While we have phrased this section as if we were describing the P surface, what we have

actually seen is that there is a family of immersed triply periodic minimal surfaces that

contains the P surface.

Theorem 4.2. There exists a continuous family of embedded triply periodic minimal

surfaces of genus 3 that contains the P surface (the tP family). Each member of the family

admits an order 2 rotational symmetry and has a horizontal reflective symmetry plane.

Proof. Let Xτ be the genus 3 Riemann surface which is a branched, double cover of a

(conformal) flat rectangular torus C/〈1, τ〉 with cuts as shown in Figure 4.3. Define dh to

be the lift of dz. Define G as in the discussion above, so that branch points occur at the

half lattice points of C/〈1, τ〉. G and dh determine Weierstraß data which solves the period

problem (because of the above calculations). The Weierstraß data and X define an immersed

minimal surface Mτ . Embeddedness follows from Proposition 5.6 (which is a consequence of

the embeddedness of the P surface and the continuity of the family). Since we have placed

the branch points at half-lattice points of the 2-torus, reflection about the vertical line in

the plane containing the point 1
4 is a symmetry of the torus which interchanges zeros and

poles. This is compatible with the rotation ρ2 and lifts to a reflective symmetry (which is

a horizontal plane since the line is vertical). �

We will call this family of minimal surfaces the tP family (Figure 4.5) because the

lattice remains “tetragonal” throughout the deformation (see, e.g., [FH99]). Notice that

the limit τ → 0 looks like a pair of parallel planes joined with small catenoidal necks. The



4. REVIEW OF KNOWN EXAMPLES 52

limit τ → ∞ looks like a pair of perpendicular planes that are desingularized along the

intersection by adding handles (like the singly periodic Scherk surface).

4.1.3. The tD family. We remark briefly that one can also obtain an embedded

family of surfaces by considering the conjugate surface to each member of the tP family.

To compute the periods, multiply Gdh and 1
Gdh by i; a simple computation shows that the

periods do, in fact, close. We show this well known family in Figure 4.6.

4.2. The gyroid

We are finally ready to describe the gyroid minimal surface. In his 1970 paper [Sch70],

Schoen describes a surface that is associate to the P and D surfaces and is embedded.

Prior to Schoen’s paper, it was known that only countably many surfaces associate to the

P surface are immersed. Schoen reproves this fact, and finds a unique embedded surface –

the gyroid.

Let (X, G, dh) be the Weierstraß data describing the P surface (see Section 4.1). Recall

that a surface is called associate to (X, G, dh) if its Weierstraß data is (X, G, eiθdh). For

a single value of θ, this associate surface is an embedded minimal surface, which Schoen

called the gyroid.4 In his description of the gyroid, Schoen provided the following estimate

for θ:

θ ≈ 38.0147740◦.

That this value of θ, and only this value5, produces an embedded minimal surface is some-

thing of a curiosity. In [GBW96], the gyroid is described geometrically as follows:

The P-surface can be tessellated by square catenoids with vertical axes.
These catenoids have boundary on a rectangular box of height 1 with
a square bottom of edge length

√
2. Their waist is almost a circle of

diameter 1.6

4The name likely came from the gyrating ribbons seen in Figure 4.9. These “square ribbons” come from
opening up the square catenoids of the P surface in the associate family.
5Except, of course, when θ = 0 (P surface) and θ = π

2
(D surface).

6That the waist is not a true circle is easily seen by Björling’s formula [DHKW92]. If it were a circle, the
normals along the curve would be the radius. The catenoid contains the same curve with the same normal,
and Björling’s formula asserts there is a unique minimal surface containing a given curve and normal field
along the curve.
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Figure 4.5. The tP deformation of the P surface, for different values of τ .

τ = 0.24 τ = 0.40

τ = 0.781 τ = 1.10

τ = 1.70 τ = 3.00
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Figure 4.6. The tD family for various τ .

τ = 0.24 τ = 0.40

τ = .781 τ = 1.10

τ = 1.70 τ = 3.00
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eiθ · 1
eiθ · τ

Figure 4.7. The alignment of the dh flat structure for the gyroid, showing
the location of the branch points.

Notice that the “square bottom” refers to a curve which is homologous to the curve B3

on our description of the P surface. The “height” of the “rectangular box” refers to twice

the vertical period of the curve A3.

Later from the same paper, Große-Brauckmann and Wohlgemuth write:
When we run through the associated family from P to D these catenoids
open up and a vertical period arises. . . . The square curves of our catenoids
become square helices in vertical distance 1. . . . The vertical translation
t of a square helix increase with the angle of association from 0 for P to
about [the circumference of the waist] for D . . . Only for t > 1 the ribbon
does not self-intersect and then it leaves an ‘empty ribbon’ of height t− 1
in between. For t = 2 the later height is also 1, and the four adjacent
vertical square cylinders fill exactly in.

This “opening up” of the P surface can be seen in Figure 4.8. Translating Große-

Brauckmann and Wohlgemuth’s terminology into ours, the angle of associate for the gyroid

is such that the waist opens up to have period twice that of the period giving the height of

the box. In other words, the vertical period of B3 must be twice that of A3. Since the B3

curve continues on both sheets of the torus, we need the images of the curves on a single

sheet of the developed image of the dh flat structure of the torus to have equal real part.

This is equivalent to choosing θ so that the rotated flat structure places the point 1 + τ

directly above 0 in the developed image (see Figure 4.7). Therefore,

(4.22) θ = arccot Im τ.
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Unfortunately, even this simple definition is not as simple as it seems. The value of τ

that gives the standard, most symmetric P surface still must be determined by an elliptic

integral. In other words, if (X, G, dh) is any member of the tP family, then (X, G, eiθdh) is

an embedded surface only if θ = 0, θ = π
2 , or (X, G, dh) describe the most symmetric (what

we call the “standard”) P surface. As an unfortunate consequence of this fact, we see that

varying τ ∈ i · R is not enough to yield a family of gyroids – we must consider τ ∈ C.

We can calculate the periods of the gyroid by using the P surface flat structures. For

instance, since for the P surface,∫
A1

Gdh = (1 + i)(p + pi) = 2p · i(4.23) ∫
A1

1
G

dh = (1− i)(p− pi) = −2p · i(4.24)

for a member of the associate family, the corresponding developed cycle is∫
A1

Gdh = eiθ2p · i(4.25) ∫
A1

1
G

dh = −2eiθp · i(4.26)

so that the period becomes

(4.27) P (A1) = (4p sin(θ), 0,−−)

Applying a similar computation to the B1 period, we obtain

(4.28) P (B1) = (2p cos(θ) + 2q cos(θ) + 2p sin(θ),−2p cos(θ)− 2q cos(θ) + 2p sin(θ),−−)

Since P (A2) = (0, 4p sin(θ),−−), P (A1) and P (A2) will generate at least the horizontal part

of the lattice. This forces either

(4.29) 2p cos(θ) + 2q cos(θ) + 2p sin(θ) = 4p sin(θ)

or

(4.30) −2p cos(θ)− 2q cos(θ) + 2p sin(θ) = 4p sin(θ)
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Figure 4.8. Six members of the associate family of the P surface.

θ = 0 θ = 5π/180

θ = 30π/180 θ = 0.6634

θ = 70π/180 θ = π/2
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Figure 4.9. Shown here are various views of a translational fundamental
domain of the gyroid, including several assembled fundamental domains. No-
tice the “gyrating” ribbons. To obtain a translational fundamental domain,
one takes the surface patch shown in Figure 4.8 and connects a copy after a
glide reflection.
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1 2 3 4 5
a

0.2

0.4

0.6

0.8

1

1.2

1.4

theta

Figure 4.10. Plots of the value of θ required to solve the horizontal (in
red) and vertical (in blue) period problems vs. a. The intersection point is
the gyroid.

Since cos(θ) ≥ 0 for 0 ≤ θ ≤ π
2 , Equation 4.29 must hold. Thus, given p and q, θ is

uniquely determined by the horizontal period problem.7 However, the values of p and q

are determined by the generators of the torus, namely, by τ = a · i. But Equation 4.22

also defines a unique θ that solves the vertical period problem. These two conditions are

compatible for only one torus: that which defines the standard P surface. Figure 4.10 shows

the behavior of these two curves.

The periods of the gyroid are calculated as:

P (A1) = (1, 0, 0)(4.31)

P (A2) = (1, 0, 0)(4.32)

P (A3) = (0, 1, 1)(4.33)

P (B1) = (1, 0,−1)(4.34)

P (B2) = (−1, 0,−1)(4.35)

7We’ve only shown that this is a necessary condition, which is all we need at the moment.
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P (B3) = (0, 0, 2)(4.36)

We remark that we have gone through a fairly complicated set of gymnastics to show

that the gyroid is even immersed. We have used this method to show that the gyroid is

immersed because it sets up the period problem nicely for Chapter 5 where we prove the

existence of two families of gyroids. There is, however, a much easier way to see that the

gyroid is immersed. Instead of considering the flat structures induced by Gdh, 1
Gdh, and dh,

consider instead the Weierstraß 1-forms ω1, ω2, and ω3 = dh. The standard P surface admits

an order 3 rotational symmetry that interchanges each of the coordinate axis; the action of

this rotation on the space of holomorphic forms permutes the 1-forms ωi. The flat structures,

therefore, are all congruent; furthermore, all of the periods can be expressed in terms of

these 1-forms. Since the associate family parameter θ solves the vertical period problem and

since the flat structures of these forms are all congruent, the period problem is completely

solved. Even this (almost) one line proof easily shows that the gyroid is immersed, this

technique seems to fail miserably to achieve a family of gyroids. As soon as we lose the

symmetry of the standard P surface, we do not find this technique terribly useful.

4.3. The H surface

The H surface (Figure 1.2) is a genus 3 triply periodic minimal surface that admits an

order 3 rotational symmetry. The H surface can be thought of as a “triangular catenoid”

in the same way that the P surface contains “square catenoids”. The H surface lattice is

spanned by a planar hexagonal lattice (along with a vertical component), in contrast to the

square planar lattice for the P surface. We proceed precisely analogously to the P surface,

and omit most of the narrative of the construction.

The order 3 rotation ρ3 : R3 → R3 again is compatible with the action of Λ and so

descends on H/Λ to a well-defined isometry with 2 fixed points (note that by Corollary 3.12

these are both hyperelliptic points). As noted in Chapter 3, there are only two possible

locations for the pole of the Gauß map on the torus, 1
2 or 1

2 + τ
2 . Since there is a reflective
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symmetry of H whose fixed point set contains both fixed points of the map, the same

must be true on the torus. This forces the pole to be located at 1
2 . Again, symmetry

considerations force the torus to be rectangular, and we normalize so that it is generated

by 〈1, τ〉, τ ∈ iR. By Lemma 3.13, the zero and poles are double order.

We write

(4.37) G3(z) := ρ
θ11(z, τ)

θ11(z − 1
2 , τ)

and we again set the Lopez-Ros factor ρ = 1 for the appropriate normalizations.

The torus is invariant under−id (which is here the hyperelliptic involution). We indicate

the conformal structure of the branched cover and the relevant cycles in Figures 4.11, 4.12.

4.3.1. Flat structures. The 1-forms Gdh, 1
Gdh, and dh each place a flat structure on

the torus which, after taking the quotient with −id, descends to the sphere. We study each

flat structure independently:

4.3.1.1. dh flat structure for the H surface. Since the dh flat structure descends as dz,

the flat structure for the torus is simply the rectangle.

4.3.1.2. Gdh flat structure for the H surface. As noted in Section 2.4.2, the order of

the zeros and poles of the 1-form Gdh produce cone angles on the torus of 10π
3 i at 0 and of

2π
3 at 1

2 . The remaining fixed points, at τ
2 and 1

2 + τ
2 , are regular points. The involution

−id halves the cone angles in the quotient, so that on the sphere the cone angles are:

• A cone point of angle 10π
6 at 0.

• A cone point of angle π
3 at 1

2 .

• A cone point of angle π at each of τ
2 and 1

2 + τ
2 .

The flat structure is a hexagon:

Lemma 4.3. By cutting along the shortest geodesics on the sphere from τ
2 to 0, 0 to 1

2 ,

and from 1
2 to 1

2 + τ
2 , we obtain a hexagon shown in black in Figure 4.13. The hexagon has

the following properties:

i) the length of li is equal to the length of l∗i for i = 1, 2, 3

ii) the angle between l1 and l2 and the angle between l∗1 and l∗2 are both 5π
6 .
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A1
B1 A3

to 2 to 3

Sheet 1

A3
A2

B2

to 3 to 1

Sheet 2

A3

B3

to 1 to 2

Sheet 3

Figure 4.11. The conformal structure of the H surface branched cover of
a torus. Cuts are shown in red.

iii) the angle between l1 and l∗1 is π
2 and the angle between l3 and l∗3 is π.

The proof is precisely analogous to Lemma 4.1. We find this flat structure somewhat

inconvenient to work with when the flat structure on the entire torus (without the −id

identification) is so simple. The flat structure on the entire torus is obtained by rotating

by π about the vertex between l3 and l∗3 (the −id map descends on the developed image to

the −id map since 1
2 + τ

2 is a regular point). Doing so, we obtain the flat structure shown

in Figure 4.13 (compare to the P surface flat structure).
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Figure 4.12. A canonical set of generators of H1(H, Z)

Again we have not chosen the imaginary part of τ as we expect to recover a family of

surfaces.

4.3.1.3. 1
Gdh flat structure for the H surface. By precisely the same argument as in

Section 4.1.1.3, the 1
G flat structure is simply a translate of the Gdh flat structure (with the

Lopez-Ros factor ρ = 1). The blue outline in Figure 4.13 shows this translation.

4.3.2. The period problem for the H surface. We illustrate in Figure 4.11 the con-

formal structure of the H surface with the six cycles that generate the homology H1(H/Λ, Z)

(since there are more than two sheets, note the indicators on the cuts showing the proper

identifications). These cycles are shown on the surface in Figure 4.12. Again, we compute

using the flat structures:

∫
A1

Gdh = −1
2
p + i

√
3

2
p(4.38)
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(0, 0)

(1
2p,

√
3

2 p)

(1
2p,

√
3

2 p + q)

(0,
√

3p + q)

(−1
2p,

√
3

2 p + q)

(−1
2p,

√
3

2 p)

Figure 4.13. The Gdh (in black) and 1
Gdh (in blue) flat structures for the

H surface. Labeled vertices are for the Gdh flat structure (the corresponding
points on 1

Gdh are obtained by translation by (−1
2p,−

√
3

2 p).

∫
A1

1
G

dh = −1
2
p− i

√
3

2
p(4.39) ∫

B1

Gdh =
√

3p · i + qi(4.40) ∫
B1

1
G

dh = qi(4.41) ∫
A2

Gdh = −e
2πi
3 p(4.42) ∫

A2

1
G

dh = −e−
2πi
3 p(4.43) ∫

B2

Gdh = e
2πi
3 qi(4.44) ∫

B2

1
G

dh = e
−2πi

3 (
√

3p + q)i(4.45) ∫
A3

Gdh = 0(4.46) ∫
A3

1
G

dh = 0(4.47) ∫
B3

Gdh = e2· 2πi
3 p(4.48)
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B3

1
G

dh = e−2· 2πi
3 p(4.49)

The calculation of these periods is, for the first time, somewhat different because of the

introduction of three sheets (instead of two). For example, to develop the cycle B2, we need

to study the developed segment connecting the points that correspond to 0 and to τ on

sheet 2. We can use the developed image on sheet 1 (which is drawn in Figure 4.13, then

multiply the difference in the endpoints by e
2πi
3 to find the difference in the endpoints on

the second sheet. (This is because, under the order 3 rotation, the Gauß map (stereographic

projection of the normal map), changes by e
2πi
3 for each rotation.)

The vertical periods are easily read off of the torus as simply the difference in the

endpoints of the curves drawn on the torus in Figure 4.11. Again, since

(4.50) P (γ) =


Re

(
−

∫
γ Gdh +

∫
γ

1
Gdh

)
Im

(
−

∫
γ Gdh +

∫
γ

1
Gdh

)
Re

∫
γ dh


we write

P (A1) = (0, 0, 0)(4.51)

P (A2) = (0, 0, 0)(4.52)

P (A3) = (0, 0, 0)(4.53)

P (B1) = (0,−
√

3p− 2q, 0)(4.54)

P (B2) = R 2πi
3

(0,−
√

3p− 2q, 0)(4.55)

P (B3) = (0, 0, 1)(4.56)

(Here the notation R 2πi
3

means a rotation by 2πi
3 about the x3 axis.)

It is again immediately clear that these periods generate a 3-dimensional lattice Λ for

all values of p and q. In other words, the period problem is solved no matter what the

actual lengths of the segments in the developed flat structure are. Thus any value of a (and

therefore, any quotient torus) solves the period problem. Again, then, we have proven:
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Theorem 4.4. There exists a (1 real parameter) continuous family of embedded triply

periodic minimal surfaces of genus 3 that contains the H surface. Each member of the

family admits an order 3 rotational symmetry.

We will call this family of minimal surfaces the rH family (again, see [FH99] for the

motivation for this notation). Notice that the limit τ → 0 looks like a pair of parallel planes

joined with small catenoidal necks. The limit τ →∞ looks like a three intersecting planes

that are desingularized along the intersection by adding handles.

4.4. The Lidinoid

The Lidinoid is constructed analogously to the gyroid, except that it lies in the associate

family of a member of the rH surface family (instead of in the associate family of the P

surface). Recall that for each member of the tP family it is possible to compute the angle

of association that is required to close the vertical periods. Similarly, for each member

of the family it is possible to compute the angle of association that is required to close

the horizontal periods. The first of these two curves is monotone decreasing, the second

monotone increasing. (We prove this assertion rigorously for the gyroid in Lemma 5.5.)

An analogous situation happens for the rH family. We will refer to this special member

of the rH family as “the H surface”. Unfortunately, we know of no geometric conditions

(for instance, symmetries) which allow us to identify this surface, making this situation less

pleasing than for the gyroid. Lidin first suggested the existence of the Lidinoid (what he

humbly called the HG surface) in 1990 [LL90]. Große-Brauckman and Wohlgemuth showed

its embeddedness at the end of [GBW96]. Like the gyroid, the Lidinoid contains neither

straight lines nor planar symmetries. Curiously, while the author finds the P surface easier

to visualize than the H surface, he finds the Lidinoid easier to visualize than the gyroid.

See Figure 4.15 for several viewpoints.

As previously noted, both the P surface and the H surface come in a rather straightfor-

ward family of surfaces. For the tP family, there is clearly a most symmetric surface (what

we call the standard P surface or just P surface). This is the (unique) surface in the family

tP that admits both an order 2 and an order 3 symmetry (the order 3 symmetry permutes
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Figure 4.14. The rH deformation of the H surface.

τ = 0.185 τ = 0.250

τ = 0.390 τ = 0.500

τ = 0.900 τ = 2.500

the handles). The situation for the H surface is somewhat murkier. Every member of the

rH family admits both an order 2 and an order 3 symmetry. We are unaware of any reason

to call a certain H surface more symmetric than others.
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Figure 4.15. The Lidinoid
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To construct the Lidinoid, let (X, G, dh) be the Weierstraß data describing a member of

the rH family. Lidin [FHL93, FH99] gives that the angle of association is approximately

θ ≈ 64.2098◦.

Furthermore, we expect, as with the gyroid, that the vertical period problem is solved by

having the dh flat structure be “tipped” on end as in the case of the gyroid (see, e.g.,

4.7). We can compute the conformal structure of the quotient torus, therefore, as the torus

generated by 1 and ai, where

(4.57) a = arccot(64.2098◦)

As in the case of the gyroid, we can easily calculate the periods for all members of the

associate family by using the H surface flat structures. For instance, one can compute that

for all 0 ≤ θ ≤ 2π, the associate surface has periods:

P (A1) = (
√

3p sin(θ), p sin(θ),−−)(4.58)

P (B3) = (−
√

3p sin(θ), p sin(θ),−−)(4.59)

These two periods clearly generate the horizontal part of the lattice, so we must ensure the

others are compatible. For instance,

(4.60) P (B1) = (
√

3p sin(θ),−(2q +
√

3p) cos(θ),−−)

We see that, since sin(θ) 6= 0 for non-trivial members of the associate family, we must

have

(4.61) ∓(2q +
√

3p) cos(θ) = sin(θ).

Examining the periods for B2 shows that we must choose the “+” equation, so that

(4.62) θ = arctan
(−√3p− 2q

p

)
.

Similarly to the gyroid, Equation 4.62 puts a constraint on θ, and the vertical period

condition places another condition; these two conditions are compatible for exactly one

value of θ — the value that gives the Lidinoid.
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We record here the full set of periods of the Lidinoid for our parameterization:

P (A1) = R 2πi
3

(0,−1, 0)(4.63)

P (A2) = −R 2πi
3

(0,−1, 0)(4.64)

P (A3) = (0, 0, 3s)(4.65)

P (B1) = −R 4πi
3

(0,−1, s)(4.66)

P (B2) = −R 4πi
3

(0,−1, s)(4.67)

P (B3) = R 4πi
3

(0,−1, s)(4.68)

where s ∈ R+ is calculated with an elliptic integral.

4.5. The P Surface from the standpoint of an order 3 symmetry

In addition to the order 2 rotational symmetry, the standard, most symmetric P surface

also admits an order 3 symmetry. This symmetry permutes the handles of the P surface

and is obtained by rotating by 2π
3 though the normal at one of the eight points where

the Gaußian curvature K = 0. As discussed in the introduction, these are precisely the

hyperelliptic points. The P surface can be viewed as being tiled by right-angled hexagons;

the hyperelliptic points are the centers of these hexagons.

We repeat the procedure discussed above for the P surface (viewed as invariant under

an order 2 rotation), and we obtain again a one-parameter family of P surfaces, this time

invariant under an order 3 rotation.

The quotient torus is again rectangular (because the surface admits a plane of reflection

that commutes with the rotation that has disconnected fixed point sets), the branch points

cannot be situated at 0 and 1
2 (since this describes the H surface, as we have already seen).

By the discussion in Section 3.1.1, we are forced to place the zero of the Gauß map at 0

and the pole of the Gauß map at 1
2 + τ

2 . We illustrate in Figure 4.16 the rather complicated

conformal model of the order-3 P surface, showing the branch cuts, the three sheets, and the

cycles on the quotient torus. We illustrate in Figure 4.17 the cycles that generate H1(P, Z).
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to 2

to 3
to 3

to 3

A1

B2

B1

to 3

to 1
to 1

to 1
B2

A2

B3

to 1

to 2
to 2

to 2

A3

B1
B3

Figure 4.16. The conformal structure of the order 3 P surface

4.5.1. Flat structures. The 1-forms Gdh, 1
Gdh, and dh each place a flat structure on

the torus which, after taking the quotient with −id, descends to the sphere. As before, we

study each flat structure independently:

4.5.1.1. dh flat structure for the rPD surface. Since the dh flat structure descends as

dz, the flat structure for the torus is simply the rectangle.

4.5.1.2. Gdh flat structure for the rPD surface. As noted in Section 2.4.2, the order of

the zeros and poles of the 1-form Gdh produce cone angles on the torus of 10π
3 i at 0 and of
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B2

A1

Figure 4.17. Generating cycles for the homology of the order 3 P surface.
Notice that, for convenience we have not chosen a “standard” basis (i.e.,
B1 ∩B2 6= ∅).

2π
3 at 1

2 + τ
2 . The remaining fixed points, at 1

2 and τ
2 , are regular points. The involution

−id halves the cone angles in the quotient, so that on the sphere the cone angles are:

• A cone point of angle 10π
6 at 0.

• A cone point of angle π
3 at 1

2 + τ
2 .

• A cone point of angle π at each of τ
2 and 1

2 .

The flat structure is a hexagon:

Lemma 4.5. By cutting along the shortest geodesics on the sphere from τ
2 to 0, 0 to 1

2 ,

and from 1
2 to 1

2 + τ
2 , we obtain a hexagon shown in black in Figure 4.19 (the vertices of the

hexagon have labeled coordinates). The hexagon has the following properties:

i) the length of li is equal to the length of l∗i for i = 1, 2, 3

ii) the angle between l1 and l2 and the angle between l∗1 and l∗2 are both 5π
6 .

iii) the angle between l1 and l∗1 is π and the angle between l3 and l∗3 is π
6 .

iv) the angle between l2 and l3 and the angle between l∗2 and l∗3 are both π
2 .
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We again omit the proof, but it is precisely analogous to Lemma 4.1. Again we have

not chosen the imaginary part of τ as we expect to recover a family of surfaces.

4.5.1.3. 1
Gdh flat structure for the rPD surface. The symmetry between the Gdh and

1
Gdh flat structures are now somewhat different, since 1

G(z) and G(z + 1
2) do not have the

same zeros and poles. Consider instead the maps 1
G(z) and G(z + 1

2 + τ
2 ). These have

the exactly the same zeros and poles. By Liouville’s theorem, G2(z + w1+w2
2 ) and 1

G2 (z)

are equal up to a complex scalar multiple. Therefore we can understand 1
G in region R

(a partial fundamental domain for our developing map) by understanding G in region S

(see Figure 4.18). However, under −id, R and S are identified, so that, after a relabeling,

the development of region R by the Gdh flat structure and the development of R by the

1
Gdh flat structure differ by only a dilation and rigid motion. We adjust ρ to correct this

deficiency, and obtain the flat structures shown in Figure 4.19.

R

S

Figure 4.18. The shaded regions on the torus are identified under ι

4.5.2. The period problem for the rPD surface. Again, we develop the cycles

shown in Figure 4.16 and obtain the following periods:∫
A1

Gdh = 2i(
√

3p + q)(4.69) ∫
A1

1
G

dh = −2i(
√

3p + q)(4.70) ∫
B1

Gdh = e
4πi
3 (−2p−

√
3q + i(2

√
3p + 3q))(4.71) ∫

B1

1
G

dh = e
−4πi

3 (−p−
√

3pi)(4.72) ∫
A2

Gdh = e
2πi
3 2i(

√
3p + q)(4.73) ∫

A2

1
G

dh = −e
2πi
3 2i(

√
3p + q)(4.74)
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(0, 0)

(p
2 ,
√

3p
2 )

(p,
√

3p)

(p,
√

3p + q)
(−p−

√
3q,

√
3p + q)

(−
√

3
2 q,−1

2q)

Figure 4.19. Gdh (in black) and 1
Gdh (in blue) flat structures for the P

surface viewed as invariant under an order 3 rotation.

∫
B2

Gdh = −2p−
√

3q + i(2
√

3p + 3q)(4.75) ∫
B2

1
G

dh = −p−
√

3pi(4.76) ∫
A3

Gdh = e
4πi
3 2i(

√
3p + q)(4.77) ∫

A3

1
G

dh = −e
4πi
3 2i(

√
3p + q)(4.78) ∫

B3

Gdh = e
2πi
3 (−2p−

√
3q + i(2

√
3p + 3q))(4.79) ∫

B3

1
G

dh = e
−2πi

3 (−p−
√

3pi)(4.80)
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P (A1) = (0, 0, 0)(4.81)

P (A2) = (0, 0, 0)(4.82)

P (A3) = (0, 0, 0)(4.83)

P (B1) = R 4πi
3

(p +
√

3q,−
√

3p− 3q, 1)(4.84)

P (B2) = (p +
√

3q,−
√

3p− 3q, 1)(4.85)

P (B3) = R 2πi
3

(p +
√

3q,−
√

3p− 3q, 1)(4.86)

(Again, the notation R 2πi
3

means a rotation by 2πi
3 about the x3 axis.)

The rPD family has one additional feature that we have not seen in the other families:

it is self-adjoint. We consider the developed image of the dh flat structure. For the P

surface, one of the branch points is at zero (the zero of the Gauß map) and the other is

at 1
2 + τ

2 (the pole of the Gauß map). To obtain the conjugate surface, we change dh to

ei π
2 dh. This puts the developed image of the branch points at 0 and −1

2 + τ
2 . By double

periodicity, this is precisely the same developed image as for the P surface (with torus

generators swapped). Thus, both the P and D surfaces are in the same family. The CLP

surface (below) also shares this characteristic.

4.5.3. The order 3 gyroid. Since the standard P surface is a member of the rPD

family, the gyroid can also be parameterized in terms of this family. We outline the con-

struction of the gyroid in this way, so that in Chapter 5 we can construct (a second) family

of gyroids — the order 3 gyroids rG.

To begin, we need to locate the conformal parameter τ that yields the standard, most

symmetric P surface. From the end of Section 4.2, recall that the standard P surface can

be described in terms of the 1-forms ω1, ω2, and ω3 (these forms are considered with the

orientation of the P surface in space so that the lattice is the standard, cubical lattice).

These are permuted by the rotation ρ3. After a rotation of the surface in space so that the

axis of rotation is vertical, dh = ω1 + ω2 + ω3. We understand the periods of these 1-forms
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Figure 4.20. Members of the rPD family. The lower right image shows a
close up of helicoids forming in the limit.

τ = 0.2 τ = 0.45

τ = 1.0 τ = 1.5

τ = 2.5
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explicitly from our work with the P surface. Denote by γ1 the cycle generated by the vector

1 on the order 2 P surface torus. Its period on each of the ωi flat structures is 1, i.e.,

(4.87)
∫

γ1

ωi = 1

so that

(4.88)
∫

γ1

dh =
∫

γ1

ω1 + ω2 + ω3 = 1

This implies that one generator of the quotient torus P/ρ3 is 1, since the location of the

branch cuts implies that this cycle γ1 continues onto all three sheets.

Considering the other generator of the torus (rather, the cycle γ2 coinciding with this

generator), we note that

(4.89)
∫

γ2

ωi = 2a

since the cycle continues onto both sheets of the torus P/ρ2 (recall that a = Im τ ≈ 0.78).

On the other hand, if we denote the generators of the torus P/ρ3 by 1 and σ, then

(4.90)
∫

γ2

dh =
∫

γ2

ω1 + ω2 + ω3 = 6a

but also

(4.91)
∫

γ2

dh = 3 Im σ

since the cycles continues onto both sheets. Thus, the standard P surface is obtained when

σ = 2τ . Since this is the standard P surface, the angle of association that yields the gyroid

is the same

(4.92) θ = arccot Im τ

We remark that this is precisely the same surface as that obtain in Section 4.2, but viewed

from a different perspective and using a different parameterization. Another view of the

gyroid is in Figure 4.21.
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Figure 4.21. Top: a translational fundamental domain of the gyroid,
viewed as invariant under an order 3 rotation. Bottom: several copies of
a fundamental domain. Notice the similarity to the Lidinoid.

4.6. The CLP surface

Another classical surface, the CLP surface (for “crossed layers of parallels”), is shown

in Figure 4.22. This genus 3 surface also admits an order 2 rotation with four fixed points.
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Figure 4.22. A fundamental domain for the CLP surface

The quotient torus is rectangular (again, by symmetry considerations); Figure 4.25 shows

the conformal model. Figure 4.24 shows a schematic view of the CLP surface with cycles

illustrated.

4.6.1. Flat structures and periods for the CLP surface. As in the case of the

P and H surfaces, G2
(
z + 1

2

)
and

(
1
G

)2(z) have precisely the same zeros and poles to the

same order. Again, by Liouville’s theorem, the quotient is constant (since it is holomorphic

(no poles) and doubly periodic):

(4.93) G2

(
z +

1
2

)
+

(
1
G

)2

(z) = r1e
iφ1

By adjusting the Lopez-Ros parameter, we can ensure that this factor is 1, and we do

that for the CLP surface. Therefore, the 1
Gdh flat structure is simply a translation of the

(infinite, periodic) Gdh flat structure. This is reflected in the blue outline of the 1
Gdh flat

structure in Figure 4.26.
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Figure 4.23. Several fundamental domains of CLP

Figure 4.24. Alternate view of the CLP surface, showing the cycles.

A
A

A

B

B

B

1

1

2

2

3

3
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A1

A2

B1

A3

B3

B2

Figure 4.25. The quotient torus M/ρ for the surface M = CLP , showing
the location of the branch points and the six generators of the homology. A
conformal model for the full surface is obtained by gluing along the indicated
branch cuts (in red).

(0, 0)

(p, p)

(p, p + q)

(0, q)

(−p, p + q)

(−p, p)

Figure 4.26. The Gdh (in black) and 1
Gdh (in blue) flat structures for the

CLP surface. Labeled vertices are for the Gdh flat structure (the correspond-
ing points on 1

Gdh are obtained by translation by (−p, p).
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We now calculate the periods for the CLP surface; we have omitted the calculation for

A3 since the period is always 0 under the order 2 assumption.∫
A1

Gdh = (1− i)(p + p · i)(4.94) ∫
A1

1
G

dh = (1 + i)(p− p · i)(4.95) ∫
B1

Gdh = (1− i)qi(4.96) ∫
B1

1
G

dh = (1 + i)qi(4.97) ∫
A2

Gdh = (1− i)(p− p · i)(4.98) ∫
A2

1
G

dh = (1 + i)(p + p · i)(4.99) ∫
B2

Gdh = (1 + i)qi(4.100) ∫
B2

1
G

dh = (1− i)qi(4.101) ∫
B3

Gdh = 2p(4.102) ∫
B3

1
G

dh = 2p(4.103)

P (A1) = (0, 0, 0)(4.104)

P (A2) = (0, 0, 0)(4.105)

P (A3) = (0, 0, 0)(4.106)

P (B1) = (−2q,−2q, 0)(4.107)

P (B2) = (2q,−2q, 0)(4.108)

P (B3) = (0, 0, 1)(4.109)

There are no known embedded members of the associate family of any surface in the tCLP

family.
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Figure 4.27. The tCLP deformation of the CLP surface.

τ = 0.2 τ = 0.6

τ = 0.9 τ = 1.5

τ = 2.0 τ = 4.0



CHAPTER 5

Proof of the Existence of the Gyroid and Lidinoid Families

In this chapter, we prove Theorem 1.2: the existence of a family of gyroids all preserving

an order 2 rotational symmetry. We now outline the proof.

First, define a moduli space of polygons H(G) that solve the horizontal period problem.

That is, suppose there that X is a Riemann surface constructed as the branched (double)

cover of a torus T , a Gauß map G, and a height differential dh so that the developed image

of the torus T with cone metric induced by Gdh is in H(G). Then the horizontal periods

will be closed (will lie in a lattice). Furthermore, the generators of the lattice will be the

same cycles that generate the lattice for the gyroid. (In fact, our tori will have the property

that they are invariant under −id, so we only develop T/− id.) Notice that the lattice will

not be constant throughout the deformation. Since the horizontal period problem requires

knowledge about not only Gdh but also 1
Gdh, we impose a normalization so that the 1

Gdh

flat structure is a translate of the Gdh developed flat structure.

Second, define a moduli space of polygons V(G) that solve the vertical period problem.

Since the conformal model of a Riemann surface is, in our case, always the (two or three)-

fold cover of a torus, the vertical moduli space will always consist of parallelograms. The

critical issue here will be the orientation of the developed image of the parallelograms.

(In fact, orientation of the developed flat structure is also the critical issue for H(G).

Philosophically, the reason is that once the proper moduli space is established, the only

parameter that remains uncontrolled is the associate family parameter θ.)

Then, we show that there exists a set of Weierstraß data {Xη, Gη, dhη}, η ∈ R so that

the developed image of the torus Tη under the flat structure induced by Gdh is in H(G) and

under dh is in V(G). This shows that both the horizontal and the vertical period problems

can be solved simultaneously by a family of Weierstraß data. To accomplish this, define a

84
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continuous function h : C → R with the property that h(τ) = 0 implies that there exists

θ(τ) such that the Gdh flat structure (respectively, the dh flat structure ) will be in H(G)

(resp. V(G)) provided that dh = eiθ). The Gauß map will be determined by the conformal

structure of the torus and the normalization we impose that the Gdh and 1
Gdh flat structures

are translates. We then show that h−1(0) contains a continuous curve and that this curve

contains the value τ what determines the standard gyroid. This guarantees the existence of

a continuous family of immersed triply periodic minimal surfaces that contains the gyroid.

To study the zero set of h, we use the fact that we can compute h more or less explicitly

for rectangular tori. Furthermore, we can compute h for τ = n + yi, n ∈ Z, by studying

the effect of Dehn twists on the torus and the flat structures. This allows us to compute

sufficiently many values to use an intermediate value type argument.

Finally, we show that the surfaces obtained in this way are embedded (and not just

immersed). This last fact is a consequence of the maximum principal for minimal surfaces

(see, for example, the thorough survey [LM99]). We separate the embeddedness portion

of the proof into a more general proposition (Proposition 5.6).

In Section 5.1 we set up the moduli spaces H(G) and V(G). In Section 5.2 we prove the

remaining statements. We do this in detail for the tG family. For the remaining families

rG and rL, we construct the moduli spaces in Sections 5.4, 5.3. The other statements of

the proof for these families are clear (once the moduli spaces are properly constructed).

5.1. Horizontal and vertical moduli spaces for the tG family

In the most general setting, it is not possible to split the period problem into vertical

and horizontal components. In our case however, we are considering surfaces that are

invariant under rotation. Therefore, since the height is invariant under this rotation the

height differential dh establishes a consistent x3 direction that is invariant throughout the

family. Therefore, the lattice Λ is a product Z × Λ1, so we can split the period problem

into two parts. We need to show that there is a single vertical period, and we need to show

that the horizontal periods lie in a two-dimensional Z−lattice.
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5.1.1. Definition of V(G) and calculation of the vertical periods. In this sub-

section we describe the conformal models of the surfaces we wish to construct. Recall that

the underlying Riemann surface structure for the gyroid was a 2-fold branched cover of a

rectangular torus (with modulus calculated in Appendix A).

Denote by Ṽ(G) be the space of marked parallelograms in C up to equivalence by

translations (we consider marked parallelograms to distinguish the cone point 0). Notice

that if Γ = 〈1, τ〉 is a Z-lattice in C, the torus C/Γ, once equipped with the flat structure

induced by eiθdz, develops to an element of T ∈ Ṽ(G). If M is a triply periodic minimal

surface with symmetry ρ2 so that M/Λ/ρ2 = C/Γ, and if we develop generators of the

homology H1(M, Z) onto T , then M is immersed only if both the horizontal and the vertical

period problems are solved. Notice that the period problem is in general not solved if C/Γ

develops into Ṽ(G).

We will now define a subset of Ṽ(G) that does solve the vertical period problem. There

are generally many such subsets, but we seek a deformation of the gyroid. Recall (Figure

4.7) that the gyroid’s dh flat structure for the torus satisfies Re eiθ = −Re eiθτ . With this

motivation, we define

(5.1) V(G) = {(ω1, ω2) ∈ C× C | |ω1| = 1 and Re ω1 = −Re ω2}

Developing the cycles shown in Figure 4.3 onto this flat structure, one easily sees that

the vertical period problem is solved. Using the notation of the cycles from Figure 4.4, the

vertical periods are:

P (A1) = (−−,−−, 0)(5.2)

P (A2) = (−−,−−, 0)(5.3)

P (A3) = (−−,−−,Re ω1)(5.4)

P (B1) = (−−,−−,−Re ω1)(5.5)

P (B2) = (−−,−−,−Re ω1)(5.6)

P (B3) = (−−,−−, 2Re ω1).(5.7)
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5.1.2. Definition of H(G) and calculation of the horizontal periods. Suppose

that M is any immersed, genus 3, triply periodic minimal surface that has as a conformal

model a two-fold branched cover of a generic torus C/Γ (without loss of generality we write

Γ = 〈1, τ〉). Suppose further that the square of the Gauss map descends to C/Γ and has

simple poles at 1
2 and 1

2 + τ
2 and simple zeros at 0 and τ

2 . (This is the case for the gyroid,

except that the torus is rectangular.) The quotient S = C/Γ/(−id) is a sphere, and Gdh

again induces a cone metric on S. Under this cone metric, the sphere is a tetrahedron, with

two vertex angles 3π
2 and two vertex angles π

2 . The developed image of this sphere has a

particularly nice parameterization:

Lemma 5.1. For any torus C/Γ (Γ = 〈1, τ〉), the cone metric Gdh descends to S. By

cutting along shortest geodesics on S from 1
2 to 0, 0 to τ

2 , and from τ
2 to 1

2 + τ
2 , we obtain

a hexagon shown in Figure 5.1. The hexagon has the property that

i) the length of li is equal to the length of l∗i for i = 1, 2, 3

ii) l2 is parallel to l∗2

iii) the angle between l1 and l∗1 and the angle between l3 and l∗3 are both π
2 .

We can parameterize the space of possible hexagons by ξ1, ξ2 ∈ C as shown in Figure

5.1.

We call the space of all hexagons satisfying the conditions of Lemma 5.1 H̃(G).

Proof. Since C/Γ/(−id) is a sphere and since −id fixes the branch points of C/Γ, the

flat structure induced by Gdh makes S a tetrahedron with cone angle 3π
2 at 0 and τ

2 and

with cone angle π
2 at 1

2 and 1+τ
2 . By making the indicated cuts (shown in Figure 5.4 in

thick black lines), we obtain a hexagon with sides l1, l2, l3, l
∗
1, l

∗
2, and l∗3. We denote the

points in the developed image corresponding to 1
2 , 0, τ

2 , and 1+τ
2 ∈ C/Γ by p1, p2, p3, and p4

respectively. By making a translation, we arrange so that p2 = 0 ∈ C. Each li was identified

with l∗i before the cutting, therefore, the length of li is equal to l∗I . Also, since there is a π
2

cone angle at 1
2 , the angle between lines l1 and l∗1 must be π

2 (similarly for l3).
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ξ1

(0, 0)

ξ2

l1

l∗1

ξ̂1

l2

l∗2

l3

l∗3

α

α∗

Figure 5.1. A generic member of the H̃(G) moduli space.

Let α denote the angle between l1 and l2 and let α∗ denote the angle between l∗1 and

l∗2. The cone angle at 0 is 3π
2 , therefore, since both p2 and p∗2 correspond to 0 ∈ T , the sum

α + α∗ = 3π
2 . (One can see this by developing a small circle about 0 and noting that in the

developed image we must obtain an arc that subtends an angle of 3π
2 .) �

To understand the horizontal periods, we again adjust ρ, if necessary, to normalize the

1
Gdh flat structure as in Section 4.1.1.3 so that the developed flat structure for 1

Gdh is simply

a translate of that for Gdh (ρ is uniquely determined by this normalization). Then in terms

of these flat structures, we compute the periods of the six generators of H1(M,Z) to be:

∫
A1

Gdh = (1 + i)(ξ̂1 − ξ2)(5.8) ∫
A1

1
G

dh = (1− i)(ξ2 + iw − ξ̂1 + ξ1)(5.9) ∫
B1

Gdh = (1 + i)(ξ̂1 − ξ1)(5.10) ∫
B1

1
G

dh = (1− i)ξ2(5.11)
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A2

Gdh = (i− 1)ξ1(5.12) ∫
A2

1
G

dh = (1− i)ξ1(5.13) ∫
B2

Gdh = (1− i)ξ2(5.14) ∫
B2

1
G

dh = (1 + i)(ξ̂1 − ξ1)(5.15) ∫
A3

Gdh = (−1− i)ξ1(5.16) ∫
A3

1
G

dh = (−1− i)ξ1(5.17) ∫
B3

Gdh = 2(ξ̂1 − ξ1)(5.18) ∫
B3

1
G

dh = 2ξ2(5.19)

The notation ξ̂1 is the complex number corresponding to p4 (see Lemma 5.1), i.e.,

ξ̂1 = −ξ1 + ξ2 +
(2 + 2i)ξ2

1 ξ̄1

2|ξ1|2
.

To simplify the calculations, we make the change of variables

a = 2(Re ξ1 + Im ξ2)(5.20)

b = 2(Im ξ1 − Im ξ2).(5.21)

One can then compute the horizontal periods to be

PA1 = (a + b, 0,−−)(5.22)

PA2 = (a + b, 0,−−)(5.23)

PA3 = (0, a + b,−−)(5.24)

PB1 = (a, b,−−)(5.25)

PB2 = (−a, b,−−)(5.26)

PB3 = (0, 0,−−)(5.27)
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Notice that when b = 0, the period problem is solved. In particular, when b = 0 the

periods coincide with those of the gyroid (Equations 4.31-4.36). Recall that b = 2(Im ξ1 −

Im ξ2); define

(5.28) H(G) = {(ξ1, ξ2) ∈ H(G)|Im ξ1 = Im ξ2}.

Then every flat structure in H(G) solves the horizontal period condition (and does so with

the same relations among the generating curves as for the gyroid). Figure 5.2 shows a

typical member of H(G).

(0, 0)

ξ1ξ2

Figure 5.2. A generic member of the H(G) moduli space.

Of course, there are other choices for a, b that also solve the horizontal period problem.

We make this choice because we want the family to contain the gyroid, and it is this

relationship among the horizontal periods that is necessary to obtain the gyroid. Setting,

for example, a = −b would yield the tP family of Section 4.1. In principle, we have computed

the horizontal periods of all triply periodic minimal surface that admit an order 2 rotation

and whose branch points on the torus are in the same configuration as these. In practice,

however, that is not enough for a classification, because without the use of a “base surface”

that we know is embedded, it is quite difficult to say if any of these surfaces are embedded.

We have shown, thus far, that if (X, G, dh) has as flat structures members of H(G) and

V(G), then the period problem is solved. Certainly the Weierstraß data for the gyroid do

solve the period problem. It remains to find a 1-parameter family of such data. We will

then show that the surfaces are all embedded.
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5.2. Proof of the tG family

To prove the existence of the tG family, our first task is to show that there exists a

family of Weierstraß data (X, G, dh) (that varies continuously) with X the double branched

cover of a torus so that the developed image of C/Γ/(−id) under Gdh is in H(G) and so

that the developed image of C/Γ/(−id) under dh is in V(G). This will show that the period

problem is solved.

Let Γ = 〈1, τ〉. Define dh = dz on C/Γ. Define Xτ to be the Riemann surface obtained

from the double cover of C/Γ, with branch points at 0, 1
2 , τ

2 , and, 1
2 + τ

2 and with branch

cuts as shown in Figure 4.4. The square of the Gauss map will be well-defined on C/Γ as

the unique meromorphic function with zeros at 0 and τ
2 and poles at 1

2 and 1
2 + τ

2 (up to a

complex multiple ρ). Define ρ so that the Gdh and 1
Gdh flat structures are normalized as

in Section 4.1.1.3, i.e., so that they are translates.

For each choice τ ∈ C, this data describes a minimal surface. Define

Definition 5.2. The vertical relative turning angle θV(τ) is

(5.29) θV(τ) :=
π

2
− arg(1 + τ)

(This is precisely the angle by which the dh flat structure fails to be in V(G).)

The horizontal relative turning angle θH(τ) is the angle by which the Gdh flat structure

must be rotated so that it satisfies Im ξ1 = Im ξ2.

If θV(τ) = θH(τ), then we could define dh = eiθV (τ)dz = eiθH(τ)dz. The definition

of horizontal and vertical turning angle ensures that (X, G, dh) solves the horizontal and

vertical period problem. Define

(5.30) b(τ) := θH(τ)− θV(τ).

The period problem is solved exactly on the zero set of b. Let τG denote the value of τ

which yields the gyroid (from the Appendix, τ ≈ 0.781i).

Our goal is to understand the zero set of b. Note that when τ ∈ iR, the resulting torus

is rectangular. On rectangular tori, it is possible to explicitly develop the cone metric Gdh
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B

Y

L R

gyroid

//

Figure 5.3. b < 0 on Y and b > 0 on B, so the zero set contains a curve
separating B and Y (it must pass through the value that yields the gyroid)

.

into C by integrating the Gauß map (recall that the Gauß map can be explicitly given in

terms of theta functions), and, therefore, to understand b. (On a generic, non-rectangular

torus explicit computation is not possible, since the edges of a fundamental domain are no

longer fixed point sets of an isometry and thus are not totally geodesic. It is no longer the

case that these edges of a fundamental domain develop, under integration, to the shortest

geodesic between cone points of the tetrahedron.)

Next, as in Figure 5.3, consider the half plane, with the y−axis divided into two segments

B and Y . (Y = {(0, y) | Im (y) < Im τG}). The line L is defined by x = −1; R is a curve

with all x values sufficiently large.

Lemma 5.3. b > 0 on L and b > 0 on R, where L is a vertical line x = −1, R is a

vertical line x = n for n ∈ Z sufficiently large.

Proof. The quotient sphere of the torus generated by (1, 1+τ) is related to the sphere

obtained from the torus generated by (1, τ) by performing a Dehn twist on the cycle A1.
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The effect of this twist on the Gdh flat structure is clear in Figure 5.4 – where γ was the

shortest geodesic between p2 and p3 is now changed to γ + A1.

ω2
2

0

ω1
2

ω1+ω2
2

Figure 5.4. Tetrahedron with cycle of Dehn twist. The bold lines show
cuts made for developing the tetrahedron into the plane.

We can compute the Gdh flat structure explicitly in the case of normalized rectangular

tori and flat structures: for all rectangular tori, the angle between l1 and l2 is 3π
4 and when

normalized (recall that the normalization requires that the Gdh and 1
G flat structures are

aligned) the segment l2 is vertical with Im ξ2 > 0 (this is a consequence of the symmetries

of rectangular tori, see Section 4.1).

After a large number of positively oriented Dehn twists, we see a Gdh flat structure as

in Figure 5.5; therefore for large n ∈ Z, θH(n + τ) ≈ π – a value larger than θV(n + τ) ≈ π
2 .

Thus b ≈ π
2 > 0 on R.
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l1 l∗1

l∗2

l∗3l3

l2

Figure 5.5. The Gdh flat structure after many positive Dehn twists

Showing that b > 0 on L is quite similar to the case above. After the application of

a single negatively oriented Dehn twists, θH remains positive (θH is always positive), but

θV(−1+ ci) = 0 for all c ∈ iR. Therefore b > 0 on L, since a negatively oriented Dehn twist

shifts the “top cone” of the the Gdh flat structure (see Figure 5.6).

0

ξ1

ξ2

Figure 5.6. A “rectangular torus” Gdh flat structure after the application
of a single negative Dehn twist.

�
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Lemma 5.4. b > 0 on B and b < 0 on Y .

Proof. We will show that both θV and θH are monotone – the first decreasing, the

second increasing – as Im τ increases. This implies that the b has at most 1 zero (of course,

we know that a zero occurs at τG yielding the gyroid).

Fortunately, we are able to explicitly calculate θV , namely

(5.31) θV(τ) = arccot(Im τ).

It is a trivial matter to see that this function is monotone decreasing in Im τ .

The situation for the horizontal turning angle is not as simple. First, we note that the for

all τ ∈ iR, the Gdh flat structure is normalized in the same orientation as it is for the gyroid,

i.e., the straight line segment λ from the developed image of 0 to the developed image of 1

is horizontal. To see this, observe that in the rectangular case, there is a vertical symmetry

curve in space that translates, on the torus, to a horizontal curve (straight line) connecting

0 and 1. The endpoints have no horizontal displacement, and so must be conjugate in the

Gdh and 1
Gdh flat structures. Since all surfaces in the tP family share this symmetry, the

line λ must be horizontal.

Since for all τ ∈ iR the normalized Gdh flat structure is aligned so that λ is horizontal

(when the angle of association is 0), the relative turning angle (in the rectangular case) is

computed in terms of the ratio of |l1| to |l2|; precisely,

(5.32) θH(τ) = π − arg
(
|l2|
|l1|

i− e−iπ/4

)
We see, therefore, that θH(τ) increases as the ratio |l2|

|l1| increases. We now show that |l2|
|l1| is

monotone in Im τ .

Suppose that there exist τ1, τ2 ∈ iR such that |lτ12 |
|lτ11 | = |lτ22 |

|lτ21 | . Because of the restrictions

on the flat structures imposed by the rectangular torus (see Lemma 4.1), this implies that

the Gdh flat structures are dilations of each other. Call the developing map from the torus

C/〈1, τi〉 to the plane (yielding a hexagon) gi. The Schwarz-Christoffel maps fi map the

upper half plane to the tori C/〈1, τi〉. Composing gives two maps from the upper half plane

to similar hexagons (see Figure 5.7).
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f1 g1

p1 p2 1

τ1

f2 g2

p1 p2

p3

1

τ2

Figure 5.7. Two maps from the upper half plane to a hexagon.

Thus g1 ◦f1 and 1
2 ·g2 ◦f2 are two maps from the upper half plane to the same hexagon.

By the Riemann mapping theorem, there is a unique such map up to Möbius transformation.

Both maps send p1 to the same point (fixing the Möbius transformation). Since g1◦f1(p2) =

1
2 · g2 ◦ f2(p3) these maps are distinct (a contradiction with the Riemann mapping theorem)

unless p2 = p3. But these points are determined by the conformal structure of the torus,

so τ1 = τ2. This shows that the ratio |l2|
|l1| is monotone. By computing the ratio for two

different values, one can easily see that it is, in fact, increasing in Im τ . �

Lemma 5.5. There exists a continuous curve c : R → C such that τG ∈ c(R) and

c(R) ⊂ b−1(0).

Proof. Since b is continuous, b < 0 on Y and b > 0 on B, the zero set of b must

separate (topologically!) B and Y , in particular, it contains a curve c such that τG ∈ c.

Note that this curve does not intersect L or R (there are no zeros on either). Thus, as

t → ±∞, Im (c(t)) → 0 or Im (c(t)) →∞ �

Finally, the following proposition proves embeddedness.
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Proposition 5.6. Let Mη, 0 ≤ η ≤ 1 be a continuous family of immersed triply periodic

minimal surfaces. If some member Mη0 of the family is embedded, then Mη is embedded for

all 0 ≤ η ≤ 1.

Proof. Let t0 be the first time that a surface is not embedded, that is,

t0 := inf{η > η0 | Mηis not embedded}

We assume that t0 exists and arrive at a contradiction. Since it is not embedded, Mt0

has a point p of self-intersection. Suppose that at p, the tangent planes to the surface are

transverse. Since transversality is an open condition, by the continuity of the family there

exists ε > 0 such that the tangent planes for Gt0−ε will also be transverse at p. Therefore,

Gt0−ε has a self-intersection at p, a contradiction, with the minimality of t0. Therefore, if

t0 exists the tangent planes must be coincident.

Let F : X → R3 be the immersion, with F (x1) = F (x2) = P . For sufficiently small

r > 0, Br(xi) is an immersed minimal disk Mi. Each is a minimal graph over their common

tangent plane. Define a height function hi on Mi as the height of graph Mi. By the

maximum principle for minimal surface, we cannot have h1 − h2 > 0 on Br(p)− {p}. Thus

h1−h2 assumes some negative values. This, however, is an open condition, so there is ε > 0

such that h1−h2 is also negative on a neighborhood of Gt0−ε. If h1−h2 is both negative and

positive, the surface Gt0−ε can not be embedded since the two graphs M1 and M2 intersect,

a contradiction with the minimality of t0. Therefore, the family must be embedded for all

η > η0. A similar argument holds for 0 < η < η0, and so the family is embedded. �

We now have all the tools required to prove the existence and embeddedness of the tG

family:

theorem 1.2. There is a one parameter family of minimal embeddings tGη ⊂ R3/Λη,

η ∈ R+, such that tGη is an embedded minimal surface of genus 3.The gyroid is a member

of this family. Furthermore, each tGη admits a rotational symmetry of order 2.

Proof. By Lemma 5.5, there exists a family of tori so that the developed (and nor-

malized) flat structures have the same vertical and horizontal turning angle θ. We use
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the Gauß map used to develop these flat structures, and set dh = eiθdz. This choice of

height differential ensures that the flat structures are in the moduli spaces V(G) and H(G).

Therefore, the period problem is solved for this Weierstraß data. The branched torus cover

provides the conformal model of the triply periodic minimal surface, and the Gauß map

G and dh that we have defined lift (via the rotation ρ2) to a well-defined Gauß map and

height differential for the triply periodic surface. This one-parameter family does contain

the gyroid (because of the description of the gyroid in Section 4.2). The entire family is

embedded because of Proposition 5.6. �

5.3. Moduli spaces for the rL family of Lidinoids

5.3.1. Vertical moduli space V(L). The vertical moduli space is defined in precisely

the same way as for the gyroid, i.e.,

(5.33) V(L) = V(G)

5.3.2. Horizontal moduli space H(L). Suppose that M is any immersed, genus 3,

triply periodic minimal surface that has as a conformal model a three-fold branched cover

of a generic torus C/Γ (without loss of generality we write Γ = 〈1, τ〉. Suppose further that

the square of the Gauss map descends to C/Γ and has a double order pole at 1
2 and a double

order zero at 0. (This is the case for the Lidinoid, except that the torus is rectangular.) The

quotient S = C/Γ/− id is a sphere, and Gdh again induces a cone metric on S. Under this

cone metric, the sphere is a tetrahedron, with vertex angle of 5π
3 (corresponding to the zero),

a vertex angle of π
3 (corresponding to the pole), and two vertex angles of π (corresponding

to the remaining fixed points of −id: τ
2 and 1

2 + τ
2 ). The developed image of this sphere is

parameterized by:

Lemma 5.7. For any torus C/Γ (Γ = 〈1, τ〉), the cone metric Gdh descends to S. By

cutting along shortest geodesics on S from 1
2 to 0, 0 to τ

2 , and from τ
2 to 1

2 + τ
2 , we obtain

a hexagon shown in Figure 5.8. The hexagon has the property that

i) the length of li is equal to the length of l∗i for i = 1, 2, 3

ii) l2 is parallel to l∗2
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l1
l∗1

l̂∗2l̂2

π
3

l∗4
l4

Figure 5.8. A developed flat structure for the Lidinoid before rotation by π.

l1
l∗1

l3 l∗3

π
3

π
3

0

e−iπ
3 ξ1

ξ1

ξ2

ξ2 − e−iπ
3 ξ1

ξ2 + e−iπ
3 ξ1

Figure 5.9. A generic member of the H̃(L) moduli space.

iii) the angle between l1 and l∗1 and the angle between l3 and l∗3 are both π
2 .

Since the fixed point 1
2 + τ

2 is regular before the application of −id, we can extend this

to a developing map on the whole torus by rotation by π about the intersection of l4 and l∗4.

Doing this, we obtain the hexagon flat structure shown in Figure 5.9. We can parameterize

this final space of possible hexagons by ξ1, ξ2 ∈ C as shown in Figure 5.9.

We call the space of all hexagons satisfying the conditions of Lemma 5.7 H̃(G).
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The proof is precisely analogous to the proof of Lemma 5.1, and we omit the details

here.

To understand the horizontal periods, we again adjust ρ, if necessary, to normalize the

1
Gdh flat structure as in Section 4.1.1.3. Then in terms of these flat structures, we compute

the periods of the six generators of H1(M,Z) to be:

∫
A1

Gdh = (1 + e2πi/3)eiπ/3ξ1(5.34) ∫
A1

1
G

dh = (1 + e−2πi/3)ξ1(5.35) ∫
B1

Gdh = ξ2 + e−πi/3ξ1(5.36) ∫
B1

1
G

dh = ξ2 − ξ1(5.37) ∫
A2

Gdh = e2πi/3(1 + e2πi/3)ξ1(5.38) ∫
A2

1
G

dh = ξ1(1 + e−2πi/3)(5.39) ∫
B2

Gdh = e2πi/3(ξ2 − ξ1)(5.40) ∫
B2

1
G

dh = e−2πi/3(ξ2 + e−iπ/3ξ1)(5.41) ∫
B3

Gdh = (−1− e4πi/3)ξ1(5.42) ∫
B3

1
G

dh = e−4πi/3(e−πi/3 − 1)ξ1(5.43)

(As before, we omit A3 since the period is zero (recall that A3 continuous on all three

sheets.)

We make the substitution

c = −1
2
(Im ξ1 +

√
3Re ξ1)(5.44)

d =
1
2
(Im ξ1 − 4Im ξ2 +

√
3Re ξ1)(5.45)
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The periods can then be expressed as

P (A1) = (
√

3c, ci, 0)(5.46)

P (A2) = (−
√

3c,−ci, 0)(5.47)

P (A3) = (0, 0, 3s)(5.48)

P (B1) = (
√

3c, d, s)(5.49)

P (B2) = (−
√

3
2

(d− c),−1
2
(d− c), s)(5.50)

P (B3) = (−
√

3c, c, s)(5.51)

Again, s is a factor determined by the torus. Since, for the Lidinoid, P (B1) = P (B2), we

are forced to set c = −d to solve the period problem. Therefore, the period problem is

solved if

(5.52) Im ξ2 = 0.

(Notice that, apart from parameterizing the flat structure differently (0 corresponds to a

different cone angle on the P surface) this is precisely the same condition as for the gyroid

flat structures.)

The consequence of Equation 5.52 is that any member of H̃(L) solves the period problem

after a rotation (and so we can again define the relative turning angles). We define

(5.53) H(L) = {(ξ1, ξ2) ∈ H̃(L) | Im (ξ2) = 0}.

The remainder of the proof of the existence of a family of Lidinoids proceeds analogously

to that of the tG family. Dehn twists have a similar affect, making it possible to again use

an intermediate value type argument. We again rely on a single numerical calculation on

rectangular tori to verify the existence of a “horizontal separating curve”. This proves the

following theorem:

theorem 1.3. There is a one parameter family of minimal embeddings rLη ⊂ R3/Λη,

η ∈ R+, such that rLη is an embedded minimal surface of genus 3.The Lidinoid is a member
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of this family. Furthermore, each embedded surface admits a rotational symmetry of order

3.

5.4. Moduli spaces for the rG family of gyroids

5.4.1. Vertical moduli space V(rG). As indicated in Section 4.5.3, to obtain the

standard gyroid from the order 3 perspective, we take as the torus parameter τ = 2 · ai,

where a is the conformal parameter for the standard P surface obtained in Appendix A.

We then use the same angle of association as in the order 2 parameterization, obtaining:

(5.54) Re eiθ = −2Re eiθτ.

We therefore define

(5.55) V(rG) = {(ω1, ω2) ∈ C× C | |ω1| = 1 and Re ω1 = −2Re ω2}

so that the vertical period problem is solved.

5.4.2. Horizontal moduli space H(rG). Let M be any immersed, genus 3, triply

periodic minimal surface that has as a conformal model a three-fold branched cover of a

generic torus C/Γ (without loss of generality we write Γ = 〈1, τ〉. Suppose further that

the square of the Gauss map descends to C/Γ and has a double order pole at 1
2 + τ

2 and

a double order zero at 0. (This is the case for the order 3 gyroid, except that the torus

is rectangular.) The quotient S = C/Γ/ − id is a sphere, and Gdh again induces a cone

metric on S. Under this cone metric, the sphere is a tetrahedron, with vertex angle of 5π
3

(corresponding to the zero), a vertex angle of π
3 (corresponding to the pole), and two vertex

angles of π (corresponding to the remaining fixed points of −id: τ
2 and 1

2). The developed

image of this sphere is described by:

Lemma 5.8. For any torus C/Γ (Γ = 〈1, τ〉), the cone metric Gdh descends to S. By

cutting along shortest geodesics on S from 1
2 to 0, 0 to τ

2 , and from τ
2 to 1

2 + τ
2 , we obtain

a hexagon shown in Figure 5.10. The hexagon has the property that

i) the length of li is equal to the length of l∗i for i = 1, 2, 3

ii) l2 = ei2π/3l∗2
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iii) the angle between l1 and l∗1 if π and the angle between l3 and l∗3 is π
3 .

We can parameterize this final space of possible hexagons by ξ1, ξ2 ∈ C as shown in

Figure 5.10. For convenience, we use the notation ξ̂1 = e−iπ/3(ξ2 − ξ1) + ξ1 − e−2πi/3ξ1.

We call the space of all hexagons satisfying the conditions of Lemma 5.8 H̃(rG).

ξ1

ξ2

ξ̂1

0

e−iπ/3ξ̂1

α

α∗
π
3

l3

l∗3

l2

l1

Figure 5.10. A generic member of the H(rG) moduli space.

The proof is precisely analogous to the proof of Lemma 5.1, and we omit the details

here.

To understand the horizontal periods, we again adjust ρ, if necessary, to normalize the

1
Gdh flat structure as in Section 4.1.1.3. Then in terms of these flat structures, we compute

the periods of the six generators of H1(M,Z) to be:

∫
A1

Gdh = ξ2 + eiπ/3(ξ̂1 − ξ2)(5.56) ∫
A1

1
G

dh = −ξ2 + e−iπ/3(2ξ1 − ξ2)(5.57)
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B1

Gdh = e4πi/3(2(ξ2 − ξ1))(5.58) ∫
B1

1
G

dh = e−4πi/3(−ξ̂1)(5.59) ∫
A2

Gdh = e2πi/3(ξ2 + eiπ/3(ξ̂1 − ξ2))(5.60) ∫
A2

1
G

dh = e−2πi/3(−ξ2 + e−iπ/3(2ξ1 − ξ2))(5.61) ∫
B2

Gdh = 2(ξ2 − ξ1)(5.62) ∫
B2

1
G

dh = −ξ̂1(5.63) ∫
A3

Gdh = e4πi/3(ξ2 + eiπ/3(ξ̂1 − ξ2))(5.64) ∫
A3

1
G

dh = e−4πi/3(−ξ2 + e−iπ/3(2ξ1 − ξ2))(5.65) ∫
B3

Gdh = e2πi/3(2(ξ2 − ξ1))(5.66) ∫
B3

1
G

dh = e−2πi/3(−ξ̂1)(5.67)

(5.68)

We make the substitution

a = 2
√

3Im ξ1 −
√

3Im ξ2 + 2Re ξ1 − 3Re ξ2(5.69)

b =
√

3Im ξ1 −
√

3
2

Im ξ2 + Re ξ1 −
5
2
Re ξ2(5.70)

The periods can then be expressed as

P (A1) = (a, 0,−s)(5.71)

P (A2) = (a, 0,−s)(5.72)

P (A3) = (a, 0,−s)(5.73)

P (B1) = (b,
√

3(a− b), 2s)(5.74)

P (B2) = (b,
√

3(a− b), 2s)(5.75)

P (B3) = (b,
√

3(a− b), 2s)(5.76)
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Again, s is a factor determined by the torus. Since, for the gyroid, one computes that

P (A1) = P (B2), we are forced to set a = b to solve the period problem. Therefore, the

period problem is solved if

(5.77)
√

3Im ξ1 −
√

3
2

Im ξ2 + Re ξ1 −
1
2
Re ξ2 = 0

We remark that this seemingly complicated expression is actually very reasonable: Equation

5.77 holds if and only if

(5.78) arg
(
ξ̂1 − ξ2

)
=

π

3
.

(This is a simple computation, which we omit.)

The consequence of Equation 5.78 is that for any member of H̃(rG) solves the period

problem after a rotation (and so we can again define the relative turning angles). We define

(5.79) H(rG) =
{

(ξ1, ξ2) ∈ H̃(L) |
√

3Im ξ1 −
√

3
2

Im ξ2 + Re ξ1 −
1
2
Re ξ2 = 0

}
.

The remainder of the proof of the existence of a family of order 3 gyroids is analogous

to the other two families discussed above, yielding:

theorem 1.4. There is a one parameter family of minimal embeddings rGη ⊂ R3/Λη,

η ∈ R+, such that rGη is an embedded minimal surface of genus 3.The gyroid is a member

of this family. Furthermore, each embedded surface admits a rotational symmetry of order

3.



CHAPTER 6

Questions, Conjectures, and Future Work

Throughout this work, a number of questions have arisen that should provide plenty of

interesting future work. We record some of these questions here.

6.0.3. Rigidity of surfaces in a fixed lattice. Throughout this work, all deforma-

tions of a surface changed the surface’s lattice in space; the deformed surface is embedded

in a different 3-torus. We certainly expect the following to be true:

Conjecture 6.1. Let ft : Xt → R3/Λt be a continuous family of minimal embeddings

from a family of genus 3 Riemann surfaces Xt. If Λt is constant in t, then so is Xt and ft.

Assuming the conjecture is true, one can easily prove the following:

Proposition 6.2. Assume that Conjecture 6.1 holds. Let M be an embedded triply

periodic minimal surface of genus 3. Then the dimension of the space of all embedded

deformations of M is at most 5.

Proof. By Conjecture 6.1, the lattice must vary for nearby deformations of M . There-

fore, the dimension of the space of deformations is the same as the dimension of the space of

“different” lattices. The dimension of all possible lattices is 9. Since scaling doesn’t produce

a “deformation” in our sense, we normalize so that e1 ∈ Λ has length 1; this normalization

reduces the dimension to 8. Since rigid motions also don’t produce a “deformed” surface,

we subtract 3 more dimensions for the dimension of SO(3). �

Resolving Conjecture 6.1 (either positively or negatively) would have interesting conse-

quences. If answered positively, then we know that the maximal dimension can be achieved

(by Meeks’ family). If answered negatively, it seems that the hunt would be on for an

example of a deformation that leaves the lattice invariant.

106
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6.0.4. Dimension of a family of gyroids. Since the gyroid is not in Meeks’ family,

we are not automatically given a 5-parameter deformation of the gyroid. This dissertation

proves the existence of two, 1-parameter families of minimal surfaces which contains the

gyroid. What size of a gyroid family can we expect? More precisely,

Question 6.3. Let F be a maximal continuous family of embedded, triply periodic min-

imal surfaces of genus 3 that contains the (standard) gyroid. What is the real dimension of

F?

It is not entirely clear what the dimension should be. On the one hand, the gyroid is very

much like the P surface. More precisely, the P surface is a volume-preserving stable (v.p.

stable) minimal surface [Ros92]. (Loosely, a triply periodic minimal surface M ⊂ R3 with

lattice Λ is v.p. stable if the second derivative of the area functional is nonnegative over all

compactly supported variations of M that preserve the volume enclosed by M/Λ ⊂ R3/Λ.)

Furthermore, Ross mentions that all sufficiently close deformations of the P surface in the

Meeks family are v.p. stable. The gyroid is also v.p. stable [Ros92, GBW96]. Since notions

are stability are often connected to a certain amount of non-degeneracy, it’s tempting to

propose that the full dimension of gyroids is equal to that for the P surface. (By the

discussion of the previous subsection, we expect that dimension to be 5.)

It bears mentioning here that the Meeks family relies on an underlying symmetry of

all the surfaces in the family: their Gauß maps are branched over antipodal points of the

sphere. This “hidden symmetry” is an essential ingredient in his proof. He further requires

that the angle of association is either 0 or π
2 — a condition that does not hold for the gyroid.

One approach to producing a 5-parameter family of gyroid surfaces is to find a different

“hidden symmetry” — some relation or condition or property that all surfaces share that

is not induced by a symmetry of the surfaces; one could not require the angle of association

assumption here. The 1-parameter continua of examples that contain the gyroid permit

a detailed study of their properties, which may point to other methods for enlarging the

dimension of the family. Likewise, we do not know the answer to the following question:
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Question 6.4. Do there exist genus three triply periodic minimal surfaces whose Weier-

straß points on the sphere are not pairwise antipodal?

It could be that members of our tG family do not have pairwise antipodal Weierstraß

points; further investigation is warranted.

On the other hand, this author finds the gyroid to be, qualitatively, quite different that

other surfaces. The additional requirements enforced by the non-trivial angle of association

are often quite miraculously compatible; nonetheless, the tori are not symmetric. The

presence of the glide reflection when assembling these surfaces is an additional different

ingredient. Any knowledge of the dimension of the space would be beneficial.

6.0.5. Quotients which are rhombic tori. In the examples in Chapter 4, we took

the quotient of the P and H surfaces by a rotational symmetry and obtained a rectangular

torus. (Recall that the presence of reflectional symmetries with disconnected fixed point

set implies that the torus is rectangular.) The following two examples indicate that certain

highly symmetric surfaces can admit quotients which are instead rhombic tori.

6.0.5.1. The P surface from an alternate order 2 rotation. We previously considered

the P surface from the point of view of being invariant by an order 2 symmetry where the

symmetry was rotation about a line through opposite handles (as point sets in space, the

axis of rotation was disjoint from the surface). The P surface, and in fact every member

of the tP family, admit an additional order 2 symmetry. Consider the adjacent handles of

the same size on a surface M ∈ tP . The handles are joined by a planar symmetry curve,

as are the opposite two handles. The line connecting the midpoints of these two curves is

the axis of rotation for the new symmetry we consider. (Alternatively, one can view the P

surface as being generated by “square catenoids”. This symmetry axis is perpendicular to

the axis of the catenoid and intersects the “waist”. We denote this symmetry by ρ∗2.

The fixed points of this map are again those points with vertical normal; there are

four fixed points (which are distinct from the previous fixed points for the order 2 rotation).

Interestingly, none of the points are at the same height — thus, on the quotient torus no two

branch points lie on a vertical line segment. Most importantly, when we consider the fixed
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point set obtained by reflection in a vertical plane, we see that it has only one component.

Therefore, the quotient surface P/Λ/ρ∗2 is a rhombic torus. The dh flat structure is oriented

so that the diagonals of the rhombus are vertical and horizontal.

To our knowledge, minimal surfaces whose quotients are rhombic tori have not been

studied in the literature. The flat structure method employed to construct the families

in this dissertation should apply immediately to the study of these rhombic tori. (The

branch points lie on the real line in the dh flat structure, so the developed images of the

flat structures should be reasonable to understand.)

Furthermore, we can find the gyroid in this parameterization (since the standard P sur-

face can be parameterized this way, the gyroid can be parameterized by using the associate

family parameter).

Question 6.5. Can one construct a family of gyroids using this alternate order 2 rota-

tion? If so, is the family a previously discovered one? Does one obtain a P surface family

in this way? If so, is the family distinct from previously discovered P surface families? Is

it in Meeks’ family?

We know of no investigation of such surfaces, even in the physical chemistry / crystal-

lography literature.

6.0.5.2. The order 2 H surface. While we have already studied the H surface as a

surface invariant under an order 3 rotation (and have thus obtained the rH family), the

H surface also admits an order 2 rotation (in fact, every member of the rH family admits

this rotation). If we view the H surface as generated by “triangular catenoids”, then this

rotation interchanges the two triangles. The axis is the intersection of the vertical symmetry

plane and the horizontal symmetry plane that does not intersect the small “nearly circular”

handles.

There are again four fixed points1, and again none lie at the same height as another.2

The quotient is again a rhombic torus. Deformations under this parameterization (if they

1recall that any order 2 automorphism of a Riemann surface has exactly four fixed points
2This statement is true for all but a single member of the rH family. For this surface, two of the branch
points are at the same height.
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exist) would destroy the 3-fold symmetry of the H surface. We would expect the triangular

catenoids to no longer be equilateral, but rather “isosceles catenoids”.

We would be surprised if this deformation did not yield a family of Lidinoids that pre-

serve the two-fold symmetry. One can ask all of Question 6.5 in this context. Furthermore,

it seems that the conformal structure of these surfaces may be rather closely related to that

for the alternate order 2 P surface. If so, it could be worthwhile to investigate the presence

of deformations between the P and H surfaces.

6.0.6. Limits of the tG and other families. At present, our proof only guaran-

tees the existence of an analytic family of possibly small parameter space. A thorough

understanding of the moduli space for the tG family is a clear next step for investigation.

Optimistically, one expects that there exists a member of the tG family whose quotient

torus has generators 1 and τ with Im τ = a for all a ∈ R. Certainly, we expect the curve

(in the moduli space of quotient tori) that describes the tG family to be continuous and

complete.

Question 6.6. What properties does the moduli space of the tG family have? Is it

connected? Smooth? Monotone (in the upper half plane)?

We would find even numerical investigations interesting on this subject. Once the

moduli space is more clearly understood, we need to understand the limits of each family.

In the case of the tP , rPD, and rH families, we can see from the pictures pre-

sented that, in at least one of the limits, we should expect to obtain parallel planes joined

by small catenoidal necks. We would expect to be able to construct these families us-

ing Martin Traizet’s beautiful “opening nodes” technique for minimal surfaces, see, e.g.,

[Tra02, Tra06]. Note also that helicoids are forming in the “upper” limit of the rPD

family. One could optimistically hope for a more general existence theory by combining the

techniques of Traizet with those of Traizet and Weber by gluing in helicoids at sufficiently

“balanced” points, see, e.g., [TW05, Tra06].

More precisely, a program for obtaining a larger family of gyroids might be as follows.

First, understand clearly the limits of the tG family, in particular, understand where, in
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the limit, certain singularities (like catenoidal necks) form. Then, using this configuration

as a starting point, find a more general (hopefully, 1 or 2 parameter) family of balanced

configurations (see [Tra02]). Using Traizet’s technique, glue in catenoids using these con-

figurations, and finally solve the period problem using the implicit function theorem, to

obtain a larger family of gyroids. (We should mention that the use of the implicit function

theorem permits only the existence of a small family near these degenerate surfaces.)

6.0.7. Extension of the classification and size of families by removing hy-

pothesis. The overarching goal of any minimal surface program is to classify the surfaces

in some reasonable sense. Meeks’ family goes a long way towards understanding the theory

of genus three triply periodic minimal surfaces.

Goal 6.7. Make an exhaustive list of all genus three embedded triply periodic minimal

surfaces.

This is almost certainly too ambitious for the foreseeable future. An example of what

we would expect to see here is that every genus three embedded triply periodic minimal

surface is a member of either the Meeks family, or a list of other families.

More reasonable would be an approach like that of Chapter 3:

Goal 6.8. To classify all embedded, genus 3, triply periodic minimal surfaces that admit

a given symmetry.

Here, finally, we can have hopes of making forward progress. For instance, our clas-

sification theorems (Theorem 3.11, 3.14, 3.15) classify all surfaces that satisfy restrictive

symmetry properties. (This theorem, recall, requires the presence of a rotational symmetry

so that the quotient is a torus, and the presence of at least two planes of symmetry.) Re-

moval of some of these symmetry conditions is likely possible. For instance, if we remove

the requirement on the planes of symmetry and instead require that the quotient torus

is rectangular, we obtain more freedom to vary the location of the branch points. Some

deformations are already known to exist in this setting.
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More generally, we would like to remove the requirement that the torus is rectangu-

lar. This is certainly an artificial assumption, as the gyroid family tG generally has non-

rectangular, non-rhombic tori as quotients. At the moment, we do not know how to deal

with generic tori unless the branch points are sufficiently symmetric (such as invariant under

−id). The current obstruction is that we need a canonical way to transfer the flat structure

induced on the torus to polygons in the plane. Under the −id identification, we can obtain

the polygon by cutting apart along the well-defined edges (shortest geodesics between cone

points) of the tetrahedron obtained by taking the quotient of the torus by −id.

Of course, it bears mentioning that we have no reason to think minimal surfaces must

have symmetries. (For the non-triply periodic case, see [Tra02]).

Question 6.9. Does there exist an embedded triply periodic minimal surface of genus

3 with no symmetries?

6.0.8. Higher genus minimal surfaces. Finally, we must not fail to mention that

throughout this work, we have considered only genus 3 surfaces: the topologically most

simple case. There is a wealth of genus 4 and higher examples about which very little is

known. For example:

Question 6.10. What genus 4 embedded triply periodic minimal surfaces admit contin-

uous deformations? What can we say about a classification of genus 4 surfaces?

Frequently, one uses the hyperellipticity of genus 3 surfaces as a tool in proving theorems.

However, a result of Meeks’ shows that a genus 4 triply periodic minimal surface is never

periodic:

Theorem 6.11 ([Mee90], Theorem 3.3). A hyperelliptic surface of even genus is never

periodic.

This is at least one reason why these higher genus surfaces have been poorly studied.

The flat structure methods used in this work do not rely on the hyperelliptic structure. We

expect them to generalize to genus four surfaces.



APPENDIX A

Calculation of ρ and τ for the Schwarz P surface

A.1. Calculation of ρ

In Section 4.1, we showed that ρ could be calculated two different ways. Firstly, we

want to normalize the flat structures, that is, we need ρ = 1/(r1e
iφ1). It is possible in our

case to explicitly calculate r1, φ1.

r1e
iφi = G2(z +

1
2
)
/ 1

G2
(z)(A.1)

=
θ11(z + 1

2 , τ) θ11(z + 1
2 −

τ
2 , τ)

θ11(z + 1
2 −

1
2 , τ) θ11(z + 1

2 −
1+τ
2 , τ)

·
θ11(z, τ) θ11(z − τ

2 , τ)
θ11(z − 1

2 , τ) θ11(z − 1+τ
2 , τ)

(A.2)

=
θ11(z + 1

2 , τ) θ11(z + 1
2 −

τ
2 , τ)

�����θ11(z, τ)
�������
θ11(z − τ

2 , τ)
· �����θ11(z, τ)

�������
θ11(z − τ

2 , τ)
θ11(z − 1

2 , τ) θ11(z − 1+τ
2 , τ)

(A.3)

=
θ11(z + 1

2 , τ) θ11(z + 1
2 −

τ
2 , τ)

1
· 1
θ11(z + 1

2 , τ) θ11(z + 1−τ
2 , τ)

(A.4)

= 1(A.5)

(The second to last line is a consequence of the periodicity in the real direction.)

The second way in which we can calculate ρ is using the horizontal symmetry. Since

the vertical line on the torus L = {z ∈ C | Re (z) = 1
4} corresponds to a horizontal planar

symmetry curve on P , the Gauß map satisfies

(A.6) |G(z)| = 1 ∀z ∈ L.

Recall that we have defined the Gauß map as

(4.1) G2(z) := ρ
θ11(z, ai) θ11(z − ai, ai)

θ11(z − 1
2 , ai) θ11(z − 1+ai

2 , ai)

Lemma A.1. Equation A.6 is satisfied when ρ = 1.

113



A. CALCULATION OF ρ AND τ FOR THE SCHWARZ P SURFACE 114

Proof. Let 0 ≤ s ≤ Im (τ) = a. Since

(A.7) G2

(
1
4

+ si

)
= ρ

θ11

(
1
4 + si, τ

)
θ11(1

4 −
τ
2 , τ)

θ11(−1
4 + si, τ) θ11(−1

4 + si− τ
2 , τ)

,

it suffices to show that

(A.8)
∣∣∣∣θ(1

4
+ si, τ

)∣∣∣∣ =
∣∣∣∣θ(− 1

4
+ si, τ

)∣∣∣∣
(we will roll τ

2 , when present, into s since τ ∈ iR). Notice that this relationship holds only

for rectangular tori.

We first calculate θ(1
4 + si, τ) from the definition.

θ
(1

4
+ si, τ

)
= eπi τ

4
+π

(
1
4
+si+ 1

2

)
θ0,0

(1
4

+ si +
1
2

+
τ

2

)
(A.9)

= eπi τ
4
+πi

(
1
4
+si+ 1

2

) ∑
j∈Z

eπij2τe2πij
(
si+ 1

2
+ τ

2

)
e2πij 1

4(A.10)

= c1

∑
j∈Z

eπij2τe2πij
(
si+ 1

2
+ τ

2

)
e2πij 1

4(A.11)

On the other hand,

θ
(
−1

4
+ si, τ

)
= eπi τ

4
+π

(
− 1

4
+si+ 1

2

)
θ0,0

(
−1

4
+ si +

1
2

+
τ

2

)
(A.12)

= eπi τ
4
+πi

(
− 1

4
+si+ 1

2

) ∑
j∈Z

eπij2τe2πij
(
si+ 1

2
+ τ

2

)
e−2πij 1

4(A.13)

= c2

∑
j∈Z

eπij2τe2πij
(
si+ 1

2
+ τ

2

)
e−2πij 1

4 .(A.14)

Now, notice that the final sums in each of A.11 and A.14 are conjugate; since τ ∈ iR

the only imaginary term in the sum of Equation A.14 is

e−2πij 1
4 .

It remains only to show that the constant terms have the same norms:

c1 = eπi τ
4
+πi

(
1
4
+si+ 1

2

)
(A.15)

= ei π
2 eπi τ

4
+πi

(
− 1

4
+si+ 1

2

)
(A.16)

= ei π
2 c2.(A.17)
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Thus
∣∣θ(1

4 + si, τ
)∣∣ =

∣∣θ(− 1
4 + si, τ

)∣∣ and so |G(z)| = 1 on L. �

A.2. Calculation of τ

Here we explicitly calculate the value a (recall τ = ai) that yields the standard P surface.

The P surface is tiled by 8 regular right angled hexagons, as seen in Figure 1.2. We will

give an expression expression for the map 1-form dh using Schwarz-Christoffel maps.

By the Riemann Mapping Theorem, we can map the regular hexagon conformally to

the upper half plane with the vertices of the hexagon mapping to the real axis. Without

loss of generality, we map one vertex to 0, another to 1, and another to ∞. The other

points will be mapped to some a, b, c ∈ R. Since the hexagon is regular, there is a order 6

conformal automorphism of the hexagon that cyclically permutes the vertices. The action

descends to the upper half plane, so that the vertices must be arranged so that there exists a

Möbious transformation that cyclically permutes the vertices. To construct such a Möbious

transformation, we will require it maps 0 7→ 1, a 7→ ∞, and ∞ 7→ b. The transformation is:

b
z + 1
z − a

.

Notice that this automatically sends −1 7→ 0, so that c = −1. To determine values of a and

b, note that we must have b 7→ −1 and 1 7→ a giving us the pair of equations

b
b + 1
b− a

= −1(A.18)

2b

1− a
= a,(A.19)

the unique solution of which is a = 3, b = −3.

Using the Schwarz-Christoffel formula, we can parameterize a map from the upper half

plane with these marked vertices to the “hexagon”
∫

dh in the following way. The mapping

will be conformal up to the boundary where the normal on the surface is not vertical. Where

the normal is vertical, the mapping will be regular. The mapping then is:

(A.20) p 7→
∫ p

·
(u2 − 32)(−1/2)(u2 − 1)(−1/2)du
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This parameterizes one-quarter of (the developed
∫

dh image of) the torus. Since this

is sufficiently much to calculate the ratio of height to width, can compute that

(A.21) a · i =

∫ 3
1 (u2 − 32)(−1/2)(u2 − 1)(−1/2)du∫ 1
0 (u2 − 32)(−1/2)(u2 − 1)(−1/2)du

.

Mathematica is happy to generate good approximations to a:

a ≈ 0.7817009599368214.
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