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Abstract There is high-level political support for the use

of green infrastructure (GI) across Europe, to maintain

viable populations and to provide ecosystem services (ES).

Even though GI is inherently a spatial concept, the modern

tools for spatial planning have not been recognized, such as

in the recent European Environment Agency (EEA) report.

We outline a toolbox of methods useful for GI design that

explicitly accounts for biodiversity and ES. Data on species

occurrence, habitats, and environmental variables are

increasingly available via open-access internet platforms.

Such data can be synthesized by statistical species distri-

bution modeling, producing maps of biodiversity features.

These, together with maps of ES, can form the basis for GI

design. We argue that spatial conservation prioritization

(SCP) methods are effective tools for GI design, as the

overall SCP goal is cost-effective allocation of conservation

efforts. Corridors are currently promoted by the EEA as the

means for implementing GI design, but they typically target

the needs of only a subset of the regional species pool. SCP

methods would help to ensure that GI provides a balanced

solution for the requirements of many biodiversity features

(e.g., species, habitat types) and ES simultaneously in a cost-

effective manner. Such tools are necessary to make GI into

an operational concept for combating biodiversity loss and

promoting ES.
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The Need for Green Infrastructure

In many parts of the world, landscapes have become

fragmented by habitat loss, resulting in increased distances

between patches of semi-natural or natural habitats,

decreased population sizes, and loss of species (Hanski

2011). The European continent has suffered more human-

induced fragmentation than any other (Millennium

Ecosystem Assessment 2001). For example, only 15 % of

the forest species protected under the Habitats Directive

have a favorable conservation status (European Commis-

sion 2012a). Under these circumstances, the EU has

adopted a biodiversity strategy (European Commission

2012a) which includes targets to improve the conservation

status of species and to strengthen green infrastructure

within and across member states (European Commission

2012a).

There is a general agreement that green infrastructure

will maintain and restore ecosystems, depending on the
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spatial structure of the management units and their man-

agement intensity (European Commission 2012a). How-

ever, very different approaches have been used to

operationalize green infrastructure in land-use planning

(European Environment Agency 2014; Kopperoinen et al.

2014). In the US, large, contiguous blocks of ecologically

significant natural areas are linked with wide corridors to

create an interconnecting network of natural lands across

the landscape. For example, in Maryland, core forest areas

constituting [100 ha were planned to be linked with cor-

ridors at least 350 m wide (Weber et al. 2006). In the

fragmented continental Europe, green infrastructure has

been related either to fine-scale urban applications aiming

to identify corridors or biodiversity zones, or EU-scale

compilations of coarse-grained spatial information (Euro-

pean Environment Agency 2014; Pauleit et al. 2011).

According to the EU (European Commission 2012a),

green infrastructure has benefits beyond protecting biodi-

versity. It also promotes ecosystem services and the well-

being of people, and has been attributed a role in the

development of a green economy and sustainable land

management. Green infrastructure design projects should

thus also include ecosystem services representing different

socio-economic interests (Cimon-Morin et al. 2013;

European Environment Agency 2014; Kopperoinen et al.

2014; Maes et al. 2015) (Fig. 1).

Since green infrastructure is inherently a spatial concept,

it should involve bringing together spatially explicit data

and scientific spatial modeling and planning methods. We

here provide our view on how current emerging data

sources and scientific methods and concepts should be

adopted for integrated planning for green infrastructure that

accounts for biodiversity and ecosystem services. Notable,

the recent report by the European Environment Agency

(2014) about green infrastructure has not at all adopted the

extensive scientific advances on these methods.

Spatial Data and Models for Biodiversity
and Ecosystem Services

For spatially explicit planning for green infrastructure,

sufficiently accurate spatial data in relevant resolution are

needed. These must include spatial data on ecosystem ser-

vices and on the occurrence of multiple biodiversity features

such as species and habitat types. With respect to species, it

is well known that one taxonomic group is not necessarily a

good surrogate for another, and that using solely abiotic

environmental data to represent species distributions should

be avoided (Rodrigues and Brooks 2007; Arponen et al.

2008). Therefore, data from many taxa are needed.

Although survey data at different resolutions are com-

monly available for many different taxa, they have

limitations for detailed regional and local-level planning.

For example, these types of data are often available on too

coarse a scale (e.g., 10 9 10 km). Moreover, large-scale,

high-resolution, and systematic observational data are

typically lacking (e.g., for species that are listed in the

Habitats Directive of the European Union).

Other types of species data are increasingly available.

Species records from private or public natural history

collections, check lists, inventories, and opportunistic

sightings are now available on open-access websites, e.g.,

www.gbif.org or www.artportalen.se. The more recent

Fig. 1 An approach for the design of green infrastructure. The first

step is to gather data on occurrence of biodiversity features, including

species, habitats, and ecosystem services (e.g., measured on national

forest inventory plots). Second, gather predictor variables that are

hypothesized to explain the distributions of the focal features. Third,

model and predict the distribution of the features. Fourth, conduct

spatial conservation prioritization using the model-predicted species

and ecosystem service features in the same analysis. This optimiza-

tion of the landscape from the perspective of species persistence and

ecosystem service delivery may assume or ignore restricted species

dispersal ranges
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records are often contributed by amateur observers (vol-

unteers) therefore termed Citizen Science Data (CSD,

Fig. 1, Schmeller et al. 2009; Silvertown 2009). These

contributions are facilitated by the proliferation of hand-

held mobile devices (Teacher et al. 2013). Limitations of

these data are well known, but they also have the potential

to be useful (Yoccoz et al. 2001; Graham et al. 2004; Kery

et al. 2010; Snäll et al. 2011).

Statistical species distribution models (SDMs) are rou-

tinely used to combine species and environmental data and

provide continuous mapped predictions of habitat suit-

ability (Elith and Franklin 2013 and Fig. 1). Diverse

environmental variables can be used as predictor variables,

and modeling methods are under continual development

and include recent innovations that allow modelers to

combine both survey data and opportunistically collected

records (Dorazio 2014; Fithian et al. 2014).

In addition to species distributions, other kinds of data

are relevant for the biodiversity component of green

infrastructure. Distributions of habitat types can be mod-

eled using a range of methods (Ferrier and Guisan 2006).

Habitat mapping is also often based on interpretation of

satellite imagery—for instance, see the Corine Land Cover

mapping in Europe (http://www.epa.ie/soilandbiodiversity/

soils/land/corine/). Mapped data on ecosystem services are

also becoming increasingly available. The European

Commission currently supports an online platform aiming

at facilitating the sharing of ecosystem service maps and

mapping methodologies (esp-mapping.net/), as part of the

ongoing Mapping and Assessment of Ecosystems and their

Services (MAES, Maes et al. 2014), which is one of the key

actions of the EU biodiversity strategy (European Com-

mission 2012a). Information about land-use patterns and

publicly available interpretations of satellite imaging can

also be used for developing regional maps of ecosystem

services (Mulligan 2014; Kopperoinen et al. 2014; Snäll

et al. 2014). Overlay analyses using Geographic Informa-

tion Systems (GIS) have revealed that different parts of a

landscape may be suitable for different bundles of

ecosystem services (Raudsepp-Hearne et al. 2010). How-

ever, a key component of planning for green infrastructure

or ecosystem services is to account for trade-offs and

synergies among multiple ecosystem services in a spatially

explicit context. It is not straightforward to do this solely

by overlaying layers using a GIS (Bennett et al. 2009; Egoh

et al. 2010; Reyers et al. 2012).

Spatial Conservation Prioritization

During the last 20 years, there has been a strong method-

ological development of spatial conservation prioritization

(SCP), which is a sub-discipline of conservation biology

that uses computational methods and decision analysis in

the allocation of protection or other conservation actions

(Moilanen et al. 2009; Kukkala and Moilanen 2013). SCP

can be utilized within the broader operational model of

systematic conservation planning, which involves a set of

steps for the engagement of stakeholders, data collection,

target setting, analysis, and implementation of conservation

(Margules and Sarkar 2007; Pressey and Botrill 2008).

Since these steps are also key to green infrastructure

design, SCP is a natural fit for the latter.

In SPC, the conservation priority of a spatial unit (raster

cell, patch, etc.) is typically influenced by observed or

model-predicted occurrences of biodiversity features,

including species, habitat types, ecosystems, or ecosystem

services (Kullberg and Moilanen 2014). Also relevant are

costs, opportunity costs, alternative land-use needs, land

ownership, and other types of (spatial) restrictions on the

conservation solution. The priority of a spatial unit typi-

cally depends on the spatial configuration and connectivity

of the landscape. The overall aim of these analyses often is

to identify landscape structures that protect biodiversity

locally and also facilitate landscape-level long-term-per-

sistence of species.

SCP is well known for allowing users to identify valu-

able trade-offs and synergies between biodiversity and

ecosystem services (Chan et al. 2006, 2011; Moilanen et al.

2011). More specifically, an initial step of SCP analysis is

to give relative weights to the features accounted for, and

these weights are used in the landscape optimization pro-

cedure. Weights have potentially large effects on the SCP

solution (e.g., Moilanen et al. 2011) and it is therefore

important to include experts and stakeholders regarding

biodiversity and ecosystem services in green infrastructure

design.

Connectivity and Green Infrastructure: Corridors
only a Partial Answer

Structurally continuous corridors are perhaps the most

obvious means to connect green infrastructure throughout

the landscape (Williams et al. 2005; Weber et al. 2006;

Gilbert-Norton et al. 2010), as promoted by the European

Environment Agency (2014). Corridors may be useful both

at fine resolution to prescribe site-specific interventions,

and at the coarse resolution, to maintain and facilitate

movement, gene flow, range shifts, and other ecological

and evolutionary processes that require large areas (Beier

et al. 2011). In recent years, there has been strong emphasis

on making corridors span environmental gradients to

ensure that species can shift range distributions following

climate change (e.g., Killeen and Solorzano 2008; Ber-

nazzani et al. 2012). Also habitat restoration may be
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targeted within corridors (Rathore et al. 2012). Summa-

rizing a large number of studies in a meta-analysis, Gilbert-

Norton et al. (2010) recently found strong evidence that

corridors increased movement between habitat patches by

approximately 50 % compared to patches not connected

with corridors, though the effect varied with distance

between patches and taxa under consideration. They also

found that natural corridors (those existing in landscapes

prior to the study) enabled more movement than manipu-

lated/restored corridors created for the purpose of the

study.

Arguably, there are five issues that somewhat complicate

the sole use of corridors for designing green infrastructure.

First, many methods for corridor design rely on specification

of resistance values to land cover types and subsequent

analysis using least cost paths (LCP) or their multi-path

extensions (e.g., Carroll et al. 2012; Rathore et al. 2012;

Pinto et al. 2012; European Environment Agency 2014). It is

a general problem associated with LCP analysis that the

outcome can be highly sensitive to resistance values (Koen

et al. 2012). Second, the resistance values are specific to a

single species or a small group of species, which does not

align well with an objective of designing green infrastruc-

ture for the benefit of all biodiversity and ecosystem ser-

vices. Third, as a less significant constraint, corridor design

methods typically require the end points of corridors to be

specified a priori. Fourth, not all species or environments

require structurally continuous connectivity such as wind-

dispersed species for which other connectivity measures are

more appropriate (e.g., Snäll et al. 2003). Fifth, sometimes

corridors can act as attractive sinks that draw individuals

away from breeding habitat into dispersal habitat, possibly

even slowing down dispersal rates between habitat patches

(Ovaskainen et al. 2008). This makes it clear that care needs

to be practiced and experts need to be involved to make sure

that corridor solutions are ecologically realistic, feasible,

and advisable. As already stressed by Noss (1992), we

should not allow corridors to substitute for the protection of

large, intact core reserves or to divert attention from

managing the landscape as a whole in an ecologically

responsible manner.

The Benefit of Spatial Conservation Prioritization
for Green Infrastructure Design

Spatially explicit approaches are needed in the design of

green infrastructure, because only they can support land

managers’ decisions in real-world situations at the opera-

tional level (e.g., Millennium Assessment 2005). As

detailed earlier, data and methods are available for pre-

dicting or mapping biodiversity features. Computational

capacity for combining high-resolution SDM and SCP has

been available for close to a decade now, following the

development of tools such as Marxan or Zonation (Ball and

Possingham 2000; Lehtomäki and Moilanen 2013 for

recent references). Even though the European Commission

(2012b) noted the potential for combining SDMs and SCP

methods in the context of green infrastructure, applications

are still lacking. The most recent approaches have been

more conventional overlay analyses combining GIS data

on, e.g., biodiversity occurrences and ecosystem services

(Andersson et al. 2013; European Environment Agency

2014).

Maintaining ecosystem services is an additional goal of

the EU (European Commission 2012a), and indeed,

accounting for costs and human needs in SCP is usually

essential for successful implementation (Pressey and Bot-

trill 2008; Cimon-Morin et al. 2013). As we have descri-

bed, it is technically straightforward to integrate the

increasingly available model-predicted ecosystem services

(Maes et al. 2014) in the planning of green infrastructure

using SCP methods (Chan et al. 2006; Moilanen et al.

2011). A key component of this SCP work will be to decide

on the relative weights of, and trade-offs between biodi-

versity features and ecosystem services. For example, in

Fennoscandia, there is a key trade-off between biodiversity

and wood products, which are extracted on approximately

95 % of the productive forest land and is the main reason

why many forest-dwelling species need a green infras-

tructure (Gärdenfors 2010). Biofuels are a particularly

noteworthy type of resource use. Increased biofuel usage is

promoted by the EU parliament with the goal to reduce the

fossil carbon emissions (European Commission 2009).

However, increased extraction of biofuel from the forest

landscapes in the form of logging residues and stumps,

which may provide habitats for red-listed species depen-

dent on dead wood, may decrease the possibility to

improve the conservation status of species in accordance

with the EU biodiversity strategy (European Commission

2012a). Clearly, compromises will be needed when

matching the needs of biodiversity, ecosystem services,

and natural resource exploitation.

Although our view is that establishing large-scale cor-

ridors is not the key approach for green infrastructure

design, also this can be achieved in the context of SCP. At

simplest, one can develop the required corridors using any

external method, and the locations of those corridors are

then entered into SCP as a fixed part of the solution. Ideally

though, one should develop corridor-building methods that

simultaneously account for coverage of many biodiversity

features, connectivity, costs, and other relevant factors

(e.g., Rouget et al. 2006). To this effect, there have recently

been steps towards the explicit integration of corridor

building as part of the SCP process (Pouzols and Moilanen

2014).

Environmental Management

123



Finally, knowledge of different experts and stakeholders

regarding biodiversity and ecosystem services has a key

role in the planning of conservation management, including

design of the green infrastructure (Lehtomäki and Moila-

nen 2013). Combining qualitative information from experts

with quantitative data in spatial conservation prioritization

is not only required by the methods themselves, but also

facilitates the uptake of scientific information by intro-

ducing concepts of SCP and green infrastructure to various

stakeholders (Lehtomäki and Moilanen 2013; Kopperoinen

et al. 2014).

Conclusion

Green infrastructure design at different scales, from local

through national to the EU-scale, is a major challenge,

conceptually, in terms of data, and also in implementation.

Use of state-of-the art methods will improve confidence in

the quality of the outcome, thereby promoting public

acceptability and increasing the likelihood of successful

and well-balanced implementation (Possingham et al.

2006). Because green infrastructure by definition spans

large geographic areas, some type of coordinated effort is

needed in its design and implementation. Our view is that

computational methods for statistical species distribution

modeling, spatial conservation prioritization, and corridor

approaches all include features that should be useful in the

design of green infrastructure. Notably, these methods are

absent from the recent report about green infrastructure by

the European Environment Agency (2014). Development

and maintenance of openly available national-scale biodi-

versity data is invaluable for enabling high-quality spatial

planning for the benefit of the society at large, and thereby

for the achievement of the policy goals for halting biodi-

versity loss.
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