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Abstract
Inputs to sensory cortices are known to compete for target innervation through an activity-dependent mechanism during
critical periods. To investigate whether this principle also applies to association cortices such as the medial prefrontal cortex
(mPFC), we produced a bilateral lesion during early development to the ventral hippocampus (vHC), an input to the mPFC, and
analyzed the intensity of the projection from another input, the basolateral amgydala (BLA).We found that axons from the BLA
had a higher density of “en passant” boutons in themPFCof lesioned animals. Furthermore, the density of neurons labeledwith
retrograde tracers was increased, and neurons projecting from the BLA to themPFC showed increased expression of FosB. Since
neonatal ventral hippocampal lesion has been used as an animal model of schizophrenia, we investigated its effects on
behavior and found a negative correlation between the density of retrogradely labeled neurons in the BLA and the reduction of
the startle response in the prepulse inhibition test. Our results not only indicate that the inputs from the BLA and the vHC
compete for target innervation in the mPFC during postnatal development but also that subsequent abnormal rewiring might
underlie the pathophysiology of neuropsychiatric disorders such as schizophrenia.
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Introduction
The groundbreaking work of Hubel and Wiesel in the visual
cortex demonstrated that major input projections compete for
target innervation during critical periods through activity-
dependent plasticity (Hubel and Wiesel 1970). Further studies
have extended these principles to other sensory areas of the
brain such as the somatosensory (Van der Loos and Woolsey
1973) or the auditory cortices (Harrison et al. 1993). It remains un-
known whether this principle also applies to other higher cogni-
tive areas such as the medial prefrontal cortex (mPFC). However,
the presence of partially overlapping columnar-like structures in
the monkey frontal association cortex (Goldman-Rakic and
Schwartz 1982) suggests that competition for target innervation
might be a general principle of cortical organization.

While in the primary sensory areas, the information
input is well known and easy to experimentally manipulate
(monocular deprivation, whisker trimming, etc.), in higher
cognitive areas such as the mPFC multiple associative inputs
exist, making studying these same principles difficult. Never-
theless, several studies have reported in detail the input con-
nectivity of the mPFC (Gabbott et al. 1997, 2005; Hoover and
Vertes 2007). Two of the brain areas projecting to the mPFC
are the basolateral complex of the amygdala (BLA) and the
ventral part of the hippocampus (vHC). Both regions send
glutamatergic projections, which monosynaptically contact
both pyramidal neurons (Jay et al. 1989; Carr and Sesack
1996) and interneurons (Gabbott et al. 2002; Tierney et al.
2004) in the mPFC.
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The BLA is an important region for emotion-related behavior-
al phenotypes, and its role has been extensively studied in fear
conditioning, aggression and schizophrenia animal models
(Garcia et al. 1999; Laviolette et al. 2005; Sierra-Mercado et al.
2010; Toth et al. 2012). On the other hand, the vHC has been
linked to spatial learning and memory (Kjelstrup et al. 2008)
and emotional behaviors (Strange et al. 2014). In fact, its activity
has been suggested to disrupt fear expression behaviors (Sotres-
Bayon et al. 2012) and to promote extinction through context-
dependent learning (Corcoran et al. 2005; Ji and Maren 2007).

We hypothesize that pyramidal neurons in the mPFC
integrate these competing types of information, providing a
top-down control of spatial and affective processes (Ressler and
Mayberg 2007; Fuster 2009; Arnsten et al. 2012) in a similar fash-
ion as the visual cortex integrates information from left and right
eyes (Levelt and Hübener 2012): an activity-dependent competi-
tion for target innervation during a critical period, which would
shape mPFC connectivity.

To investigate this principle, we produced a lesion in the vHC
during early postnatal development and studied the effects on
the projection from the BLA to the mPFC in the adult brain. We
show that lesions in the vHC lead to a strengthening in the pro-
jection from the BLA to the mPFC, which is consistent with the
idea that projections from hippocampus and amygdala compete
for innervation in the prefrontal cortex. Finally, since this lesion
protocol has been considered as an animal model of schizophre-
nia (Lipska et al. 1993), these results suggest that the strength of
the projection from amygdala might underlie the pathophysi-
ology of this disorder. In fact, we found a negative correlation be-
tween the strength of the projection between from the BLA to the
mPFC and the reduction of the startle response, a sensorimotor-
gating test usually considered for evaluating schizophrenic-like
behaviors (Geyer et al. 2001).

Materials and Methods
Animals

A total of 32 Long-Evans rats were used for the study (n = 16).
A first generation of breeders were obtained from Harlan, and
theywere bred in ouranimal facility, where theyweremaintained
in standard conditions of light and temperature, with no limit in
the access to food and water. All experiments were conducted
according to the guidelines of the European Council Directive
(86/609/EEC) and were approved by the County Administrative
board of Southern Finland. Every effort was made to minimize
the number of animals used and their suffering.

Lesions in the vHC

At postnatal age of 7 days, pups were anesthetized using isoflur-
ane (induction with 4% and afterwards 1–1.5%) and then placed
in a stereotaxic frame. Then, we injected 0.3 µL of ibotenic acid
(10 µg/µL; Abcam) in the vHC: AP—3.0 mm and ML± 3.5 mm rela-
tive toBregma, andDV—5.0 mm, asdescribed by Lipska et al. 1993.
We injectedusing amicroinjector (Stoelting) at a rate of 0.15 µL/min
(2 min) and thenwaited 4 min before carefully lifting theHamilton
syringe. A similar number of pups from the same litter were dis-
tributed to either neonatal ventral hippocampal lesion (NVHL) or
control groups, which in turn were injected with phosphate-buf-
fered saline (PBS) as vehicle solution. A total of 16 pups from5 dif-
ferent litters were included in each group. Animals were weaned
at postnatal day 21 and were kept in groups of 3–4 animals per
cage. Handling of animals, apart from cage changes and surgical
procedures, was avoided.

Behavior

At postnatal day 70, animals were individually placed in 42 × 42 ×
31-cm behavioral chambers for 60 min (Accuscan activity moni-
tor, Columbus). The monitor contained 16 horizontal and
8 vertical infrared sensors spaced 2.5 cm apart. Locomotor activ-
ity was calculated using the number of beams broken by the ani-
mals after placement in the chamber. We measured the total
distance traveled over the 60 min in 5-min intervals. The data
were analyzed using repeated measures two-way ANOVA, being
time and the lesion the factors analyzed, followed by Sidak’s
multiple comparison test.

The next day, rats were placed in an elevated plus maze.
Themaze consisted of 2 open arms (50 × 10 cm) and 2 closed arms
(50 × 10 cm) connected by a central platform (10 × 10 cm) and ele-
vated 50 cm above the floor. The maze was made of gray plastic,
and the closed arms were surrounded by opaque side- and end-
walls (40 cmhigh). The roomwas illuminated byfluorescent ceiling
lights (∼100 lx). The rat was placed in the center of the maze facing
one of the enclosed arms and observed for 5 min. Behavior was
tracked and analyzed by Noldus EthoVision XT 10 system (Noldus
Information Technology). The latency to the first open arm entry,
number of open and closed arm entries (4-paw criterion), the
time spent and distance traveled in different zones of the maze
were measured. Data were analyzed using unpaired t-test.

Finally, due to the importance of sensorimotor gating as stand-
ard evaluation in animal models of schizophrenia, the next day
rats went through a prepulse inhibition (PPI) test: Rats were en-
closed in a transparent plastic tube (Ø 4.5 cm, length 8 cm) that
was placed in the startle chamber (Med Associates) with a back-
groundwhite noise of 65 dB and left undisturbed for 5 min. Testing
was performed in 12 blocks of 5 trials, and 5 trial types were ap-
plied. One trial type was a 40-ms, 120-dB white noise acoustic
startle stimulus (SS) presented alone. In the remaining 4 trial
types, the SS was preceded by the acoustic prepulse stimulus
(PPS). The 20-ms PPS were white noise bursts of 68, 72, 76 and
80 dB. The delay between onset of PPS and SS was 100 ms. The
1st and 12th block consisted of SS-alone trials. In remaining blocks,
the SS and PPS + SS trials were presented in pseudorandomized
order such that each trial type was presented once within a block
of 5 trials. The intertrial interval ranged between 10 and 20 s. The
startle response was recorded for 65 ms starting with the onset of
theSS. Themaximumstartle amplitude recordedduring the 65-ms
sampling windowwas used as the dependent variable. The startle
responsewas averaged over 10 trials fromblocks 2–11 for each trial
type. The PPI foreachPPSwascalculated byusing the following for-
mula: 100-[(startle responseonPPS + SS trials/startle responseonSS
trials) × 100]. Data were afterwards analyzed using unpaired t-test.

Tracing

Eight female rats (4 per group) were injected with an adeno-asso-
ciated virus (AAV6-CAG-EGFP; SignaGen) in the left hemisphere
2weeks before the first behavioral test. This viruswas used as an-
terograde tracer, since the axons of the infected neurons display
clear GFP expression in the axons. Animals were placed in a
stereotaxic frame under isoflurane anesthesia (4% induction,
2% surgery). Then, using a microinjector, we infused the virus
in the left BLA: AP—3.3 mm and ML + 2.0 mm relative to Bregma
and DV—8.5 mm with an angle of −19° relative to the brain
surface.

Sixteenmale rats (8 per group) were injected bilaterally with a
retrograde tracer (Retrobeads, Lumafluor) 3 days after the last be-
havioral test. Using amicroinjector, animals were intracerebrally
injected 1 µL of the tracer (rate of 0.2 µL per minute) in the
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prelimbic area (PrL) of the mPFC (mPFC): AP + 2.7 mm and ML ±
0.5 mm relative to Bregma and DV—3.6 mm relative to the brain
surface. However, since our injections covered also partially the
infralimbic (IL) area, we will consider the injections to be located
in the IL/PrL region.

Perfusion

Four days after the injection of the retrograde tracer (1 week after
the last behavioral experiment), animals were perfused transcar-
dially under deep pentobarbital anesthesia, first with saline and
then with PFA 4% in PB 0.1 . After perfusion brains were ex-
tracted and postfixed in the same fixative solution for 2 h and
then stored in PB 0.1 m with sodium azide 0.05%. Then, brains
were cut into 60-µm sections using a vibratome (VT 1000E,
Leica). Sections were collected in 7 subseries and stored at 4°C
in PB 0.1 m and sodium azide. Sections were then washed in PB
0.1 m and mounted on slides and coverslipped using fluores-
cence mounting medium with DAPI (Fluoroshield, Abcam).

Immunohistochemistry

Tissue was processed free-floating for fluorescence immunohis-
tochemistry. Sections were washed in PBS, and then slices were
incubated in 10% normal goat serum (NGS; Gibco), 0.2% Triton
X-100 (Sigma) in PBS for 1 h. Sections were then incubated for
48 h at 4°C with different cocktails containing combinations of
the following primary antibodies: IgG mouse anti-CAMKII (1:500
dilution; Millipore), IgG rabbit anti-PV (1:2000; Swant), IgG rabitt
anti-FosB (1:500; Santa Cruz), and IgY chicken anti-GFP (1:1000;
Abcam) antibodies diluted in PBS 0.2% Triton X-100. After wash-
ing again, sections of animals were incubated for 2 h at room
temperature with cocktail containing different secondary anti-
bodies: anti-mouse conjugatedwith Alexa 647, anti-rabbit conju-
gated with Alexa 546 or Alexa 488, and anti-chicken conjugated
with A488 antibodies (1:200; Life Technologies). Finally, sections
were washed in PB 0.1 m, mounted on slides, and coverslipped
using fluorescence mounting medium (Dako).

Imaging

WeusedDAPI to precisely define the cytoarchitecture of the brain
parenchyma and to determine the extent of the lesion in the vHC

and the location of the BLA and the mPFC. Only animals with a
complete lesion of the vHC and comparable tracer injections
were used for the study (with the retrograde tracer n = 8NVHL an-
imals and 5 for the control group and with the anterograde virus
3 each group).

Retrograde labeling in the amygdala was analyzed using
images taken at 400× magnification (Olympus BX41) where the
number of tagged neurons containing the Retrobeads was
counted and comparedusing unpaired t-test. For the anterograde
labeling from the amygdala, 2/3 different sections (from AP +2.2
to +3.2 mm relative to Bregma) in the mPFC were analyzed. Two
stacks per section were obtained at high magnification and then
axons longer than 60 µm (up to 180 µm; average axonal length
analyzed per animal in IL and PrL was 110 and 120 µm, respect-
ively) and with clear fluorescencewere randomly selected within
the images; we counted the number of axonal boutons and ana-
lyzed it using unpaired t-test, using the number of axons as n.
Varicosities that were at least twice thicker and 3 times more in-
tensily fluorescent than the internodal segments were counted
as “en passant” boutons. A nonparametric Spearman correlation
analysis was used for the correlation between the density of
retrograde-labeled neurons and the reduction in the startle
response in the PPI.

For the FosB quantification, confocal stacks were obtained,
and then neurons located at the same depth of the section
were analyzed. We run a two-way ANOVA, the depth within
the tissue and lesions were the 2 factors analyzed. We found
that both factors were significant. These results show that
depth was an important factor to take into account as fluores-
cence decreases with the depth. Therefore, we performed
multiple comparison test with Sidak’s post hoc to compare
changes in fluorescence intensity at 3 different ranges of
depth (0–5, 6–10, and 11–15 µm). We found changes in the
comparison at the surface of the tissue (data shown). All ani-
mals were coded, and the code was not broken until the end
of the study.

Results
To create an imbalance between 2 inputs to the mPFC, we used
NVHLs and investigated the effects of this lesion to the innerv-
ation of the mPFC by neurons within the BLA. Injection of

Figure 1. Evaluation of the lesions and intracerebral injections. (A) Confocal plane of DAPI staining in animals injectedwith vehicle and ibotenic acid, showing the extent of
the lesion in the vHC. (B) Confocal plane showing eGFP expression in the basolateral amygdala 3 weeks after the injection with the virus. (C) Confocal plane showing the
injection site of the retrograde tracer (red retrobeads). Scale bar = 1 mm.
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ibotenic acid into the vHC of rats at postnatal day 7 produces a
substantial lesion within the vHC as observed in the adulthood
(Fig. 1A). NVHL paradigm has previously been used as an animal
model of schizophrenia, leading to a distinct phenotype showing
reduced anxiety and abnormalities in sensorimotor gating.
Therefore, we first studied behavioral consequences of NVHL to
validate our lesions.

In the elevated plus maze, we found a significant increase
in the number of entries in the open arms in the NVHL group
(P = 0.006; Fig. 2A). The latency time until the first entry in
the open arms was significantly reduced in the lesion animals
(P < 0.001; Fig. 2B). In addition, we observed an increase in the
total distance traveled of the lesion animals (P = 0.003; Fig. 2C).

These data are consistent with previous reports (Lipska et al.
1993; Sandner et al. 2011).

In the PPI test, also as previously reported (Lipska et al. 1995;
Le Pen and Moreau 2002), the NVHL group showed significantly
lower reduction in the amplitude of the startle response with
low-intensity prepulses (68 dB; P = 0.030; Fig. 2D). Finally, we
also studied locomotor activity and we did not find any signifi-
cant effect of NVHL (Fig. 2E).

Themain goal of this studywas to analyze the effect of a lesion
in the vHC on the intensity of the projection from the BLA to the
mPFC (mPFC). We injected an adeno-associated virus transfecting
the eGFP into the BLA (Fig. 1B) and analyzed the density of axonal
boutons in themPFC.We observed 2 clear bands of high density of
axons from that projection as described before (Gabbott et al.
2006), one at the Layer II and another at Layer V in both the IL
and PrL areas (Fig. 3A).We investigated the neurochemical pheno-
type of the neurons contacted by the axonal boutons from this
projection in both layer V (Fig. 3B) and Layer II (Fig. 3C). CAMKII-
expressing neurons (hash in Fig. 3B and C) appear to be the main
target of the axons projecting from the BLA. However, we also
found that parvalbumin (PV)-expressing interneurons in Layer V
(asterisk in Fig. 3B and C) are surrounded by overlapping axonal
boutons (Fig. 3B1), suggesting synaptic contacts whereas they
lack this apparent innervation in Layer II (Fig. 3C1).

We observed that animals with the lesion had an increased
density of boutons in the axons from the BLA reaching the
Layer V of the PrL cortex (P = 0.015; Fig. 4C) whereas interestingly,
the opposite was found in the same layer of the IL cortex, with a
significant reduction in the density of axonal boutons (P = 0.005;
Fig. 4D). When we then analyzed the connectivity of projections
from the amygdala reaching Layer II in both PrL and IL, we found
a significant increase in the density of axonal boutons from the
BLA in both of these prefrontal cortical areas (P = 0.013 and
0.034, respectively).

To investigate whether neuronal activity might be increased
in the BLA neurons projecting to the mPFC in the NVHL rats, we
analyzed the intensity of FosB expression, a long-term activity
marker (Gabbott et al. 2005; Hale et al. 2008; Marchant et al.
2010, 2014; Vázquez-Borsetti et al. 2011) in the BLA. We show
that in NVHL animals, neurons projecting to the mPFC, labeled
with the retrograde tracers, showed increased FosB expression
(P = 0.011; Fig. 5C) when compared with neurons in the amygdala
of control rats.

As another indicator of the strength of the projection, we
studied the density of neurons in the BLA tagged with a retro-
grade tracer injected in the mPFC (Fig. 1C). We observed that ani-
mals from the NVHL group (Fig. 5B) had a significantly higher
number of neurons tagged when compared with the control
group (P = 0.032; Fig. 5A and D). We also confirmed that the retro-
grade-labeled neurons in the BLA are excitatory neurons expres-
sing CAMKII (Fig. 5B1).

Finally, we investigated a possible correlation between the
performance of the animals in the PPI test, and the strength of
the amygdalar projection in animals injected with vehicle and
with ibotenic acid together. We found a significant negative cor-
relation between those factors: the stronger the intensity of the
amygdalar projection, the weaker the reduction of the startle
response (r =−0.610 and P = 0.030; Fig. 5E).

Discussion
In the present study, we demonstrate that a lesion in the vHC at
early postnatal life leads to an increased strength of the projec-
tion from the BLA to themPFC in terms of density of “en passant”

Figure 2.NVHL produces behavioral changes in the adulthood. (A) Graphs showing
the number of entries in the open arms, (B) the latency in seconds to the first entry
to the open arms, and (C) the distance traveled in centimeters in the elevated plus
maze. (D) Graphs showing the reduction of the startle response with a prepulse of
68 dB in the PPI test. (E) Graphs showing the ambulatory distance in the locomotor
activity cages (t1, t2, etc. stands for time periods of 5 mineach; RM two-wayANOVA
with Sidak’s multiple comparison test) (t-test; P-values: *<0.05, **<0.01, and
***<0.001). Bars represent means ± standard error of the mean (SEM), n = 15 for the
control group and 12 for the NVHL group (number of animals).
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Figure 3. Characterization of the projection from the BLA to the mPFC. (A) Low-magnification confocal image showing the axonal collaterals in the PrL region mainly
innervating Layers II and V. (B) Confocal plane showing the expression of eGFP in green, parvalbumin in red, and CAMKII in blue in Layer V and (C) Layer II of PrL.
(B1 and C1) Insets showing in detail a parvalbumin-expressing interneuron. Asterisks indicate the soma of PV interneurons (shown in B1 and C1). Hashes indicate
the soma of CAMKII neurons (shown in B2 and C2). Scale bar = 200 µm in A and 50 µm in B.

Figure 4.Analysis of the anterograde tracing. (A) Reconstruction of confocal planes showing differences in “en passant” boutons in axonal segments from the BLA (BLA) of
control andNVHL animals in Layer V of the PrL cortex and (B) IL cortex. (C) Graphs showing the density of axonal boutons per 10 µm in Layer V of PrL and (D) IL, and Layer II
of PrL (E) and IL (F). Bars represent means ± SEM, n = 9 for the control group and 15 for the NVHL group (number of axons). Scale bar = 10 µm (t-test; P-values: *<0.05 and
**<0.01).
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boutons of the axons, density of neurons taggedwith a retrograde
tracer and their expression levels of FosB. This lesion covers a
time-window that has been previously shown to be important
for the network plasticity involved in NVHL (Lee et al. 2012).

Activity-dependent competition for target innervation drives
the connectivity and structure of sensory areas in the neocortex
during sensitive periods (Fox 1992; Berardi et al. 2000; Hensch
2004). In primary sensory cortices, producing an imbalance of in-
puts is experimentally easy (whisker trimming, eyelid suture,
etc.). However, in the present study, we investigate whether
that same principle also applies in higher cognitive areas such
as the mPFC. In order to weaken one of the inputs of the Mpfc,
we performed a lesion in the vHC during early development
(Lipska et al. 1993, 1995).

The vHC sends glutamatergic projections to themPFC, provid-
ing spatial and sensory information to that region (Sotres-Bayon
et al. 2012). These axon terminals are in close proximity to axon
terminals arising from the BLA (Bacon et al. 1996). Both projec-
tions have been reported to innervate both CAMKII-expressing
pyramidal neurons and PV-expressing interneurons, as we ob-
serve here in our study (Carr and Sesack 1996; Gabbott et al.
2002, 2006). Therefore, the same neurons in themPFC could inte-
grate spatial information provided by the hippocampus (Spell-
man et al. 2015) and emotional information from the amygdala
(Senn et al. 2014) as competing inputs for subsequent cortical
and subcortical processing.

To test the hypothesis that projections from the vHC and BLA
compete for innervation of the mPFC, we analyzed structural
changes in the projection from the BLA to mPFC in the NVHL
rats. We found an increase in the density of “en passant” boutons
in axons from the BLA projecting to the mPFC. As we show, these
axonsbelong toCAMKII-expressingneurons,whichuse glutamate
as their main neurotransmitter. Glutamatergic axonal boutons
are highly dynamic structures (Krueger et al. 2003; Darcy et al.
2006) responsible for excitatory synapses (Shepherd and Harris
1998; AndersonandMartin 2001) that contribute to the remodeling
of specific functional circuits in vivo (De Paola et al. 2006). There-
fore, changes in their size and density reflect changes in synaptic
activity (Schikorski and Stevens 1997; Murthy et al. 2001).

We analyzed the axonal boutons in 2 different areas of the
mPFC: the IL and the PrL cortex. In agreementwith previous stud-
ies, we show that the axons from the BLA innervate mainly
Layers II and V of both IL and PrL areas (Gabbott et al. 2006). We
found that NVHL produces an increase in axonal boutons in
Layer II of both PrL and IL. It also produces an increase in Layer
Vof the PrL. Interestingly, when comparingNVHL and control an-
imals, we observe an opposite effect in Layer V of the IL cortex: a
decrease in the density of axonal boutons. Previous studies have
shown that these 2 areas project to distinct populations within
the amygdala (Vertes 2004; Gabbott et al. 2005). These 2 regions
also play opposite functional roles: activation of PrL neurons in-
creases fear expression whereas activation of IL projection

Figure 5. Analysis of the retrograde tracing from themPFC. Confocal planes showing neurons labeled with red Retrobeads in the BLA of (A) control and (B) NVHL animals.
Insets showing representative confocal planes of FosB expression in neurons labeled with the retrobeads. (B1) Confocal plane showing the co-localization of parvalbumin
in green, CAMKII in blue, and the red Retrobeads in the BLA. (C) Graph showing the FosB fluorescence intensity in Control and NVHL animals. (D) Graph showing the
density of neurons per 0.2 mm2 labeled with the retrograde tracer in the BLA (t-test; P-values: *<0.05). Bars represent means ± SEM, n = 5 for the control group and 9 for
the NVHL group (number of animals). (E) Graph showing the correlation between the density of labeled neurons in the BLA and the reduction in the startle response
in the PPI test (Spearman correlation; r =−0.61 and P = 0.03). Scale bar = 100 µm.
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promotes extinction of fear (Vertes 2004; Gabbott et al. 2005; Gil-
martin andMcEchron 2005; Vidal-Gonzalez et al. 2006; Senn et al.
2014). Therefore, our results suggest that the opposite functional
role of PrL and IL is reflected in differential density of boutons
within the axons projecting from the BLA to specifically Layer V
of these areas.

Several studies have quantified projecting neurons using
retrograde tracers (Gabbott et al. 2005; Hale et al. 2008; Marchant
et al. 2010, 2014; Vázquez-Borsetti et al. 2011). In the present
study, we quantified and compared the intensity of the projec-
tion in terms of density of projecting neurons labeled with a
retrograde tracer (Retrobeads) in the BLA after injecting in the
IL/PrL cortex. In linewith the results of the density of axonal bou-
tons, we observed that NVHL animals have an increased density
of labeled neurons. These data are consistent with the idea that
the lesion leads to a disruption of the projection from the vHC
to the mPFC, allowing an increase in the intensity of the projec-
tion from the BLA due to reduced competition for target
innervation.

We further tested the hypothesis that synaptic activity of
BLA neurons projecting to the mPFC is increased in NVHL
rats, by using FosB as a marker of long-term activity (Hale
et al. 2008; Marchant et al. 2010, 2014). Indeed, our data con-
firmed such increased activity in the projection from the BLA,
showing that neurons from that region projecting to the mPFC
of NVHL animals had higher FosB expression levels than con-
trol animals did.

Previous studies have shown that this particular lesion proto-
col produces a distinct behavioral phenotype in terms of anxiety
and sensorimotor-gating tests (Lipska et al. 1995; Le Pen and Mo-
reau 2002). Here, we replicate those results that have indicated
that this protocol represents an animal model of schizophrenia
(Lipska et al. 1993, 1995). Therefore, the disrupted balance be-
tween different projections that we find in our results might be
the basis for at least some of the schizophrenic-like behaviors.
This hypothesis is supported by the fact that we observed a cor-
relation between the density of labeled neurons in the BLA and
the reduction in the startle response. However, other brain
areas projecting to themPFC, such as the ventromedial andmed-
iodorsal nuclei of the thalamus,might also compete for target in-
nervation in the mPFC and should be studied as well in order to
better understand the altered network configurations underlying
cognition and emotions (Mitchell 2015; Timbie and Barbas 2015).

Taken together, these results support the idea that projec-
tions from the BLA and the vHC compete for target innervation
in the mPFC through an activity-dependent mechanism during
a time-window of high plasticity, in a manner analogous to that
taking place in ocular dominance experiments in the visual cor-
tex (Hubel and Wiesel 1970). Moreover, alterations during such
sensitive period could lead to an abnormal network wiring,
which might underlie the pathophysiology of neuropsychiatric
disorders as schizophrenia.
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