
Identification of variant compositions in related strains with-
out reference

Mikko Rautiainen

Master’s thesis
UNIVERSITY OF HELSINKI
Department of Computer Science

Helsinki, December 28, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/33739589?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Faculty of Science Department of Computer Science

Mikko Rautiainen

Identification of variant compositions in related strains without reference

Computer Science

Master’s thesis December 28, 2015 28

Variant compositions, Haplotype assembly, Variant detection, Exponential time algorithms

The genomes of all animals, plants and fungi are organized into chromosomes, which
contain a sequence of the four nucleotides A, T, C and G. Chromosomes are further arranged
into homologous groups, where two or more chromosomes are almost exact copies of each
others. Species whose homologous groups contain pairs of chromosomes, such as humans, are
called diploid. Species with more than two chromosomes in a homologous group are called
polyploid.

DNA sequencing technologies do not read an entire chromosome from end to end. Instead,
the results of DNA sequencing are small sequences called reads or fragments. Due to the
difficulty of assembling the full genome from reads, a reference genome is not always available
for a species. For this reason, reference-free algorithms which do not use a reference genome
are useful for poorly understood genomes.

A common variation between the chromosomes in a homologous group is the single
nucleotide polymorhpism (SNP), where the sequences differ by exactly one nucleotide at a
location. Genomes are sometimes represented as a consensus sequence and a list of SNPs,
without information about which variants of a SNP belong in which chromosome. This
discards useful information about the genome.

Identification of variant compositions aims to correct this. A variant composition is an
assignment of the variants in a SNP to the chromosomes. Identification of variant compositions
is closely related to haplotype assembly, which aims to solve the sequences of an organism’s
chromosomes, and variant detection, which aims to solve the sequences of a population of
bacterial strains and their frequencies in the population.

This thesis extends an existing exact algorithm for haplotype assembly of diploid species
(Patterson et al, 2014) to the reference-free, polyploid case. Since haplotype assembly is
NP-hard, the algorithm’s time complexity is exponential to the maximum coverage of the
input. Coverage means the number of reads which cover a position in the genome. Lowering
the coverage of the input is necessary. Since the algorithm does not use a reference genome,
the reads must be ordered in some other way. Ordering reads is an NP-hard problem
and the technique of matrix banding (Junttila, PhD thesis, 2011) is used to approxiately
order the reads to lower coverage. Some heuristics are also presented for merging reads.
Experiments with simulated data show that the algorithm’s accuracy is promising. The source
code of the implementation and scripts for running the experiments are available online at
https://github.com/maickrau/haplotyper.
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1 Introduction
The DNA of all living beings is composed of the nucleotides A, T, C and G.
An organism’s genome is a sequence or sequences of these four letters. In
eukaryotic species, which includes all animals, plants and fungi, the genome
is composed of chromosomes, each of which is a sequence of nucleotides. The
chromosomes are further arranged into groups of homologous chromosomes,
where two or more chromosomes are almost exact copies of each others. For
example, humans’ genomes are arranged into pairs of homologous chromo-
somes, one of which is inherited from a person’s mother and the other from
the father. Species with pairs of homologous chromosomes are called diploid.
Species with groups of more than two homologous chromosomes, for example
some potato species which have groups of 3 or 4 chromosomes [Cor62], are
called polyploid. The sequence of a chromosome is called a haplotype sequence,
and a chromosome in a homologous group is sometimes called a haplotype.

Homologous chromosomes are typically very similar to each others with
minor variation. A common variation is the single nucleotide polymorphism
(SNP), where the haplotype sequences vary by exactly one nucleotide at some
location, either as a substitution, having a different letter in the chromosomes,
or indels (insertion-deletion), where a letter has been inserted or deleted
from one of the chromosomes. SNPs can be either heterozygous, where all of
the haplotypes have a different variant (nucleotide), or homozygous, where
some haplotypes have the same variant. Figure 1 shows an example of SNPs.
Two chromosomes from an organism are compared to a reference genome,
which is the sequnce of one of the chromosomes from some other individual
of the same species. The sequences have three SNPs. At the start there is a
heterozygous SNP with a substitution, at the middle there is a homozygous
SNP with substitutions, and at the end there is a heterozygous SNP with an
indel and a substitution.

haplotype 1 ACTAACGCTGAATGAGACTAGT
haplotype 2 ACTCACGCTGAATGAGAC - AGT
reference ACTAACGCAGAATGAGACGAGT

Figure 1: Heterozygous and homozygous SNPs

Assembling an organism’s full genome is usually an arduous task. Current
state-of-the-art sequencing technologies, called next-generation sequencing,
read many small fragments of an organism’s genome. The results of next-
generation sequencing are reads, also called fragments, short sequences of
DNA from anywhere in the organism’s genome. Reads only contain the DNA
that was sequenced, in particular a read does not contain the information
about where it was sequenced from. The length and accuracy of reads varies
based on the specific technology used; reads with a length of a few dozen base
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pairs are cheap, common and accurate. Recently technologies for cheaply
sequencing longer reads of thousands of base pairs have been published [SJ08]
[EFG+09] [FWL+10] but these technologies have higher error rates. Even at
these lengths, reads are tiny compared to their genomes; for comparison, the
human genome is billions of base pairs long.

Due to the difficulty of assembling a genome from sequenced reads, most
species lack a reference genome. A reference genome may also be incomplete
or otherwise unusable for various reasons. Polyploid genomes are in particular
more difficult to sequence than diploid sequences. Reference genomes also
may not contain the organism’s entire genome for homologous chromosomes.
Another similar case is a population of closely related bacteria. A reference
genome may not be available given the sheer amount of bacterial species.
For this reason, reference-free algorithms which do not require a reference
genome are useful for poorly understood genomes.

Since the chromosomes or strains are very similar, they can be represented
as one sequence and a list of positions where SNPs are found. Figure 2
shows an example of this. Two sequences have a common consensus with
two SNPs. However, the consensus does not tell whether the two A’s
belong in the same sequence or not. SNPs have different effects on an
organism’s phenotype depending on which other variants are found in the
same chromosome [SST+01] [TBT+11], thus having just a list of SNPs
misses phase information, which describes which variants occur in the same
chromosomes or strains.

A CT A
T ACGATGAGAC A

T AGT

Figure 2: A consensus sequence with SNPs

Identification of variant compositions aims to correct this. A variant
composition is an assignment of the variants to the chromosomes or strains,
with the goal of identifying which variants belong in which chromosomes or
strains. A closely related problem is haplotype assembly, which seeks to solve
an organism’s complete genome for each chromosome. The connection is
that both problems seek to conclusively assign reads into the chromosomes.
Another closely related problem is variant detection, which aims to solve
the sequences of related strains and their frequencies in a population. The
connection to variant detection is that the variant composition can be used
in solving the sequences.

The process of assigning the variants of a SNP to the chromosomes is
called phasing. This thesis generalizes an existing exact phasing algorithm
for diploid genomes [PMP+14] to the reference-free, polyploid case. The
phasing algorithm’s time and space complexities are both exponential to the
maximum coverage of the input. Coverage means the number of reads that
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cover a position. Figure 3 shows an example. The long, solid line represents
the actual genome, which is unknown, and the short solid lines represent the
reads and their location in the genome. The position at the first dashed line
has a coverage of three, since there are three reads that cover that position.
Similarly, the second dashed line has a coverage of five.

Figure 3: Coverage

Because the algorithm is exponential to coverage, reducing the coverage is
necessary. Since a reference genome is not used, the reads cannot be ordered
by aligning them to a reference genome. However, having the reads out
of order raises the coverage, so ordering them is necessary. The technique
of matrix banding [Jun11] is used to order the reads. After banding, some
heuristics are used to merge the reads to lower coverage. Typical values for
coverage after reduction are under 15, and the experiments use an input
coverage of 80 before reduction.

2 Previous work
Identification of variant compositions is closely related to the haplotype
assembly problem. Haplotype assembly seeks to solve the sequences of an
organism’s haplotype. The connection is that the variant composition is
a list of variants for each haplotype at the SNPs, which can be used to
calculate the haplotype sequences. Haplotype assembly problem has multiple
similar formulations [LSLI02]. These formulations are based on building a
haplotyping matrix, where the reads are rows and SNPs are columns, and
finding a way to partition the rows into chromosomes such that all reads in
a partition agree on the variant at each SNP. A haplotyping matrix does not
always have such a partition. In that case, the problem is finding a way to
modify the matrix the least to make such a partition possible. Lippert et al.
[LSLI02] suggest three formulations: the minimum fragment removal aims
to remove the least amount of reads, the minimum SNP removal aims to
remove the least amount of SNPs, and the minimum error correction aims to
flip the least amount of cells in the matrix. Greenberg et al. [GHL04] further
suggested the weighted minimum error correction, which is the minimum
error correction formulation extended such that flipping a cell can have a
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variable cost. Haplotype assembly is NP-hard both in general [LSLI02] and
also in the case when there are no gaps between reads [CvIKT05].

Identification of variant compositions is also related to variant detection.
Variant detection seeks to solve the quasispecies spectrum reconstruction
problem [ATM+11], which is reconstructing the sequences of the strains
in a population and their frequencies. The connection is that the variant
compositions can be used for the first part, reconstructing the sequences.
Algorithms for variant detection are available [PMAP13] [ATM+11] [JHJ08]
[ZBEB11].

Haplotype assembly for diploid organisms, organisms only having two
chromosomes, has many algorithms available, both exact [CDW13] [HCP+10]
[DCW13] [PMP+14] and probabilistic [BAMR13] [Kul14]. Solving the hap-
lotype assembly for polyploid organisms, organisms having more than two
chromosomes, is a more recent field of research. Both exact [NGB+08] [DV15]
and probabilistic algorithms [AI13] [BYPB14] [SWBC08] are available.

Deng et al. [DCW13] published in 2013 an exact algorithm for solving
the diploid haplotype assembly problem with the minimum error correction
formulation. The algorithm has a time complexity of O(|S|2CC) where |S|
is the number of SNPs and C is the maximum coverage. In 2014, Patterson
et al. [PMP+14] extended the algorithm to the weighted minimum error
correction formulation, and improved the time complexity to O(|S|2C−1).
This thesis further extends the algorithm to the polyploid case with a time
complexity of O(|S|C kC

k! ), where k is the number of chromosomes. The
algorithm uses only the reads and requires no reference genome.

For this implementation, the DiscoSNP program [URL+14] is used for
detecting SNPs from the reads. DiscoSNP works by building a de Bruijn
graph from the reads and finding the SNPs from it.

Since the algorithm does not use a reference genome, the locations of
the SNPs and reads are unknown. Matrix banding [Jun11] is used to find an
approximate ordering of the SNPs and reads.

3 Extending haplotyping to multiple strains
The pipeline is roughly divided into three stages. In the preprocessing stage,
a haplotyping matrix is built from the reads. The second stage manipulates
the haplotyping matrix to lower coverage. The third stage, the phasing stage,
assigns the reads into strains.

3.1 Preprocessing

The purpose of this stage is to produce the matrix used in the later parts of
the algorithm.

The first step for constructing the haplotyping matrix is to detect the
SNPs in the strains. The DiscoSNP [URL+14] program is used for SNP
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detection. DiscoSNP works by building a de Bruijn graph from the reads.
SNPs are detected by finding parts of the graph where a path branches to
two paths, which then join a short distance later. These paths are extended
forwards and backwards until the next extending node is ambiguous. The
output of DiscoSNP are pairs of sequences around the SNPs, which correspond
to the two paths in the graph.

The SNP sequences discovered by DiscoSNP are then matched with the
reads to produce a haplotyping matrix. The haplotyping matrix contains
the SNPs as columns, reads as rows, and the value of a cell is either the
read’s nucleotide at the SNP or a marker − that the read does not cover
that SNP. In the first case, the read is said to support a certain variant, that
is the nucleotide, at the SNP. The haplotyping matrix is then said to have a
variant at that cell.

The preprocessing also produces a weight matrix, which is similar to the
haplotyping matrix except the value determines how certain the nucleotide
is, with higher weights meaning more certain. The values are used in the
later stages. The values are initialized with 1 where the haplotyping matrix
has a variant and 0 otherwise.

Since the phasing algorithm’s time and space complexity are exponential
to coverage, it is necessary to reduce coverage before the algorithm can be
used. Two kinds of coverage are recognized. Essential coverage is coverage
where a read supports some variant for a SNP. Accidental coverage is coverage
where a read does not directly support a SNP, but supports SNPs both before
and after it. A read is said to either essentially cover or accidentally cover
a SNP in these cases. Figure 4 shows these coverages. SNP number 2 has
essential coverage 3, from reads 3, 5 and 6, and accidental coverage 2, from
reads 1 and 4. Essential coverage cannot be reduced by permuting the SNPs,
but accidental coverage can. Different strategies are used for the two kinds
of coverage.

1 2 3
1 A - T
2 - - G
3 - A T
4 A - G
5 - C G
6 T C -

Figure 4: Essential and accidental coverage

5



3.2 Reducing essential coverage

To reduce essential coverage, some supports must be removed. The program
does this by merging similar reads together. Reads are merged by a greedy
process. First, the SNP with the highest essential coverage is found. Then,
candidate reads for merging are those rows which essentially cover the SNP.
Two most similar candidate reads are merged to produce a merged read,
and the two original reads are discarded. This is repeated until essential
coverage is acceptably low. In the implementation, an essential coverage of
10 is considered acceptably low.

Distance between reads is given by the following equation where F is the
haplotyping matrix and W is the weight matrix:

dist(ri, rj) =
∑

x∈[1..|S|]


0 if F (i, x) = F (j, x),
W (i, x) +W (j, x) if F (i, x) = − xor F (j, x) = −,
2 ∗ (W (i, x) +W (j, x)) if F (i, x) 6= F (j, x)

In other words, SNP locations where the reads agree on a variant con-
tribute a distance of 0. Locations where one read has a variant but the other
doesn’t, contribute the weight of the support that has a variant. Locations
where the reads disagree contribute twice the weight of both supports.

Merging reads i and j produces a new read i′ with

W (i′, x) = W (i, x) +W (j, x)

F (i′, x) =
{
F (i, x) when W (i, x) > W (j, x)
F (j, x) otherwise

The resulting read has a variant in every SNP where either of the merged
reads had. The variant is taken from the read which has a higher weight at
that SNP.

Usually, the variants are equal, however they may not always be. This is
problematic since reads are merged two at a time, and the merging process
discards information about the lower-weight reads variants. When merging
multiple reads together, the final merged read’s variants depend on the order
in which the reads were merged.

The merging process’s accuracy depends greatly on read length. This is
elaborated further in the experiments section.

3.3 Reducing accidental coverage

The main approach to reducing accidental coverage is matrix banding. All of
the techniques used here are based on Junttila’s dissertation [Jun11]. The
haplotyping matrix is treated as a binary matrix, where cells that have a
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variant are 1, and cells without a variant are 0. The rows and columns
are then permutated to bring the ones together in the matrix. The same
permutation is also applied to the weight matrix. Figures 5 and 6 show
an example of a matrix before and after banding. Cells with a variant are
colored black, and cells without are white. The ideal output would be a solid
diagonal band.

Figure 5: A binary matrix before banding

Figure 6: A binary matrix after banding

For evaluating a banding’s score, the implementation uses a function
based on the total coverage of each SNP:

score(H) =
∑

i∈[1,|S|]
2coverage(i)

This score function is proportional to how much time and memory the
phasing algorithm needs to run on the matrix H with two strains. A lower
score corresponds to a shorter run time.

The first step of matrix banding finds an approximate consecutive-ones
property (C1P) on the haplotyping matrix. The C1P means that there
is a permutation of the matrix’s columns such that in any row, the ones
are in consecutive positions without zeroes between them. Depending on
the matrix, C1P may not always exist, and even when it does finding it is
NP-hard. The implementation uses spectral sorting to find an approximate
C1P. Spectral sorting works by building a distance matrix between each row,
finding the eigenvector associated with the second smallest eigenvalue of
the matrix, and sorting the columns based on the values of the eigenvector.
The solution depends on the row distance function used for building the
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distance matrix. The dissertation defines three functions, the dot product,
correlation similarity and Jaccard similarity. The implementation tries all
three measures and selects the best scoring result.

The second step of matrix banding uses barycentric sorting. For each row,
a centerpoint is calculated as the average position of the ones. The rows are
then sorted based on the centerpoints. The same operation is then performed
on the columns. This is repeated for a certain number of iterations and the
best iteration’s matrix is selected.

The last step in matrix banding uses simulated annealing. The imple-
mentation uses a different method for selecting a neighbor state than those
described in the dissertation. Since the energy function does not depend on
the order of the rows, only columns need to be considered in the neighbor
state selection. The implementation picks a small number of columns to
permutate. First, a starting column is picked either randomly or by selecting
the SNP with the highest coverage. Then, more columns are picked randomly.
After picking a column, there is a 20% chance of continuing, and an 80%
chance of picking another column. These probabilities were chosen somewhat
arbitrarily; probabilities of 10% and 30% continuation chance were tried but
there was no significant difference in their performance. After the columns
are selected, they are permutated randomly.

The second approach to reducing accidental coverage is removing outliers.
This approach is only used if matrix banding does not reduce accidental
coverage to an acceptably low level. To remove an outlier, the SNP with the
highest accidental coverage is found. Each row that accidentally covers the
SNP is a candidate for outlier removal. To make a read not accidentally cover
the SNP, all of its supports must be removed from either the left side or right
side of the SNP. The read with fewest supports in either side is picked, and
then those supports are removed from the haplotyping and weight matrices.
The implementation treats an accidental coverage of 10 as acceptably low.

Finally, after both essential and accidental coverage are reduced separately,
the total coverage might still be too high. In this case, rows are merged
from the SNP with the highest total coverage until total coverage is low
enough. The heuristic for selecting rows to merge is the same as when
reducing essential coverage, except all rows which cover a SNP are candidates
for merging instead of just those which essentially cover it. For the total
coverage, the implementation treats 14 as acceptably low.

3.4 Phasing

The phasing algorithm is a generalization of the algorithm by Patterson et
al [PMP+14]. The difference is that this algorithm works with an arbitrary
number of strains instead of two. The output of the phasing algorithm is an
assignment of the reads into the strains.

A partition is an assignment of the reads, or a subset of reads, to the
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strains. Partitions are stored as a partition vector, which describes for each
read either the strain where it is assigned, or a marker that this read is not
assigned to any strain. For example, {1,−, 2, 1, 3,−} is a partition of four
reads into three strains, where reads 1 and 4 are in the same strain and reads
2 and 6 are not assigned to any strain. The example partition is over reads 1,
3, 4, and 5. Representing the partitions this way simplifies some operations
in the algorithm.

The overlap of two partitions is the indices where they both have a value.
For example, the overlap of {1, 2, 2,−,−} and {−, 1, 2, 3, 3} is indices 2 and
3.

The unpermutated form of a partition P is marked as u(P ). The unper-
mutated form means that the strains are re-labeled according to the order in
which they appear in the partition vector. For example, the partition vector
{3, 1, 3, 2, 2, 1, 4} has the unpermutated form {1, 2, 1, 3, 3, 2, 4}.

This operation of re-labeling the strains is called a renumbering. A renum-
bering is a bijection of strain numbers. A renumbering vector describes how
the strains are re-labeled. Given an original partition P and a renumbering
vector R, the renumbered partition P ′ is given by

P ′i = RPi

The example mentioned above has a renumbering vector of {2, 3, 1, 4}.
For example, strain number 2 in the original partition is replaced with 3 in
the renumbered partition. Changing a partition to its unpermutated form is
one example of a renumbering but others are also used in the algorithm.

Two partitions are equivalent if and only if their unpermutated forms are
equal. This means that both partitions assign the reads into same sets. Only
partitions in the unpermutated form need to be considered in the algorithm
since all other partitions are permutations of some unpermutated form.

The set of active reads for a SNP is the reads that cover it, either
essentially or accidentally. The notation α(i) is used to represent active reads
for SNP number i.

The set of all partitions over a set of reads r is marked as Par(r). Note
that this set does not actually have all partitions, only all unpermutated
forms. This cuts the number of partitions from k|r| to k|r|

k! .
A partition P1 extends partition P2 if and only if their unpermutated

forms over the overlapping area are equal. The notation Ext(P1, P2) is used
to mark this. The set of partitions that extend a partition is said to be its
extensions.

A partition is said to be conflict-free if all reads in a strain assign the
same variant at each SNP. For example, the haplotyping matrix in figure 7
is conflict-free for the partition vector {1, 2, 1, 2}, but not for the partition
vector {1, 2, 2, 2}. In the conflicting example, the cell at read 3 and SNP 2 is
said to be in conflict since it is different from the consensus variant of strain
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2 for SNP 2.

1 2
1 C T
2 C C
3 C T
4 C C

Figure 7: A haplotyping matrix

In practice, the haplotyping matrix rarely has a conflict-free partition.
Instead, the algorithm finds the partition closest to a conflict-free partition,
with the distance being the total weight of the conflicting cells in the hap-
lotyping matrix. For a partition P , haplotyping matrix F , weight matrix
W , strain s, variant v ∈ {A, T,C,G}, and a SNP number i, define a cost
function

δ(P, s, v, i) =
∑

x|Pi=s∧F (x,i)6=v
W (x, i)

The function describes the cost for assigning the strain s to have variant
v at SNP i. Using this, define the partition cost function

∆(P, i) =
∑

s∈[1,k]
min

v∈{A,T,C,G}
δ(P, s, v, i)

as the cost of partition P at SNP i. This cost function means the minimum
cost to make the partition conflict-free. These functions are generalizations
of the cost functions described in [PMP+14], and are equal to them in the
case of two strains.

The algorithm is a dynamic programming algorithm that goes through
the SNPs one by one. The table C contains the best scores for a partition at
any SNP; element C(i, x) is the best score at SNP i for partition x. At the
first SNP, the table is initialized with

C(1, x) = ∆(x, 1),∀x ∈ Par(α(1))

At every SNP other than the first, the table is calculated by

C(i, x) = ∆(x, i) + min
y∈Par(α(i−1)),Ext(x,y)

C(i− 1, y)

This means that the value of the current partition is the cost for the
partition, plus the cost of the best-scoring partition of the previous SNP that
the current partition extends.

To get the final result, the table C can be backtraced and the partitions
at each SNP must be merged. However, the implementation does not actually
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get the result by backtracing; instead the optimal partition over all reads so
far is stored when going through the SNPs, and when moving to the next
SNP, the partitions at the current SNP are merged with the partitions over
all the reads so far.

When two partitions are merged, one of them must usually be renum-
bered. For example, the partition {−,−, 1, 2, 1, 1, 3} extends the partition
{1, 2, 3, 4, 3,−,−}, since the unpermutated form of the overlapping part is
{−,−, 1, 2, 1,−,−} for both partitions. The algorithm renumbers the right-
most partition to correspond to the leftmost partition’s strain numbers. The
renumbering vector is constructed by first assigning the overlapping part.
Having a left partition P , a right partition Q and a set of indices for the
overlapping part I, the renumbering vector R is given by the equation

RPx = Qx, x ∈ I

This equation only assigns the renumbering vector for the strains which
appear in the overlapping part. The equation works only when the two
partitions actually extend each others, otherwise it would produce more
than one value for some indices. Some indices may be left unassigned by
this equation. The remaining indices must be arbitrarily chosen to make
the renumbering vector a bijection. The implementation simply assigns the
remaining values in order. In the example above, the renumbering vector
would be {3, 4, 1, 2}. The values of the first two indices are determined by
the overlapping part, and the last two arbitrarily. The final merged partition
is then {1, 2, 3, 4, 3, 3, 1}. After the algorithm has passed through all SNPs,
the solution is the merged partition with the lowest score.

When some values of the renumbering vector are chosen arbitrarily, the
merged partition’s early reads and late reads are assigned essentially randomly.
The merged partition above could as well have been {1, 2, 3, 4, 3, 3, 2} and
the merging would still be consistent. This leads to the possibility that some
strains are swapped in the middle of the partition. The experiments section
measures how often this happens in practice.

Calculating the partition cost function δ directly from its equation would
take O(c) time, where c is the coverage at the current SNP, and ∆ would take
O(kc) time. However, two optimizations make it possible to do it faster. The
first optimization is to iterate through the partition only once, and calculate
δ for all strains simultaneously. This is done by keeping a two-dimensional
array x with size k ∗ 4 that keeps track of the cost for assigning a strain
to a nucleotide. At each read in the partition, the cost for the strain that
the read is assigned to is increased at the nucleotide the read has at that
position. For example, if read 5 is assigned to strain 2, and read 5 has the
nucleotide A at the current SNP, then the value at x2,A is increased by the
weight of the cell when the iteration handles read 5. The final cost is then
calculated with
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∆(P, i) =
∑

s∈[1..k]
max(xs,A;xs,T ;xs,C ;xs,G)− (xs,A + xs,T + xs,C + xs,G)

This improves the cost for calculating ∆ to O(c+ k).
The second optimization is to use a Gray code to order the partitions. A

Gray code is an ordering of vectors, in this case the partition vectors, where
two consecutive vectors differ by exactly one element. Then, calculating the
next x from the previous x can be done in constant time. At each SNP,
the first x must be calculated as usual. Then, using a notation xi,s,a to
mark x for the ith partition, xi+1,s,a is equal to xi,s,a except for the element
that changed between the two partitions. For example, if the read 5 with
nucleotide A was assigned to strain 3 at the previous partition, and to strain
4 at the current partition, then the next x is calculated with

xi+1,3,A = xi,3,A −W (5, i)
xi+1,4,A = xi,4,A +W (5, i)
xi+1,s,a = xi,s,a elsewhere

This removes the need to iterate through each partition and ∆ can be
calculated in amortized constant time. The Gray code optimization was
originally described by Patterson et al. [PMP+14]. However, extending
the optimization to multiple strains requires a special Gray code that only
outputs the unpermutated forms of the partitions.

To use this optimization, the unpermutated forms of the partition must
be ordered according to a Gray code. Due to lack of time, the Gray code
optimization was not actually implemented, but the following describes how
to do it. To form the Gray code ordering, consider a graph of the partitions,
where nodes correspond to the partitions, and the edges connect partitions
which differ by exactly one element. Then, a Gray code over the partitions
is possible if the graph contains a Hamiltonian path, or a path that visits
each node exactly once. For a partition over one read, this is trivially true.
Then, a path for the graph with c+ 1 reads can be constructed from a path
in the graph with c reads. Each node in the graph with c reads is divided
into the partitions where the first c elements are equal, and the final element
varies. Figures 8 and 9 show an example of extending a graph of 3 reads to
a graph of 4 reads. The node {1, 2, 1} is divided into the child nodes {1, 2,
1, 1}, {1, 2, 1, 2} and {1, 2, 1, 3}.

There are two key features of the graph that make a Hamiltonian path
possible. First, a node’s child nodes form a clique, so they can be visited in
any order. Second, if two nodes were connected in the previous graph, their
child cliques will have at least two connections between the cliques: the nodes
that end with 1 are connected, and the nodes that end with 2 are connected.
These nodes exist in all cliques. Therefore, to build a Hamiltonian path for
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1, 1, 1

1, 1, 2

1, 2, 1

1, 2, 2

1, 2, 3

Figure 8: A graph of partitions for 3 reads

the c+ 1 graph from the c graph, mark every other node in the path with a
1, and every other with a 2. Then, divide each node in the path such that for
nodes marked with a 1, the sub-path starts at the child clique’s node that
ends in 1, visits all nodes that end in 3 or higher, and ends at the child node
that ends with 2. Correspondingly, for nodes marked with a 2, the sub-path
starts at the child clique’s node that ends in 2, visits all nodes ending with 3
or higher, and ends at the node ending with 1. Figures 10 and 11 show an
example of extending a path in the graph of 3 reads to the graph of 4 reads.
Algorithm 1 shows the pseudocode for the algorithm. The graph does not
need to be explicitly created, and only the nodes in the path are processed.
Since extending the graph by one read will at least double the number of
nodes, the total number of nodes processed is at most twice the number of
nodes in the final graph, so ordering the partitions with the Gray code can
be done in linear time to the number of partitions.

In theory, the algorithm could be made with an asymptotic running time
of O(|S|C kC

k! ), where C is maximum coverage, k is the number of strains
and |S| is the number of SNPs. However, some implementation details were
chosen poorly and the running time of the actual algorithm is slower. The
Gray code scheme described above is not used for calculating the partition
cost function ∆. This means that calculating ∆ is O(k +C) instead of O(1).
When moving from one SNP to another, the new partitions that extend the
former partitions are calculated by first generating all partitions for the new
SNP, then sorting them by the overlapping area, and then going through
both the sorted list of former partitions and the sorted list of new partitions
at the same time. The partitions are sorted with a comparison sort, so
calculating the partition extensions is an O(n logn) operation. The final
running time of the implementation is therefore O(|S|kC

k! log kC

k! + |S|C kC

k! ).
The feature that only unpermutated forms are considered complicates

finding the partition extensions. Since the unpermutated forms of the
partitions’ overlapping areas are used for finding the extensions, the partitions
cannot be processed in the same order both at the current SNP and at the
second SNP. One way of mitigating this is to use a radix sort for the partitions
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1, 1, 2, 3
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1, 2, 2, 3

1, 2, 3, 1

1, 2, 3, 2 1, 2, 3, 3

1, 2, 3, 4

Figure 9: A graph of partitions for 4 reads

instead of a comparison sort, which brings the partition extension calculation
down to O(nC). The total running time would then be O(|S|C kC

k! ). The
question of whether it is possible to enumerate the partition extensions in
linear time without sorting remains open.

4 Experiments
The experiments were run on simulated data based on the E. coli genome.
The simulated mutant genomes were created by taking the first ten thousand
bases from the E. Coli genome and creating four mutant strains from it. The
mutations were created with a uniform 1% probability of substitution per
base. Only SNPs with substitutions were created. Reads were sampled from
random locations with an average coverage of 20 for each strain, for a total
average coverage of 80 before coverage reduction. All reads were created
error-free.

Two different methods were used to build the haplotyping matrix from
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Figure 10: A hamiltonian path in the partition graph over 3 reads with nodes
marked

the reads. In the first method, the simulated method, the SNPs were directly
read from the mutated genomes and the haplotyping matrix was built with
full knowledge of the genomes. The simulated method represents a very
optimistic upper bound for the algorithm’s accuracy. In the second method,
the DiscoSNP method, SNPs were detected by DiscoSNP [URL+14] and
processed exactly as described in the implementation section without any
knowledge of the genomes. The DiscoSNP method represents a more realistic
impression of the algorithm’s accuracy.

Two experimental settings were used. First, the read length was varied
from 100 bases to 2000 bases long reads, and the algorithm’s accuracy was
measured with each length. In the second setting, errors were introduced into
the haplotyping matrix and the algorithm’s accuracy measured for several
read lengths. The errors were introduced directly into the haplotyping
matrix immediately after creating it, before any coverage reduction. The
reads passed to DiscoSNP were still error-free. This was done to make
sure that the experiments only measure errors made by the implementation
instead of the external tools.

4.1 Accuracy measures

Three measures were used for accuracy. First, to measure the accuracy of
the coverage reduction step, merge accuracy was used. During coverage
reduction, the program keeps track of which original reads are contained in
which merged read. After coverage reduction, a read was merged correctly
if all of its original reads were from the same strain. Merge accuracy is the
fraction of correctly merged reads after coverage reduction.

The second accuracy measure is partition accuracy. Partition accuracy
maps each strain post-phasing to an original strain, and then calculates the
fraction of reads which were assigned to the correct strain. Each mapping of
post-phased strains to original strains is tried and the best value is selected.

The third accuracy measure is switch distance. There are actually two
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Figure 11: A hamiltonian path in the partition graph over 4 reads

similar but different measures used for switch distance. The switch distance
measures are generalizations of the switch distance described by Lin et al.
[LCZC02], which is defined for two strains. Informally, switch distance builds
consensus genomes from its reads, and then aligns the consensus genomes to
the actual genomes. Switch distance is then the number of times a consensus
genome switches from one actual genome to another, allowing up to a certain
number of alignment errors where a consensus genome’s nucleotide differs
from the actual genome’s nucleotide. Figure 12 shows an example with three
strains. The consensus sequences are colored red, green and blue, and the
actual sequences are colored black. There are two switches, one at the start
where two strain swap, and another at the end where all three strains swap.
There is one alignment error in the middle of the bottom strain, where the
actual sequence has an A and the aligned consensus sequence has a T.

To calculate the switch distance for multiple strains, a dynamic program-
ming algorithm must be used. First, the nucleotide at each SNP position
is calculated for both the consensus genomes and the actual genomes. The
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Algorithm 1 Gray code enumeration
function GrayCode(maxPosition)

mark ← {1, 1, ..1} . |mark| = maxPosition
path← ∅ . A list of partition vectors
GCRec(1, maxPosition, {1})
return path

procedure GCRec(position, maxPosition, currentPartition)
if position = maxPosition then

path← path+ currentPartition
return

if mark[position] = 1 then
startNode← 1
endNode← 2
mark[position]← 2

else
startNode← 2
endNode← 1
mark[position]← 1

GCRec(position+ 1, maxPosition, currentPartition+ startNode)
for i ∈ [3..min(max(currentPartition) + 1, k)] do

GCRec(position+ 1, maxPosition, currentPartition+ i)
GCRec(position+ 1, maxPosition, currentPartition+ endNode)

switch matrix Si,p,s holds the best score at SNP i for assignment p with s
errors so far. At first SNP, the matrix is initialized with S1,p,0 = 0. At every
SNP after that, the matrix is calculated by the recurrence

Si,p,s = min
p′

Si−1,p′,s−d(i,p′) + f(p, p′)

The assignment distance function f measures the distance between two
assignments. The error function d measures the number of alignment errors,
or genomes where the nucleotide of the consensus genome is different from
the nucleotide of the actual genome that the consensus genome is assigned
to. The final switch distance is then calculated at last SNP by

switch_distance = min
p,s

Sn,p,s

The matrix is bounded to allow s only up to some maximum number of
errors. In the experiments, s was bounded to allow less than 10 errors.

As mentioned before, there are two similar measures used for switch
distance. In the non-normalized switch distance mode, the assignment
distance function counts the number of strains which were swapped between
two assignments. For example, the left switch in figure 12 has two swaps,
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Figure 12: Switch distance with three strains

and the right switch has three. In the normalized mode, the function returns
one if any switches happen and zero otherwise. The non-normalized mode is
sensitive to the size of the error, as swapping all four genomes contributes
a higher distance than swapping just one genome. The normalized mode
measures the fraction of positions where genomes are switched, which is
easier to interprete since it can be mapped to a number between zero and one.
In the graphs, the normalized mode is further changed to switch accuracy,
which is the inverse of the normalized switch distance, or the fraction of
SNPs where genomes are not switched. This is done to preserve consistancy
with the other normalized measurement methods where 1 is the best score
and 0 is the worst.

4.2 Effect of varying read length

In the read length experiment, the implementation’s accuracy was measured
with varying read lengths. Read lengths were varied from 100 bases to 2000
bases. Figures 13, 14 and 15 show the partition accuracy, non-normalized
switch distance and normalized switch accuracy, respectively.

The results show that accuracy depends greatly on read length. Even
in the simulated method, reads shorter than about 300 bases have poor
accuracy, and 100 bases long reads have an accuracy about as good as
random guessing. On the other hand, long reads have a very high accuracy.
The simulated method was completely accurate at 700 bases long, and the
DiscoSNP method at 1600 bases, except for a strange dip at 2000 bases long
reads. The experiment shows that the implementation cannot work for short
reads even in the best case, but works well for long reads.

Another result is that the consensus of the reads is more accurate than
the read partitioning. The partition accuracy graph shows that, for example,
in the DiscoSNP method with 1000 bases long reads, less than 70% of reads
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Figure 13: Partition accuracy as a function of read length

Read
length 100 200 300 400 500 600 700 800 900 1000 1200 1400 1600 1800 2000

DiscoSNP 129 70 42 27 26 16 16 9 8 8 5 2 0 0 5
Simulated 102 27 6 4 2 2 0 0 0 0 0 0 0 0 0

Figure 14: Switch distance as a function of read length

Figure 15: Switch accuracy as a function of read length

19



are assigned into correct strains. However, the switch distance shows that
there were only 8 switches.

4.3 Effect of varying error rate

In the error rate experiment, the implementation’s accuracy was measured
with varying error rate. The error rate was varied from 0% to 15% chance of a
substitution error per base. The errors were introduced into the haplotyping
matrix immediately after building the matrix, before any coverage reduction.
Read lengths were 1000, 1600 and 2000 bases long for the DiscoSNP method,
and 500, 700 and 1000 bases long for the simulated method. Only uniformly
distributed substitution errors were considered. All results are the average
of 10 runs. Figures 16, 17, 18, 19, 20, 21 show DiscoSNP partition accuracy,
simulated partition accuracy, DiscoSNP non-normalized switch distance,
simulated non-normalized switch distance, DiscoSNP normalized switch
accuracy and simulated normalized switch accuracy, respectively.

Figure 16: Partition accuracy as a function of error rate, DiscoSNP method

The results are different for the DiscoSNP method and the simulated
method. In the simulated method, increasing the error rate lowers accuracy,
however the effect seems to be small. Surprisingly, in the DiscoSNP method,
varying the error rate has basically no effect on the implementation’s accuracy.
Even at the highest tested error rate, the effect from varying read length
dominates the error rate’s effect. This shows that uniformly distributed
substitution errors are not an issue for the implementation even at high error
rates, however the results should not be interpreted to mean anything about
systematic read errors.
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Figure 17: Partition accuracy as a function of error rate, simulated method

Error
rate % 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16
1000 8,2 6 7,1 6 5,6 6 5,7 6,8 6,8 6,3 6 6,6 6,7 7,5 7,6 7,2
1600 0 1,4 3,2 1,9 2,7 2,4 2,4 2,2 2,6 2,3 1,8 1,8 2,6 1,6 1,7 3,5
2000 4,8 1,2 2,1 2,8 1,5 1,5 1,5 1 1,8 0,7 0,8 0,5 1,4 0,9 0,7 0,9

Figure 18: Switch distance as a function of error rate, DiscoSNP method

Error
rate % 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16
500 2 1 1,8 2,2 1,4 1,8 1,3 2,1 2,3 1,8 2,2 2,4 3,6 2,6 3,5 4
700 0 0 0 0 0 0 0 0 0 0,3 0,4 0 0,2 0,2 0,4 0,2
1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,2 0,1

Figure 19: Switch distance as a function of error rate, simulated method

Again, the consensus of the reads is more accurate than the read par-
titioning. In the DiscoSNP method with 1600 bases long reads, partition
accuracy is about 80% while the switch distance is under 4.

4.4 Coverage reduction accuracy

The coverage reduction was not a separate experiment, instead the data was
collected alongside the two other experiments. In all of the experiments,
the number of merged reads after coverage reduction was about 5-10% of
the original reads. The coverage reduction measures the accuracy of the
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Figure 20: Switch accuracy as a function of error rate, DiscoSNP method

Figure 21: Switch accuracy as a function of error rate, simulated method

haplotyping matrix reduction process. Figures 22, 23 and 24 show accuracy
in the read length experiment, accuracy for the DiscoSNP method in the
error rate experiment and accuracy for the simulated method in the error
rate experiment, respectively.

The results show that coverage reduction is more accurate with longer
reads, and less accurate with erroneous reads. Merge accuracy drops with an
increasing error rate, which makes the results of the error rate experiment
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Figure 22: Merge accuracy as a function of read length

even more baffling. The merge accuracy for simulated reads with a length
of 500 shows a strange upwards trend instead of the expected downwards
trend, but this was due to random variation between runs.

5 Discussion
The algorithm works well for long reads and error rate has a surprisingly
small effect. For short reads, the algorithm’s accuracy is very poor and
comparable to guessing randomly. The algorithm obviously cannot work
with short read sequencing data, but methods for sequencing sufficiently long
reads exist [SJ08] [EFG+09] [FWL+10] and the algorithm can handle high
uniformly distributed error rates well.

The algorithm’s performance with non-uniformly distributed errors was
not tested. The results of the error rate experiment suggest that it might be
able to handle high error rates, but non-uniform errors might behave very
differently from uniformly distributed errors. One possible mechanism for
this would be that uniformly distributed errors somehow cancel each others
on average, but non-uniformly distributed errors might not.

The matrix banding step rearranges the SNPs and reads to lower the
haplotyping matrix’s coverage. In practice, the banding achieves good results
in the sense that coverage is low. It was not tested whether this is because
the banding’s result is close to the original locations of the SNPs and reads,
or whether it is an entirely different ordering that just happens to have low
coverage. If the banding’s result is close to the original, it might be possible
to use matrix banding for estimating the locations of the reads and the SNPs
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Figure 23: Merge accuracy as a function of error rate, DiscoSNP method

in the genome without a reference sequence.
The read merging process in coverage reduction discards information

about lower weight variants. This makes the result dependant on the order
in which the reads are merged, and can even produce the wrong consensus
base for the merged read. Since the coverage reduction keeps track of which
reads were merged, it could be possible to recalculate the consensus for the
merged read afterwards. The experiments did not measure how often the
merging process produced a wrong consensus.

The algorithm currently handles only SNPs with substitutions, but it
could be extended to handle SNPs with indels. This would be accomplished
by allowing the haplotyping matrix to have five alphabets for A, C, T, G
and indel. The indel should not be confused with the non-covering marker.
The partition error function δ might need to be adjusted to have different
weight for the indel, depending on the sequencing method’s ratio of indel
errors to substitution errors.

The algorithm’s performance on simulated data raises the question of
whether it would work on real data. Some implementation details would
need to be corrected to use the implementation on actual sequencing data.
The very first part of the algorithm, mapping the reads to the SNPs, uses a
custom aligner which assumes that the reads are error-free. Using a proper
multiple read aligner program would enable it to work with erroneous reads,
and most likely speed up that part as a side-effect. Alignment software for
long reads exists [LD10] [LS12]. When initially building the haplotyping
matrix, the implementation sets all weights to one. The weights should be
based on the confidence of the read.
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Figure 24: Merge accuracy as a function of error rate, simulated method

In conclusion, this thesis gives a proof of concept implementation of
an exact haplotyping algorithm for multiple strains. The performance on
simulated data is promising. The implementation probably would not work
with real data as-is, but the corrections described above should make it
possible.
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