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Abstract: Cell-based biosensing is a “smart” way to obtain efficacy-information on the 

effect of applied chemical on cellular biological cascade. We have proposed an engineered 

post-synapse model cell-based biosensors to investigate the effects of chemicals on 

ionotropic glutamate receptor (GluR), which is a focus of attention as a molecular target 

for clinical neural drug discovery. The engineered model cell has several advantages over 

native cells, including improved ease of handling and better reproducibility in the 

application of cell-based biosensors. However, in general, cell-based biosensors often have 

low signal-to-noise (S/N) ratios due to the low level of cellular responses. In order to 

obtain a higher S/N ratio in model cells, we have attempted to design a tactic model cell 

with elevated cellular response. We have revealed that the increase GluR expression level 

is not directly connected to the amplification of cellular responses because the saturation of 

surface expression of GluR, leading to a limit on the total ion influx. Furthermore, 

coexpression of GluR with a voltage-gated potassium channel increased Ca
2+

 ion influx 

beyond levels obtained with saturating amounts of GluR alone. The construction of model 
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cells based on strategy of amplifying ion flux per individual receptors can be used to 

perform smart cell-based biosensing with an improved S/N ratio. 

Keywords: cell-based biosensors; high through-put analysis (HTA); organ function model; 

post-synapse model cell; cell engineering; ionotropic glutamate receptor; signal-to-noise ratio 

 

1. Introduction 

Cultured mammalian cell-based biosensors have been developed to determine the effects of 

extracellular stimuli on cellular function in basic research fields, and drug discovery [1,2]. These are a 

smart way to screen lead compounds on the basis of their effects on metabolic/catabolic cascades [3–5]. 

However, in general, cell-based biosensors have low signal-to-noise (S/N) ratio due to the low signal 

of cellular responses. To solve this problem, not only must the sensitivity of sensors be improved but 

also the tactic biosensor cells need to be engineered using e.g., genetic engineering [6,7], cellular 

engineering [8,9], and cell culture engineering [5,10].  

A conjugative technology which combined with chemical sensors and organ function model has 

been proposed [4]. On the basis of this concept, we demonstrated a post-synaptic function model that 

consists of genetically engineered cells designed to minimize the fluctuation of data in cell-based assay 

for neural drug discovery [11]. The post-synapse model cells express ionotropic glutamate receptor 

(GluR) on their membrane surface. As such, these cells can recognize either the agonistic and 

antagonistic activity on the basis of a change in the ion flux profile [12]. In addition, our post-synapse 

model cells grow faster and are easier to handle than cultured neuronal cells under experimental 

conditions [11]. Therefore, these model cells have several advantages as a functional model for  

cell-based biosensors for high through-put analysis (HTA). 

Recently, many researchers have attempted to develop cell-based biosensors using receptor-expressing 

cells because receptors are one of the main targets for neural drug discovery [13,14]. However, owing 

to the low level of cellular signals, receptor-expressing cell-based biosensors often have low S/N ratio. 

In order to improve the S/N ratio in receptor-expressing cell-based biosensors, it is important to 

amplify the cellular responses.  

In the case of ionotropic receptor-expressing cells, the cellular response, i.e., ion flux on the whole 

cell, was controlled by the number of receptors on the cell membrane and the ion flux level per 

individual receptor. Therefore, in order to amplify the cellular responses on receptor-expressing cells, 

one can increase either the receptor expression level or the ion flux level per individual receptors. In 

this study, we investigate and demonstrate a new design for post-synapse model cells realizing a high 

S/N ratio. The approach involves attempting to increase the ion flux level per individual receptor, 

which is directly linked to amplification of cellular responses (ion influx through GluR). 
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2. Experimental Section  

2.1. Chemicals 

L-Glutamic acid and 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX), 

were purchased from Wako Chemical (Tokyo, Japan). Margatoxin was purchased from Peptide 

Institute, Inc (Osaka, Japan). The acetoxymethyl form of Fura-2 was purchased from Invitrogen 

(Carlsbad, CA, USA). All chemicals of guaranteed experimental grade. 

2.2. Cell Culture and Transfection 

COS7 cells were cultured in Dulbecco’s modified Eagles medium (DMEM) containing 10% FBS, 

100 U/mL penicillin, and 100 μg/mL streptomycin. Flag-tagged GluA4 (Δ22-402) [15], a miniaturized 

version of GluA4 receptor lacking the N-terminal domain, was constructed in pIRES2-EGFP vector 

(Clontech Laboratories, Mountain View, CA, USA) as described previously [11]. Rat voltage-gated 

Shaker potassium channel, Kv1.3 [16] was amplified by polymerase chain reaction. The amplicon was 

ligated to the XhoI and EcoRI sites using pIRES2-DsRed plasmid vector (Clontech). The expression 

plasmids were transfected into COS7 cells using Xfect
TM

 (Invitrogen). After transfection, the cells 

were cultured in DMEM with 10% FBS, 100 U/mL penicillin, 100 μg/mL streptomycin. NBQX  

(100 μM) was added in order to suppress the potential toxicity of glutamate present in the medium. 

2.3. Immuno-Fluorescence Staining 

The engineered cells were cultured on a fibronectin coated coverslips. The cells were fixed with 3% 

paraformaldehyde and used for immuno-staining (nonpermeabilized condition, surface staining). In the 

case of permeabilized condition, the cells were treated with 0.05% Triton-X solution in PBS after 

paraformaldehyde fixation. Nonspecific binding was blocked by incubation in SuperBlock blocking 

buffer (Pierce Biotechnology, Rockford, IL, USA). The cells were labeled with monoclonal rabbit  

anti-FLAG IgG (Sigma, St. Louis, MO, USA; 5 μg/mL) followed by rhodamine-conjugated anti-rabbit 

IgG secondary antibody (Sigma; 7 μg/mL). They were then examined using an epifluorescence 

microscope (Nikon, Japan). Pictures were collected using an air-cooled CCD camera and analyzed 

using the AQUA COSMOS software (Hamamatsu Photonics, Japan). 

2.4. Fluorescence Measurement of Ion Flux 

GluA4 channels are permeable to both sodium and calcium influxes by its agonistic function [17]. 

We monitored calcium influx using calcium ion indicator dye, Fura-2. The dye for post-synapse model 

cells was prepared and loaded as described previously [11]. The synapse model cells were loaded with 

Fura-2 AM in Hank’s buffered salt solution, and incubated for 1 h at 37 C. Intracellular calcium ion 

imaging was performed every 8 s using an epifluorescence microscope with air-cooled CCD camera 

and analyzed using AQUA COSMOM software. Fluorescence (emission at 510 nm) was recorded at  

8 s intervals for excitation at 340 and 380 nm, and the fluorescence ratio (R = I340nm/I380nm). The data 

were compared using Student’s t test. 
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3. Results and Discussion  

This research is intended to promote and demonstrate a strategic engineering approach for 

amplification of ligand-gated ion influx on post-synapse model cells. Initially, we investigated what 

happens when GluR expression is simply increased. COS7 cells were transfected with expression 

plasmid encoding GluR and IRES-linked GFP marker. Owing to the function of the IRES sequence, 

GluR expression was correlated with the cellular fluorescence intensity derived from GFP. Figure 1 

shows the relationship between fluorescent intensity of GFP and immuno-staining under the cellular 

membrane-permeabilized conditions. Under these conditions, the antibody could bind to both 

intracellular GluR and GluR on the cell membrane surface, and the total fluorescent intensity reflects 

the GluR expression level. As the GFP fluorescence intensity correlates with the fluorescence intensity 

of immuno-staining, GFP can be used as a reporter of the level of GluR expression.  

Figure 1. Relationship between fluorescent intensity of GFP and total GluR 

immunofluorescence. 

 

Figure 2 shows the relationship between the fluorescent intensity of GFP and the immuno-staining 

without cellular membrane-permeabilization. Under such conditions, fluorescence intensity from 

immuno-staining indicates the number of GluR molecules on the cell membrane. The data indicate that 

saturation occurred: the number of GluR on the cell membrane increased as GluR expression level 

increased up to a certain level, but then leveled off. In our previous study, we demonstrated that 

cellular responses on the model cells were saturated at a certain level of GluR expression [11]. These 

data suggest that the number of GluR on the cell membrane has reached the maximal value obtainable 

under the experimental conditions. In the case of higher GluR-expressing cells, GluR is evenly 

displayed on cell surface and variation in cellular response can be reduced. Therefore, the reproducibility 

of cell-based sensors will be improved by using higher GluR-expressing cells. However, limitation of 

the number of GluR on the cell surface leads to a limitation on the maximal amplification of ion flux. 

Therefore, increasing the GluR expression level is not necessarily directly connected to amplification 

of the cellular responses.  
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Figure 2. Relationship between fluorescent intensity of GFP (coexpressed with  

GluR) and immunofluorescence staining of GluR on cell surface (without cellular  

membrane-permeabilization). 

 

Next, we tried to verify the usefulness of an alternative strategy: in increasing the ion flux per 

individual receptor. Maintenance of normal membrane potential should provide driving force for 

sustained ion flux, and therefore, we coexpressed a voltage-gated potassium channel potassium 

channel subunit, Kv1.3 [16] with GluR [18]. Kv1.3 should thus keep the membrane potential below 

reversal potential and facilitate enhanced ion flux through GluR. In the coexpressing cells, the 

expression level of GluR was confirmed by the fluorescence of GFP and expression of Kv1.3 was 

confirmed by the fluorescence of DsRed (Figure 3). 

Figure 3. Visualization of the post-synapse model cell expressing GluR and Kv1.3, 

visualized by GFP and DsRed markers also present in the IRES vectors for the respective 

proteins. The scale bar represents 100 μm. 

 

The Ca
2+

 influx of GluR-expressing cells or GluR-Kv1.3-cotransfected cells was analyzed using 

Fura-2 (Figure 4). Glutamate-triggered ion flux level increased when Kv1.3 was also present. This 

increase of ion flux was prevented by Kv1.3 blocker, margatoxin [19,20], suggesting that activation of 

Kv1.3 contributes to the increased ion flux through GluR. Without Kv1.3 activation, membrane 

potential is depolarized by the ion influx through GluR, leading to a reduction in the driving force of 

ion influx.  



Sensors 2012, 12 1040 

 

Figure 4. Ion flux level of post-synapse model cells that express only GluR or coexpress 

GluR and Kv1.3 (2 mM glutamate application [open]: 2 mM glutamate application after  

10 nM margatoxin treatment [filled]). Ca
2+

 influx was monitored by changes in fura-2 

340/380 nm ratio (R) normalized to baseline (Δ R/R0). The data represent the mean ± SD 

with (*) indicating P < 0.01. 

 

4. Conclusions  

The strategic design and construction of post-synapse model cells for cellular biosensing, and 

potentially useful in drug screening, is described. In this study, we focused on obtaining a high S/N 

ratio for Ca
2+

 influx through GluR. A simple increase of the expression level of receptors was found to 

be insufficient. However, coexpression with Kv1.3, as demonstrated here, allowed membrane potential 

to be kept below the reversal potential and resulted in enhanced ion flux responses through GluR. 

In conclusion, we demonstrate a strategy to increase the ion flux per individual receptor and improve 

the S/N ratio in ligand-gated ion channel-expressing cell-based biosensors. We also demonstrated that the 

reproducibility of cell-based sensors will be improved by using higher GluR-expressing cell. These 

approaches may provide a smart way to build post-synapse model cell-based biosensors for HTA  

drug discovery. 
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