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Abstract: We present two improvements for laser-based forest inventory. The first 
improvement is based on using last pulse data for tree detection. When trees overlap, the 
surface model between the trees corresponding to the first pulse stays high, whereas the 
corresponding model from the last pulse results in a drop in elevation, due to its better 
penetration between the trees. This drop in elevation can be used for separating trees. In a 
test carried out in Evo, Southern Finland, we used 292 forests plots consisting of more than 
5,500 trees and airborne laser scanning (ALS) data comprised of 12.7 emitted laser pulses 
per m2. With last pulse data, an improvement of 6% for individual tree detection was 
obtained when compared to using first pulse data. The improvement increased with an 
increasing number of stems per plot and with decreasing diameter breast height (DBH). 
The results confirm that there is also substantial information for tree detection in last pulse 
data. The second improvement is based on the use of individual tree-based features in 
addition to the statistical point height metrics in area-based prediction of forest variables. 
The commonly-used ALS point height metrics and individual tree-based features were 
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fused into the non-parametric estimation of forest variables. By using only four individual 
tree-based features, stem volume estimation improved when compared to the use of 
statistical point height metrics. For DBH estimation, the point height metrics and individual 
tree-based features complemented each other. Predictions were validated at plot level.  

Keywords: individual tree detection; airborne laser scanning; forest inventory; Canopy 
Height Model; area-based inventory; feature extraction; last pulse; point clouds metrics 

 

1. Introduction  

Trees are important for the carbon balance of the Earth. Forests have great economic and ecological 
importance. In Finland, about 77% of the country’s land area is forested, which is the highest percentage 
in Europe. International interest in biomass detection is strongly linked to forest health, photosynthetic 
activity and other processes related to the carbon cycle [1] and the variability of the climate. There is a 
growing need and constant shortage of data for improved forest monitoring (e.g., [2]). 

Approaches aimed at obtaining forest and forestry data from airborne laser scanning (ALS) data 
have been divided into two groups [3]: (1) area-based approaches (ABAs) and (2) individual/ 
single-tree detection approaches (ITDs). ABA prediction of forest variables is based on the statistical 
dependency between the variables measured in the field and the predictor features derived from ALS 
data [4–12]. The sample unit in the ABA is most often a grid cell, the size of which depends on the 
size of the field-measured training plot. Stand-level forest inventory results are aggregated by 
summing and weighting the grid-level predictions inside the stand. When using ITD techniques, 
individual trees are detected and tree-level variables, such as height and volume, are measured or 
predicted from the ALS data, i.e., the basic unit is an individual tree. Then the stand-level forest 
inventory results are aggregated by summing up the tree data. The ABA does not make use of the 
neighborhood data of laser returns, whereas in ITD [13–19] the neighborhood data are applied using 
pattern recognition methods to locate individual trees and to derive the physical features of individual 
trees, such as height, species, crown diameter and crown volume. On the other hand, ABAs are based 
on the height and density data acquired by ALS, which are highly correlated with the forest variables. 
Currently, the ABA is operationally applied in the Nordic countries when carrying out standwise forest 
inventories. Some 5.5 Mha of Finland’s forests have already been inventoried by applying ALS. 

Initially, ITD began with the manual interpretation of analogue aerial images [20], followed by 
attempts to automate this task [21]. In recent years, there have been several attempts to improve both 
image-based and laser-based ITD [22–71]. An international comparison of the use of ALS for ITD was 
reported by Kaartinen and Hyyppä [34] and more recently by Vauhkonen et al. [63]. In [34], it was 
concluded that (1) the ITD method is the main factor impacting on the achieved location, tree height 
and inventory accuracy, and that (2) the impact of an increase in point density is marginal when 
compared to the effect of the ITD method. More detailed comparisons of the extraction techniques 
were carried out in [68], and it was found that methods relying on pixel-based Canopy Height Models 
(CHMs) are not suitable for finding suppressed trees and that full-waveform or laser-point based 
techniques should be further investigated (as is also proposed in [42,69,70]).  
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The ABA has been performed with statistical metrics, calculated from a point cloud, and ITD has 
been done using the dimensions of the detected trees. However, the methods have been converged for 
a long time (e.g., [24,26,35,41,56,71]). Already in [16,17], individual tree methodology was proposed 
and tested at stand level. Hyyppä et al. [24,26] proposed an individual tree-based technique for 
focusing directly on tree clusters. A similar concept was adapted later on by Breidenbach et al. [44]. 
Since the work done by Villikka et al. [35], density-related and height-related features, derived from 
first and last pulse ALS data, have also been used in the estimation of individual tree variables. In the 
past, the ABA has relied on large, meticulously collected field data from experimental plots, whereas 
ITD has provided results either without any field date, or with some reference to it [3].  

Conventionally, trees are detected from CHMs, which are interpolated from the point data [3,63].  
In the present study, we demonstrate that the use of last pulse data is beneficial for tree detection. 
Firstly, we demonstrate by means of a large, real-life data set that trees can be discriminated better by 
using last pulse data than by using first pulse data. Secondly, we show by means of examples that the 
use of individual tree features as predictors increases the accuracy of stem volume in area-based 
predictions, which suggests that individual tree-based features should be used in addition to point 
height metrics in the ABA. These two improvements are separately depicted. The use of last pulse is 
described for tree detection in Sections 2.4 (the method of verification) and 3.1 (results). The 
improvements in area-based predictions are described in Sections 2.5 (methods) and 3.2 (results). 
These two improvements are separate cases. 

2. Material and Methods 

2.1. Test Site and Field Data  

The boreal managed forest study area, 5 × 5 km in size, is situated in Evo, Southern Finland. A total 
of 5,532 trees from 292 plots, each with a radius of 10 m, were used. The plots were measured in 2009. 
The average stand size in the study area is slightly less than 1 ha. The terrain elevation varies between 
125 m and 185 m above sea level. Scots Pine (Pinus sylvestris) and Norway Spruce (Picea abies) are 
the dominant tree species, contributing respectively 40% and 35% of the total volume. The percentage 
of deciduous trees is 25% of the total stem volume. The sampling of the field plots in our study was 
based on pre-stratification of the existing stand inventory data. All the trees in each plot having a DBH 
greater than 5 cm were recorded and tree height, DBH, the lower limit of the living crown, crown 
width, and tree species were determined. The plot-level data, summarized in Table 1, were obtained by 
averaging or summing the tree data. The tree locations were calculated using the coordinates of the 
plot centers and using the direction and distance of the trees relative to these centers. The plot centers 
were measured using a Trimble GEOXM 2005 Global Positioning System (GPS) device (Trimble 
Navigation Ltd., Sunnyvale, CA, USA), and the locations were post-processed with local base-station 
data. This resulted in an average error of approximately 0.6 m. The tree heights were measured using 
Vertex clinometers. The DBH was measured using steel calipers. 
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Table 1. Descriptive statistics of the field plots accessed in the study. 

 Mean Height (m) Mean Diameter (cm) Stem Volume m3/ha 
Minimum 3.9 7.6 0.4 
Maximum 31.7 50.8 586.2 

Mean 18.0 18.3 148.2 
Standard deviation 6.1 6.9 110.7 

2.2. Airborne Laser Data Collection 

The ALS data were collected in the summer of 2009 using a Leica ALS50-II system operating at a 
pulse rate of 150 kHz. The data were acquired using a flight altitude of 400 m with FOV of 30 degrees. 
ALS data comprised of 12.7 emitted laser pulses per m2, including overlaps of strips. A footprint of  
8.8 cm in diameter, collected by a beam having a divergence of 0.22 mrad, was achieved. The system 
was configured to record multiple returns per pulse, i.e., the first of many returns, the last of many 
returns, an only return and intermediate returns. 

2.3. Laser Data Pre-Processing 

The ground points were classified using TerraScan and based on the method explained in [72]. Strip 
adjustment was performed using TerraMatch. A DTM was then calculated using the ground points. 
Canopy heights were calculated by subtracting the corresponding ground elevation from the elevations 
of the laser returns.  

2.4. Improved Tree Detection  

Most of the current approaches for tree detection are based on finding trees from the CHM, which is 
calculated as a maximum of canopy height values within each raster cell. Thus, the CHM corresponds 
to the maximum canopy height of the first pulse data. Our approach is based on using the canopy 
penetration capability of the last pulse returns with overlapping trees. When trees overlap, the surface 
model corresponding to the first pulse stays high, whereas with last pulse, even a small gap results in a 
drop in elevation, i.e., the trees can be more readily discriminated. Use of first pulse works, when the 
whole laser beam penetrates the gap between the crowns, so that the drop is detectable after filtering. 
With last pulse, the drop in elevation is substantially larger and the drop can be detected even with 
overlapping trees since the last pulse is more sensitive to lower canopy levels. Since the objective was 
to demonstrate the usefulness of last pulse data for tree detection using the above-mentioned 
phenomenon, we used the same tree detection method and verification for both the first and last pulse 
data. From the last pulse data, we calculate three different products corresponding to the minimum of 
last returns, the mean of last returns and the maximum of last returns. The tree-detection algorithm in 
this test was based on finding the local maximum. Finding the local maximum is computationally  
cost-effective, and this is needed in operational inventories where data processing currently costs about 
€0.20/ha in Finland. Based on [68], finding the local maximum was one of the most useful methods 
based on individual tree extraction in the EuroSDR/ISPRS Tree Extraction test.  
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The comparison consisted of the following steps: 

1. Different raster models with 0.5 m × 0.5 m pixel size were created for tree location. The created 
models were as follows: minimum of last returns (Lmin), maximum of last returns (Lmax), mean 
of last returns (Lmean), and first returns maximum (Fmax).  

2. The raster models were smoothed by means of a Gaussian filter. A 3 m × 3 m window size was 
selected in order to eliminate minor tree level fluctuations and to avoid the merging of overlapping 
trees. Given Finland’s forest conditions, larger window sizes lead to the merging of overlapping 
trees, especially when trying to locate trees from within the suppressed tree storey. 

3. Local maxima were sought from the smoothed surface model in a 3 m × 3 m window, and trees 
were considered to have been detected if the local maxima were greater than 2 m above the ground.  

The extracted tree locations were compared with the tree locations measured in the field. The  
laser-detected trees were automatically matched with trees measured in the field, based on the 
Hausdorff distance on XY plane. The matching technique is described in detail in [73]. Tree pairs with 
a distance from each other of less than 2.5 m were considered to be a correct match. The value of 2.5 m 
was set by taking the distance between the treetop and the roots into consideration.  

The methodology and the applied automatic accuracy assessment are further demonstrated in Figure 1, 
which shows four raster models for one sample plot with the detected trees marked as ‘+’ and  
field-measured trees as ‘o’. The Fmax surface model corresponds to the commonly accepted way of 
finding trees. When comparing Lmin and Fmax models, it seems to be easier to discriminate trees from 
Lmin rather than from Fmax, even though visual processing of laser data in the forest is inferior to the 
best automated techniques [68].  

Figure 1. Four raster models for one example plot (radius 10 m) with the detected trees 
marked as ‘+’ and the field-measured trees marked as ‘o’. The trees designated by A, B, C 
and D were detectable on the Lmin image but not on the Fmax image. Lmin refers to the 
minimum of last returns, Lmax to the maximum of last returns, Lmean to the mean of last 
returns and Fmax to the first returns maximum. The return height is color coded. 

  

9236

 

 

7.7

29

0

5

10

15

20

25

A B

C

D

Lmin

m
9236

 

7.7

29

0

5

10

15

20

25

Lmax

m



Remote Sens. 2012, 4 1195 
 

 

Figure 1. Cont. 

2.5. Using Point Height Metrics and Individual Tree-Based Features in Area-Based Predictions 

In order to demonstrate the usefulness of individual tree features in area-based predictions, which 
was the second objective of this paper, individual trees were located from the CHM (Fmax model), 
based on a method employing the minimum curvature object detection [66]. This method was among 
the best in an extended analysis of the EuroSDR/ISPRS Tree Extraction test [68]. Since the two 
objectives of this paper were processed in parallel, it was not possible to improve the minimum 
curvature object detection method with the last pulse data. The DBH was modelled using the tree 
height and crown area of each tree as the predictors [75]. Tree volume was calculated based on 
Laasasenaho’s volume equations [74] with laser-derived tree heights (the values of an unfiltered CHM 
at the tree locations) and DBH as the inputs. Thus, no local data were used to calibrate this conversion. 

Plotwise mean height and the mean DBH value were obtained from the arithmetic mean values of 
the extracted individual tree heights and DBH. The volumes were obtained by summing up the 
individual tree volumes calculated from Laasasenaho’s equations [74]. Both individual tree-based and 
point height metrics (Table 2) were used as the inputs for the Random Forest (RF) classifier [66]. RF is 
a non-parametric regression method in which the prediction is obtained by aggregating regression 
trees, each constructed using a different random sample of the training data, and choosing splits of the 
trees from among the subsets of the available features, randomly chosen at each node. The samples 
that are not used in training are called “out-of-bag” observations. They can be used to estimate the 
feature’s importance (as applied in Section 3.2) by randomly permutating out-of-bag data across one 
feature at a time and then estimating the increment in error due to this permutation. The greater the 
increment, the more important the feature ([66,76]). 
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Table 2. The features used in predicting the forest attributes. 

No. Feature Explanation 

Point Height Metrics 

1 meanH Mean canopy height calculated as the arithmetic mean of the heights from the point cloud  
2 stdH Standard deviations of heights from the point cloud 
3 P Penetration calculated as a proportion of ground returns to total returns 
4 COV Coefficient of variation 
5 H10 10th percentile of canopy height distribution 
6 H20 20th percentile of canopy height distribution 
7 H30 30th percentile of canopy height distribution 
8 H40 40th percentile of canopy height distribution 
9 H50 50th percentile of canopy height distribution 
10 H60 60th percentile of canopy height distribution 
11 H70 70th percentile of canopy height distribution 
12 H80 80th percentile of canopy height distribution 
13 H90 90th percentile of canopy height distribution 
14 maxH Maximum height  
15 D10 10th canopy cover percentile computed as the proportion of returns below 10% of the  

total height 
16 D20 20th canopy cover percentile computed as the proportion of returns below 20% of the  

total height 
17 D30 30th canopy cover percentile computed as the proportion of returns below 30% of the  

total height 
18 D40 40th canopy cover percentile computed as the proportion of returns below 40% of the  

total height 
19 D50 50th canopy cover percentile computed as the proportion of returns below 50% of the  

total height 
20 D60 60th canopy cover percentile computed as the proportion of returns below 60% of the  

total height 
21 D70 70th canopy cover percentile computed as the proportion of returns below 70% of the  

total height 
22 D80 80th canopy cover percentile computed as the proportion of returns below 80% of the  

total height 
23 D90 90th canopy cover percentile computed as the proportion of returns below 90% of the  

total height 
Individual Tree Based Features 

24 LH Mean height of all extracted trees 
25 LD Mean DBH of all detected trees, derived from the extracted heights and crown areas 
26 LB Basal area of the plot, derived from the extracted DBH 
27 LV Volume of the plot, derived from the extracted DBH and height 
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3. Results and Discussion 

3.1. Tree Detection Accuracy  

Figure 2 depicts the percentage of correctly-matched trees using four different raster models for tree 
location. As mentioned earlier, the conventional way of detecting trees is to use the Fmax surface 
model (i.e., the CHM). The use of last pulse data gave a higher degree of discrimination between the 
trees than the use of first pulse data. The use of the raster corresponding to the minimum of last returns 
resulted in the highest discrimination between trees. An improvement of 6% in individual tree 
detection is better than that obtained by increasing the pulse density from 2 to 8 pulses per m2 reported 
in [34]. Figure 3 shows that the improvement in tree detection increases when the density of the forest 
stand increases. Obviously, the number of commission errors (the percentage of the number of falsely 
detected trees that would not be matched with field-measured trees) increases, as shown in Figure 4. 
The method also reveals many small saplings, which are not even recorded in field surveys because of 
their small diameter (>5 cm DBH is required to qualify for being recorded). For this reason, in future 
commission errors should be analyzed in detail, taking this into account. The proposed method is prone 
to creating real commission errors when there are gaps within individual tree crowns. Thus, the 
filtering has to be specified for the forest type. Figure 5 shows the percentage of correctly matched 
trees as a function of DBH. The smaller the DBH class, the better the performance of the proposed 
method (Lmin raster) compared to the use of the CHM (Fmax). With the DBH class 5–10 cm, the last 
pulse resulted in 10% better detection of trees.  

Figure 2. The percentage of correctly matched trees when tested with 5,532 trees surveyed 
in the field.  

 

The results confirm that there is also substantial information for tree detection in last pulse data. 
Currently, in raster-based processing, this information has been largely neglected. The obtained results 
would even suggest the use of last pulse data for detection, but we assume that a hybrid model utilizing 
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both the first and last pulse data should be developed, even when processing is done at raster level. The 
advantages of first pulse data obviously include the lower number of commission errors and the high 
quality of tree separation when the crowns are not overlapping, whereas the advantage of last pulse is 
in the separation of trees whose crowns overlap. A hybrid model, utilizing the advantages of both pulse 
types should be developed.  

Figure 3. The percentage of correctly matched trees as a function of plot density when 
tested with 5,532 trees surveyed in the field. The number of trees refers to a plot with a 
radius of 10 m.  

 

Figure 4. The percentage of commission errors for different surface models when using the 
local maximum finding as the tree detection algorithm.  

 

Previously, last pulse data has been demonstrated to be usable for various applications. Liang et al. [77] 
used a simple technique (the difference of the first and last pulse returns under leaf-off conditions) to 
discriminate between deciduous and coniferous trees at individual tree level. In Matikainen et al. [78], 
a comparison between first pulse and last pulse laser scanner data in building detection was carried out. 
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Both visual and numerical quality evaluations showed that the correctness of the results improved 
when last pulse data were used instead of first pulse data. In building detection using leaf-off data, the 
clearest difference between the first pulse and last pulse results was the proportion of the area 
classified as trees, which was considerably larger when the first pulse DSM was used [78]. 

Figure 5. The percentage of correctly matched trees as a function of diameter breast height (DBH). 

 

With leaf-off data, more complex decision rules have to be developed for tree detection. With  
leaf-off data, the coniferous trees behave similarly to the leaf-on data, but the response of the 
deciduous trees can vary and needs to be studied in detail. A hybrid technique, utilizing both the first 
and last pulse data, may provide a working solution for deciduous canopies. 

The applied 2.5 m maximum distance for tree matching is a possible error source when matching 
small trees. A variable distance, based on tree height, could be used in future. Matching using variable 
distance based on the DBH of the tree is reported in [79]. 

3.2. The Accuracy of Area-Based Prediction of Forest Variables  

We wanted to show that the use of individual tree features as predictors increases the accuracy of 
stem volume in area-based predictions. Table 3 summarizes the results for mean height, mean DBH 
and stem volume when using (a) all features (both individual tree-based and point height metrics); 
(b) point height metrics and (c) individual tree-based features. With regard to volume estimation, there 
is a substantial improvement when using individual tree-based features as input for area-based 
prediction when compared to point height metrics. The results were repeated using two point densities 
and two DBH versus height models, and the combined data set, consisting of individual tree-based and 
point height metrics, provided the most accurate forest variable predictions in all cases. Since 
individual tree-based features can easily be added to the ABA method, the results propose a potential 
improvement in the accuracy of the estimation of forest variables in the ABA. 
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Table 3. The bias, RMSE, and correlation coefficient (R) between the predicted and 
observed values were calculated as measures of the accuracy of area-based inventory based 
on three different feature sets.  

 Bias RMSE RMSE (%) R 
With all features     
Mean height (m) −0.00 1.10 6.15 0.98 
Mean DBH (cm) 0.00 2.91 16.07 0.89 
Volume (m3/ha) 0.24 30.05 20.32 0.96 

With point height metrics     
Mean height (m) −0.03 1.25 6.99 0.98 
Mean DBH (cm) 0.02 3.02 16.65 0.88 
Volume (m3/ha) 0.13 37.56 25.41 0.93 

Individual tree-based features     
Mean height (m) −0.00 1.24 6.97 0.98 
Mean DBH (cm) −0.06 3. 54 19.54 0.83 
Volume (m3/ha) −1.06 30.16 20.40 0.96 

Individual tree-based features improved the ABA’s accuracy since they had very high correlation, 
e.g., with the reference stem volume. When calculating the importance of the features, most of the 
individual tree-based features were among the best features. Figure 6 shows that, when estimating 
mean height, the best laser-derived feature was the mean height derived by using the individual tree 
technique. When estimating DBH, the best laser-derived features were (1) mean canopy height and 
(2) penetration to the ground (as used in [4–6,80,81] and which was confirmed to correlate powerfully 
with standing volume and biomass in [82]); (3) mean tree height (derived from the extracted individual 
trees) and (4) mid percentiles. For the estimation of stem volume, the best laser-derived feature was the 
stem volume derived from extracted individual trees, followed by the basal area derived from extracted 
individual trees. It is possible to easily derive further laser point height metrics and individual  
tree-based features. The selected features are those reported quite early on, in [11–13]. Especially for 
the estimation of DBH, more features should be extracted to improve accuracy. In the field of statistics 
it is well-known that the use of predictors with high powers of explanation yields better estimates. 

Another matter of concern is pulse density. It is probable that individual tree-based features lose 
some of their explanatory powers when applied at lower pulse densities, and with point densities of 
about 1 point/m2, the improvement is assumed to be more modest. However, in [34], pulse density did 
not have a significant impact on the accuracy of individual tree-based results  

Several ALS inventory studies have been carried out in the same Evo area as the present study.  
In [83], the ABA stem volume estimation RMSE (relative stem volume estimation error, Root Mean 
Squared Error) was 27.1% using 282 field plots for training the k-NN method. In [67], the obtained 
RMSE for stem volume ranged from 24.8% to 27.2%, which is comparable to the 25.2% obtained in 
the present study with point height metrics as predictors. An improvement of RMSE value from about 
25% to 20.3–20.4% can be considered to be substantial. 
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Figure 6. The feature importance (in the left column) and a scatter plot of the predicted 
versus observed values (in the right column) for mean height, mean DBH and volume 
estimates based on all features. The order of the feature index is the same as in Table 2  
(24–27 are the individual tree-based features). 
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based on RF are robust, our preliminary understanding is that estimation is not as sensitive to the tree 
finding algorithm as has previously been reported in ITD literature. It should be borne in mind that the 
applied tree extraction method, namely the minimum curvature objector detection method [66], was 
among the best in the extented EuroSDR/ISPRS comparison [68]. Yet, even that method can be 
assumed to be improved upon by incorporating last returns, as explained in this paper. We believe that 
the use of physically-strong features [84], together with statistically proven non-parametric estimation 
techniques, can also result in savings in practical forest inventory, even when using lower point density 
data (<1 emitted laser pulses per m2). 

4. Conclusions  

This paper reports two improvements for laser-based forest inventory. The first improvement is 
based on using the last returns for discriminating between overlapping trees. Using last pulse data and 
the test, which included 292 forests plots and more than 5,500 trees, an improvement of 6% for 
individual tree detection was obtained when compared to using first pulse data. In the 5–10 cm 
diameter breast height class, the use of last pulse resulted in a 10% better detection of trees than when 
using first pulse data. The results confirm that there is substantial information for tree detection in last 
pulse data, which should not be neglected even when using raster-based processing.  

The second improvement is based on the use of individual tree-based features, in addition to 
statistical point height metrics, in the area-based prediction of forest variables. By using individual 
tree-based features as the input in non-parametric estimation, the root mean squared error, when 
compared to solely point height metrics, were reduced from about 25% to 20% at plot level. Point 
height metrics and individual tree-based features complemented each other in basal area estimation. 
The results confirmed the high usability of individual tree level features in the area-based estimation of 
forest variables. 
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