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Abstract

Non-resonant inelastic x-ray scattering can provide information on various atomic-scale prop-

erties and phenomena by probing the spectrum of electronic excitations. The technique allows

bulk-sensitive measurements and relatively freely tunable sample conditions even for excita-

tions with energies in the soft x-ray range. Also non-dipolar excitations are accessible by

virtue of the ability to impose finite momentum transfer in the scattering process. This

thesis comprises of studies that apply non-resonant inelastic x-ray scattering to questions of

chemistry and physics in gas and solid phase. More specifically, the works focus on selected

cases of gas-phase samples at elevated temperatures and pressures as well as on a solid-state

chemical reaction of an organic compound.

The electronic excitation spectra from gas-phase molecules exhibit temperature depen-

dence due to molecular vibrations, which affect both the intensities and energies of the elec-

tronic transitions. The spectra measured at varied sample temperature and with varied

momentum transfer help to give insight to the vibrational effects when interpreted using

spectrum simulations. Especially the vibrations that distort the molecular symmetry from

that of the equilibrium geometry are demonstrated to be important.

A classic example of topochemical reactions is the dimerization of crystalline cinnamic

acid, which is usually induced by ultraviolet light illumation. The presented study with

inelastic x-ray scattering shows the reaction take place also due to x-ray irradiation. The in-

situ measured time-resolved spectra allow to obtain reaction kinetics data, and the utilization

of imaging method to follow also the spatial progress of the reaction.

These novel experiments using non-resonant inelastic x-ray scattering and the applied

analysis methods demonstrate the versatility of the technique and help to envision future

studies.
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1 INTRODUCTION 1

1 Introduction

The development of experimental techniques is an important driving force behind many

advances of physics. Among the most rapidly developed techniques are those based

on synchrotron radiation, which has in many ways revolutionized materials science.

The advances in the instrumentation at synchrotron radiation facilities have made

new techniques feasible, non-resonant inelastic x-ray scattering (NRIXS) spectroscopy

being one of them. In the NRIXS process some of the energy and momentum of an

incident x-ray photon is transferred to a sample system that is excited to a higher-

energy state [1]. This probing of excited electronic states yields information on the

properties of the sample material on atomic level.

The most remarkable feature of NRIXS is its versatility and applicability to vari-

ous samples and sample conditions. This gives the technique value as a complemen-

tary method to similar spectroscopies, which are far more restricting in this regard.

NRIXS from core-electrons is called x-ray Raman scattering (XRS). For measuring

core-level spectra from light elements (e.g., C, N, O) XRS enables to probe the interior

of macroscopic-scale samples [1–3] as well as to use elaborate sample cells for read-

ily tunable, non-vacuum, and even extreme sample conditions [4]. Another important

feature of NRIXS is its ability to probe also non-dipolar excitations, which enables

gaining a more complete description of electronic structures [5–7]. In terms of appli-

cations, suitable instrumentation dedicated for NRIXS can be used to spectroscopic

tomography [8], which enables to spatially map chemical bonding inside a sample [9].

This thesis focuses on novel NRIXS studies on molecular chemistry and physics.

The NRIXS technique has become feasible comparatively recently, and it is still rapidly

developing and enables novel experiments to be performed [9–11]. Also the amount of

data produced in the measurements has increased significantly, presenting challenges

for data analysis and raising questions on the most efficient ways to use the data.

First, in Section 2, the background of NRIXS is briefly presented. In Section 3 the

studied phenomena, i.e., molecular vibrations and radiation induced chemical reactions,

are discussed. Section 4 presents experimental aspects including instrumentation and

methods for data analysis, tomographic imaging, and spectrum interpretation. Sec-

tion 5 describes the experiments performed for papers I–IV. In papers I–III electron-

excitation spectra of gas-phase molecules were studied, the interest lying in the effects

of molecular vibrations, their temperature dependence (papers II–III), and non-dipole

excitations (papers I,III). In paper IV NRIXS was used to study dimerization of cin-

namic acid to truxillic acid, which is a classic example of a topochemical solid-state

reaction. The progress of this reaction was followed by time-resolved imaging of the

sample crystal, and the reaction kinetics was investigated using spectral decomposition.
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Figure 1: Schematic presentation of inelastic x-ray scattering.

2 Non-resonant inelastic x-ray scattering

An interaction between x-rays and matter can be described by a cross-section σ, which

is defined for an atom or molecule as the rate of the interaction events divided by

the density of incident photon flux (photons per unit time per unit area) [12, 13].

In the case of inelastic x-ray scattering interaction, both momentum and energy of

the incident and scattered photons differ. In an inelastic x-ray scattering experiment

the photons scattered to a solid-angle element dΩ in an energy bandwidth d~ω2 are

detected, and the measured quantity is a double differential cross section (DDCS) [1].

When the energy of the incident x-rays is far from the absorption edges of the electronic

system, the dominant contribution to the DDCS is given by non-resonant inelastic x-

ray scattering (NRIXS) [3]. This process arises from the A ·A term in the interaction

Hamiltonian of the electromagnetic radiation and the electronic system, A being the

vector potential of the radiation field.

The DDCS for NRIXS can be written as

d2σ

dΩdω2

=

(

dσ

dΩ

)

Th

S(q, ω). (1)

Here, the first factor is the Thomson cross section [13], which reads
(

dσ

dΩ

)

Th

= r20
ω2

ω1

|ê1 · ê
∗

2|
2. (2)

The Thomson cross section formula includes the classical electron radius r0, the energies

of the incoming and scattered photons ~ω1 and ~ω2, and their polarization vectors ê1
and ê2, respectively.

The second part in Eq. (1) is the dynamic structure factor of the electronic system,

S(q, ω) =
∑

F,I

ρI

∣

∣

∣

∣

∣

〈F |
∑

j

eiq·rj |I〉

∣

∣

∣

∣

∣

2

δ(EF −EI − ~ω). (3)

In this form, the dynamic structure factor describes transitions from the initial states

|I〉 to final states |F 〉, which have energies EI and EF , respectively. The probability of

the initial state |I〉 to be occupied is ρI . The energy transfer to the electronic system

is ~ω = ~ω1 − ~ω2 and momentum transfer is ~q = ~k1 − ~k2. The summation index
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j runs over all electrons in the system, and the delta function forces the conservation

of energy.

As depicted in Fig. 1, the scattering vector q is set in an NRIXS experiment by the

scattering angle φ together with the photon momenta. The magnitude of the scattering

vector is

q =
1

c

√

ω2
1 + ω2

2 − 2ω1ω2 cosφ, (4)

where c is the speed of light. The dynamic structure factor depends on the momentum

transfer via the exponential operator in Eq. (3), which can be expanded as a series of

Cartesian operators:

eiq·r = 1 + iq · r−
1

2
(q · r)2 +O(q3). (5)

In the limit q → 0, the dynamic structure factor is governed by the second term of

the series that gives rise to dipole transitions. With increasing momentum transfer,

higher-order terms gain significance, and this presents a way to probe also non-dipole

excitations and to obtain a more complete picture of the electronic system [1, 5].

At energy transfer values close to electron binding energies the dynamic structure

factor of an electronic system exhibits thresholds that correspond to absorption edges.

The spectral near-edge features just below the thresholds consist of excitations to bound

electronic states, which in isolated molecules are described by molecular orbitals [12,14].

The cases of core and valence electron excitations are discussed in the next two sections

along with the relation of NRIXS to similar techniques.

Figure 2 shows an NRIXS spectrum on a wide energy transfer range measured from

liquid acetic acid with several momentum transfer values. The regions of carbon and

oxygen K -edges are shown enlarged in the insets. The valence-electron excitations

form a broad profile, whose maximum shifts to higher energy transfer values with

increasing q, and which appears as a background for the core-electron excitations.

By increasing q to be much larger than the inverse of the characteristic interparticle

distances, the dynamic structure factor takes the form of Compton profile [15], which in

non-relativistic limit is centered at the energy transfer ~2q2/2m, m being the electron

mass.

2.1 X-ray Raman scattering

The term X-ray Raman scattering (XRS) for NRIXS from core electrons is due to

its analogy with (ordinary) Raman scattering [16]. The near-edge features in a core-

electron excitation spectrum are sensitive to the chemical bonds and local molecular

structure around the excited atom site.1 The edges of different elements are well sep-

arated from each other, which enables element-specific measurements. However, the

1The spectrum region around an absorption edge is customarily termed XANES for x-ray absorp-

tion near edge structure or NEXAFS for near edge x-ray absorption fine structure.
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Figure 2: NRIXS spectra from liquid acetic acid (C2H4O2) for q = 3.0− 8.3 Å−1. The

carbon and oxygen near-edge regions for q = 3.0 Å−1 are shown enlarged in the insets.

relation between the molecular structure and the spectral features is not straightfor-

ward, and the spectrum interpretation relies largely on simulations [17–21]. Depending

on the modeled electronic system, various effects need to be accounted for by the sim-

ulation. For example, in the case of gas-phase molecules, spectral effects appear due

to molecular vibrations, studied in papers I–III, and discussed in Section 3.1.

The core-electron absorption edges of light elements are in the energy range of soft

x-rays (below 1 keV for Z<10). However, because in XRS the energy transfer takes

the role of incident-photon energy in absorption process, even high-energy x-rays can

be used to probe these energy ranges. When the energy of incident x-rays is around

10 keV, their probing depth is in mm-range in materials that consist of light elements.

Thus, the XRS measurements of low-Z elements are bulk-sensitive in a macroscopic

length scale and enable the use of elaborate sample environments. Vacuum conditions

are not necessary and it is even possible to use sample cells that allow readily tunable

pressure and temperature. Even extreme pressures can be realized in XRS experiments

by using a diamond anvil cell [4, 22–27].

2.2 Complementary techniques

The more widely used techniques for measuring core-electron excitations are x-ray

absorption and electron energy loss spectroscopy (XAS and EELS, respectively). XAS

is based on the measurement of photoabsorption cross section [12], which is mainly

governed by dipole transitions: σabs ∝ |ê1 · 〈F |r|I〉|2. Thus, XAS and XRS in the limit

of low q yield equivalent information. The direction of the momentum transfer in XRS

has the role that the polarization of the x-rays has in absorption as seen from Eq. (5).
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dependence on the momen-

tum transfer. The spectra

are offset for clarity. The

vertical line emphasizes the

shift of the lowest-energy

peak.

When the interest is in low-energy excitations (<1 keV), the probing depth in XAS is

small in solid and liquid samples (in the range of ∼1 µm) [28].

EELS is more analogous to XRS, in the sense that also it aims in measuring the

dynamic structure factor and allows to probe non-dipole excitations [29]. However, as

electron scattering arises from the Coulomb interaction, the cross section that EELS

measures is relatively large and it decreases with increasing momentum transfer [30].

For this reason EELS measurements can be complicated by multiple scattering that

can render the measured spectrum not to correspond to the dynamic structure factor.

Recent comparative studies with EELS and NRIXS [31–36] have shown that multiple

scattering can affect EELS spectra even when measured using high-energy electrons

and that it can arise also from an intramolecular process. Similar restrictions for

probing depth as for XAS concern also EELS. A valuable advantage with EELS, owing

to the electron beam focusing possibility, is the ability to perform spatially resolved

measurements with nm-scale resolution [37].

In this thesis XRS was chosen as the superior technique for the presented studies,

since it allows for well-defined beyond-ambient thermodynamic conditions as well as

hyperspectral imaging over macroscopic length scales.

2.3 Valence excitations

The electrons that occupy valence orbitals have low binding energies, and their excita-

tions are usually studied by UV-visible light absorption spectroscopy [16] or by EELS.

Generally, the valence-excitation spectrum does not offer element specificity unlike

core-excitation spectrum does, but it can yield information on specific groups of atoms

(chromophores) in molecules. UV-visible spectroscopy is the basis for many analytical

methods in chemistry to identify compounds and determine concentrations [38]. The
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valence-electron excitations themselves are interesting because they govern the optical

properties of materials such as refraction and absorption [30]. Photochemical reac-

tions are initiated by valence-electron excitations, which makes them relevant to, e.g.,

atmospheric chemistry [39, 40] and photosynthesis [41].

UV-visible light spectroscopy probes dipole excitations, and again here NRIXS

excels by offering an access to non-dipolar transitions as well. This is illustrated in

Fig. 3, which presents the q-dependent spectra from gas-phase N2. The lowest-energy

feature at 8–11 eV arises from two individual dipole-forbidden transitions [32]. Their

behavior as a function of q are slightly different from each other, and this results in a

blue shift of the unresolved double peak with increasing q.
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3 Studied phenomena

3.1 Molecular vibrations and temperature

The electronic excitation spectrum of gas-phase molecules exhibits vibrational effects

and generally also temperature dependence. When the electronic state of a molecule

changes, also the potential energy surface (PES) governing the nuclei motion changes

(Fig. 4). This results in vibrational excitations that accompany the electronic excita-

tion, i.e., vibronic excitations [14, 16]. The initial population of the vibrational states

depends on temperature, whose changes, in turn, are expected to give rise to spec-

tral variations. The vibronic excitations provide a way to investigate the PES of both

ground and excited electronic states, and temperature-varied spectra can help to probe

them [42–45]. However, sophisticated computational methods are needed for any re-

alistic simulation of the spectra to account accurately both electronic and vibrational

effects [46–52]. If the individual vibrational side-peaks are not resolved in the spec-

trum, they appear as (generally asymmetrical) broadening of the electronic excitation

features. From the point of view of applications, high-temperature gases and their

spectroscopic studies are relevant to, for example, chemical reactions like combustion

and industrial synthesis processes [53, 54], and to the atmospheric chemistry of Earth

and other planets [39, 40, 55, 56]. Molecules can also undergo vibrational-state spe-

cific chemical reactions [57], allowing to tune chemical processes by selectively exciting

vibrational modes [58].

Vibrational effects on electronic excitation spectra of gas-phase molecules have been

studied extensively with several techniques. Using XAS and EELS the spectra of core-

excitations can be recorded with a very fine resolution. For example, the resolution of

∼30–70 meV in the studies of CO2 [59–63] and N2 [64–68] has allowed to reveal the

vibrational fine structure of the spectra. Also many studies with UV absorption spec-

troscopy and EELS have been performed on the valence excitations of these molecules,

e.g., refs. [69–76]. NRIXS experiments on gaseous samples have become feasible in

recent years with the help of sample cells allowing pressure to be increased above at-

mospheric pressure, which counteracts the comparatively small cross-section of NRIXS.

So far gases studied using NRIXS include He, Ne, Ar, N2, and CO [11,31–35,77,78], in

addition to N2, CO2, and N2O studied in papers I–III. The high resolution (70 meV)

in the measurements of N2 and CO valence-excitation spectra has allowed resolving

vibrational side-peaks and studying their individual q dependence [35, 36].

A typical quantum mechanical framework for molecular vibrations relies in the

Born–Oppenheimer approximation [79,80], in which the vibronic wavefunction is writ-

ten as a product of an electronic wavefunction Φ(r;R) and a vibrational wavefunc-

tion χ(R). Here r denotes all electron coordinates and R the nuclear ones. For

the initial and final vibronic states of an excitation process this factorization yields

|I〉 = |ΦIe〉|χIe,Iv〉 and |F 〉 = |ΦFe〉|χFe,Fv〉, respectively. It is customary to apply the
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Figure 4: Schematic harmonic potential energy curves for initial and final electronic

states with different equilibrium geometry and transitions following the Franck–Condon

principle. Left: In the quantum mechanical framework the probability of a vibrational

transition accompanying an electronic one depends on the overlap of the vibrational

wavefunctions. Right: In the classical model an electronic excitation can be depicted

as a vertical transition between the potential energy curves, as illustrated for a few

geometries.

Franck–Condon principle, in which an unchanged molecular geometry during electronic

transitions is assumed [16]. In this framework the dynamic structure factor (Eq. (3))

reads

S(q, ω) =
∑

Fe,Fv,Ie,Iv

ρIe,Iv

∣

∣

∣
〈χFe,Fv|χIe,Iv〉 〈ΦFe|

∑

j

eiq·rj |ΦIe〉

∣

∣

∣

2

δ
[

(EFe − EIe)+(EFv − EIv)−~ω
]

.

(6)

The energy transfer now accounts for the energy difference of the electronic states,

EFe−EIe, and that of the vibrational states, EFv−EIv. In the harmonic approximation,

the contribution to the vibrational state energy by each normal mode is ~ωM(nM+1/2),

where ωM is the vibrational angular frequency and nM the vibrational quantum number

of the mode M . The initial vibrational states are weighted with their temperature

dependent statistical probabilities ρIe,Iv. The vibrations are manifested in the electronic

excitation spectrum as a fine structure: each electronic transition is accompanied by

vibrational transitions, whose intensities are proportional to the square of the overlap

integral of the vibrational wavefunctions (Franck–Condon factor). Figure 4 presents

an illustration for a one-dimensional case. The vibrational wavefunctions are labelled

χIe,n and χFe,n, because they are determined by the PES of the electronic states Ie and

Fe. For a given electronic state the vibrational wavefunctions are mutually orthogonal,

but the PES of different electronic states are generally different, which allows multiple

non-zero Franck–Condon factors for each electronic transition.

In many cases the Franck–Condon approximation in Eq. 6 is sufficient to explain
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the vibrational fine structure of an electronic excitation spectrum. However, if the

electronic transition moment is forbidden by selection rules, but it is accompanied

by non-totally symmetric vibrational states, the overall vibronic transition can be al-

lowed, since selection rules concern the full vibronic wavefunctions rather than solely

their electronic part [16]. In case of forbidden electronic transition in the equilibrium

geometry, expression of Eq. 6 is no more adequate, as the nuclear-coordinate depen-

dence of the electronic transition moment can be important. This can be addressed

by introducing correction terms from the series expansion of the electronic transition

moment along normal coordinates. The first of them is the so-called Herzberg–Teller

term, which includes derivatives of the electronic transition moment with respect to

each normal coordinate, and these can be nonzero although the electronic transition

moment is zero.

It is possible to treat the vibrations also in a classical framework, in which there are

no quantized vibrational states. Instead, the nuclei of a molecule are treated as classical

particles, whose motion is governed by the PES given by the electronic state. The

vibrational effects arise as the electronic transitions are calculated for several molecular

geometries and weighted with the probabilities of the geometries. This follows the

Franck–Condon principle, as the transitions are vertical between the PES of the initial

and final electronic state, and the transition energy is given by their energy difference,

see Fig. 4. As in the quantum mechanical framework, the different shape of the PESs

is necessary for vibrations to affect the spectrum, but now the effect is a continuous

broadening of the peaks of the electronic transitions. In this model, the spectra depend

on the temperature, because the probability distribution of the molecular geometries

is governed by the vibrational energy. To model the transitions in this framework, the

probability distribution of geometries can be sampled in the whole normal coordinate

space, as in paper II, or only along one important normal coordinate, as in paper III.

3.2 Radiation-induced reactions

X-ray irradiation can induce chemical reactions in materials. Their consequences are

called radiation damage, if they are undesired; however, in many fields of chemistry,

the radiation or light-induced reactions are themselves important [81, 82]. Radiation

damage has gained recently much interest in the fields of protein crystallography [83–86]

and x-ray microscopy [87,88], as it has become more important due to increased x-ray

beam intensities. In crystallography, radiation damage is typically classified either as

local damage (specific chemical changes), or as global damage of the whole crystal [84,

85]. The global damage includes the loss of crystalline order and changes in the unit cell

dimensions. The underlying local damage, or intentionally induced chemical reaction,

depends essentially on the specific chemical structure of the irradiated material [89].
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The rate of the damage is governed naturally by the dose rate,2 which can also affect

the reaction pathway [81]. In gas-phase molecules it has been shown that even the

specific ionized state affects the reaction path and disintegration products [90, 91].

The first step in all reaction pathways induced by x-rays is either photoelectric ab-

sorption or inelastic scattering, because they are the possible interactions that deposit

energy to a material. In the case of atoms of elements Z>3 and ~ω1 ≈ 10 keV, the

dominant process is photoelectric absorption [92], which results in an ejected photo-

electron and a singly-ionized state of the absorbing atom. Inelastic scattering that

results in ionization of an atom produces both a scattered photon and an ejected

Compton-electron. In the case of light elements (Z<30), a core-ionized state decays

dominantly via the Auger process, in which an electron is emitted and the atom is left

in a doubly ionized state [13]. In the case of heavier elements, core-ionized states decay

dominantly by fluorescence process [92].

The released electrons cause subsequent secondary ionization and excitation events

as well as bremsstrahlung in the material they propagate in, and the electrons from the

secondary ionization events can themselves cause further processes [89]. The number

of the excitations or ionizations produced by one high-energy electron can be large,

which makes the interactions of the high-energy electrons more important for radi-

ation damage than the initial x-ray interaction itself. Eventually, when the kinetic

energy of the electrons is consumed, they can recombine with the ionized molecules

to form electronically and/or vibrationally excited molecules, or seek to an electro-

affinic site [85]. The chemical changes in a material begin most importantly from the

valence-excited or ionized states created by the propagating electrons [89]. The free

radicals that can be produced in the disintegration of molecules typically cause further

reactions [93]. Generally, based on bond energies, it is expected that single carbon

bonds are more sensitive to radiation than higher-order carbon bonds [94]. In turn,

compounds containing an aromatic ring are found relatively radiation resistant [89]. In

addition to molecule disintegration reactions combination processes are also known to

occur [95–97], most importantly in polymers [82].

A general practice in x-ray experiments to reduce radiation damage is to cool the

sample to cryogenic temperatures. This slows the migration of free radicals and the

reactions they cause [86]. Naturally, the radiation dose can be decreased also by in-

creasing the irradiated sample volume by increasing the x-ray beam size on the sample,

which in turn decreases the fluence. In the experiment of paper IV, sample cooling and

increased beam size were employed to decrease the rate of the x-ray-induced reactions.

This enabled to follow the reactions with a time-resolved measurement.

Another experimental parameter that affects the radiation dose is the x-ray energy.

The general behavior of photoelectric absorption cross-section as a function of energy

is approximately (~ω1)
−3, thus, for a fixed number of photons incident on a sample,

2The rate of energy deposited by radiation per unit mass.
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the dose behaves as (~ω1)
−2 (ignoring absorption edges) [92]. Considering NRIXS, the

cross-section increases with an increasing incident-photon energy, which can further

reduce the dose versus the measured signal. It is also possible to circumvent the effects

of radiation damage by continuously refreshing the sample during a measurement. This

approach is employed in, e.g., x-ray diffraction measurements with free-electron lasers

by injecting sample crystals to the x-ray beam using a jet of carrier solution, or by

translating a crystal between each exposure to probe an undamaged volume [98]. Sim-

ilarly, in spectroscopic experiments on liquid samples radiation damage is commonly

avoided by using a setup in which a circulation system continuously drives unirradiated

sample volume into the x-ray beam [99, 100].
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4 Experimental methods and considerations

4.1 General

In comparison to XAS and EELS, the NRIXS technique is characterized by the large

probing depth of hard x-rays, and the small cross section of the NRIXS interaction

itself [92]. Inelastic scattering is also diffuse, and only a fraction of the inelastically

scattered photons can be detected.3 Therefore, in NRIXS studies the spectral bright-

ness of the x-ray source4 needs to be high and the detection of scattered photons

efficient. The use of high-energy x-rays (∼10 keV) also requires high instrumental re-

solving power. These simultaneous requirements are fulfilled by modern synchrotron

radiation sources and beamlines specialized for NRIXS employing spectrometers with

multiple analyzer crystals [8, 102, 103].

The required energy resolution depends on the probed excitations and the purpose

of the experiment. In some experiments one may wish to resolve vibrational finestruc-

ture of an electronic-excitation spectrum, and the energy resolution must then match

that of the difference of vibrational state energies. However, in many studies of electron

excitations the requirement for energy resolution is dictated by the intrinsic spectral

width that depends on the excited state lifetime; this is for example 130–180 meV for

an oxygen 1s core hole [104].

In the case of low-density or dilute samples, the signal-to-noise ratio is an impor-

tant factor considering the feasibility of experiments. A considerable background for

the desired spectrum of core-electron excitations can arise from the valence-electron

excitations of the sample itself. As seen in Fig. 2, the spectrum of the valence electrons

(Compton profile) is centered at an energy transfer value that depends on the momen-

tum transfer. This should be considered carefully when planning the experiments, in

which the program package presented in ref. [105] can be used. Another factor that may

affect the feasibility of an experiment is the radiation damage that the high intensity

x-rays can cause in the sample, as discussed in Section 3.2.

The NRIXS experiments of this thesis have been carried on at the beamlines ID16 [8]

(papers I–III) and ID20 (paper IV) of the European Synchrotron Radiation Facility

(ESRF), located in Grenoble, France. The beamline ID20 opened for user experiments

in 2013 replacing ID16. The main components and operation principles of ID16 were

similar to those of ID20.

4.2 Synchrotron radiation sources and beamline ID20

A synchrotron radiation source is a particle accelerator dedicated to generating electro-

magnetic radiation for scientific experiments [13,106]. In the storage ring of the ESRF

3At beamline ID20 the 72 analyzers cover 4.5% of the full 4π solid angle.
4Spectral brightness is defined as the number of photons/s/mm2/mrad2/(0.1% bandwidth) [101].
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electrons circulate with an energy of 6 GeV. The electrons are steered by magnetic

fields, and as charged particles under acceleration, they emit electromagnetic radia-

tion. An undulator is a device positioned on a straight section of a storage ring for

producing x-rays with high spectral brightness and with a tunable energy [13, 101].

An undulator consists of magnets arranged to produce a periodic magnetic field with

alternating direction along its length, and the electrons that traverse it oscillate and

emit synchrotron radiation. Due to coherent emission from different periods the undu-

lator produces a radiation spectrum with a peaked structure consisting a fundamental

energy and its harmonics [13, 101], which can be tuned by tuning the magnetic field

strength (the gap of the magnets). The synchrotron radiation from an undulator is

naturally concentrated to a narrow cone (i.e., x-ray beam), which is directed to a beam-

line. There can be several dozens of beamlines around a storage ring, each of them

with different instrumentation dedicated to different experimental techniques.

At the beamline ID20 of ESRF the x-ray beam from the undulators is first narrowed

using slits. Next, the beam is collimated with a mirror, and monochromatized with

a premonochromator and a channel-cut monochromator. Their pass-energy, given by

Bragg’s law, is tuned simultaneously with the undulator gap to allow energy scanning.

Finally, mirrors focus the x-ray beam to the sample position.

At ID20 the NRIXS spectrum is measured using the inverse energy scan technique,

in which the intensity of the scattered x-rays at a constant energy is recorded, while

changing the incident-photon energy to yield a desired energy-transfer range. This

allows the use of a fixed-energy spectrometer, for which the efficiency remains con-

stant throughout the energy scan, and the accessible energy range is limited by the

monochromator and not the angle-dispersive spectrometer angular range. The NRIXS

spectrometer of ID20 consists of six modules (three in vertical and three in horizon-

tal scattering plane), whose scattering angle can be changed. Each module houses

one two-dimensional spatially-sensitive detector and twelve spherically bent Si(110)

analyzer crystals. The detectors have 256×256 pixels each of size 55×55 µm2. The an-

alyzer crystals serve two purposes: first, they energy-analyze the scattered radiation,

i.e., they permit only radiation with a specific energy to be reflected to the detec-

tor [107]; secondly, owing to their spherical bending, they focus the reflected radiation

in a point-to-point manner (sample-to-detector) [8]. The focusing property, when com-

bined to the spatial sensitivity of the detector [108], enables imaging of the sample

with contrast given by NRIXS — a novel spectroscopic tomography technique that is

discussed in detail in Sec. 4.4.

In the studies of this work, the energy resolution was 0.5 eV in papers I–III and

0.7 eV in paper IV, which values were determined from the full width at half maximum

of elastic line. When signals from multiple analyzer crystals are summed to obtain a

single spectrum, the momentum transfer resolution is dictated via Eq. (4) by the range

of the scattering angles that the crystal positions span.
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Figure 5: Imaging of a cinnamic acid crystal for paper IV using superresolution.

Left: A detector image obtained by summing images of an energy scan across the

elastic line. Right: The sub-images 8 and 9 (magenta and green, respectively) before

and after alignment and interpolation. The interpolation grid has a number of pixels

increased fourfold in both dimensions. The sub-image 8 is chosen as a reference for

registration, to which all sub-images are aligned. The lowest panel illustrates the effect

of aligning and combining all twelve sub-images.

4.3 Data analysis

In a typical measurement at ID20 the reflections from the analyzer crystals are aligned

distinctively on the detector(s), see Fig. 5. Thus, by selecting regions of interest (ROIs)

from the detector image, it is possible to discriminate the spectra from different ana-

lyzers, and to analyze each spectrum separately. This is necessary, because different

analyzers pass slightly different energies, which needs to be accounted for in the energy-

calibration. Also, as the analyzer crystals are positioned at different scattering angles,

they record spectra with different momentum transfers, which can be desired to be re-

solved. A properly selected ROI enables to obtain spectra only from a desired volume

of a sample and to avoid contributions from sample environment.

There are various ways to select the ROIs, and they are implemented in the program

package presented in ref. [105]. Often the ROI selection is performed manually using

an image obtained by an energy scan over the elastic line. For adequately uniform

samples it is possible to detect the ROIs automatically based on an intensity threshold

for pixels. The counts in each ROI are summed to result in spectra, which are then

normalized to the flux of the incident beam. The spectra from individual analyzers are

energy-calibrated to a common energy-transfer grid. If the desired momentum-transfer

resolution allows, spectra from a group of analyzers may be averaged. Finally, the
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Figure 6: The principle of direct tomography imaging in 2D sectioning mode. An

image of the x-ray illuminated volume of the sample is projected to the detector. Each

pixel records an individual spectrum, and a hyperspectral data cube is formed.

spectra are corrected for the energy dependence of the x-ray absorption in air path,

sample environment, and the sample itself.

In XRS, the spectra from specific core-electron excitations are of interest. In this

case the parts of the spectra that originate from scattering from valence electrons or

other, lower-lying, core electrons, is considered as background. Stray scattering, i.e.,

photons reaching detector but not via a reflection from analyzer crystals, may also

contribute to the background. Sophisticated procedures to subtract the background

and normalize the remaining spectrum to the dynamic structure factor on an absolute

scale (1/eV) exist [105,109,110]. Normalization to the absolute scale is normally done

using sum rules, if the spectra can be measured on a wide enough energy range [111].

Otherwise, if the interest is in relative comparison of spectra, the practice often is to

normalize the spectra to a fixed area.

The detailed analysis procedures are presented in ref. [105] with a program package

that can used to perform the analysis as well as to help to prepare for an experiment,

e.g., by estimating count rates and signal-to-noise ratios.

4.4 Imaging at ID20

The imaging ability of ID20 can be utilized for many purposes. A straightforward one

is to help the sample alignment and to exclude the signal from the sample environment.

However, the most valuable feature of imaging exploits the spectral dimension of the

recorded images, as it can provide contrast based on the chemical bonding. Similar

imaging can be performed with x-ray and electron microscopies [37,112], but the NRIXS

imaging technique, coined direct tomography [9], offers uniquely a contrast mechanism

in three-dimensional imaging of macroscopically large samples (up to the mm-scale).

Another application for the imaging is temperature probing of gaseous samples. The

utilized imaging applications are presented along with the results of the experiments

in Section 5.
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Direct tomography yields, as any spectral imaging technique, data cubes that con-

tain spectra as a function of spatial position and excitation energy. The data cubes

can be obtained in two alternative ways. First is to use a tightly focused beam in

both horizontal and vertical directions (e.g. 10 µm × 10 µm at ID20), and raster scan

across the sample’s directions y and z (see Fig. 6 for the coordinate system). The

information of the position along the beam (x ) is obtained from the detector images.

It is also possible to image a two-dimensional section of a sample at once by using an

x-ray beam unfocused in the z direction, obtaining an image slice in the xz plane from

the detector images; the remaining information along the y direction is obtained by

scanning the sample across the beam in this dimension.

The pixel-resolved spectra have only a fraction of the photon counts that the ROI-

averaged spectra have, and their statistical accuracy is thus lower. To improve the

statistics, individual hyperspectral images produced by each analyzer can be summed

over. However, as the analyzer crystals have different angles of view to the sample, the

images they produce can not be simply translated on top of each other and summed

over. In principle, as the angular positions of the analyzers are known, it would be

possible to apply a perspective correction to the individual images based on these po-

sitions. In practice, however, it is more straightforward to utilize automatic image

registration [113], in which an image is transformed in such a way that it becomes

aligned with another one and their intensities can be summed over. A sufficient trans-

formation for the present case is an affine transformation, which combines translation,

rotation, scaling, and shearing of images.

There is also a benefit in the different perspectives of the analyzers, as it enables a

superresolution approach to improve the image resolution [114–116]. The image regis-

tration gives the transformation that aligns two low-resolution images as a whole, and

generally this introduces a sub-pixel misalignment of the pixels (a point in the sample

is pictured to different positions within the pixels of the images by different analyzers).

If the low-resolution images with a sub-pixel misalignment are first interpolated to a

finer resolution, and then merged, an image with improved resolution can be obtained.

The superresolution method is demonstrated in Fig. 5.

4.5 Spectrum interpretation and decomposition

Different approaches can be used to interpret the spectral data to obtain the desired

information. The information can be, for example, the presence of an element or

a compound, the relative fractions of compounds, or even the orientation of certain

chemical bonds [9]. Descriptive values of this information can be obtained from the

spectrum by taking difference of intensities at appropriate energies, or by fitting with

fingerprint spectra of known compounds (e.g., from the online database in ref. 117) or

with component spectra given by spectral decomposition [37,112]. For spectral images,
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the fitting yields weights for each pixel, which correspond to the relative fractions of

the constituent components. In the case of three components, their fractions can be

conveniently represented by colors. This is demonstrated for the case of dimerization

of cinnamic acid (paper IV) in Fig. 9.

For gaining deeper information on the chemistry and on the neighborhood of the

scattering site, the spectra need to be interpreted quantitatively. This is not always

straightforward, since the relation between the molecular structure and the measured

spectrum is complicated. As a first approach the spectra can be compared to reference

spectra from known compounds. Also comparison of spectra measured from differ-

ent phases, concentrations, or pressure and temperature conditions can be performed.

This may allow identifying the changes in the chemical state of the probed element as

a function of these parameters. However, often suitable reference spectra are not avail-

able. For gaining understanding on the structure-to-spectrum relation, computational

simulations are often an irreplaceable tool, as they allow in-depth understanding of the

spectral features. Several methods and program packages can be applied or have been

developed for simulating NRIXS spectra for various cases, for example those described

in refs. [17–21, 118, 119].

In paper IV a spectral decomposition analysis was performed on the measured

time-resolved spectrum series using non-negative matrix factorization (NMF) [120,121].

NMF has been used for many purposes, such as image recognition [122], bioinformat-

ics [123], and in other data mining applications [120]. In spectroscopy NMF has been

used to analyze various kinds of data sets, e.g., pH- and concentration-varied spectrum

series [124–128], and time-resolved spectra [129]. NMF and its variations have also

been combined with hyperspectral imaging in x-ray microscopy [112, 130] and other

fields [120]. A standard NMF analysis applies to two-dimensional data sets, but the

method can be extended and generalized to multi-dimensional arrays, e.g., to analyze

resonant emission spectra [120].

In NMF a non-negative data set matrix X is approximately factorized into non-

negative matrices W and H, i.e. X ≈ WH . In the case of a time-resolved spectrum se-

ries X, in which each individual spectrum is a sum of the component spectra of the con-

stituent compounds weighted with their fractional abundances of each moment, W and

H can be taken to represent the component spectra and their time-dependent weights.

In NMF algorithms a required input parameter is the number of the components. It

can be known beforehand or discovered by examining the spectral series, for example

by observing isosbestic points.5 It should be noted that the output matrices of NMF

may suffer from rotational ambiguity, which has been discussed widely [120, 131–133].

The problem can be addressed in the case of spectral series by using appropriate initial

guesses for the spectrum components and by critically inspecting the obtained results.

5An isosbestic point is a point in a spectral series that has a constant intensity, i.e., all the spectra

cross in the isosbestic point.
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The non-negativity constraint of NMF is in line with the physical interpretation

of the output matrices as the component spectra and component weights. This is not

the case for the results of spectral decomposition by widely used principal component

analysis (PCA), as it considers the variance in a data set rather than linear combina-

tions of the spectra of constituent compounds [112,129]. There exist also more specific

methods for analyzing time-resolved data from chemical reactions, which may include

reaction models already in the decomposition process [134]. Alternatively, as in paper

IV, reaction kinetics parameters can be obtained from the time-dependent compound

weights by fitting them with reaction models realized by solving differential equations

describing the reaction in question [135, 136].
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Figure 7: The setup used in the high-temperature measurements of gas samples and a

demonstration of temperature probing by x-ray scattering. Left: The schematic figure

of the setup, showing also the image formed on the detector by elastically scattered

x-rays. Middle: Intensity of the scattered x-rays along the beam path normalized to

that at the lowest temperature. Right: Temperature as a function of cooling time;

calculated from elastic-line intensity and measured using a thermocouple.

5 Experiments and Results

This section summarizes the results of the studies in this thesis. Papers I–III are

based on NRIXS experiments on gas-phase samples, which focused on the electronic

excitation spectra and on the effects of molecular vibrations. Paper IV describes the

first application of NRIXS for time-resolved imaging of a chemical reaction in situ.

Gas-phase experiments

Papers I–III were among the first studies of gaseous samples with NRIXS [11, 31, 33–

36, 77, 78]. For these experiments a high-pressure sample cell with a sufficiently low

x-ray attenuation was needed. In the experiment for papers II–III the cell was also re-

quired to tolerate high temperatures as also the effects of increased temperature were of

interest. For these purposes a sample environment setup was assembled using a quartz

capillary as the cell (Fig. 7). The setup allows to evacuate the cell using a membrane

pump before filling it with the gaseous sample. The sample gas pressure was 50 bar

in room temperature measurements and 40 bar in high-temperature measurements.

Count rate was increased also by maximizing the probed gas volume by orienting the

capillary nearly parallel to the x-ray beam.

In the high-temperature measurements of papers II–III the sample was heated with

a hot-air blower to T=850 K. The temperature was measured with a thermocouple and

determined also by using the temperature dependency of the intensity of elastically

scattered x-rays. Since self-absorption in this case has a negligible effect and the gas

can be considered as an ideal gas at a constant pressure, the intensity is proportional to

number density of the gas and inversely proportional to its temperature. The intensity

profile of the scattered x-rays along the incident beam path was obtained from the
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Figure 8: Results from the studies of the carbon core-electron excitations from CO2.

Left: The spectra measured with two values of momentum transfer and at two sample

temperatures. Middle: The spectra calculated from molecular geometries with var-

ied O–C–O bending angles. Right: The probability distributions of the geometries

corresponding to the two temperatures.

detector images taken while cooling the sample to room temperature (middle panel of

Fig. 7). The density ratio profiles yield inverse temperature ratio profiles, and using

the room-temperature profile as a reference allowed to determine temperature of the

gas. The temperature values obtained by both methods were in good agreement (right

panel of Fig. 7). During the experiments the temperature profile of the heated gas was

found to be flat at 850 K.

Paper I: Inelastic X-ray scattering and vibrational effects at the K -edges of

gaseous N2, N2O, and CO2

This paper presents a study on the core-electron excitations of several gas-phase mole-

cules in ambient temperature. The simulation of the vibrational finestructure in the

Franck–Condon approximation reproduces well the asymmetrical broadening of the

electron excitation features observed in the experiment. The momentum transfer de-

pendence of the spectrum shows the sensitivity to final states of different symmetries.

The left panel of Fig. 8 presents the carbon core-electron excitation spectrum from

room-temperature CO2 measured at two momentum transfer values.

Paper II: Temperature dependence of CO2 and N2 core-electron excitation

spectra at high pressure

This paper is a continuation for paper I. In this study the temperature dependence

of the core-electron excitation spectra of CO2 was investigated by measuring them

at room temperature and at high temperature (850 K); see the left panel of Fig. 8
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for the results of C K -edge. The spectra were simulated in a classical framework, in

which the vibrational and temperature effects were accounted for by sampling molecular

geometries corresponding to the sample temperatures and calculating the spectrum for

each geometry. The results demonstrate that electronically forbidden excitations can

become allowed when vibrations deviate the molecular geometry out of the equilibrium

symmetry.

In the employed framework the temperature effects in the spectra arise from both

the excitation intensity and energy dependency on the molecular geometry, and they

are manifested as a continuous broadening of electronic excitation peaks. The experi-

mentally observed temperature dependence is well reproduced by this straightforward

simulation method. Most of the temperature dependency is explained by the bend-

ing mode, because it is the most easily excited vibrational mode.6 The right panel

of Fig. 8 shows the probability distributions along the bending coordinate in the two

temperatures, and the middle panel shows the spectra calculated from selected molec-

ular geometries. For example, the lowest-energy excitation peak at 290 eV is split to a

lower and a higher energy part upon molecular bending, because in the linear molecule

the corresponding final state is the degenerate 2πu orbital, but in bent geometries the

degeneracy is lifted. In turn, the second lowest energy excitation at 292 eV is forbidden

in the linear geometry, but becomes allowed in bent geometries (its non-zero intensity

in the 180◦-spectrum is only due to contribution of non-dipole transitions). The feature

gains weight upon bending of the molecule and shifts to higher energy.

Paper III: Interplay between Temperature-Activated Vibrations and Non-

dipolar Effects in the Valence Excitations of the CO2 Molecule

In this paper both the temperature and momentum transfer dependence of the valence

electron excitation spectrum of CO2 were studied. Following the simulation method

of paper II, molecular geometries with varied bending angle were used to calculate

the spectra, which were then weighted with the probability distribution corresponding

to the sample temperatures. The momentum transfer dependence was accounted for

by including both dipole and quadrupole transitions in the calculation. The results

from experiment and simulation are in good agreement in both temperature and mo-

mentum transfer dependency. The intensity of some excitations is increased with an

increasing momentum transfer, due to the increase of the weights of the quadrupole

transition moments. Similar intensity variations occur also due to molecular bending.

The simulation provided the symmetry assignment of all final states thus facilitating

the interpretation of the effects as well as comparison to previous works on CO2 valence

exciation spectrum, for example refs. [50, 55, 71, 138–140].

6The wavenumbers of bending, and symmetric and antisymmetric stretching modes are 667 cm−1,

1333 cm−1, and 2349 cm−1, respectively [137]. Thermal energy kBT is 209 cm−1 and 591 cm−1 at

300 K and 850 K, respectively.
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Figure 9: Following in situ chemical reactions with NRIXS. Left: The reaction scheme

of the dimerization of α-trans-cinnamic acid to α-truxillic acid and a subsequent disin-

tegration reaction, which with high probability produces CO fragments. Middle: The

time-resolved carbon K -edge spectra. The spectrum of a reference α-truxillic acid sam-

ple is shown with green points. Right: The sample crystal imaged using spectroscopic

contrast. Red, green, and blue channels correspond to the fitted weights of cinnamic

acid, truxillic acid, and final products components, respectively.

Paper IV: X-ray induced dimerization of cinnamic acid: Time-resolved in-

elastic X-ray scattering study

In this paper the bulk sensitivity and imaging ability of NRIXS was employed for a time-

resolved in situ study on the dimerization of α-trans-cinnamic acid [141, 142] (Fig. 9).

It is a topochemical reaction [143, 144], governed by the initial crystal structure. The

crystalline state imposes constraints to the pathways and products of chemical reac-

tions, in contrast to disordered states. The dimerization of cinnamic acid is for long

known to be induced by valence-electron excitations created by ultraviolet light illu-

mination [141, 142]. However, this study showed that the dimerization is induced also

by x-ray irradiation occurring during the NRIXS measurement.

The reaction was followed by consecutive measurements of carbon core-excitation

spectrum (middle panel of Fig. 9). The time-evolution of the spectra shows that in

∼17 min of x-ray irradiation the spectrum from the cinnamic acid sample changes to

resemble that of truxillic acid. The spectrum evolves further upon continued irradiation

and a pronounced peak emerges suggesting a disintegration to take place. The energy of

the new peak corresponds to that of the main peak of carbon monoxide spectrum [117,

145], suggesting CO to be a product of a subsequent disintegration process. The time-
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resolved spectrum series was further analyzed by non-negative matrix factorization

(Sec. 4.5), which enabled extracting the component spectra of the underlying pure

compounds (cinnamic acid, truxillic acid, and final products from disintegration) and

their time-dependent weights. An Avrami reaction model [135] fitted to the component

weights suggests that the kinetics of the dimerization induced by x-rays differs from that

induced by UV light [146,147]. X-rays seem to produce a more homogeneous reaction,

in comparison to the UV-induced dimerization, which has been suggested to be a

combination of a homogeneous reaction and nuclei formation and their growth [146].

The reaction progress was also followed by the hyperspectral imaging method

(Sec. 4.4). The superresolution method was utilized, and contrast was obtained by

fitting the time-resolved hyperspectral images with the component spectra extracted

by NMF. The resulting images are shown in the right panel of Fig. 9, where colors in

each pixels correspond to the component weights.
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6 Concluding Remarks

In this thesis non-resonant x-ray scattering applications were presented from an exper-

imental perspective. The performed experiments have utilized the special abilities of

NRIXS, namely the sensitivity to non-dipole excitations and the possibility to measure

low-energy electronic excitations with high-energy x-rays. The large probing depth

enabled bulk sensitivity and the use of sample environments for elevated pressures and

temperatures. Novel data analysis methods as well as spectrum simulations were used

in interpretation of the experimental data.

The studies on vibrational effects on electron excitation spectra have shown the

significance of vibrations on spectral broadening and inspired practical approaches to

simulate the temperature dependence of spectra. In the future, further insight to

the vibrational effects could be obtained by studies of vibrationally resolved spectra

corresponding to specific initial vibrational states. The presented experiments have

also shown the capability of NRIXS for gaseous samples at readily varied pressures

and temperatures above ambient conditions, thus paving the way to in situ studies on

gas-phase reactions such as combustion. The study on the dimerization of cinnamic

acid was the first time-resolved NRIXS experiment on a chemical reaction utilizing

imaging.

The methods applied in this thesis for sample environments, data analysis, and

imaging can help to envision future NRIXS studies on yet new areas. In particular,

tomographic spectral imaging is foreseen to offer method for obtaining novel chemical

information in many applications.
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raphy with chemical-bond contrast, Nature Mater. 10, 489 (2011).

[10] A. L. Kritcher, P. Neumayer, J. Castor, T. Döppner, R. W. Falcone, O. L. Landen, H. J.
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[67] K. Prince, M. Vondráček, J. Karvonen, M. Coreno, R. Camilloni, L. Avaldi, and M.

De Simone, A critical comparison of selected 1s and 2p core hole widths, J. Electron.

Spectrosc. Relat. Phenom. 101, 141 (1999).

[68] B. Yates, Y. Hu, K. Tan, G. Retzlaff, R. Cavell, T. Sham, and G. Bancroft, First results

from the Canadian SGM beamline at SRC, J. Synchrotron Rad. 7, 296 (2000).



30 REFERENCES

[69] E. C. Inn, K. Watanabe, and M. Zelikoff, Absorption coefficients of gases in the vacuum

ultraviolet. Part III. CO2, J. Chem. Phys. 21, 1648 (1953).

[70] W. Chan, G. Cooper, and C. Brion, The electronic spectrum of carbon dioxide. Discrete

and continuum photoabsorption oscillator strengths (6–203 eV), Chem. Phys. 178, 401

(1993).

[71] K. Yoshino, J. Esmond, Y. Sun, W. Parkinson, K. Ito, and T. Matsui, Absorption cross

section measurements of carbon dioxide in the wavelength region 118.7–175.5 nm and

the temperature dependence, J. Quant. Spectrosc. Radiat. Transfer 55, 53 (1996).

[72] W. Parkinson, J. Rufus, and K. Yoshino, Absolute absorption cross section measure-

ments of CO2 in the wavelength region 163–200 nm and the temperature dependence,

Chem. Phys. 290, 251 (2003).

[73] L. Archer, G. Stark, P. Smith, J. Lyons, N. de Oliveira, L. Nahon, D. Joyeux, and D.

Blackie, Room temperature photoabsorption cross section measurements of CO2 between

91,000 and 115,000 cm−1, J. Quant. Spectrosc. Radiat. Transfer 117, 88 (2013).

[74] E. N. Lassettre and M. E. Krasnow, Collision Cross-Section Study of Two Transitions

in Nitrogen, J. Chem. Phys. 40, 1248 (1964).

[75] A. Skerbele and E. N. Lassettre, Absolute Electron Collision Cross Sections for Two

Forbidden Transitions in Nitrogen at Kinetic Energies of 300–500 eV, J. Chem. Phys.

53, 3806 (1970).

[76] M. Brunger and P. Teubner, Differential cross sections for electron-impact excitation

of the electronic states of N2, Phys. Rev. A 41, 1413 (1990).

[77] B. P. Xie, L. F. Zhu, K. Yang, B. Zhou, N. Hiraoka, Y. Q. Cai, Y. Yao, C. Q. Wu, E. L.

Wang, and D. L. Feng, Inelastic x-ray scattering study of the state-resolved differential

cross section of Compton excitations in helium atoms, Phys. Rev. A 82, 032501 (2010).

[78] L. F. Zhu, L. S. Wang, B. P. Xie, K. Yang, N. Hiraoka, Y. Q. Cai, and D. L. Feng,

Inelastic x-ray scattering study on the single excitations of helium, J. Phys. B 44, 025203

(2011).

[79] U. Hergenhahn, Vibrational structure in inner shell photoionization of molecules, J.

Phys. B 37, R89 (2004).

[80] T. Azumi and K. Matsuzaki, What does the term ”vibronic coupling” mean?, Photo-

chemistry and Photobiology 25, 315 (1977).

[81] O’Donnell J.H. and Sangster D.F., Principles of Radiation Chemistry (Arnold, 1970).

[82] R. J. Woods and A. K. Pikaev, Applied radiation chemistry: radiation processing (John

Wiley & Sons, 1994).



REFERENCES 31

[83] R. B. Ravelli and E. F. Garman, Radiation damage in macromolecular cryocrystallog-

raphy, Curr. Opin. Struct. Biol. 16, 624 (2006).

[84] J. M. Holton, A beginner’s guide to radiation damage, J. Synchrotron Rad. 16, 133

(2009).

[85] E. F. Garman, Radiation damage in macromolecular crystallography: what is it and

why should we care?, Acta Crystallogr. Sect. D-Biol. Crystallogr. 66, 339 (2010).

[86] A. Meents, S. Gutmann, A. Wagner, and C. Schulze-Briese, Origin and temperature

dependence of radiation damage in biological samples at cryogenic temperatures, Proc.

Natl. Acad. Sci. U.S.A. 107, 1094 (2010).

[87] A. Gianoncelli, L. Vaccari, G. Kourousias, D. Cassese, D. Bedolla, S. Kenig, P. Storici,

M. Lazzarino, and M. Kiskinova, Soft X-Ray Microscopy Radiation Damage On Fixed

Cells Investigated With Synchrotron Radiation FTIR Microscopy, Scientific Reports 5,

(2015), doi: 10.1038/srep10250.

[88] M. R. Howells, T. Beetz, H. N. Chapman, C. Cui, J. Holton, C. Jacobsen, J. Kirz,

E. Lima, S. Marchesini, H. Miao, et al., An assessment of the resolution limitation

due to radiation-damage in x-ray diffraction microscopy, J. Electron. Spectrosc. Relat.

Phenom. 170, 4 (2009).

[89] A. J. Swallow, Radiation Chemistry of Organic Compounds: International Series of

Monographs on Radiation Effects (Pergamon Press, 1960), Vol. 2.

[90] D. T. Ha, Y. Wang, M. Alcamı́, E. Itälä, K. Kooser, S. Urpelainen, M. A. Huels, E.
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