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Abstract
Many socio-economically important pathogens persist and grow in the outside host en-

vironment and opportunistically invade host individuals. The environmental growth and

opportunistic nature of these pathogens has received only little attention in epidemiology.

Environmental reservoirs are, however, an important source of novel diseases. Thus,

attempts to control these diseases require different approaches than in traditional epidemi-

ology focusing on obligatory parasites. Conditions in the outside-host environment are

prone to fluctuate over time. This variation is a potentially important driver of epidemiological

dynamics and affect the evolution of novel diseases. Using a modelling approach combining

the traditional SIRS models to environmental opportunist pathogens and environmental var-

iability, we show that epidemiological dynamics of opportunist diseases are profoundly

driven by the quality of environmental variability, such as the long-term predictability and

magnitude of fluctuations. When comparing periodic and stochastic environmental factors,

for a given variance, stochastic variation is more likely to cause outbreaks than periodic var-

iation. This is due to the extreme values being further away from the mean. Moreover, the

effects of variability depend on the underlying biology of the epidemiological system, and

which part of the system is being affected. Variation in host susceptibility leads to more

severe pathogen outbreaks than variation in pathogen growth rate in the environment. Posi-

tive correlation in variation on both targets can cancel the effect of variation altogether.

Moreover, the severity of outbreaks is significantly reduced by increase in the duration of

immunity. Uncovering these issues helps in understanding and controlling diseases caused

by environmental pathogens.

Introduction
Environmental opportunist pathogens are a large class of pathogens that have the ability to
persist and grow in the outside host environment and invade the host under favourable condi-
tions. The best-known example of an environmental opportunist human pathogen is Vibrio
cholerae. In wildlife and livestock there are several economically important examples such as
Flavobacterium columnare [1], Bacillus anthracis [2], and bat white-nose syndrome [3]. With
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free-living pathogens, the environment is a permanent source of new infections, which makes
disease control challenging. Contrary to obligate pathogens, environmental opportunist dis-
eases cannot be eradicated by treating hosts. Mathematical theory of infectious diseases has
been originally centred on obligate pathogens emphasising direct transmission in host-to-host
contacts [4]. More recently, there has been increasing interest in both empirical and theoretical
studies on environmentally transmitted diseases [5,6], but so far only few articles have consid-
ered environmentally growing pathogens [7–10].

Many infectious diseases cause sporadic outbreaks or recurrent epidemics instead of being
permanently prevalent. In classical epidemiology of obligate pathogens, the best-known exam-
ples are childhood diseases such as measles, influenza and common cold viruses. In the last
decades, there has been increasing interest in similarly recurrent outbreaks of pathogens that
have an environmental reservoir such as cholera [11] or avian influenza [12]. Much modelling
effort has been put into explaining these outbreak patterns, and many factors have been identi-
fied to contribute to the frequency and intensity of outbreaks. For example environmental
effects such as seasonality are clearly important [2,13–15]. Seasonal variation can also have
important interactions with the immunisation process, which is an important factor in epide-
miological dynamics [16]. Together with demographic turnover rate, the duration of immunity
determines how quickly the susceptible host density is replenished after an outbreak, and con-
sequently how frequent outbreaks can be. Immunity can be lost either due to waning immune
response, as in pertussis [17], or pathogen mutations that reduce its recognition to the immune
system, as in many viral diseases.

Environmental variation, which affects practically all natural systems, may be partly predict-
able due to temporal autocorrelation or periodicity, such as annual patterns in temperature
and rainfall. However, an unpredictable component always remains, e.g. stochastic short-term
fluctuations in the environmental variables. Environmental fluctuations are likely to play a role
in various parts in ecological or epidemiological systems, affecting organism growth and mor-
tality, or by modifying interactions [18,19]. While all pathogens can be affected by environ-
mental variation indirectly within the host or during transmission, opportunist pathogens can
spend several generations between infection events exposed to the outside host environment
and as such their growth and transmission are directly subject to various abiotic and biotic
pressures.

Opportunist pathogens that are aquatic, such as the fish pathogen Flavobacterium colum-
nare, are heavily affected by water temperature [20], which has strong annual (periodic) com-
ponent. Soil pathogens, such as Bacillus anthracis, are affected by rainfall in addition to
temperature [2]. The potential importance of environmental drivers in eco-evolutionary
dynamics of infectious diseases has been studied in vector-borne diseases [21], where environ-
mental stochasticity has been recognised as potentially increasing the prevalence of disease and
promoting virulence evolution. Recently, Anttila et al. [22] showed that the temporal structure
of environmental fluctuations can have a qualitative impact on the nature of disease dynamics,
such that either infection-free, persistent epidemic, and disease outbreak scenarios can arise.

Here we ask how environmental variation translates through the free-living environmental
pathogen dynamics to changes in healthy host densities and epidemiology. The eco-epidemio-
logical system can be seen as a filter for environmental variation [23]. Most work on environ-
mental variation is so far limited to periodic variation, uncorrelated stochastic variation (i.e.
white noise), or linear population dynamics [24], due to limitations of available analytical
methods. Realistically complex models with temporally correlated stochasticity require numer-
ical analysis and thus only a small portion of the full biologically relevant parameter space can
be analysed. For generality, we inspect two important targets for periodic and stochastic envi-
ronmental variation in our model: pathogen growth rate in the outside host environment, and
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50% infective dose. The former reflects purely environmental effects on the pathogen prolifera-
tion, and the latter as an interaction parameter could be interpreted as changes in host immune
system function, or changes in pathogen virulence. In either case, the temporal variation affects
the propensity of contracting an infection from the environment, which can trigger pathogen
outbreaks. The quality of variation determines the severity and frequency of outbreaks, but this
is also affected by the expected duration of immunity, and whether the variation affects patho-
gen growth or immune system threshold.

Materials and Methods
We constructed a model based on the classical SIRS-model where S denotes susceptible hosts, I
infected hosts, and R recovered and immune hosts, which can return to the susceptible class S
by loss of immunity. In addition, the model includes free-living pathogens, P.

dS
dt

¼ rhðSþ RÞ � rhS
Sþ I þ R

K
� bSf ðPÞ þ rR ð1:1Þ

dI
dt

¼ bSf ðPÞ � rhI
Sþ I þ R

K
� nI � dI ð1:2Þ

dR
dt

¼ dI � rR� rhR
Sþ I þ R

K
ð1:3Þ

dP
dt

¼ rpPð1þ y1Þ � mP2 þ lI þ knI ð1:4Þ

Susceptible hosts grow with rate rh. Both S and R contribute to the growth and are reduced
by the density dependence, i.e. competition for limited resources defined by host carrying
capacity K. Infected hosts compete for resources but do not contribute to population growth.
We consider the infection severe enough to prevent reproductive effort and cause some mortal-
ity. Susceptible hosts can be infected by the free living pathogen depending on their densities
and a maximum infection rate β. Infected hosts either recover with rate δ or die with rate ν.
Recovered hosts are immune to the pathogen until they return to the susceptible class with rate
ρ. The free-living pathogen grows with rate rp and is limited by density dependent mortality
rate μ. In addition pathogens are continuously shed from infected hosts with rate λ and
released with host deaths with burst size k.

The infectivity functional response f(P) is assumed to be a sigmoidal function of the patho-
gen density:

f ðPÞ ¼
P

ð1þy2ÞID50

� �k

1þ P
ð1þy2ÞID50

� �k ð2Þ

The sigmoidal shape of the infectivity response imposes an Allee effect on the pathogens:
with densities under the infective dose ID50, the pathogens are less likely to cause infections.
This is a realistic assumption for environmental pathogen—host infection process since it takes
into account co-operative effort that many bacterial pathogens exhibit against the immune sys-
tem, such as biofilm formation [25,26] and expression of virulence factors only in sufficient
bacterial densities [27]. The sigmoidal infectivity response protects the host from infections by
minute bacterial densities constantly encountered in the environment. The steepness of the sig-
moidal curve is controlled by shape parameter κ. This form of infectivity response has been
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studied by Regoes et al. [28] in obligate pathogen context and by Anttila et al. [8,22] in an
opportunistic pathogen context. The general behaviour of a similar model with environmental
opportunist pathogens but without immunity or environmental variation was studied in [8],
whereas in [22], the role of environmental stochasticity in facilitating pathogen emergence was
studied.

Environmental variation is directed multiplicatively to either pathogen growth rate rp or
infectivity parameter ID50. These are denoted by θ1 and θ2, respectively. Both periodic annual
variation and stochastic variation are considered. The periodic variation is assumed to be sinu-
soidal:

yðtÞ ¼ AperiodicZ sin
2pt
365

� �� �
: ð3Þ

That is, an annual cycle of 365 days, which is commonly the most relevant periodic compo-
nent in environmental conditions, daily period often being too rapid and others (such as lunar)
being in most cases too weak to affect the system. Stochastic variation is generated using a 1/f
noise generation procedure [29] to allow for different temporal structures, i.e., spectral “col-
ours” of the noise [30]:

yðtÞ ¼ AstochasticZ
Xn=2

j¼1

1

j�g=2
sin

2pt
n

jþ εj

� �� �
; ð4Þ

where n is the length of generated time series, γ is the spectral exponent [29], and εj are i.i.d-.
uniform random numbers between zero and 2π (a random phase operator for each frequency
j). The Z-function denotes a normalisation to zero mean and unit variance. In practice, envi-
ronmental variations are generated separately, normalised to zero mean and unit variance, and
then multiplied by a factor (Aperiodic)

1/2 or (Astochastic)
1/2 to obtain the desired variance. The

variation is introduced to the continuous time differential equations by drawing a new value
for the environmental condition for each day, effectively treating time t as an integer variable
ranging from 1 to n. The drawn value is then held constant for the simulation steps within a
day of simulated time. The spectral exponent γ is the slope of power spectrum of the generated
noise time-series (monotonically related to autocorrelation on the first lag), i.e. controls the
weights of faster and slower fluctuations in the stochastic variation. With γ = 0 the generated
variation has zero autocorrelation (white noise). Decreasing γ gives more weight to slow fluctu-
ations, and thus causes positive autocorrelation (red noise). Similarly, increasing γ gives more
weight to fast fluctuations and thus results in negative autocorrelation (blue noise). The 1/f
noise generation procedure tends to produce values that are not normally distributed when γ is
decreased [31]. For this reason, we used a spectral mimicry method [32] to ensure that the
noise frequency distribution is not affected by varying γ.

The simulated trajectories of the system were obtained by using a (fixed-step) Adams-Bash-
forth two-step routine in MATLAB (R2014b, Mathworks). The length of each generated time
series was 8192 days. In addition, a deterministic version of the model was analysed with a
continuer routine written in FORTRAN. In the latter case, the variances Aperiodic and Astochastic

were set to zero.
Outbreaks were analysed from the simulated time series by discarding transients, collecting

state variable minima, maxima, and means, and detecting any peaks that exceeded threshold
values of I> 0.1�K in height and 50 days in duration. For each detected peak, we calculated the
cumulative incidence as an integral over the number of infections within an outbreak: cumula-

tive incidence =
R
βSf(P) dt. The cumulative incidence is used as an indicator of outbreak
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severity. In addition, the healthy host (S + R) minimum is considered an indicator of overall
risk of the disease eradicating the host.

The simulation parameters were selected such that the model system is approximately rep-
resentative of a small fish host and a bacterial pathogen system (Table 1). The numbers of path-
ogens were scaled down by a factor of 106 to obtain orders of magnitude similar to host
densities. The infectivity parameters were chosen such that without environmental variation
pathogen outbreaks do not occur and the number of infected hosts is negligible. This enables
us to inspect the role of variation as a causative agent behind infections leading to pathogen
outbreaks. We selected rate of immunity loss ρ, and environmental variation parameters γ and
A as the parameters of interest for further analyses. The rate of immunity loss is important
from the pathogen viewpoint since it determines how fast the supply of susceptible hosts is
replenished after an outbreak (assuming ρ is higher than host growth rate). For simplicity,
three specific values of immunity removal rate, ranging from long to rapid removal, were inves-
tigated: ρ = 0.01 d–1, ρ = 0.1 d–1, and ρ = 1.0 d–1. In the results and discussion sections these are
referred to as long immunity, average immunity and short immunity, respectively. The
expected duration of long immunity, 100 days is in the same magnitude as expected host gener-
ation length. The expected durations of average and short immunities are 10 and 1 days,
respectively. The parameters A and γ affect the variance and frequency distribution of environ-
mental variation.

To understand the results under environmental variation, the deterministic system was
studied without environmental forcing. Here the hosts are effectively protected by the sigmoi-
dal infectivity response, which reduces the rate of infection formation at low pathogen densities
due to under-proportionately low infectivity. With the parameter values from Table 1 the equi-
librium densities of I are low (I = 0.508). Increasing the pathogen growth rate rp from 1.0 to 2.0
there is a region of steep increase in the equilibrium density of infected hosts, I, (S1 Fig)
because of the sigmoidally shaped infectivity response (Eq 2). With higher maximum infectiv-
ity (β = 4.0) and short immunity (ρ = 1.0) part of this range (1.2< rp < 1.45) demonstrates
cyclic dynamics (S2 Fig). A very small region of cyclic dynamics is retained when maximum
infectivity is smaller (β = 3.0 and ρ = 1.0) but disappears quickly when immunity is longer.
Adding a sufficient pathogen density as a pulse to the system or initiating the system with a suf-
ficiently large pathogen density leads to an infection peak, the area of which is sigmoidally
related to the pathogen density (S3 Fig).

Table 1. Model parameters and values used in simulations.

Symbol Parameter name Default value Unit

rh Host growth rate 0.01 day–1

K Host carrying capacity 100 host

ρ Immunity loss rate 0.01, 0.1, 1.0 day–1

ν Infection mortality rate 0.02 day–1

δ Recovery rate 0.1 day–1

rp Pathogen growth rate 1.0 day–1

μ Pathogen mortality rate 0.002 (106 pathogens)–1 day–1

λ Continuous shedding rate 80 106 pathogens host–1 day–1

k Burst size 300 106 pathogens host–1

β Maximum infection rate 3.0 day–1

ID50 50% infective dose 2900 106 pathogens

κ Infectivity response shape parameter 5 –

doi:10.1371/journal.pone.0145511.t001
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Results
A general pattern emerging from the results is that environmental variation affecting either
pathogen growth rate rp in the environmental reservoir or infective dose ID50 generally can
cause pathogen outbreaks in a system where the disease has a low prevalence without variation.
This validates the model as being capable of reproducing epidemiological dynamics observed
in nature. When outbreaks are observed, increasing the expected duration of immunity signifi-
cantly reduces their magnitude. This is because acquired immunity prevents re-infections of
recovered hosts within an outbreak.

Periodic vs. stochastic environmental variability
If fluctuations in the environment are periodic, disease outbreaks do not emerge unless the
fluctuations are strong enough. This is due to the sigmoidal shape of infectivity response. Weak
fluctuations have almost no effect on the system because they do not move the system across
the infection threshold, arising from the sigmoidal infectivity function. When environmental
variation affects pathogen growth rate, the threshold for outbreaks with the chosen parameter
set is Aperiodic � 0.05 (Fig 1), and when 50% infective dose is affected, the outbreak threshold is
roughly half of that in the previous case, Aperiodic � 0.015 (Fig 1). The epidemiological system
is more sensitive to changes in ID50 since the infection process is much more sensitive to this
parameter than to pathogen growth rate rp. A decrease in ID50 can immediately lead to infec-
tions and large inputs of pathogens to the environment. In contrast, increase in ID50 can imme-
diately prevent infections.

When periodic and stochastic environmental fluctuations have been scaled to have the same
variance, much weaker stochastic forcing suffices to induce pathogen outbreaks, as compared
to periodic forcing. This is because the range of values in periodic variation is bounded to stan-
dard deviation multiplied by square root of two, while 7.8% of normally distributed random
values are more extreme than this value. Extreme values are highly important because the sig-
moidal infectivity response gives an over-proportionate increase in infectivity with increasing
pathogen density when the densities are low. From this perspective it is understandable that
when stochastic variation affects pathogen growth rate, increasing noise variance increases the
frequency of infection peaks (Fig 2).

The severity of disease outbreaks increases with both increasing noise variance and decreas-
ing duration of immunity (Fig 2). The latter effect is due to two factors: the resistant individuals
return to the susceptible class more rapidly, which fuels the build-up of the next outbreak, and
the recovered individuals can be re-infected within the same outbreak. This leads to a longer
duration of outbreaks, which is associated with increased severity and decreased frequency.
Increasing noise variance also shows clearly that the distribution of outbreak severities is
bimodal. This is due to the distribution of favourable periods to the pathogen. When the envi-
ronmental variation produces a long favourable period, this always results in a severe outbreak
that consumes the mass of healthy hosts and eventually subsides. However, shorter favourable
periods occur more often, leading to a large number of less severe outbreaks.

The temporal structure of stochastic variation
In addition to variance, the effect of environmental variation is dependent on the temporal
structure of the variation. Under weak forcing, deviations from the mean need to last long
enough to cause an outbreak. Fast fluctuations, i.e., high frequency in the cyclic case and flat
spectral density (i.e., low exponent γ, ‘white’ noise) in the stochastic case, are averaged out by
the system and thus have little effect on the epidemiological dynamics (Fig 3). Environmental
reddening (increasing the exponent γ) increases the effect of environmental variation to the
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system, which in turn increases the number and severity of pathogen outbreaks (Fig 3). How-
ever, outbreak frequency tends to peak at intermediate values of γ (e.g. pink noise), except
under long immunity when forcing affects pathogen growth rate. The reason for this is that
while extreme deviations from the mean are longer in duration under high values of γ, they
occur less frequently than with intermediate values of γ. Intermediate values of γ cause devia-
tions from the mean long enough to have an effect on the dynamical system while still varying
relatively frequently.

Environmental correlation between the pathogen and the host affects
epidemiology
When environmental fluctuations simultaneously affect pathogen growth rate rp and 50%
infective dose ID50, the outcome depends on the relative variances and correlation between the
fluctuations (Fig 4). Negatively correlated fluctuations generate more severe outbreaks since
high pathogen growth rates coincide with low doses required for infection (Fig 4A). Under

Fig 1. The effect of periodic variation. The effect of the variance of periodic environmental variation on the
severity of outbreaks and healthy host density. Left panels (A) and (B): variations affect pathogen growth rate
rp. Right panels (C) and (D): variations affect 50% infective dose ID50. Top panels (A) and (C) show the peak
areas (outbreak severities). Bottom panels (B) and (D) show healthy host (S + R) density minima. Colours
red, black, and blue show results on rapid, intermediate, and slow immunity loss rates, respectively. Under
short immunity, interaction with a small cyclic range of pathogen growth rates (see Methods) causes three
different peak areas per value, corresponding to three differently shaped infection cycles. See Table 1 for
model parameters.

doi:10.1371/journal.pone.0145511.g001
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positively correlated fluctuations the effects of varying rp and ID50 cancel out, unless the varia-
tion in ID50 is either much weaker or of comparable magnitude to that in rp. Periodic variations
cancel each other out more completely because there are no random fluctuations. Stochastic
variation can still cause extremes that sometimes result in outbreaks. However, only when the
variation in ID50 is weak compared to that in rp, does the duration of immunity have a clear

Fig 2. The effect of stochastic variation strength. The effect of pink stochastic variation on outbreak
dynamics at different environmental variances. Left panels (A)–(C): variations affect pathogen growth rate rp.
Right panels (D)–(F): variation affects 50% infective dose ID50. Top panels (A) and (D): cumulative
incidences. Each dot represents a single outbreak, the number of which varies between simulations. The
lines show a marginal kernel density estimate of peak areas. Panels (B), (C), (E) and (F): number of peaks
and minimum values of healthy host density. Each dot represents a single simulation run. The lines show a
smoothing spline fit to the points. In all simulations the spectral exponent γ = 1, i.e. pink noise. Colours red,
black, and blue show results on rapid, intermediate, and slow immunity loss rates, respectively. See Table 1
for model parameters.

doi:10.1371/journal.pone.0145511.g002
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effect on outbreak severity. The intermediate case with independent variation in rp and ID50

gives qualitatively similar results to those under negatively correlated fluctuations, so this sce-
nario is not considered here further.

Fig 3. The effect of stochastic variation colour. The effect of the colour of stochastic variation (spectral
exponent) on epidemiology. Left panels (A)–(C): variations affect pathogen growth rate rp. Right panels (D)–
(F): variations affect 50% infective dose ID50. Top panels (A) and (D): Cumulative incidences. Each dot
represents a single outbreak, the number of which varies between simulations, and the lines show a marginal
kernel density estimate of peak areas. Panels (B), (C), (E) and (F): number of peaks and minimum value of
healthy host density. Each dot represents a single simulation run. The lines show smoothing spline fits to the
points. In the left panels variance A = 0.0625. In the right panels variance A = 0.01. Colours red, black, and
blue show results on rapid, intermediate, and slow immunity loss rates, respectively. See Table 1 for model
parameters.

doi:10.1371/journal.pone.0145511.g003
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Discussion
The central role of environmental variation in many ecological and epidemiological phenom-
ena has been well recognised [18,30,33,34]. However, less attention has been paid to the role of
the quality of environmental fluctuations in modifying epidemiological dynamics [16,35]:
existing work has assumed overly simplistic periodic variation (but see [36]). To our knowl-
edge, there are only few epidemiological studies that would acknowledge the potential impor-
tance of stochastic environmental fluctuations [21]. Here, we studied the role of such
fluctuations in environmental opportunist pathogen outbreaks. These pathogens are naturally
heavily influenced by environmental conditions since they depend on the free-living state for
considerable duration between re-infecting hosts. Here we show that environmental variation
is an important driver in epidemiological dynamics. Outbreaks can arise, given that the envi-
ronmental amplitude is sufficiently high to cross the infective threshold and that fluctuations

Fig 4. The effect of correlated variations. Effects of two stochastic environmental variations directed at
pathogen growth rate rp and 50% infective dose (ID50) in negative (A), and positive (B) correlation. X-axis
shows relative variances of the two variations. Temporal colour of stochastic environmental variation was set
to γ = –1, i.e. pink noise. The environmental variance directed to pathogen growth rate was set to A1 = 0.09.
Line and dot colours red, black, and blue show results on rapid, intermediate, and long immunity loss rates,
respectively. Each dot is a result of an individual stochastic simulation, while the lines present results from
simulations with periodic forcing. See Table 1 for model parameters.

doi:10.1371/journal.pone.0145511.g004
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have a sufficiently low characteristic frequency, so that it is not averaged out by the system. An
important feature is that reducing the expected duration of host immunity leads to more severe
and longer outbreaks.

Environmental variation (periodic or stochastic), directed to pathogen growth rate, causes
periods of elevated environmental pathogen densities, which can lead to disease outbreaks. The
sigmoidal infectivity response assumed here results in a non-linear effect of variance (S3 Fig);
as described above, outbreaks require an infection threshold to be crossed. Under periodic vari-
ation this trivially depends on the wave amplitude and less trivially on wave shape (the latter
not investigated here). The effects of periodic and stochastic variation are for the most part
similar and thus the periodic environmental variation gives a good approximation of how envi-
ronmental variation affects an epidemiological system. However, stochastic variation causes
more severe outbreaks. This means that, for a given variance, periodic variation underestimates
the severity of outbreaks.

With stochastic environmental variation the frequency distribution determines how often
the favourable environmental changes are persistent enough for the pathogen to reach signifi-
cant densities. Fast variations (white noise, γ = 0) have relatively little effect on the dynamical
system since the increases in pathogen growth rate (or decreases in 50% infective dose) are
transient and are averaged out across time [37]. Moderately slow variations (pink noise, γ = 1)
represent the most realistic proxy for natural environmental variation [38]. Interestingly, the
lowest healthy host minima are achieved around this point, representing the largest risk to host
population. Slow variations (brown noise, γ = 2) can result in more severe, but generally fewer
outbreaks.

The frequency and duration of outbreaks is strongly affected by the formation of immunity
and rate of immunity removal, which have important consequences on model dynamics. If the
expected duration of immunity is short, the number of infections in an infection peak can
exceed the host carrying capacity. This means that a disease can resemble an endemic state
with recovered host reinfections sustaining the outbreak as long as the environment stays
favourable for the pathogen. In general, long-term immunity effectively protects the hosts from
severe outbreaks by preventing recovered host reinfections within an outbreak. Despite the
reduced severity of outbreaks, the number of outbreaks can be larger than under intermediate
or short durations of immunity.

While some infectious diseases lead to a long (pertussis) [39] or even lifelong (measles) [40]
immunity, for many diseases the period of immunity after recovery is short or incomplete
(RSV) [41]. Models assuming transient immunity can produce cyclic dynamics through Hopf
bifurcations [42,43]. In addition, transient immunity further complicates disease control since
a single control effort will not be sufficient [44]. Waning and imperfect immunities were stud-
ied by Gomes et al. [16] in obligate pathogen context. Their model contained a rate of immu-
nity loss parameter that effectively controls the degree between SIR and SIS dynamics.
Increasing the expected duration of immunity decreases the proportion of infected hosts and
reduces the potential for oscillatory dynamics. In contrast, our model is stabilised by increasing
the expected duration of immunity. This occurs because with shorter immunity the effect of
infection mortality, a factor not considered by Gomes et al., is much larger, leading to depletion
of hosts.

The results show that the sensitivity of different model parameters to environmental varia-
tion can have important effects on epidemiological dynamics. This has been recognised previ-
ously by Rohani et al. [36] who studied the effect of stochastic environmental variation on
dynamics of childhood diseases. They discovered that measles outbreaks can be explained by
purely deterministic dynamics whereas whooping cough outbreaks are only explained by add-
ing environmental stochasticity to the model, because of differing infectious periods, despite
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their otherwise seemingly similar epidemiology. In our model the effect of environmental vari-
ation is generally stronger if it affects the 50% infective dose (ID50) than when the pathogen
growth rate rp varies. This is because decreases in ID50 are more directly translated to infections
and subsequent pathogen output from hosts. However, in case the environmental stochasticity
affects the pathogen growth rate rp the average outbreak duration is longer. This is due to the
effect of temporarily high growth rate affecting the system longer, until the pathogen density is
reduced by competition, than temporarily low infective dose, which is instantly changed by
environmental variation.

It follows that, if the two parameters (ID50 and rp) vary simultaneously, the correlation and
relative magnitude of the fluctuations can become important to model dynamics, which is
indeed the case here (Fig 4). An important finding is that periodic variation fails to qualitatively
predict patterns in host dynamics when variation in the two parameters is correlated, where
the relative magnitude of fluctuations can strongly affect host viability under stochastic forcing
(Fig 4B). The periodic variation differs from stochastic variation in that for a given variance,
the extreme values generated by stochastic variation can be much farther from the mean than
the bounded extremes in periodic variation. The effect of simultaneous variation in several
model parameters has not been previously considered in epidemiological systems and is rarely
done even in ecological models (e.g. [19]).

Moreover, an eco-epidemiological system is often affected by different sources of environ-
mental variation. The processes can be affected by the same or different sources of environ-
mental variation, to varying degrees of correlation. In systems where environmental variation
affects pathogen growth and host immune defences in positive correlation, these two effects
can cancel each other, unless one of the effects is much stronger. Such a scenario is common in
many terrestrial ecosystems since moderate increases in temperature lead to increase in both
pathogen growth and immune system function. On the other hand, a scenario where pathogen
growth and host immune defences are negatively correlated occurs in fisheries especially in sal-
monids, which tend to develop stress from temperature increases that enable bacterial growth
in the spring [45,46]. This makes such systems more vulnerable to environmental variation
altogether. In some cases the effects to pathogen growth and host immune function are mostly
uncorrelated, e.g. systems in which immune defence is affected by temperature whereas patho-
gen growth is mostly limited by rainfall [2].

Conclusions
Global warming is expected to increase the amplitude of environmental variance, and thus pro-
mote outbreaks, as well as making variations faster [47]. Also, short-term temporal structure of
environmental fluctuations can vary considerably over time [18]. Dynamical systems typically
have resonant or characteristic frequencies at which an external forcing amplifies any cyclic
behaviour. The resonances of a classical SIR model have been investigated by Greenman et al.
[35] and can be used to understand sub-harmonics that appear in, e.g. measles epidemics. The
complex structure of temporal variation in environmental conditions, and the often very
unpredictable behaviour of complex biological systems under perturbations, call for a better
understanding of how stochastic forcing might impact on various systems. Here we have
shown that the effects of environmental variability are profoundly modified by the type of envi-
ronmental variability, and the underlying assumptions on the host immunity. Importantly, the
temporal structure of the environmental variability is important: the often-found slow “pink”
variation for example produced the highest risk for outbreaks.
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Supporting Information
S1 Fig. Deterministic system. Infected (A) and healthy (S + R, B) host equilibrium densities
on different pathogen growth rates without environmental variation. Parameters are set as in
Table 1, with immunity loss rate ρ = 0.1. Panels (C) and (D) show Jacobian matrix eigenvalue
real parts and imaginary parts, respectively.
(TIF)

S2 Fig. Deterministic system with higher maximum infectivity. Infected (A) and healthy
(S + R, B) host equilibrium densities on different pathogen growth rates without environmental
variation. Here maximum infectivity rate is higher (β = 4.0). Otherwise parameters are set as in
Table 1, with immunity loss rate ρ = 1.0. Panels (C) and (D) show Jacobian matrix eigenvalue
real parts and imaginary parts, respectively.
(TIF)

S3 Fig. Infection peak as a response to pathogen pulse. Outbreak severities (peak areas)
resulting from pulsed pathogen input to the system at an equilibrium. Parameters are set as in
Table 1 (main text). Expected duration of immunity is set to average (ρ = 0.1).
(TIF)

S4 Fig. Example stochastic time series. Top panel (A) shows infected (red), immunised
(green), susceptible (black), and healthy (grey) host densities. Bottom panel (B) shows patho-
gen densities (black) and the value of environmental stochasticity (grey) scaled to the centre of
the panel. Here the environmental stochasticity is directed at pathogen growth rate rp. Parame-
ters are set as in Table 1 (main text). Expected duration of immunity is set to average (ρ = 0.1).
(TIF)

S1 Text. Analysis of deterministic system and example time-series.
(DOCX)
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