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Abstract: The stem diameter distribution, stem form and quality information must be 

measured as accurately as possible to optimize cutting. For a detailed measurement of the 

stands, we developed and demonstrated the use of a multisource single-tree inventory  

(MS-STI). The two major bottlenecks in the current airborne laser scanning (ALS)-based 

single-tree-level inventory, tree detection and tree species recognition, are avoided in  

MS-STI. In addition to airborne 3D data, such as ALS, MS-STI requires an existing tree 

map with tree species information as the input information. In operational forest 

management, tree mapping would be carried out after or during the first thinning. It should 

be highlighted that the tree map is a challenging prerequisite, but that the recent 

development in mobile 2D and 3D laser scanning indicates that the solution is within 

reach. In our study, the tested input tree map was produced by terrestrial laser scanning 

(TLS) and by using a Global Navigation Satellite System. Predictors for tree quality 
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attributes were extracted from ALS data or digital stereo imagery (DSI) and used in the 

nearest-neighbor estimation approach. Stem distribution was compiled by summing the 

predicted single-tree measures. The accuracy of the MS-STI was validated using harvester 

data (timber assortments) and field measures (stem diameter, tree height). RMSEs for tree 

height, diameter, saw log volume and pulpwood volume varied from 4.2% to 5.3%, from 

10.9% to 19.9%, from 28.7% to 43.5% and from 125.1% to 134.3%, respectively.  

Stand-level saw log recoveries differed from −2.2% to 1.3% from the harvester 

measurements, as the respective differences in pulpwood recovery were between −3.0% and 

10.6%. We conclude that MS-STI improves the predictions of stem-diameter distributions 

and provides accurate estimates for tree quality variables if an accurate tree map  

is available. 

Keywords: airborne laser scanning; LiDAR; terrestrial laser scanning; mobile laser 

scanning; forest technology; forestry; forest; GIS; remote sensing 

 

1. Introduction 

Detailed and up-to-date information is a necessity for implementing sustainable forest resource 

management practices. This includes attribute knowledge of forest resources with an exact spatial 

location. Different kinds of maps and field measures with location information are common examples of 

this kind of data. In Nordic countries, intensive small-scale forestry is practiced mainly in  

privately-owned forests. Thus, from the viewpoints of the wood buyer and also the forest owner, the 

profitability of forestry is dependent upon accurate forest resource information, because detailed forest 

information is required to optimize various forest management tasks and loggings. To acquire detailed 

and up-to-date forest resource information, forest companies and governmental organizations are using 

airborne laser scanning (ALS)-based forest inventory methodologies. In operational forest inventories 

aiming for detailed stand or a sub-stand level information, a two-stage procedure using ALS data and 

field plots, i.e., an area-based approach (ABA, [1]), has become common. ABA has already been at the 

operational stage for many years (since 2008 in Finland), and thus, it is already a proven concept [2]. The 

foremost advantages of ABA include the precise prediction of various forest inventory attributes, such as 

stem volume, basal area and height and sampling-based estimations with the possibility of  

calculation-accuracy statistics, and, at least in principle, ALS-based forest inventory does not depend on 

stand boundaries [3]. Furthermore, the current ALS data (0.5 pulses per m
2
) acquisition and processing 

costs for ABA are lower than that of traditional stand-wise field inventory methods [3]. While the total 

timber volume is obtained at high accuracy with ABA, the information about the tree species, size 

distribution and number of trees has limited reliability (e.g., [4]). In practice, this means that stem-quality 

attributes required by the forest industry, such as species-specific timber assortments, cannot be 

obtained [3–6]. Single-tree-level information would be required to solve the abovementioned limitations. 

Thus, there is growing interest toward more detailed measurements of the forests. Single trees can be 

detected from the ALS data [7–9]. However, single-tree techniques have failed to challenge ABA so far, 

mainly because of problems with reliable tree detection in various forest conditions (e.g., [10–12]). 
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A single-tree inventory (STI) is most often based on detecting trees from the canopy height model 

(CHM) (e.g., [7]), and the tree variables are either directly measured or predicted using the derived ALS 

features. However, when trees are detected by segmenting the CHM, only trees that contribute to the 

CHM can be detected [10]. Therefore, forest structure has a major influence on tree detection accuracy 

(e.g., [13–15]). Tree detection accuracy has varied between 40% and 80% [7,9,12,14,16] in 

heterogeneous stands. In general, CHM-based tree detection approaches are at their best in  

single-layered, mature stands in which over 90% of the total stem volume can be detected [14,16]. 

Trees can also be detected with point-based approaches. However, this has also proven to be a rather 

challenging task, and the results have not been any better than in CHM-based approaches 

(e.g., [12,17,18]). Tree detection errors were studied with 12 different tree detection algorithms by 

Kaartinen and Hyyppä [19] and with six algorithms by Vauhkonen et al. [12]. Kaartinen and 

Hyyppä [19] concluded that the most important factor in tree detection is the algorithm used, while the 

effect of pulse density (2–8 returns/m
2
) was observed to be marginal. In that study, all of the 

algorithms were tested within two nearby study areas consisting of a few stands. In addition to several 

tree detection algorithms, Vauhkonen et al. [12] used test sites varying from tropical pulpwood 

plantations to managed boreal forests. Their main finding was that the forest structure, such as tree 

density and clustering, strongly affects the performance of the tree detection algorithm used. The 

difference between algorithms was not seen to be as significant as in Kaartinen and Hyyppä [19]. 

With successful tree detection, it has been shown that a STI can produce accurate estimates for tree 

height, saw wood recovery, stem volume and diameter [5,20–22]. For example, Peuhkurinen et al. [22] 

carried out STI for two mature conifer stands (density: ~465 stems per hectare), and the number of 

harvestable trees was underestimated by only <3%. Respectively, when saw wood and pulpwood 

volumes were predicted, the error was <0.5% for saw wood and 22% (underestimation) for pulpwood. 

Maltamo et al. [21] predicted tree variables, including tree quality variables, of Scots pines using k-most 

similar neighbor (MSN) estimation combined with plot- and tree-level height metrics calculated from 

ALS data. The root mean square errors (RMSEs) for diameter, height and volume were 5.2%, 2.0% and 

11%, respectively, when 133 accurately matched trees were used in the validation. Holmgren et al. [5] 

combined ALS and harvester data in the estimation of stem attributes without any traditional field 

measurements. They reported the accuracies at the sub-stand level, and the obtained RMSE of stem 

volume, mean tree height, mean stem diameter and stem density estimates were 11%, 8%, 12% and 19%, 

respectively. Lindberg et al. [20] estimated stem attributes by using terrestrial laser scanning (TLS) to 

measure the ground-truth for ALS-based STI. They obtained RMSE of 15.4%, 3.7% and 34.0% for  

tree-level diameter, height and stem volume, respectively.  

Tree map is a base product in STI. Area-based forest inventory methods are not capable of 

providing tree maps. Spatially accurate tree maps would be a major step toward virtual 3D forests, and 

they would be beneficial in the planning of forest management operations and as input information for 

the next generation’s growth models. Mobile 2D and 3D laser scanning methods have rapidly 

developed during recent years [23–29]. These methods are capable of providing tree maps within  

one-meter accuracy [23,25,26,28]. It is suggested by many researchers [3,5,20,24,26,28–31] that these 

ground-based laser sensors could be mounted to the harvesters to measure standing trees during the 

logging. The forest industry is also eager to develop harvester measurements and mount these 2D or 

3D laser scanners to the harvester. In Finland, the stand is usually thinned twice before the final 
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cutting. If a tree map could be acquired during the second thinning when the stand age is  

~60 years, it could provide highly beneficial input when stem distributions and tree quality variables 

are inventoried prior to the final cutting (stand age: ~80 years) using ALS data. 

In most promising STI studies (e.g., [5,20,21]), the results have been accurate, due to suitable forest 

conditions (mature stand) and/or validation data that has been selected based on correct matching 

between ALS and field data. However, the practical solution for reliable STI has not been suggested so 

far. This study was a pre-investigation into developing the next generation’s detailed forest-inventory 

process for countries applying intensive small-scale forestry. Here, we developed and demonstrated the 

use of multisource STI (MS-STI) in which the two major bottlenecks, tree detection and tree species 

recognition, in the current ALS-based STI are avoided. In addition to the airborne 3D data, MS-STI 

requires an existing tree map with tree species information as input information. With this information 

as input, it is possible to circumvent the challenging steps of tree detection and tree species 

recognition. In our study, the tested input tree map was produced by TLS and by using a Global 

Navigation Satellite System (GNSS). Predictors for tree quality attributes were extracted from ALS 

data or digital stereo imagery (DSI) for mapped tree locations. Stem distribution was compiled by 

summing single-tree measures. The accuracy of the MS-STI was validated using harvester data (timber 

assortments) and field measures (diameter, height).  

2. Material and Methods  

2.1. Study Area and Field Measurements 

The study area (Figure 1) is located in Evo, southern Finland (61.19°N, 25.11°E). The area belongs 

to the southern Boreal zone and comprises approximately 2000 ha of mainly managed forest. The 

study site was a forest stand, which was approximately 2 hectares in size, and the main tree species 

was Scots pine (Pinus sylvestris L.). The site type of the stand was Myrtillus-type (medium-rich 

mineral soil forest). The mean age of the pine trees was approximately 75 years, and the forest 

management history included thinnings and two fertilizations. Field measurements were conducted for 

144 sample trees from the stand in the fall of 2012. Trees were marked and numbered in the field, and 

diameter was measured with steel calipers from two directions perpendicular to each other at the height 

of 1.3 m. Tree height was measured with a Haglöf Vertex laser rangefinder (Haglöf Sweden AB, 

Långsele, Sweden). The mean height and diameter of the sample trees were 24.7 m and 29.8 cm, 

respectively. More detailed statistics of the sample trees are presented in Table 1. 

Table 1. Tree statistics calculated from the field measurements.  

 Min Mean Max SD 

Diameter, cm 18.3 29.8 41.0 4.4 

Height, m 19.0 24.7 28.6 1.6 
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Figure 1. Study area and harvesting site. 

 

2.2. Terrestrial Laser Scanning 

The TLS data were collected in the fall of 2012 with a Leica HDS6100 TLS system (Leica 

Geosystem AG, Heerbrugg, Switzerland). The HDS6100 is a 690-nm phase-based continuous-wave 

laser scanner with a 360° × 310° field of view upwards, and its data-acquisition rate is 508,000 points 

per second. The distance measurement accuracy is ±2 mm at a distance of 25 m. The circular-beam 

diameter at the exit and the beam divergence are 3 mm and 0.22 mrad, respectively. The point spacing 

is 6.3 mm at 10 m (with an angular resolution of 0.009°). In all, 45 scans were made and coregistered 

to cover the whole stand and sample trees. The reference targets (spheres) were used to ensure accurate 

coregistration, which was done using Leica’s Cyclone software (Leica Geosystems AG. Heerbrugg). 

TLS data were also registered to the external coordinate system (ETRS-35TMFIN), using reference 

target locations and scanning locations measured with the GNSS. 

2.3. Airborne Laser Scanning 

The ALS datasets were acquired in midsummer, 2011 and 2012. The ALS campaign in 2011 was 

acquired with a Leica ALS50-II scanner. The flying altitude was 1000 m above ground level, and the 

pulse density was approximately 9 pulses per square meter. The National Land Survey of Finland 

(NLS) conducted the ALS campaign in the study area with a Leica ALS50 scanner in 2012. The flying 

altitude was 2200 m, and the pulse density was around 0.8 pulses per square meter. In both of the data 
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sets, a digital terrain model (DTM) and, consequently, heights above ground level were computed by 

the data provider.  

2.4. Aerial Images and Digital Surface Model Generation 

The aerial imagery was acquired in August 2009. The imaging sensor used was a Microsoft 

UltracamXp with a stereoscopic forward overlap of 70% and side overlap of 30%. The area was covered 

by 51 images in total. Images were taken from three separate flight lines covering 17 images each. The 

ground-sample distance (GSD) was approximately 0.25 m. The images were delivered as 16-bit RGB 

(red, green, blue) and color infrared (CIR) composites. The image orientation was completed by the data 

vendor (FM International Oy, Helsinki, Finland). Based on the image-orientation report provided, the 

RMSE accuracy of the orientation (validated with seven ground control points) was 4.3 cm, 3.1 cm and 

9.1 cm in the X, Y and Z directions, respectively. For the development of a high-spatial resolution  

(0.5 m) DSI-based digital surface model (DSM), the Next-Generation Automatic Terrain Extraction 

(NGATE) module of the software, SOCET SET (from BAE Systems), was used. The ALS-based DTM 

was subtracted from the DSI-based DSM to create CHM. Further details are given in [32,33]. 

2.5. Harvester Measurements 

Harvester measurements were collected in the fall of 2012. Each sample tree was cut down and cut 

into saw logs and pulpwood. Trees were also linked to field reference trees during this process. The 

following parameters were measured with a harvester information system: saw log and pulpwood 

volume and length and bucking information. The upper diameter limit for logs was 16 cm and for 

pulpwood, 7 cm. Table 2 summarizes the harvester measurements. 

Table 2. Description of the sample trees measured and cut with a harvester. 

 Min Mean Max SD 

Saw log volume (dm
3
) 0.0 695.1 1531.9 268.4 

Pulpwood volume ( dm
3
) 0.0 117.7 914.8 113.3 

2.6. Multisource Single-Tree Inventory 

We tested MS-STI by using three different kinds of remote-sensing materials in the prediction of 

the stem attributes and diameter distribution. MS-STI-1 uses ALS data with ~9 pulses per m
2
 in the 

extraction of the predictor variables, whereas MS-STI-2 uses ALS data with a pulse density of  

~1 pulses per m
2 

(Section 2.3). MS-STI-3 uses CHM derived from digital stereo imagery in the 

extraction of the predictors (Section 2.4). All of the three MS-STIs use the same stem map derived 

from the TLS and GNSS measurements as the input information (Section 2.6.1). MS-STI is described 

in more detail in the following sections. 

2.6.1. Tree Map-Assisted Extraction of Predictor Variables 

The location of each tree was determined manually from the TLS point cloud and then used as 

auxiliary information when extracting predictors for single trees. TLS point clouds were processed in 
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scan groups, and trees were searched within each group using visual interpretation. The process was 

performed through the following steps: (1) the point cloud of each scan group was imported into 

TerraScan by thinning the point cloud by 50%; (2) points from an approximately 1.3-m height 

(between 1.25 m and 1.35 m to be exact) were classified into a horizontal ―slice‖ for identifying tree 

trunks; (3) tree trunks were detected and marked within the slice; and (4) location and DBH 

information were recorded for all the trees. In MS-STI-1, dense, 9 pulses per m
2
 ALS data was used, 

and thus, CHM was first segmented using watershed segmentation [9,34,35]. Segments were then 

linked to the trees. If there was more than one tree within a segment, the segment was split equally to 

represent both of the trees. In MS-STI-2 and MS-STI-3, predictors were extracted using circular 

polygons around the tree location. The area of the polygons was fixed to 7 m
2
 to cover height 

observations close to the tree stem and to avoid overlapping with other trees. The size of the polygon 

was not further tested.  

Statistical metrics describing tree crown density and tree height were calculated from the ALS or 

DSI data (Table 3). The DSI-derived CHM raster layer was treated as an XYZ point cloud, 

respectively, to the ALS point cloud. First, point heights over 0.5 m were classified as coming from the 

vegetation (i.e., tree), and a vegetation ratio (vege) was then calculated as a ratio between vegetation 

point heights and all point heights within a crown segment. The other extracted metrics were: the 

maximum (Hmax), average (Hmean), standard deviation (Hstd) and coefficient of variation of point 

heights (CV); point height at the 10th–90th percentile (h10–h90) and crown-cover metrics as a 

proportion of point heights below a certain relative tree height (p10–p90). Only the points belonging to 

vegetation (that is, a height over 0.5 m) were used in calculating these metrics. The metrics were 

extracted from the ALS data using first returns and all returns separately.  

Table 3. Statistics, such as minimum (min), maximum (max), range, mean and standard 

deviation (SD) calculated from the extracted predictor variables. The suffix ―_fi‖ means that 

only the first returns were used for calculations. vege, vegetation ratio; Hmax, height 

maximum; Hmean, average height; Hstd, height standard deviation; h10–h90, point height at 

the 10th–90th percentile (h10–h90); p10–p90, crown-cover metrics as a proportion of point 

heights below a certain relative tree height. MS-STI, multisource single-tree inventory. 

 MS-STI-1 MS-STI-2 MS-STI-3 

Variable Min Max Range Mean SD Min Max Range Mean SD Min Max Range Mean SD 

Hmax 18.1 28.4 10.3 23.6 1.5 16.9 28.5 11.6 23 1.7 9.6 28.6 19 22.2 2.6 

Hmean 11.5 20.5 9 16.7 2 12.9 25.9 13 20 2.3 2.6 25.2 22.5 19.3 3.6 

Hstd 1.6 9.5 7.8 5.7 1.6 0.4 9.9 9.5 3.4 2.5 0.4 6.1 5.7 1.7 1.2 

vege 0.2 0.9 0.7 0.7 0.1 0.5 1 0.5 1 0.1 0.6 1 0.4 1 0.1 

CV 0.1 0.8 0.7 0.4 0.1 0 0.7 0.7 0.2 0.2 0 1.2 1.2 0.1 0.2 

h10 0.8 18.9 18.1 8.1 5.5 1.3 24 22.7 16.1 5.6 0.7 23.3 22.6 17.1 4.7 

h20 1.9 20.2 18.3 12.7 4.9 2.1 25 22.9 18.1 4.3 0.9 23.9 22.9 17.9 4.4 

h30 2.2 20.7 18.5 15.5 3.8 3.5 25.3 21.8 19.6 3 1 24.3 23.3 18.5 4 

h40 3.8 21.5 17.7 17.2 2.7 12.4 25.5 13 20.5 2 1.2 24.7 23.5 19 3.8 

h50 4.1 22.3 18.2 18.3 2.3 13.8 25.7 11.9 21.1 1.8 1.4 24.8 23.4 19.5 3.7 

h60 13.8 22.9 9.1 19.4 1.7 15.7 26.3 10.6 21.5 1.6 1.6 25.1 23.5 19.9 3.5 
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Table 3. Cont. 

 MS-STI-1 MS-STI-2 MS-STI-3 

Variable Min Max Range Mean SD Min Max Range Mean SD Min Max Range Mean SD 

h70 15.4 23.9 8.5 20.3 1.5 16.7 26.9 10.2 21.8 1.6 1.7 25.5 23.8 20.2 3.3 

h80 15.4 25.2 9.7 21.1 1.5 16.9 27.3 10.4 22.2 1.6 3.7 26.4 22.8 20.7 3 

h90 17 26.5 9.5 22.1 1.5 16.9 27.9 11 22.6 1.6 6.7 27.8 21.1 21.2 2.8 

p10 0 0.3 0.3 0.1 0.1 0 0.3 0.3 0 0.1 0 0.8 0.8 0 0.1 

p20 0 0.5 0.5 0.1 0.1 0 0.4 0.4 0 0.1 0 0.8 0.8 0 0.1 

p30 0 0.5 0.5 0.1 0.1 0 0.4 0.4 0 0.1 0 0.8 0.8 0 0.1 

p40 0 0.5 0.5 0.1 0.1 0 0.4 0.4 0.1 0.1 0 0.9 0.9 0 0.1 

p50 0 0.6 0.6 0.2 0.1 0 0.4 0.4 0.1 0.1 0 0.9 0.9 0 0.2 

p60 0 0.6 0.6 0.2 0.1 0 0.4 0.4 0.1 0.1 0 0.9 0.9 0.1 0.2 

p70 0 0.7 0.7 0.3 0.1 0 0.5 0.5 0.1 0.1 0 0.9 0.9 0.1 0.2 

p80 0.1 0.8 0.7 0.5 0.1 0 0.7 0.7 0.2 0.2 0 1 1 0.1 0.2 

p90 0.4 0.9 0.6 0.8 0.1 0 0.8 0.8 0.4 0.2 0 1 1 0.1 0.2 

Hmax_fi 18.1 28.4 10.3 23.6 1.5 16.9 28.5 11.6 23 1.7      

Hmean_fi 12.7 22.1 9.5 18.1 1.8 16.9 26.4 9.6 21.1 1.6      

Hstd_fi 1.2 9.5 8.3 4.5 1.6 0.4 9.3 8.9 1.9 1.4      

vege_fi 0.3 1 0.7 0.8 0.1 0.5 1 0.5 1 0.1      

CV_fi 0.1 0.7 0.7 0.3 0.1 0 0.6 0.5 0.1 0.1      

h10_fi 1.1 20.2 19.2 12.3 5.1 3.8 25.1 21.3 19.1 2.6      

h20_fi 2.1 20.8 18.7 15.7 3.5 8.4 25.4 17 20.1 2      

h30_fi 3.1 21.5 18.4 17.1 2.9 16.4 25.5 9.1 20.6 1.7      

h40_fi 4 22.2 18.2 18.2 2.1 16.9 25.7 8.8 21.1 1.6      

h50_fi 13.4 22.6 9.2 19.1 1.6 16.9 26.2 9.3 21.4 1.6      

h60_fi 15.2 23.7 8.4 19.9 1.5 16.9 26.7 9.8 21.7 1.6      

h70_fi 15.4 24.1 8.8 20.7 1.5 16.9 27.1 10.2 22 1.6      

h80_fi 15.4 25.4 9.9 21.4 1.5 16.9 27.5 10.6 22.3 1.5      

h90_fi 17 26.8 9.8 22.2 1.5 16.9 28 11.1 22.7 1.6      

p10_fi 0 0.2 0.2 0 0 0 0.1 0.1 0 0      

p20_fi 0 0.5 0.5 0.1 0.1 0 0.1 0.1 0 0      

p30_fi 0 0.5 0.5 0.1 0.1 0 0.3 0.3 0 0      

p40_fi 0 0.5 0.5 0.1 0.1 0 0.3 0.3 0 0      

p50_fi 0 0.5 0.5 0.1 0.1 0 0.3 0.3 0 0      

p60_fi 0 0.5 0.5 0.1 0.1 0 0.3 0.3 0 0      

p70_fi 0 0.6 0.6 0.2 0.1 0 0.3 0.3 0 0.1      

p80_fi 0 0.8 0.7 0.5 0.1 0 0.5 0.5 0.1 0.1      

p90_fi 0.3 0.9 0.6 0.8 0.1 0 0.8 0.8 0.3 0.2      

2.6.2. Estimation of Tree quality Variables 

Height, diameter, saw log volume and pulpwood volume were predicted by means of ALS and DSI 

metrics using the nearest-neighbor (NN) approach. Tree variables measured in the field (height, 

diameter) or recorded with a harvester (saw log volume, pulpwood volume) were used as target 

observations, and tree-specific metrics derived from ALS and DSI data were used as predictors. The 

random forest approach (RF, [36]) was applied in the NN search. Based upon the quality of results and 
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the desirable statistical characteristics (i.e., the capability to predict multiple-response variables 

simultaneously, to use a large number of predictors without the problem of over fitting and to evaluate 

the accuracy with built-in functionality), the use of RF in NN estimation of forest variables is 

increasingly common (e.g., [9,37]). Hudak et al. [37] demonstrated that the RF method is more robust 

and flexible for forest-variable prediction when compared to other NN distance measures, such as 

Euclidian distance, Mahalanobis distance or canonical-correlation analysis. In the RF method, several 

regression trees are generated by drawing a replacement from two-thirds of the data for training and 

one-third for testing for each tree. The samples that are not included in training are called out-of-bag 

samples, and they can act as a testing set in the approach. The measure of nearness in RF is defined 

based on the observational probability of ending up in the same terminal node in classification. The R 

statistical computing environment [38] and yaImpute library [39] were applied in the RF predictions. 

The yaImpute library is tailored to NN forest attribute estimation. 

In the present study, 1200 regression trees were generated, and the square root of the number of 

predictor variables was picked randomly at the nodes of each regression tree. Three-hundred 

regression trees per predicted variable were suggested by Hudak et al. [37]. Randomness was taken 

into account by running the RF method 100 times. The final result was the average of these runs. The 

number of neighbors was set to one to keep the original variance in the data (see, e.g., [37]). 

Prior to the final modeling, RF was used to reduce the number of predictor variables. The aim of the 

variable reduction was to build up parsimonious models that are capable of accurate predictions. 

A step-wise looping procedure was used to iterate RF, discarding the least important of the candidate 

variables at each iteration, based on the variable importance, until only a single predictor variable 

remained. RMSEs were calculated for each predictor variable combination and analyzed.  

2.7. Accuracy Assessment at the Single-Tree and Sub-Stand Level 

In this study, predictors and target observations were available for all of the trees. Therefore, the 

accuracy of the predicted variables at the tree level was evaluated by calculating bias and RMSE using 

out-of-the-bag samples. The relative bias and RMSE were calculated according to the sampled mean of 

the variable in question. At the stand level, stem-diameter distribution, tree-height distribution, saw-log 

recovery and pulpwood recovery were compiled from the tree-level predictions and compared to the 

field and harvester measures. Differences are reported for saw wood and pulpwood recoveries. The 

goodness of fit of the predicted stem-diameter and height distributions was evaluated by using an error 

index proposed by Packalén and Maltamo [40]: 

𝑒 =  0.5  
𝑓𝑖

𝑁
−

𝑓 𝑖

𝑁 
  

𝑘

𝑖=1

 (1) 

where fi is the true and fî is the predicted stem number in class i, k is the number of classes or bins and N 

is the true and N̂ the predicted stem number of all diameter classes. A bin size of 2 cm was used for 

diameter and 1 m for height. The error index is modified from the one suggested by Reynolds et al. [41]. 

Frequency differences are multiplied by 0.5 in Equation (1) to scale the error index to between 0 and 1, 

0 meaning a perfect fit and 1 meaning that the distributions do not overlap at all. 
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3. Results 

In total, MS-STI-1 and MS-STI-2 had 46 possible predictor variables and MS-STI-3 had 23. After the 

reduction of the predictor variables, MS-STI-1 had 16, MS-STI-2 had 15 and MS-STI-3 had 10 predictor 

variables (Table 4). In general, the prediction accuracy was not overly sensitive to the number of the used 

predictor variables. For example, the RMSEs varied in MS-STI-1 from 10.7% to 15.6% in stem diameter 

and from 5.0% to 6.1% in tree height when the number of predictors varied from 46 to two. 

Table 4. Selected predictor variables. 

Variable MS-STI-1 MS-STI-2 MS-STI3 

Hmax x x x 

Hmean   x 

CV  x x 

h20 x  x 

h30  x  

h40  x x 

h50  x x 

h60 x x x 

h70  x x 

h80 x x x 

h90 x x x 

p10 x   

p20 x   

p30 x   

p80 x   

Hmean_fi  x  

vege_fi x   

h30_fi x   

h40_fi x   

h50_fi  x  

h60_fi  x  

h70_fi x x  

h80_fi x x  

h90_fi x x  

p80_fi x   

3.1. Prediction Accuracy of Tree Height, Diameter, Stem Volume and Timber Assortments 

Tree height, stem diameter, saw log volume and pulpwood volume were all predicted 

simultaneously using RF. All of the three MS-STIs provided meter-class accuracy for tree height with 

low biases (Table 5). The variation in tree height prediction accuracy between the MS-STIs was 

marginal, and the RMSEs varied only from 4.2% to 5.3%. In stem diameter and saw log volume 

predictions, MS-STI-1 provided the most accurate estimates with RMSEs of 3.2 cm (10.9%) and  

200.3 dm
3
 (28.7%), respectively. Pulpwood volume prediction was the most unreliable, with all of the  

MS-STIs and the RMSE varying from 125.1% to 135.3% and the biases from −3.0% to 10.6%. 
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3.2. Comparisons of Stem-Distribution Series and Accuracy in Prediction of Timber Assortments at the 

Sub-Stand Level 

All of the MS-STIs provided accurate estimates for saw log and pulpwood recoveries at the stand 

level. MS-STI-1’s saw log recovery estimate differed by only 0.2% from the true  

harvester-measured recovery. The respective difference in pulpwood recovery was 2.7%. Saw log 

recoveries with MS-STI-2 and MS-STI-3 differentiated −0.4% and 1.3%, as the respective differences 

in pulpwood recoveries were 10.6% and −3.0%. MS-STI-1 and MS-STI-2 provided the most accurate 

stem-diameter distribution (Figure 2), while the MS-STI-1 was clearly most accurate in predicting 

tree-height distribution (Figure 3). Error indices for the predicted diameter distributions were 0.10, 

0.11 and 0.15 for MS-STI-1, MS-STI-2 and MS-STI-3, respectively. The error indices for the 

predicted height distributions were 0.06, 0.10 and 0.15 for MS-STI-1, MS-STI-2 and MS-STI-3. 

Table 5. Accuracy of the MS-STI in the prediction of tree quality variables. 

  k Bias Bias-% RMSE RMSE-% 

Tree height (m)      

MS-STI-1 1 −0.1 −0.2 1.2 4.7 

MS-STI-2 1 0.0 0.0 1.0 4.2 

MS-STI-3 1 0.0 −0.1 1.3 5.3 

Tree diameter (cm)      

MS-STI-1 1 0.1 0.3 3.2 10.9 

MS-STI-2 1 −0.1 −0.4 5.9 19.9 

MS-STI-3 1 0.2 0.6 4.7 16.1 

Saw log volume (dm
3
)      

MS-STI-1 1 1.5 0.2 200.3 28.7 

MS-STI-2 1 −2.8 −0.4 304.8 43.5 

MS-STI-3 1 9.0 1.3 284.3 40.7 

Pulpwood volume (dm
3
)      

MS-STI-1 1 3.2 2.7 159.4 134.3 

MS-STI-2 1 12.6 10.6 148.6 125.1 

MS-STI-3 1 −3.5 −3.0 159.8 135.3 

Figure 2. True and predicted stem-diameter distributions. 
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Figure 2. Cont. 

 

Figure 3. True and predicted tree-height distributions. 

 

4. Discussion 

This study was a pre-investigation in developing the next generation’s detailed forest-inventory 

process for countries applying intensive small-scale forestry. Here, we developed and demonstrated a 

use of MS-STI in which two major bottlenecks, tree detection and tree species recognition, in the 

current ALS-based STI are avoided. In addition to the ALS data, MS-STI requires an existing tree map 
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with tree species information as the input information. With this information as input, it is possible to 

avoid the challenging steps of tree detection and tree species recognition.  

In STI studies (e.g., [5,21,22]), the results have been promising, due to suitable forest conditions 

(mature stand) and/or validation data having been selected based on correct matching between ALS 

and field data. STI results have varied considerably depending on the forest conditions [9,10,12,16]. 

A practical solution for reliable STI has not been suggested so far. We believe that the existing tree 

map could be the solution. It should be noted that our study was also carried out in forest conditions 

that favored STI. The data were collected from a single mature Scot’s pine stand. Thus, we were not 

studying tree species classification from TLS data or the prediction of species-specific tree quality 

variables. However, with the existing tree map, it can be assumed that MS-STI is capable of providing 

robust estimates in various forest conditions, and we will investigate that in forthcoming studies. A tree 

map with species information is a challenging prerequisite, but the recent developments in mobile 2D 

and 3D laser scanning indicates that the solution is within reach [23–30]. In our study, the tested input 

tree map was produced by TLS and using GNSS with an expected accuracy of below 0.1 m. 

In operational forest management, tree mapping would be carried out after or during the thinning, 

which is the earliest stage to apply MS-STI. After that, tree-level information could be used for 

optimizing wood supply, spatial modeling of the growth and even in the guidance of bucking.  

Predictors for tree quality attributes were extracted from ALS data or DSI for mapped tree 

locations. Stem distribution was compiled by summing single-tree measures. The accuracy of the  

MS-STI was validated using harvester data (timber assortments) and field measures (diameter, height). 

MS-STI provided accurate estimates for diameter, height and timber assortments. It should be noted 

that comparing the results of this kind of study to other studies is only suggestive and highly data 

dependent. However, after this reminder, we can point out that our results are promising and on the 

same level or even better than the results obtained earlier using STI methods [5,9,20–22]. For example, 

the obtained accuracies for tree quality variables were similar to the accuracies obtained by  

Maltamo et al. [21] or Lindberg et al. [20]. We could have obtained even lower RMSEs by enlarging 

the number of neighbors used in the estimation, but that would have contracted the estimated stem 

distribution. Accurate stem distribution is desired for logging optimization, and the forestry industry is 

highly interested in obtaining these prior loggings [4,22,40]. With a k-value of one, we were able to 

retain the original variance in tree quality variables as well as possible in the RF estimation. At the stand 

level, we obtained more accurate estimates for saw log and pulpwood recoveries by using MS-STI 

than had been obtained by Peuhkurinen et al. [22] or Holmgren et al. [5]. Peuhkurinen et al. [22] 

estimated saw wood recovery to be under 0.5% and pulpwood with a 22% difference to the 

harvester measurements. MS-STI-1’s saw log recovery estimate differed with only 0.2% from the true 

harvester-measured recovery, and the difference in pulpwood recovery was 2.7%. Estimates for 

timber assortment were also much more accurate than what had previously been obtained by using an 

area-based approach [4]. In general, the obtained stem-diameter distributions were more accurate than 

in Packalén and Maltamo [40] and Vauhkonen et al. [6] in which a comparable error index was used. 

Packalén and Maltamo [40] used ABA to predict species-specific stem-diameter distributions, and 

error indices varied from 0.21 to 0.34. Vauhkonen et al. [6] used the STI technique and tree-list 

imputation method; error indices varied from 0.33 to 0.40 for all of the trees, and the  
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species-specific error indices varied from 0.9 to 0.23. The error indices we obtained with MS-STI 

varied from 0.10 to 0.15.  

One of the most intriguing considerations with MS-STI is that it is capable of producing accurate 

estimates even with DSI-derived CHM data or low-pulse density ALS data (0.5 pulses per m
2
 used 

here in MS-STI-2). This is promising for forest resource information updates. Once the tree map is 

produced by using 2D or 3D laser techniques, there are many possible options for updating forest data. 

For example, an existing tree map (acquired during the thinning) could be used prior to the final 

cutting when tree quality attributes and logging recoveries are predicted using the newest possible 3D 

remote-sensing data. Then, the detailed tree information could be used for optimizing wood supply and 

even in the guidance of bucking. 

In forthcoming studies, MLS- and TLS-based tree mapping and tree species detection should be 

developed further in conjunction with MS-STI. The required accuracy of the tree map also requires 

further study, especially if MS-STI is carried out using DSI or low-pulse density ALS data.  

5. Conclusion 

Here, we developed and demonstrated a use of multisource single-tree inventory (MS-STI) in which 

two major bottlenecks, tree detection and tree species recognition, in the current airborne laser 

scanning (ALS)-based single-tree inventory, are avoided. In addition to the ALS or other detailed 

airborne 3D data (such as the digital stereo imagery-derived point cloud), MS-STI requires an existing 

tree map with tree species information as the input information. With this information as the input, it is 

possible to avoid the challenging steps of tree detection and tree species recognition. The tree map is 

then used to support the extraction of the predictors and the estimation of the tree quality attributes 

from airborne 3D data. With this approach, the root mean square errors (RMSEs) for tree height, 

diameter, saw log volume and pulpwood volume varied from 4.2% to 5.3%, from 10.9% to 19.9%, 

from 28.7% to 43.5% and from 125.1% to 134.3%, respectively, depending on the used airborne 3D 

data. Stand-level saw log recoveries differed from −2.2% to 1.3% from the harvester measurements, as 

the respective differences in pulpwood recovery were between −3.0% and 10.6%. The obtained results 

are promising and on the same level or even better than the results obtained in previous studies. We 

conclude that MS-STI is capable of providing realistic stem distributions and accurate estimates for 

tree quality variables with ALS data or digital stereo imagery if an accurate tree map is available. 
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