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Abstract: The requirements for up-to-date tree data in city parks and forests are increasing, 

and an important question is how to keep the digital databases current for various 

applications. Traditional map-updating procedures, such as visual interpretation of digital 

aerial images or field measurements using tachymeters, are either inaccurate or expensive. 

Recently, the development of laser-scanning technology has opened new opportunities for 

tree mapping and attributes updating. For a detailed measurement and attributes update of 

urban trees, we tested the use of a multisource single-tree inventory (MS-STI) for 

heterogeneous urban forest conditions. MS-STI requires an existing tree map as input 

information in addition to airborne laser-scanning (ALS) data. In our study, the tested input 

tree map was produced by terrestrial laser scanning (TLS) and by using a Global 

Navigation Satellite System (GNSS). Tree attributes were either measured from ALS or 

predicted by using metrics extracted from ALS data. Stem diameter-at-breast height (DBH) 
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was predicted and compared to the field measures, and tree height and crown area were 

directly measured from ALS data at the two different urban-forest areas. The results 

indicate that MS-STI can be used for updating urban-forest attributes. The accuracies of 

DBH estimations were improved compared to the existing attribute information in the city 

of Helsinki’s urban-tree register. In addition, important attributes, such as tree height and 

crown dimensions, were extracted from ALS and added as attributes to the urban-tree register. 

Keywords: urban forest; remote sensing; LiDAR; Airborne laser scanning; GIS;  

forest inventory; forest mapping; city planning; land-use planning 

 

1. Introduction 

Trees and woodlands are part of the urban environment, and they play an important role in urban 

areas [1]. Urban woodlands can improve people’s quality of life, but they also improve the urban 

environment. Trees can reduce pollution effects [2] and improve air quality [3] in urban areas.  

In relation to this, urban forests can also store industrial carbon emissions [4], and when vegetation is 

sustained and maintenance practices are focused upon (e.g., energy conservation or producing  

long-term carbon storages), urban vegetation can be seen as a carbon sink [5]. 

Urban forests also offer recreational environment for citizens. However, use level, user 

composition, and the temporal distribution of activity types through commuting and recreation use 

may differ depending on the number and closeness of settlements, business areas and schools [6]. 

Urban forests can also be seen as a measure for strengthening social structures for interaction and for 

reducing social exclusiveness [7]. Urban forests and woodlands can provide multiple values and 

benefits (e.g., [8,9]) including education, economy, and urban biodiversity, in addition to the aspects 

mentioned above. 

In Finland, the City of Helsinki’s Street and Park Division maintains a digital tree register 

(approximately 40,000 trees) that includes trees that are situated at road sides and some of the trees in 

the parks. The tree-register data includes information on the species, height, diameter-at-breast height 

(DBH), and location. The tree-register data are used in city and environmental planning, in locating old 

trees that are hazardous (for citizens), and in biodiversity monitoring. Trees in the register have been 

located on city-planning maps. The City of Helsinki’s Street and Park Division is also interested in 

expanding the register to include trees in the parks that are not yet registered. The requirements for  

up-to-date tree data in city parks and forests are increasing, and an important question is how to keep 

the digital databases current for the various applications. Traditional updating procedures, such as 

visual interpretation of digital aerial images or field measurements using tachymeters, are either 

inaccurate or expensive. Hence, the utilization of remote sensing data is appealing. Remote sensing 

data are in many cases collected automatically for other purposes and are therefore affordable for 

updating digital databases. As in many cities, this is also the situation in the City of Helsinki where 

aerial photographs and airborne laser scanning (ALS) data are collected for other urban planning 

purposes, such as mapping of buildings, roads, and other built objects. New opportunities for tree 
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mapping and the updating of attributes have been opened because of the development of  

laser-scanning technology. 

ALS is used in urban planning to create highly detailed digital surface models and eventually 

Digital City Models and virtual-city realities [10]. ALS has been used by forest companies and 

governmental organizations to acquire up-to-date information about forest resources. ALS provides a 

geo-referenced-point cloud, which enables the calculation of digital terrain models (DTMs) and, digital 

surface models (DSMs) that correspond to treetops and three-dimensional (3-D) models of an object 

(e.g., canopy-height model (CHM), normalized DSM), which are the main products used for  

laser-assisted forest measurements. The two main approaches to derive forest information from ALS 

data are the area-based approach (ABA) [11] and individual tree detection (ITD) [12]. With ALS it is 

possible to directly measure the forest structure, including canopy height (CH) and crown dimensions; 

hence, it is increasingly being used for forest inventories at different levels. It has been shown that ALS 

can be used for estimating a variety of forest attributes, including tree, plot, and stand-level estimates for 

tree height [12–15], stem volume [16–19], basal area (BA) [11,20–22] and tree species [23–27]. 

In recent years, the potential of terrestrial laser scanning (TSL) for measuring forest characteristics 

has been more understood. TLS data have been used for measuring forest parameters (e.g., [28–30]), 

tree-location accuracy (e.g., [31–33]), stem curve (e.g., [34,35]), stem reconstruction (e.g., [36]), stem 

mapping (e.g., [28,32,33]), and biomass (e.g., [37–42]). 

Holopainen et al. (2013) [31] demonstrated that TLS and mobile laser scanning (MLS) can be used 

for producing accurate tree maps in urban forests. Based on the results presented in [31], ALS was 

selected as a means of updating Street and Park Division’s tree register for the city of Helsinki [43].  

In [43] an ALS-based mapping system was developed to be used for urban-tree mapping. On the basis 

of these studies, a conclusion can be drawn that urban-tree mapping will be done automatically in the 

near future. The next phase is to study how to measure and update automatically important tree 

attributes by using an existing tree map, which is a basic product in the urban-tree inventory.  

One especially interesting option is a combination of ALS and TLS data in which ALS can be used for 

measuring tree height and TLS is used for providing not only the accurate position of all trees but also 

detailed information about the quality of the tree stem. This method is useful for updating information 

of urban trees and also for developing precision forestry [44] in managed forests. 

Here we tested the use of a multisource single-tree inventory (MS-STI) where ALS and TLS data 

were combined for mapping the trees and measuring tree variables. Our objectives were to investigate 

estimation accuracy of tree variables, estimate stem distributions, and asses the prediction accuracy 

while also producing completely new tree attribute such as crown size and update height for all trees in 

the city of Helsinki’s urban tree register. Stem distribution can be used for urban-forest planning and 

for visualizing heterogeneous urban woodlands. In the future, 3D-virtual forests could be an essential 

part of urban planning, and stem distribution is an offset for creating these models. 
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2. Materials 

2.1. Study Area 

The study area, Seurasaari (in Helsinki, Finland), is a popular outdoor recreation area located 

approximately 5 km from the Helsinki city center. It was made a public park in 1890 and quickly 

became a popular place for recreational activities. Seurasaari is a wooded island with rocks, hills, 

wetlands, and herb-rich forests covering about 46 ha. It receives hundreds of thousands of visitors per 

year. Our study area in Seurasaari comprised two parts, covering approximately 2.7 ha in total (Figure 1). 

The northern part is a well-managed urban park comprised mainly of widely separated old oaks and 

only grass as under-storey vegetation, while the southern part resembles more a natural unmanaged 

park forest with varying under-storey vegetation. The distribution of tree species was diverse and 

consisted of 11 different species (Table 1), which describes the heterogeneity of the research area. In the 

area, there is a dense network of artificially constructed outdoor paths that can also be used by vehicles. 

Table 1. Relative tree-species distribution in the study area. 

Species % 

Acer platanoides 2.64 

Alnus sp. 9.13 

Betula sp. 7.30 

Picea abies 25.96 

Pinus sylvestris 19.88 

Populus tremula 9.94 

Quercus robur 6.69 

Salix caprea 0.81 

Sorbus aucuparia 14.60 

Tilia cordata 2.43 

Ulmus sp. 0.61 

Figure 1. Study area. 
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2.2. Field Measurements 

A predefined TLS tree map was used to identify each tree. The DBH was determined for 389 trees. 

Steel callipers were used for the DBH measurements. The average DBH for the entire study area was 

268 mm and varied between 31 and 482 mm. Descriptive statistics were also calculated for two 

separate areas: the northern part, which is a well-managed urban park forest, and the southern part, 

which is denser, unmanaged forest with varying under-storey vegetation. The average DBH was 371 mm 

in the northern part and 261 mm in the southern part. 

2.3. Airborne Laser Scanning 

The ALS data were acquired in 2011 with an Optech 3100 laser scanner (Optech Inc., Vaughan, 

ON, Canada). The flying altitude was 400 m. The density of the pulses returned was approximately  

10 points per m
2
, and the return type was recorded (first-of-many, single, intermediate, last). The ALS 

data were first classified as ground and non-ground points according to the method developed by 

Axelsson (2000) [45]. Low-point classification was also used to improve the accuracy of the ground 

level. A DTM was developed from classified ground points, and laser heights above the ground 

(normalized height or canopy height) were calculated by subtracting the ground elevation from the 

laser measurements. 

2.4. Terrestrial Laser Scanning 

The TLS data were collected with a Leica HDS6100 TLS system (Leica Geosystems AG, 

Heerbrugg, Switzerland) in September 2010. The HDS6100 is a 690-nm phase-based continuous-wave 

laser scanner with a 360° × 310° field of view (FOV) upward, and its data acquisition rate is 508,000 points 

per second. The distance measurement accuracy is ±2 mm at a distance of 25 m. The circular-beam 

diameter at the exit and the beam divergence are 3 mm and 0.22 mrad, respectively. The point spacing 

is 6.3 mm at 10 m. Further detailed specifications are presented below (Table 2). 

Table 2. Leica HDS6100 TLS system and specifications. 

Leica HDS6100 System Specifications 

Field of View 310° × 360° 

Range 79 m 

Speed Points/s 508,000 

Spot Size 3 mm + 0.22 mrad 

Distance Measurement Accuracy at 25 m ±2 mm 

Max Resolution 0.009° Hor × 0.009° Ver 

Max Points 360° 40,000 Hor × 40,000 Ver 

Laser Wavelength 690 nm 

Laser Power 30 mW 

Weight 14 kg 

Operating Temperature −10 to 45 °C 
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TLS measurements for the study area were collected in multi-scan mode. The park areas were 

scanned as-is. Pre-scan preparations, e.g., removal of low vegetation, were not done, since it was not 

permitted in the city forest. The objective of the measurements was to obtain good point coverage. The 

data were collected in five to seven scans per group; in total, 52 scans were performed to cover the 

entire study area. We positioned the center-scan station and at least one reference-target ball of each 

scan group using a GNSS virtual-reference station (VRS) and a tachymeter. The center scans were 

placed so that the canopy layer did not block the GNSS satellite visibility. Subsequently, we 

transformed the scans into global coordinates according to the scanner and sphere-target locations 

measured. The reference targets were placed on the forest ground for point-cloud registration. The TLS 

point clouds within each group were co-registered, using reference targets. Co-registration was done 

with Leica’s Cyclone software (Leica Geosystems), in which the reported overlap root-mean-squared 

error (RMSE) of the scans ranged between 2.3 and 6.3 cm. 

3. Multisource Single-Tree Inventory 

3.1. TLS-Based Tree Map 

Tree detection and location measurements were done manually in the present study using the  

3D-environment of TerraScan (Terrassolid Ltd., Helsinki, Finland). Point clouds were processed in 

scan groups, and trees were searched within each group using visual interpretation. The process was 

performed through the following steps: (1) the point cloud of each scan group was imported into 

TerraScan by thinning the point cloud by 50%; (2) points from an approximately 1.3-m height 

(between 1.25 m and 1.35 m to be exact) were classified into a horizontal ―slice‖ for identifying tree 

trunks; (3) tree trunks were detected and marked within the slice (see Figure 2); and (4) location and 

DBH information were recorded for all the trees. 

Figure 2. Example of the tree-detection method from the TLS point clouds. 

 

3.2. Extraction of Tree Height, Crown Area, and the Prediction Variables from the ALS Data 

A raster canopy height model (CHM) was created from normalized ALS point-height data for  

tree-crown segmentation. The maximum ALS point height from first-of-many or single echoes was 
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assigned to each CHM cell (resolution 0.5 m), and no-data cells were filled with the mean height value 

in the 3 × 3-neighborhood. Tree crowns were delineated using watershed segmentation described  

in [20,46,47]. 

Tree crown segments were linked to the field trees based on the TLS-measured location. If there 

were more than one tree within a segment, the segment was split equally. As segments from CHM 

represented tree crowns, areas for tree crowns were calculated as the area of each segment. Tree height 

was possible to update by using the maximum height of ALS points of each tree crown. 

Statistical metrics describing tree crown density and tree height were calculated from the ALS 

point-data within the tree crown segment (Table 3). First, heights over 0.5 m were classified as coming 

from the vegetation (i.e., tree), and a vegetation-density ratio (vege) was then calculated as a ratio 

between vegetation heights and all heights within a tree crown. The following were other extracted 

metrics: maximum (Hmax), average (Hmean), standard deviation (Hstd), and coefficient of variation of 

heights (CV); height at 10%–90% percentiles (h10–h90), and crown-cover density metrics as a 

proportion of heights below a certain relative tree height (p10–p90). Only the heights belonging to 

vegetation (that is, heights over 0.5 m) were used in the calculation of these metrics. The metrics were 

extracted from the ALS data using all returns. 

Table 3. Statistics, such as minimum (min), maximum (max), range, mean, and standard 

deviation (Std) calculated from the extracted predictor variables. 

Variable 
Forest Park 

Min Max Range Mean Std Min Max Range Mean Std 

Hmax 4.54 29.15 24.61 19.68 5.26 7.76 26.04 18.28 19.44 4.90 

Hmean 3.14 22.95 19.81 12.99 4.19 4.84 23.09 18.25 12.73 4.44 

Hstd 0.64 9.11 8.47 4.30 1.50 1.43 6.82 5.38 4.47 1.33 

Vege 0.25 1.00 0.75 0.71 0.15 0.35 0.94 0.58 0.65 0.13 

CV 0.08 0.91 0.82 0.35 0.11 0.24 0.56 0.32 0.37 0.09 

h10 1.13 20.03 18.90 6.98 3.64 2.20 19.04 16.84 6.50 3.72 

h20 1.95 21.25 19.30 9.39 4.20 3.20 24.56 21.36 8.85 5.40 

h30 2.14 23.77 21.63 11.08 4.45 3.86 24.94 21.08 10.51 5.14 

h40 2.64 24.01 21.38 12.41 4.63 4.67 25.14 20.47 12.08 5.16 

h50 2.96 24.19 21.23 13.60 4.77 5.15 25.24 20.10 13.54 5.20 

h60 3.42 24.31 20.89 14.66 4.89 5.57 25.30 19.73 14.66 5.06 

h70 3.75 24.38 20.63 15.77 4.94 5.78 25.40 19.62 15.64 4.99 

h80 4.11 24.72 20.61 16.81 5.04 6.08 25.46 19.38 16.71 4.85 

h90 4.44 26.75 22.31 17.97 5.09 6.60 25.62 19.02 17.86 4.88 

p10 0.00 0.21 0.21 0.03 0.03 0.00 0.10 0.10 0.01 0.02 

p20 0.00 0.67 0.67 0.07 0.08 0.00 0.25 0.25 0.07 0.06 

p30 0.00 0.77 0.77 0.12 0.12 0.01 0.35 0.34 0.14 0.09 

p40 0.00 0.96 0.96 0.19 0.16 0.03 0.46 0.43 0.22 0.11 

p50 0.00 0.98 0.98 0.27 0.18 0.07 0.53 0.46 0.31 0.13 

p60 0.00 0.98 0.98 0.38 0.19 0.10 0.65 0.56 0.42 0.16 

p70 0.00 0.98 0.98 0.50 0.20 0.10 0.77 0.68 0.53 0.19 

p80 0.02 0.98 0.97 0.65 0.18 0.14 0.89 0.75 0.67 0.20 

p90 0.19 0.99 0.80 0.82 0.14 0.16 0.97 0.81 0.79 0.22 
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3.3. Estimation of the Tree Variables 

Diameter-at-breast height (DBH) was predicted by means of ALS metrics using the  

nearest-neighbor (NN) approach. Tree variable measured in the field (i.e., DBH) was used as target 

observations, and tree-specific metrics derived from ALS data were used as predictors. Random Forest 

(RF, [48]) was applied in the NN search. Based upon the quality of results and desirable statistical 

characteristics (i.e., the capability to predict multiple response variables simultaneously, use a large 

number of predictors without the problem of over fitting, and evaluate accuracy with built-in 

functionality), the use of RF in NN estimation of forest variables is increasingly common  

(e.g., [19,47,49–51]). In [50] and [51] it was demonstrated that the RF method is more robust and 

flexible for forest variable prediction when compared to other NN distance measures, such as 

Euclidian distance, Mahalanobis distance, or Canonical Correlation Analysis. In the RF method, 

several regression trees are generated by drawing a replacement from two-thirds of the data for training 

and one-third for testing for each tree. The samples that are not included for training are called  

out-of-bag samples, and they can act as a testing set in the approach. The measure of nearness in RF is 

defined based on the observational probability of ending up in the same terminal node in classification. 

Predictor’s importance can be assessed in RF by using the predictor’s scaled-importance values. To 

measure the importance after the RF run, the values of the predictor are permuted among the training 

data, and the out-of-bag error is again computed on this blended data set. The importance score for the 

predictor is then computed by averaging the difference in the out-of-bag error before and after the 

permutation over all trees. The score is normalized by the standard deviation of these differences.  

The R statistical-computing environment [52] and yaImpute library [53] were applied in the RF 

predictions. The yaImpute library is tailored to NN forest-attribute estimation. 

In the present study, 1200 regression trees were generated, and the square root of the number of 

predictor variables was picked randomly at the nodes of each regression tree. Randomness was taken 

into account by running the RF method 100 times. The final result was the average of these runs. The 

number of neighbors differed from 1 to 5. 

Prior to the modeling, the RF was used to reduce the number of the predictor variables. A step-wise 

looping procedure was used to iterate RF, discarding the least important of the candidate variables at 

each iteration, based on the variable importance, until only a single predictor variable remained. RMSEs 

were calculated for each predictor variable combination and analyzed before the final modeling. 

3.4. Accuracy Assessment at the Tree and Stand Level 

In this study, predictors and target observations were available for all of the trees. Therefore, the 

accuracy of the predicted variables at the tree level was evaluated by calculating bias (Equation (1)) 

and RMSE (Equation (2)) using out-of-the-bag samples. The relative bias and RMSE were calculated 

according to the sampled mean of the variable in question. The accuracies of the tree-level 

measurements were evaluated by calculating the bias and RMSE: 
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where n is the number of observations, yi the value estimated from the field data for observation i, and 

    the predicted value for observation i. 

Stem-diameter distributions were compiled from the tree-level predictions and compared to the field 

measurements for both parts of the study area separately. The predicted stem-diameter distributions 

were evaluated by the error index (EI) introduced in [54]: 
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where fi and   i are the numbers of stems in class i to be compared, k is the number of classes or bins, 

and wi is the weight of class i. 

In addition, an alternative error index was calculated following [55], who used relative frequencies: 

       
  

 
 

   

  
  

 

   

 (4) 

where fi is the true and   i is the predicted stem number in class i, k is the number of classes or bins, and 

N is the true and    the predicted stem number of all diameter classes. A weight 0.5 was used to scale 

the error index between 0 and 1 where 0 means a perfect fit and 1 means that distributions do not 

overlap at all. The used bin size for both error indices was 2 cm. 

4. Results 

4.1. Selecting Predictor Variables 

Predictor variables that were used in further estimations were selected separately for forested 

(southern part) and park areas (northern part). There were in total 23 extracted features that were 

possible to be used in prediction. RMSEs were calculated for each predictor-variable combination, and 

a minimum number of predictors were chosen before the out-of-bag prediction accuracy started to 

increase notably. For the forested area (southern part), seven variables were selected as predictors, 

whereas for the park area (northern part), six variables were selected (Table 4). Depending on the used 

set of predictors, the relative-RMSE values varied between 25.0% and 33.8% in the forested area 

(Figure 3) and between 18.8% and 20.1% in the park area (Figure 4); thus, the prediction accuracy was 

not oversensitive to the number of predictor variables that were used. 
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Figure 3. Effect of number of predictors to DBH estimation accuracy in and selection of 

ALS features for the forested southern part of the study area. 

 

Table 4. Selected predictor variables for both parts of the study area in order of the 

predictor importance. 

Forest Park 

h50 h90 

Hmean p80 

h60 h70 

h70 h60 

h40 p90 

h20 Hmax 

p10  

Figure 4. Effect of number of predictors to DBH estimation accuracy in and selection of 

ALS features for the park (northern part of the study area). 
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4.2. Prediction Accuracy of Diameter-at-Breast Height 

Prediction accuracy for DBH varied between the southern (forest) and northern (park) parts of the 

study area. The increment of the number of k decreased the relative RMSEs in the forested area. For 

the park area, the relative RMSE increased when more than one neighbor were used. The relative 

RMSEs for the park area were smaller (from 10.7% to 19.1%) than for the forested area (from 26.3% 

to 29.1%) (Table 5). On the other hand, biases were bigger for the park area (from −4.2% to 1.8%) 

than they were for the forested area (from −2.5% to −0.4%). 

The accuracy of the DBH measurements is highly affected by stem form, because tree stem form is 

not fully circular (Figure 5). Especially stem forms of urban trees can differ greatly from the circle 

form. This affects both the field measured and the predicted DBH accuracy. 

Figure 5. Two examples of measured DBH from TLS-point clouds from two different directions. 

 

Table 5. Accuracy in DBH prediction. 

Number of Neighbors 
Forest Park 

BIAS, cm BIAS-% RMSE, cm RMSE-% BIAS, cm BIAS-% RMSE, cm RMSE-% 

k = 1 −0.66 −2.53 7.58 29.11 0.67 1.81 3.97 10.70 

k = 2 −0.17 −0.64 7.15 27.45 −0.15 −0.41 5.63 15.18 

k = 3 −0.22 −0.85 7.06 27.08 −0.39 −1.05 6.63 17.90 

k = 4 −0.15 −0.58 6.93 26.62 −1.06 −2.86 6.77 18.27 

k = 5 −0.11 −0.41 6.85 26.29 −1.56 −4.21 7.09 19.12 

4.3. Comparison of Stem-Distribution Series 

Stem-diameter distributions were estimated separately for the northern (park area) and southern 

(forest area) parts of the study area. The main interest was in the forested area, since it could be better 

compared with results from managed forests. For both areas, the extreme bins of the DBH classes were 

omitted in the predicted stem-diameter distributions when the number of k increased (Figures 6 and 7). 

The number of trees in large DBH classes was especially difficult to predict. The Reynolds’ error 

indices for the predicted stem-diameter distributions varied from 70 to 152 for the forested area 
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(southern part) and from 6 to 26 for the park area (northern part) (Table 6). Reynolds’ EI cannot be 

compared directly to other studies because they show the absolute value of the number of trees that do 

not match to the same DBH bins when comparing two distributions. The relative EI values showed 

better fit in the predicted stem-diameter distributions for the forested area than for the park area. 

Figure 6. True stem-diameter distribution (top left) and predicted stem-diameter distributions 

with different k values for the forested southern part of the study area. 

 



Forests 2014, 5 1044 

 

 

Figure 7. True stem-diameter distribution (top left) and predicted stem-diameter 

distributions with different k values for the park area (northern part of the study area). 
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Table 6. Reynolds’ error indices for the predicted stem-diameter distributions using a bin size of 2 cm. 

Number of Neighbors 

Forest Park 

Error Index 
Error Index Using  

Relative Stem Frequency 
Error Index 

Error Index Using  

Relative Stem Frequency 

k = 1 70 0.10 6 0.11 

k = 2 110 0.15 26 0.48 

k = 3 122 0.17 18 0.33 

k = 4 132 0.18 20 0.37 

k = 5 152 0.21 24 0.44 

4.4. Extraction of Tree Height and Crown Area 

It was possible to update the tree height by using the maximum height of ALS points of each tree 

crown. For the forested area (southern part of the study area), the tree height varied between 4.5 m and 

29.2 m with a mean of 19.7 m and a standard deviation 5.3 m (Figure 8). The respective values for the 

park area (northern part of the study area) were 7.8 m, 26.0 m, 19.4 m, and 5.0 m (Figure 9). The tree 

crown area was computed from tree-crown segments and it varied between 1.1 m
2
 and 86.5 m

2
 in the 

forested area and between 2.5 m
2
 and 95.2 m

2
 for the park area. The mean and standard deviation for 

the forested area were 22.4 m
2
 and 15.9 m

2
, respectively. For the park area respective values were 34.3 m

2
 

and 23.2 m
2
. 

Figure 8. Tree-height distribution using maximum height of ALS points of tree crowns for 

the forested area (southern part of the study area). 

 

Figure 9. Tree-height distribution using maximum height of ALS points of tree crowns for 

the park area (northern part of the study area). 
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5. Discussion 

Updating information of urban-tree characteristics has been challenging due to the high cost of 

traditional updating methods. ALS cost efficiently provides 3D information about urban trees, and this 

information can be used for planning urban-forest management practices and predicting the risk of 

forest damages. In this study, MS-STI was tested in two different urban-forest environments. In addition 

to ALS data, MS-STI requires an existing tree map as input information for a tree-attribute update. 

Recent studies on single-tree inventory (e.g., [56–58]) have concentrated on managed forests, and the 

results have been promising due to conditions that are favorable for STI (mature stand, single-tree-species 

stand). Depending on forest conditions, the results of STI have varied considerably [47,59–61]).  

A tree map is a challenging prerequisite for the MS-STI analysis, but information from existing tree 

registers maintained by the city could be used as input for MS-STI. On the other hand, mobile mapping 

with imaging and laser sensors are also used more often for various surveying actions and could be 

used for tree mapping as well [31]. The tested-input tree map was produced by TLS and used GNSS 

with an expected accuracy of below 0.1 m. Similar location accuracies can be obtained using 2D- or 

3D-laser scanning [31,33,62–67]. Detailed tree-level information could be used for optimizing 

management practices, spatial modeling of the growth, and localizing potentially hazardous trees for 

residents or infrastructure. 

Predictors for tree-quality attributes were extracted from ALS data for mapped-tree locations. Stem 

distribution was compiled by summing single-tree measures. The accuracy of the MS-STI was 

validated using field measures (DBH). It should be noted that comparing results of this kind of study to 

other studies is only suggestive and highly data dependent. Forest conditions in this study were very 

heterogeneous and differed considerably from managed, one-tree-species forests; hence, results from 

other STI studies that have been conducted in managed forests are not fully comparable with our 

results. After this reminder, we can point out that our results are promising, and for the park area 

(northern part of the study area) they are on the same level as results obtained earlier using STI 

methods [47,56–58,68]. For the forested area (southern part of the study area) that was more 

heterogeneous than the northern part, the RMSEs were not as accurate as results obtained with earlier 

studies, but the difference was marginal. By enlarging the number of neighbors, RMSEs for the 

forested area did get lower, but for the park area, on the other hand, the RMSE increased. Also, 

enlarging the number of neighbors decreased the goodness of fit of the estimated stem-diameter 

distributions. In general, the obtained stem-diameter distributions for the forested area were similar to 

the ones in [55] and [69] in which a comparable error index was used. In [69] the STI technique and 

tree-list imputation method were used, and error indices varied from 0.33 to 0.40 for all the trees, and 

the species-specific error indices varied from 0.9 to 0.23. Error indices we obtained with MS-STI 

varied from 0.10 to 0.21 for the forested area and from 0.11 to 0.48 for the park area. In [55] ABA was 

used to predict species-specific stem-diameter distributions, and error indices varied from 0.21 to 0.34. 

Relative EI values for the forested area were notably lower than the ones obtained from the managed 

forest for all tree species reported in [69]. For the park area, on the other hand, the relative EI values 

were similar to those for all tree species reported in [69], with the exception of using only one neighbor 

when the EI was lower. With tree-species-specific EI values, Vauhkonen et al. (2013) [69] obtained 

better results. 
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Tree-height and crown-size information were extracted from the ALS data. Tree-height 

measurement accuracy from the ALS data is expected to be ±1 m [43,47,57,70,71] and that is close to 

the accuracy of clinometer measurements [72] traditionally used for measuring tree heights in the field. 

In Helsinki, the tree register does not contain tree-height information for park trees, because height 

measurements have been too laborious. In urban areas, tree-crown size is required for the planning and 

allocating of management practices. For example, this information can be used in locating trees that 

are interfering lamp posts, buildings, or drivers visibility at road junctions. 

For urban tree-attribute updates MS-STI is an applicable method. Once the tree map is produced, 

there are various possibilities for updating the tree-attribute data. One intriguing application for  

MS-STI in green urban environments is a 3D-virtual forest, which can be used for visualizing the trees 

and modeling the effects of the alternative management options. This can be used to support decision 

making in green urban environments. In forthcoming studies, TLS- and MLS-based tree mapping and 

tree-species detection should be developed further with MS-STI. Required accuracy of the tree maps 

also requires further investigations. 

6. Conclusions 

This study showed the high potential of ALS and TLS measurements in very heterogeneous  

urban-forest environments. Here we tested a multisource single-tree inventory (MS-STI) method.  

In MS-STI, a tree map is produced by TLS and used as an input for ALS-based tree-attribute updating. 

We conclude that MS-STI is capable of providing realistic stem distributions and accurate  

tree-attribute update in an urban environment. Thus, the approach can be used for acquiring urban tree 

information and producing tree variables, such as tree height and crown size, for existing tree registers 

maintained by cities. 
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