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Abstract

Mainly due to their outstanding performance the position sensitive silicon detectors are

widely used in the tracking systems of High Energy Physics (HEP) experiments such

as the ALICE, ATLAS, CMS and LHCb at LHC, the world’s largest particle physics

accelerator at CERN. The foreseen upgrade of the LHC to its high luminosity (HL)

phase (HL-LHC scheduled for 2023), will enable the use of maximal physics potential

of the facility. However, after 10 years of operation the expected fluence will result in

a radiation environment that is beyond the capacity of the present tracking system

design. The required upgrade of the all-silicon central trackers will include higher

granularity and radiation hard sensors that can tolerate the increased occupancy and

the higher radiation levels. The radiation hardness of the new sensors must be roughly

of an order of magnitude higher than in the current LHC detectors. To address this,

extensive measurements and simulation studies have been performed to investigate

different designs and materials for silicon sensors with sufficient radiation tolerance.

The work presented in this thesis has been carried out within the frameworks of

the CMS Tracker Upgrade Project and the multi-experiment RD50 Collaboration.

Also an overview of the recent results within the RD50 from both measurements and

simulations of several detector technologies and silicon materials at radiation levels

expected for HL-LHC is provided in this thesis.

Supplementing measurements, simulations serve a vital role for e.g. device structure

optimization and predicting the electric fields and trapping in the silicon sensors. The

main objective of device simulations in the CMS Tracker Upgrade and RD50 is by using

professional software to develop an approach to both model and predict the performance

of the irradiated silicon detectors. The first quantitative models for radiation damage,

based on two effective midgap levels, are able to reproduce the experimentally observed

detector characteristics such as leakage current, full depletion voltage and Charge

Collection Efficiency (CCE). Recent implementations of additional traps at the SiO2/Si

interface or close to it have expanded the scope of the experimentally valid simulations

to surface properties such as the interstrip resistance and capacitance as well as the

position dependence of CCE (CCE(x)) of strip sensors irradiated to HL-LHC fluences.

In the course of this thesis, experimental data is used to develop an effective non-

uniform defect model with the Sentaurus TCAD simulation framework. Complementing

the earlier proton bulk damage model, the model reproduces both the observed bulk

and the surface properties and can predict the performance of strip detectors with
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specific geometry in the fluence range 3× 1014 neqcm−2 – 1.4× 1015 neqcm−2. When

applied to CCE(x) measurements at varying fluences, the model can provide a means

for the parametrization of the accumulation of oxide charge at the SiO2/Si interface

as a function of irradiation dose.

TCAD simulations are also applied for a comparative study of a thin p-on-p pixel

sensor and a more conventional p-on-n pixel sensor with similar configuration. The

simulations are used to provide an explanation to the measured charge collection

behaviour and for a detailed investigation of the electrical properties of the two sensor

types. No previous studies of the p-on-p configuration have been conducted in the

HEP community.

Finally, the scope of TCAD simulations presented in this thesis is extended to a

compound semiconductor material, namely GaAs. By implementing the observed deep

donor defect level to the simulation, the resulting electrical properties are in close

agreement with the measurements of a high purity epitaxial GaAs radiation detector.

Also, the transferred electron effect characteristic to GaAs detectors and observed in

the transient current measurements is succesfully reproduced by the simulation.

The combined results of this thesis demonstrate the versatility and power of the

TCAD simulations of semiconductor radiation detectors as a tool to bridge the gap

from observation to parametrization.
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Abbreviations and definitions

AC Alternating Current

ALICE A Large Ion Collider experiment

ATLAS A Toroidal LHC ApparatuS

C-V Capacitance-Voltage

CCE Charge Collection Efficiency

CERN European Organization for Nuclear Research

CID Current Injected Detector

CMS Compact Muon Solenoid

CVPE Chloride Vapor Phase Epitaxy

Cz Czochralski silicon

DC Direct Current

DLTS Deep Level Transient Spectroscopy

DOFZ Diffusion Oxygenated Float Zone silicon

DP Double Peak

ehp electron-hole pair

eV electronvolt, unit of energy: 1 eV ≈ 1.6× 10−19 J

fb femtobarn, unit of area: 10−15 × 10−28 m2 = 10−43 m2

Fz Float zone silicon

GaAs Gallium Arsenide

GaN Gallium Nitride

HEP High Energy Physics

HL-LHC High Luminosity-Large Hadron Collider

I-V Current-Voltage

IR Infrared

LGAD Low Gain Avalanche Detector

LHC Large Hadron Collider

LHCb Large Hadron Collider beauty
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MCz Magnetic-Czochralski silicon

MIP Minimum Ionizing Particle

neqcm−2 unit of 1 MeV neutron equivalent radiation fluence

n-type Si silicon lattice doped with pentavalent donor atoms (e.g. phosphorus)

p-type Si silicon lattice doped with trivalent acceptor atoms (e.g. boron)

pin p+/i/n+, a diode structure with intrinsic bulk material

PKA Primary Knock-on Atom

PTI Ioffe Physical-Technical Institute

R&D Research and Development

RD50 RD50 Collaboration ’Development of Radiation Hard Semiconductor

Devices for Very High Luminosity Colliders’

SiBT Silicon Beam Telescope

SiC Silicon Carbide

SiO2 Silicon dioxide

TCAD Technology Computer-Aided Design

TCT Transient Current Technique

TD Thermal Donor

TSC Thermally Stimulated Current technique
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Chapter 1

Introduction

1.1 Background and research environment

1.1.1 Upgrade from LHC to HL-LHC

Tracking systems of High Energy Physics (HEP) experiments largely employ position

sensitive silicon sensors due to their outstanding performance and cost effectiveness.

They are currently installed in the vertex and tracking detectors of the ALICE, ATLAS,

CMS and LHCb experiments at LHC, the world’s largest particle physics accelerator at

CERN1. The discovery of the Higgs boson in 2012 in the ATLAS and CMS experiments

at CERN, was based on the success of the LHC accelerator facility and the ability of

the particle detectors to record the data from the Higgs decay products.

The Compact Muon Solenoid experiment2 (CMS) Tracker detects secondary parti-

cles from the primary proton-proton collisions with a center-of-mass energy of up to

14 TeV. The Tracker, based on Si pixel and microstrip sensors, is the largest silicon

detector ever constructed and is the innermost detector of the CMS experiment, located

at radii from 4 cm to 130 cm around the LHC beam pipe. The Tracker reconstructs

particle trajectories that are vital in the identification process of charged particles [1].

During its nominal lifetime, the position sensitive tracking sensors, with an active

area of over 200 m2, experience a build-up of radiation damage induced by the great

number of crossing particles in the detector. This leads to the degradation of the

sensor properties, namely increased leakage current (Ileak) and full depletion voltage

(Vfd), as well as reduced signals and resolution.

In the search for unobserved theorized phenomena, such as supersymmetric parti-

1http://home.web.cern.ch/
2http://cms.web.cern.ch/
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2 1.1. BACKGROUND AND RESEARCH ENVIRONMENT

cles, gravitons, dark matter, extra dimensions and ’micro quantum black holes’ [1],

the proposed upgrade of the LHC to its high luminosity phase (HL-LHC) with approx-

imately 10-fold increase of the luminosity, will realise the maximal physics potential of

the facility. However, after 10 years of operation, the integrated luminosity of 3000

fb−1 [2, 3, 4] will expose the all-silicon tracking systems at HL-LHC to a radiation

environment that is beyond the capability of the present system design. At ATLAS

and CMS, fluences of more than 1× 1016 neqcm−2 (1 MeV neutron equivalent) are

expected for the pixel detectors at the innermost layers and above 1015 neqcm−2 for

the strip sensors at a radius of approximately 20 cm from vertex [1]. Since significant

radiation-induced effects in the Si detector performance start to occur at fluences

above 1013 neqcm−2, this will require detectors with dramatically improved radiation

hardness. Also, due to increased pileup (number of overlapping collision events), higher

granularity sensors will be demanded. The increased granularity will call for more cost

effective technologies than presently existing due to the limited resources available for

the detector upgrade.

Hence, a dedicated R&D program is needed to improve current detector technologies,

or develop novel ones, for both the innermost tracking layers and most of the outer

tracker components with detectors that can endure higher radiation levels and higher

occupancies. In addition to the experiment-specific upgrade campaigns like the

CMS Phase II Tracker Upgrade, the RD50 Collaboration ”Development of Radiation

Hard Semiconductor Devices for Very High Luminosity Colliders”3 (paper IV) was

formed in 2002 with the objective to develop semiconductor sensors that meet the

HL-LHC requirements. Members from several experiments at the LHC are pursuing

this aim in specific research fields, namely defect/material characterization, detector

characterization, new structures and full detector systems.

1.1.2 Numerical simulations

Along with measurements, simulations are an integral part of the detector development

process. Their role is especially pronounced in areas like device structure optimization

or prediction of the electric fields and trapping in the silicon sensors. When the

numerical simulations are capable of verifying experimental results they will also gain

predictive power, resulting in reduced time and cost in detector design and testing.

The main focus of the device simulations in the CMS Tracker Upgrade Project and

RD50 Collaboration is to develop an approach to model and predict the performance

3http://cern.ch/rd50/
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of the irradiated silicon detectors (diode, strip, pixel, columnar 3D) using professional

software, namely finite-element Technology Computer-Aided Design (TCAD) software

frameworks Synopsys Sentaurus4 and Silvaco Atlas5. Among the multitude of sim-

ulation options, the TCAD packages allow the incorporation of realistic, segmented

sensors in 2D or 3D, readout circuit, transient simulations with lasers or Minimum

Ionizing Particles (MIP).

The simulation of radiation damage in the silicon bulk is based on the effective

midgap levels, a deep acceptor and a deep donor level. The model was first proposed

in 2001 and entitled later as the ”PTI model” [5, 6]. The first successfully developed

quantitative TCAD models, namely the proton model and the neutron model [7],

for the simulation of the bulk damage characteristics like Ileak, Vfd and the Charge

Collection Efficiency (CCE), were built on the basis of the PTI model.

1.1.3 Thin p-on-p pixel sensor

An advantage offered by thin silicon radiation detectors in spectroscopic applications is

the good radiation differentiation which is particularly important for nuclear industry

where short range particles need to be detected with high gamma ray background [8].

Also, radiation hardness is important in many nuclear safeguard applications. Further

benefits of thin detectors include reduced mass, fast charge collection and some possible

advantages in charge collection and reverse current after high irradiation fluences [9]

due to lower drift time for a given voltage.

The planar p-type (n-on-p) silicon radiation detectors have been under extensive

studies in the HEP community due to their radiation tolerance and cost effectiveness,

and have become the baseline candidate to replace the conventional n-type (p-on-n)

detectors for the LHC upgrade at CERN [10,11]. The advantages of this configuration

include a favourable combination of weighting and electric fields after irradiation while

the readout at the n-type electrodes enables the collection of electrons which have

three times higher mobility and longer trapping times than holes. The downside of the

n-on-p design is the need for isolation structures between the electrodes that increase

the process complexity and might lead to localized high electric fields which increase

the probability of early breakdowns.

The thin p-on-p pixel detector addresses this problem without compromising

CCE and spatial resolution excessively. Due to the collection of holes at the pixels,

4http://www.synopsys.com
5http://www.silvaco.com



4 1.1. BACKGROUND AND RESEARCH ENVIRONMENT

no isolation structures are needed while the effects of low hole mobility to CCE are

minimized by the reduced drift distance. Also, the expected good CCE after irradiation

and an improved spatial resolution distinguish the thin p-on-p pixel detector from its

thicker counterparts.

This concept could be usable also for the HEP tracking applications. To maintain

low material budget and achieve high position resolution, the implementation of thin

pixel detectors to the inner detector layers of the LHC experiments is foreseen for the

future upgrades [12]. The thin p-on-p configuration has not been studied before in the

HEP community.

1.1.4 Epitaxial GaAs radiation detector

Radiation detectors made of epitaxial GaAs are a promising alternative for the silicon

devices used for spectroscopy and radiography applications requiring moderate photon

energies, i.e. more than 10 keV. Mammography is an important example of such an

application with large technological and societal impact. Earlier studies on using GaAs

material for X-ray registration are reported e.g. in References [13, 14]. The atomic

numbers of GaAs are 31 (Ga) and 33 (As) while the atomic number for Si is 14. This

results in an order of magnitude higher mass attenuation coefficient for GaAs for a low

energy X-ray process with a photon energy of 20 keV, leading to the photon absorption

probability of 90% in a 100 µm thick GaAs while the probability is only 27% for a 300

µm thick Si.

As the basic starting material in optoelectronics industry, the processing technology

of GaAs devices is well established. The epitaxy based on ultra-pure gaseous precursors

is a prominent approach to fabricate pin-diode structured GaAs radiation detectors.

The chloride vapor phase epitaxy (CVPE) technique has been proved to grow high

purity epi-GaAs with a high growth rate (about 10 µm/hour) and with an achievable

layer thickness of more than 100 µm, as is required in detector applications.

Radiation detectors were processed on GaAs substrates with 110 µm - 130 µm thick

CVPE grown epitaxial absorption volume. In the characterization process, the Deep

Level Transient Spectroscopy (DLTS) analysis revealed a significant concentration

of deep level electron traps in the epitaxial layer. Also, the transferred electron

effect [15, 16, 17], where the drift velocity of charge carriers decreases after the electric

field inside the GaAs material has reached the value of about 3.3 kV/cm [15], was

observed in the transient response. Numerical simulations were conducted to verify

the results and to further analyse the observed behaviour. No previous comparative
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simulation studies on the transient response of the GaAs detectors have been published.

1.2 Objectives and scope

The primary theme of this thesis is to establish the versatility and importance of the

numerical TCAD simulations in semiconductor research. For the work, a commer-

cial Synopsys Sentaurus finite-element Technology Computer-Aided Design (TCAD)

software framework was applied.

The first aim is to develop a simulation model for the radiation damage in silicon

strip sensors using the data obtained from sensors after irradiation. The goal of the

radiation damage model is to provide a comprehensive set of both bulk and surface

properties that reflect the measurements and predict the strip sensor performance

in the expected fluence range of the HL-LHC. Also, an essential objective of the

model is to provide an interpretation of the processes leading to the observed surface

characteristics in the irradiated position sensitive planar sensors. Understanding

the macroscopic effects of the microscopic defects is of particular importance in the

radiation hardness studies for the future CMS Tracker.

The second objective of this thesis is to provide novel qualitative information of

a thin p-on-p pixel sensor and compare the results with a more conventional p-on-n

pixel sensor of similar design. Complementing a comparative simulation study of the

electric field evolution with voltage and breakdown behavior, an interpretation of the

measured difference in the charge collection is pursued as well. Since no previous

studies on the configuration exist in the HEP community and at the prospect of the

thin pixel sensor implementations to the inner detector layers of the LHC experiments

for the future upgrades, the results could be considered as an introduction of the thin

p-on-p pixel sensor as an option for the HEP tracking applications.

The third goal is to expand the TCAD simulations from the elemental material of

Si to a compound semiconductor material in order to verify and further investigate the

measurements of newly processed GaAs radiation detectors. Under specific scrutiny

are the reproducibility of the electrical measurements via the insertion of a deep defect

level to the simulation as well as the influence of the transferred electron effect to the

transient signals. Due to shortage of published simulation studies on the subject, this

investigation could serve as an argument for the increased role of the device simulations

in the GaAs radiation detector research.

The scope of this thesis includes research of both HEP and spectroscopy applications

of the semiconductor radiation detectors. Simulated structures are limited to strip and
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pixel sensors as well as diodes. Due to the lack of available measured data of the CCE

loss between the strips with respect to different geometries and fluences, the presented

parametrization of the ’non-uniform 3-level model’ is restricted to the specific strip

pitch of 120 µm and the fluence range of (0.3− 1.4)× 1015 neqcm−2.

The highest fluences, about 2 × 1016 neqcm−2, expected for the pixel and 3D

columnar detectors closest to the vertex at the HL-LHC, are not considered in the study

since no validated radiation damage model above the upper limit of the aforementioned

fluence range exists.

1.3 Research process and dissertation structure

The thesis starts with an introduction to the background and objectives of the research

in chapter 1. The basics of silicon used as a particle detector are explained in chapter 2

including its HEP and spectroscopy applications. The radiation damage and its impact

on silicon detectors is described in chapter 3. The simulation of radiation damage

in segmented sensors is introduced and discussed at the end of the chapter. This

includes the description of the applied Sentaurus TCAD simulation package and the

implementation of a basic device simulation.

The results from the several studies included in the thesis are presented and

discussed in chapter 4. First, the development of the effective non-uniform 3-level

defect model, a radiation defect model that combines experimentally matching surface

damage properties with the validated bulk damage properties of the proton model [7], is

presented. By comparing the simulated results like the interstrip resistance (Rint) and

capacitance (Cint) as well as the position dependence of CCE (CCE(x)) of strip sensors

with the real data at every step of the development process, the chosen parameter

values are justified. The research is also viewed in the context of the recent efforts in

the scientific program of the RD50 Collaboration. A brief insight into the development

path from the observed defects to the effective defect model and from the initial

1-dimensional model for custom-made software to the quantitative TCAD models is

provided.

Next, a comparative measurement and TCAD simulation study of a thin p-on-p

pixel sensor with a more conventional p-on-n pixel sensor of similar design is presented.

Electrical characteristics are investigated in detail by looking at the simulated C-V,

I-V, interpixel resistance and electric field distribution results of the two sensor types.

Carrier lifetime tuning is decribed as a method to reproduce and interpret the measured

differences in the charge collection.
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The final section in chapter 4 covers the results of the characterization and device

simulations of the 110 µm thick epitaxial pin-diode GaAs radiation detector. The

reproduction of the observed C-V and I-V results via the insertion and tuning of a

deep defect level to the simulation is explained. A simulation study of the influence of

the transferred electron effect to the transient signals produced by a red laser injection

is also presented.

The discussion in chapter 5 consists of the possible theoretical and practical

implications of the work and the assessment of the reliability and validity of the results

and applied methods. Finally, recommendations for further research are given.
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Chapter 2

Silicon radiation detector

Several characteristics of semiconductor radiation detectors, including compact size,

high energy resolution, fast timing characteristics and variable effective thickness, are

superior to other radiation detector types. Of the semiconductor materials especially

silicon (Si) has been widely used in HEP research such as the LHC experiments at

CERN, due to its cost efficiency and excellent position accuracy.

Basic features of the silicon sensors allow operation in temperatures ranging from

cryogenic to room temperature. However, variations in temperature change the

resistivity of the semiconductor, affecting the leakage current and hence the noise in

the sensors. Therefore, cooling is typically used to minimize leakage current as well as

to avoid high noise and thermal runaway in the case of irradiated sensors.

The size of a silicon sensor can be a limiting factor in applications where large

surface area is required. The capacitance of a Si diode grows with the size of its

surface area, resulting in decreased energy resolution. Hence, the usual surface sizes

range from 1 to 5 cm2. However, for the highly segmented detectors described in this

thesis, area is of no concern. Depletion depths (bulk volumes emptied from free charge

carriers) of 5 mm can be reached commercially, but are commonly limited to a few

hundred micrometers [18].

When designed as position sensitive detectors, Si sensors at the LHC are vital in

the identification of charged particles by providing information about the position

and momentum of the particles. The fast collection of the signals generated by the

ionizing particles (about 10 ns, depending on the sensor thickness) in thin silicon

sensors, enables the operation of the detectors at the LHC’s high bunch crossing rate

of 40 MHz.

Despite the substantial inherent radiation tolerance of the silicon sensors, significant

changes to the performance start to occur at fluences above 1013 neqcm−2. Therefore,
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current detectors do not last the planned 10 years in the HL-LHC radiation environment.

However, different silicon bulk materials, detector designs and engineering techniques

may extend the application of Si detectors to the domain of the HL-LHC fluence level.

This chapter gives a description of the basic working principles of a silicon sensor

and its use in different detector configurations and applications. The discussion is

extended to radiation hardness and the simulation of radiation-induced defects in the

following chapter.

2.1 Operation of silicon radiation detector

A silicon particle detector is constructed by forming a reverse biased pn-junction. With

increasing bias voltage, the electric field region sensitive to particles extends from

the junction further into the detector volume. Electron-hole pairs generated by the

ionizing particle in the field region are collected at the anode and cathode electrodes.

To acquire position data, the charge collecting electrodes are segmented.

In the following, a short summary of the features of the pn-junction and the most

essential properties with respect to the charge collection are given.

2.1.1 pn-junction

The real pn-junction is typically approximated as an abrupt junction [19], where the

net dopant density changes from one to another as in a step function. Net charge

formed inside the region of the pn-junction establishes a potential difference across

the junction. The value of the potential ϕ is found by solving the Poisson’s equation

in one dimension [18]

− d2ϕ

dx2
=
dE

dx
=
ρ(x)

εs
, (2.1)

where E is the electric field, ρ(x) is the net charge density and εs is the permittivity

of the semiconductor material. For space-charge distribution of figure 2.1

ρ(x) =

{
eND, −a < x ≤ 0

−eNA, 0 < x ≤ b
, (2.2)

where e is elementary charge and ND and NA are donor and acceptor atom densities,

respectively. By combining the equations 2.1 and 2.2, and requiring that the electric

field E(x) must vanish at both edges of the charge distribution, E(x) shown in
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figure 2.2a is now given by

E(x) =
dϕ

dx
=

{
− eND

εs
(x+ a), −a < x ≤ 0

eNA

εs
(x− b), 0 < x ≤ b

. (2.3)

The electric field is now linearly dependent of x and has a maximum Emax at the

pn-interface x = 0, where equations 2.3 must match

Emax = |E(x = 0)| = eNDa

εs
=
eNAb

εs
. (2.4)

The width of the space charge region W is then

W = a+ b = Emax
εs
e

(
1

ND

+
1

NA

). (2.5)

With boundary conditions ϕ(-a) = V and ϕ(b) = 0 the potential across the junction,

as shown in figure 2.3, is given by

ϕ(x) =

{
− eND

2εs
(x+ a)2 + V, −a < x ≤ 0

eNA

2εs
(x− b)2, 0 < x ≤ b

, (2.6)

where V = Vc–Vext, the difference between contact potential of the junction and

applied external bias voltage. Requiring match at x = 0 for equations 2.6 and using

equation 2.4, the voltage drop in the diode can be expressed as

V = V (x = 0) =
eNDa

2

2εs
+
eNAb

2

2εs
=

1

2
Emax(a+ b) =

1

2
EmaxW. (2.7)

Combining the equations 2.5 and 2.7 and looking at the typical case of one-sided

junction, where e.g. NA � ND, the width of the whole depletion region is given as

W ∼=
√

2εsV

eNB

, (2.8)

where NB is the doping density of the material with lighter dopant concentration.

Since the equation 2.4 indicates that the net charge is zero, it follows that a� b

and therefore W ∼= a. In the typical detector structure, this region forms the bulk that

acts as a detection volume. One-sided junction, i.e. a rectifying contact, illustrated

in figure 2.2b, enables the full depletion of the bulk material with lowest possible

reverse bias voltage. Adding heavily doped implant of the same type as the detection

material to the opposite side of the bulk, e.g. p+/n−/n+, forms a blocking contact that

minimizes the leakage current across the junction.
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Figure 2.1: An idealized space-charge distribution for the case where ND>NA. Electron
diffusion results in a positive space charge in the region -a < x ≤ 0 and the filled
acceptor sites correspond to the negative space charge at 0 < x ≤ b.

(a) (b)

Figure 2.2: (a) The shape of the electric field corresponding to the space-charge
distribution of figure 2.1. Because of the higher doping concentration level of n-type
material, the electrons tend to travel greater distance into the p-type material before
recombination. This extends the electric field farther into the p-side. (b) The electric
field distribution of the pn-junction when NA � ND, i.e. p+/n. The depletion region
is essentially on the n-side of the pn-junction, but for typical dopant concentrations
still extends a few nm to the heavily doped side.
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Figure 2.3: The potential distribution across the pn-junction achieved by integrating
E(x) with boundary conditions ϕ(−a) = V and ϕ(b) = 0.

2.1.2 C-V and I-V Characteristics

The theory presented in this section is based on reference [17]. The depletion capac-

itance per unit area of a pn-junction is defined as the change in the charge of the

depletion layer per unit area dQ to the variation in the applied voltage dV . Since

charge increases the electric field by dE = dQ/εs and the corresponding variation of

the applied voltage is approximately dV = WdE, capacitance per unit area becomes

C =
dQ

dV
=

εs
W

=

√
eεsNB

2V
, (2.9)

where the last term is achieved using equation 2.8 for W .

In a fully depleted pn-junction Si diode the depletion depth W equals the wafer

thickness d. Once the wafer is fully depleted, the capacitance reaches its minimum.

This is due to the effect of the increased reverse bias voltage on the fixed charges

that are built up on each side of the junction, i.e. with growing depletion region the

capacitance represented by the separated charges decreases [18]. Capacitance per unit

area Cfd is then equal to the geometrical capacitance Cgeo,

Cfd = Cgeo =
εs
d
, (2.10)

due to being solely dependent on the size of the diode junction.

By plotting capacitance-voltage data as a (V , C−2) graph, shown in figure 2.4,

it is possible to determine the voltage required to extend the electric field through

the entire wafer thickness, i.e. the full depletion voltage Vfd. Extracted from the C-V

measurements, Vfd data allows the determination of the approximate value of the

effective doping concentration in the silicon bulk. By combining the equations 2.9
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and 2.10 it is given by

NB =
2εs
ed2

Vfd, (2.11)

where W and V has been replaced by d and Vfd, respectively.

When biasing the pn-junction with reverse voltage, in an ideal case, the resulting

reverse leakage current is dominated by the diffusion current Jdiff approximated by

the Shockley equation [20]. In a real diode of detector-grade silicon material, the

generation current in the depletion region Jg is the dominating component at any

voltage and the reverse leakage current density JR is essentially

JR ' Jg =

∫ W

0

e|U |dx ' e|U |W =
eniW

τe
, (2.12)

where U is the rate of electron-hole pair generation, ni is the intrinsic charge carrier

concentration and τe is the effective electron lifetime. Factor ni suggests that only

energy levels near the intrinsic Fermi level contribute significantly to the generation

rate U . Both τe and ni have considerable dependence on temperature T , but if τe is a

slowly varying function of T , Jg will then have the same dependence on temperature

as ni.

By replacing W in equation 2.12 with the equation 2.8 it is thus expected that

Jg ∼ (Vc − Vext)
1/2 =

√
V , (2.13)

at a given temperature for an abrupt pn-junction.

2.1.3 Particle detection

While travelling through the detector, energy deposited by the particle generates

within a few picoseconds equal numbers of conduction electrons and holes along the

particle track, presented in figure 2.5. Electric field present throughout the active

volume ensures that both charge carriers feel the electrostatic forces causing them to

drift in opposite directions. The motion of the charge carriers constitutes a current

that will persist until they are collected at the electrodes on both sides of the depletion

region [18].

The average energy required to create an electron-hole pair (ehp) in silicon is 3.62

eV in room temperature, even though the bandgap is 1.12 eV. Since silicon is an

indirect semiconductor, i.e. the transition from the valence band to the conduction

band requires a change in crystal momentum for the electron ~pcr ≡ ~~k, where ~ is the
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Figure 2.4: The principle of the full depletion voltage Vfd determination from (V , C−2)
graph. Vfd is extracted from the crossing point of the linear fits made to the dynamic
and plateau regions of the curve. Measurement error is determined from the standard
deviation of repeated measurements.

reduced Planck’s constant and ~k is the wave vector of the lattice, the energy difference

goes to phonons and plasmons needed to compensate the momentum changes [17].

To reach full depletion of the lightly doped n-type bulk material of figure 2.5 with

lowest voltage possible, a junction with heavily doped p-type layer is formed on the

front surface of the detector. Benefits for the electric field distribution of this rectifying

contact were discussed in section 2.1.1, but because of its low minority charge carrier

concentration, it also serves as a blocking contact that prevents the electrons removed

by the electric field on the back surface electrode from being replaced at the opposite

electrode.

Because the minority charge carriers are not highly suppressed in the bulk of the

detector, an additional blocking contact is also needed on the back surface electrode.

Implantation heavily doped with donor impurities minimizes the hole injection through

the bulk when they are collected on the front surface electrode. This way the non-

injecting conditions to suppress bulk leakage current are provided on both surfaces.

The signal level of a fully depleted, non-irradiated detector depends then exclusively

on the wafer thickness d as [18]

nehp =
dE

dx

d

Ea

, (2.14)

where nehp is the number of generated electron-hole pairs, dE/dx is the mean rate of

particle energy loss in silicon as given by the Bethe-Bloch equation [18] and Ea is the
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Figure 2.5: Operation principle of the silicon particle detector. Charged particle
generates electron (blue)-hole (red) pairs that move through the electric field of
the depletion region. Holes and electrons are collected at the cathode and anode,
respectively. p+/n+ indicates a layer heavily doped with acceptor/donor impurities
while n− is lightly doped n-type bulk material.

activation energy required for ehp creation.

The guard ring structure surrounding the active area of the detector prevents the

lateral expansion of the electric field with increased depletion voltages, thus providing

precisely defined active volume. Without the guard ring structure, the electric field

could reach the detector edges damaged by the dicing process, attracting high external

currents into the sensitive region [18, 19] and degrading the signal-to-noise ratio of the

sensor.

2.2 Tracking sensors

In applications involving charged particles, silicon is typically selected as the detector

material. When the incident particles have sufficient energy to pass completely through

the wafer, the Si detectors can be used as transmission detectors. Then the pulse

amplitude indicates the energy lost by the incident radiation during its transit through

the device [18]. This is the case for the tracking detectors in HEP applications, where

the particles of interest have energies of at least several hundred MeV that will enable

them to pass with ease through all the tracking layers of e.g. the CMS Tracker.

Positional data in the particle tracking systems is acquired via segmenting the surface

electrodes of the sensor as in strip and pixel detectors or by processing electrode
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columns into the sensor bulk as in 3D columnar detectors.

2.2.1 Planar sensors

By segmenting the front surface implantation, the silicon strip and pixel detectors are

applied in particle tracking systems of HEP experiments. This configuration produces

the maximum of the electric field to the segmented side, which is desirable to acquire

fast and accurate positional data of the charged particle passing through the sensor.

The 1–10 cm long strip sensors at the CMS Tracker provide very accurate measurement

of the position perpendicular to the strips since the strip pitch is typically between

70–240 µm, while the current pixel sensor size is 100 µm by 150 µm.

Thus, a single-sided strip sensor measures one coordinate of the traversing particle

and the strip sensors have to be arranged in an angle with each other at different radii

in the CMS Tracker to provide 2D information while the corresponding position data

is obtained from a single pixel sensor. The small size of the pixel electrodes results also

in a relatively small capacitance and leakage current leading to considerably reduced

electronic noise compared to a microstrip detector of equivalent dimensions [18].

Once collected at the opposite contacts, electrons within about 10 ns and holes

about 25 ns in a typical detector of 300 µm thickness [18], the charge is measured

with the readout electronics. Strip detectors used in LHC experiments are AC-coupled.

The drawback of leakage current access to read-out electronics in the traditional

DC-coupled detectors is avoided in AC-coupling by separating and reading the signal

current through a simple high-pass filter. The signal is read through a strip capacitor

and the leakage current is conducted through a bias resistor to the common bias line,

which is grounded [19].

The DC-coupled pixel detector chips are connected to a separate readout chip by

flip chip solder bonding that amplifies the signal.

2.2.2 3D columnar sensors

The 3D columnar sensors are likely to be the most promising choice for the extremely

high fluence environments. By having doped columns etched into the silicon bulk

vertically to the device surface, the geometry of the 3D sensors decouples the depletion

voltage and the detector thickness. This means that also the charge drift length is

decoupled from the ionization path, i.e. the drift length is now the inter-column

spacing, while the signal is still proportional to the detector thickness resulting in a

higher radiation tolerance [21].
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The downsides of the 3D sensors are the complexity of the processing, the higher

inter-electrode capacitance (with higher electronics noise), non-sensitive regions in

the columns and the hit position dependent signal size. The disadvantage of the

low-field regions can be resolved by the 3D trench electrode detectors that have a

concentric trench electrode surrounding the central hexagonal signal collecting column

electrode [22,23]. This design results in an uniform electric field. In addition to the

single column type [24], a double column-double sided technology has been developed

by the RD50 institutes [25].

2.3 Spectroscopy semiconductor sensors

Advantages offered by semiconductor detectors for the spectroscopy applications include

exceptionally good energy resolution, good stability and absence of drift, excellent

timing properties, very thin entrance windows along with simplicity of operation [18].

Radiation hardness in these applications is not an issue because of low fluence levels

and they typically include the spectroscopy of alpha particles and fission fragments

as well as gamma and X-ray radiation. The desired sensor parameters are now large

active volume together with high charge carrier mobilities, high atomic number and

operation without cooling apparatus [18]. With appropriate depletion voltage that

optimizes the carrier mobilities, the CVPE grown epitaxial GaAs detector studied

further in section 4.3 fits all these conditions.

Since the position information is now irrelevant, the sensor structures in spec-

troscopy are typically simple pad diodes.

2.4 Applications

Applications of radiation hard silicon detectors are not restricted to HEP experiments.

Improved radiation hardness leads to longer reliable detection lifetime that is a

desirable feature in the semiconductor detectors used in satellites and space probes

where maintenance cannot be performed.

In medical procedures such as diagnostic radiography, X-ray tomography and

radiation therapy, parts of human body are exposed to high fluxes of ionizing radiation.

For example, in an application using a synchrotron light source [26], the X-ray pictures

produced by silicon strip detectors show excellent contrast and the required dose is

lower when compared to conventional film use [27]. Si detectors of high radiation

hardness would provide an easy and accurate way to determine doses received by the
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patient without the disadvantage of time and resource consuming recalibrations caused

by detector performance degradation. The drawback of Si in such applications with

moderate photon energies is the low absorption efficiency linked to the low atomic

number (Z) when compared to high-Z materials like CdTe or GaAs.
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Chapter 3

Radiation hardness

3.1 Radiation-induced damage

Radiation levels above ∼1013 neqcm−2 cause damage to the silicon crystal structure.

Fluences above 1 × 1014 neqcm−2 lead to significant degradation of the detector

performance. In the intense radiation fields of the LHC, defects are introduced both in

the silicon substrate (bulk damage) and in the SiO2 passivation layer that affect the

sensor performance through the interface with the silicon bulk (surface damage). Bulk

damage degrades detector operation by introducing deep acceptor and donor type trap

levels [28]. The main macroscopic effects of bulk damage on high-resistivity silicon

detectors irradiated by hadrons are the change of the effective doping concentration

Neff, the increase in the leakage current proportional to the fluence and the degradation

of Charge Collection Efficiency (CCE) [29].

Due to the radiation-induced generation of deep acceptor levels in the band-gap,

negative space charge is produced and |Neff| of the n-type silicon substrate is reduced

leading to the eventual change of the space charge from positive to negative. The

pn-junction and thus, the electric field maximum shifts then to the n-contact on the

back surface of the type inverted detector. However, the electric field distribution is

vastly non-uniform at the irradiation fluences beyond 1014 neqcm−2 and has a double

peak shape for all Si detector types. The overall negative space charge after HL-LHC

fluences requires well over 1 kV for a full depletion of a 300 µm thick detector [30].

The high concentration of trapping centers leads to reduced effective carrier drift

length which at an electric field strength of 1 Vµm−1 is about 140–190 µm for electrons

and 50–80 µm for holes after fluence of 1015 neqcm−2 [29,31]. Trapping and incomplete

depletion result in significant deterioration of CCE and increase in the leakage current,

21
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which leads to degrading signal-to-noise ratio [32].

The increase of the bulk generation current ∆I, caused by the damage created

generation-recombination centers, is dependent on the irradiating particle type and

fluence. When normalized to the sensitive volume V the reverse current measured at

full depletion is proportional to the 1 MeV neutron equivalent fluence Φeq1. Current-

related damage rate α is then defined by [33,30]

∆I

V
= α · Φeq. (3.1)

The measured value of the ∆I depends exponentially on the operating temperature and

values of α are therefore always normalized to 20◦ C [34]. The temperature normalized

damage rate α is a universal constant at any given temperature and annealing time,

independent of the material type or irradiating particles (neutrons, protons, pions).

Thus, α is used to reliably monitor the accumulated particle fluence.

The bulk damage in silicon detectors is primarily due to displacing a Primary

Knock-on Atom (PKA) out of its lattice site resulting in a pair of a silicon interstitial

and a vacancy (Frenkel pair), with a threshold energy of ∼25 eV. These can migrate

through the lattice and form point defects with impurity atoms. Both point defects and

clusters are responsible for the various damage effects in the detector bulk, depending

on their concentration, energy level and the respective electron and hole capture cross

section. Low-energy recoils above specific particle threshold energies will usually create

fixed point defects. At recoil energies above ∼5 keV, a dense agglomeration of defects

is formed at the end of the primary PKA track. These disordered regions are referred

to as defect clusters [34, 33].

Measurements with methods like Thermally Stimulated Current technique (TSC),

Deep Level Transient Spectroscopy (DLTS), Transient Current Technique (TCT) along

with the C-V and I-V measurements have revealed a multitude of defects (11 different

energy levels listed in [35]) after irradiations with hadrons or higher energy leptons.

The microscopic defects have been observed to influence the macroscopic properties of

a silicon sensor by charged defects contributing to the effective doping concentration

[36, 37, 38, 39, 40, 41] and deeper levels also to trapping and generation/recombination

of the charge carriers (leakage current) [41,42,43,44].

1Non-ionizing energy loss (NIEL) scaling hypothesis offers the opportunity to normalize the
different radiation effects of various particles over large energy range to the displacement damage
cross-section of 1 MeV neutrons. Though not a strict rule, NIEL scaling nevertheless provides a useful
tool to compare most particles and energy dependence of the damage observed in silicon particle
detectors [30].
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Surface damage consists of a positively charged layer accumulated inside the oxide

and of interface traps created close to the interface with silicon bulk [45,46]. High oxide

charge densities Qf are detrimental to the detector performance since the electron layer

generated under the SiO2/Si interface can cause very high electric fields E(x) near the

p+ strips in p-on-n sensors and loss of position resolution in n-on-p sensors by providing

a conduction channel between the strips. High E(x) can induce detector breakdown or

avalanches that can result in non-Gaussian noise events. Also the increase of interstrip

capacitance Cint with the accumulating interface charges will contribute to higher

strip noise. Additionally, the position dependence of the charge collection efficiency

CCE(x) has been observed to result in up to ∼30% CCE losses between the strips in

heavily irradiated sensors [47, 48]. In the study presented in this thesis (papers I, II)

this has been related to the effects of the interface traps Nit.

3.2 Radiation hard detectors

Future very high luminosity colliders, such as the upgrade of the LHC to a 10-

fold increased luminosity of 1035 cm−2s−1, will require semiconductor detectors with

substantially improved properties. Considering the expected total fluences of fast

hadrons, the detector must be ultra radiation hard, provide a fast and efficient charge

collection and be as thin as possible within the limits of acceptable signal and noise

levels [1, 29].

Technologies studied by CERN’s RD collaborations include defect and material

engineering by RD48 and RD50, device engineering by RD50, operational mode

engineering by RD39 and application of materials other than Si by RD42 [29].

Research topics include the improvement of the intrinsic radiation tolerance of

the sensor material and novel detector designs with benefits like reduced trapping

probability (thinned and 3D sensors), maximized sensitive area (active edge sensors)

and enhanced charge carrier generation (sensors with intrinsic gain).

The following sections showcasing the several R&D approaches for radiation hard

detectors are mostly based on the results presented in (paper IV).

3.2.1 Defect and material engineering

Deliberate modification of the detector bulk material is known as material engineering.

It includes defect engineering where impurities are added to silicon in order to affect

the formation of electrically active defect centers and thus control the macroscopic
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parameters of devices.

One of the most successful examples for defect engineered silicon is oxygen-enriched

silicon [29]. Oxygenation can be achieved during the crystal growth or by high-

temperature long-time oxygenation process.

In Diffusion Oxygenated Float Zone (DOFZ) silicon the diffusion of oxygen into

the silicon bulk is made from an oxide layer grown via a standard oxidation step.

When irradiated with highly energetic charged hadrons, the build-up of negative space

charge is strongly suppressed. Oxygen atoms increase the radiation hardness of a

detector by capturing vacancies, forming vacancy-oxygen complexes and thus slowing

the leakage current increase and donor removal [49].

The intrinsically high interstitial oxygen concentration of the order of 1017 − 1018

cm−3 in Czochralski silicon (Cz) gives it potentially better radiation hardness properties

than for the standard Float zone (Fz) and DOFZ silicon (DOFZ [O] ≈ 1− 4× 1017

cm−3) [19]. Cz-Si’s resistance for type inversion and overall smaller increase in depletion

voltage compared to oxygenated or standard Fz silicon is believed to be caused by

the formation of donors (most probably thermal donors), which overcompensate the

radiation induced acceptors [50]. Furthermore, it has been observed that in the n-type

magnetic Cz (MCz) material neutron and proton irradiations introduce effects that

act as doping of opposite polarity, resulting in a potential partial cancellation effect of

the degradation of Neff [9].

However, after neutron irradiation, no effect or only small influences [33] of the

oxygenation on the radiation hardness have been observed. Also, the effective trapping

times and leakage current are not significantly influenced by the oxygen content after

hadron irradiation [51,50]. A drawback of a material with very high oxygen content is

that it requires special attention to avoid thermal donor creation and thus a change of

Neff during processing.

Other approaches in defect and material engineering include the use of epitaxial

silicon or silicon enriched with oxygen dimers [52], hydrogen or other impurities like

germanium.

Since it is possible that fluences above 1016 neqcm−2 correspond to the operating

limit of silicon sensors at temperatures close to room temperature, other semiconductor

sensor materials are under investigation. These include diamond [53], silicon carbide

(SiC) [29] and the semi-insulating GaN [54] detectors, which have recently been

recognized as potentially radiation hard.
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3.2.2 Device engineering

Improvement of detector structures, known as device engineering, includes modification

of the electrode configuration, thinning of the bulk material, using p-type material

and the development of new detector geometries such as 3D columnar detectors.

Thin detectors Thinning down planar detectors to about 50 µm thickness provides

reduced depletion voltage. At fluences above 1015 neqcm−2 thin sensors have an

advantage over thicker sensors that cannot reach full depletion at plausible voltages

anymore due to the high value of Neff [9]. A further advantage at very high fluences

is the relation to trapping due to the drift distance. In thicker detectors, more signal

charges get trapped on their longer drift path to the electrodes. Hence, the ratio

of measured signal in thin and thick detectors becomes more advantageous for thin

sensors once trapping dominates.

However, the collected absolute charge is strongly reduced, setting higher require-

ments on the readout electronics. This makes the reduction of the detector thickness a

compromise between the full depletion requirement and the amount of ehps generated

in silicon bulk [29,10,55]. Since electronic noise grows with increasing capacitance and

the signal level decreases linearly as a function of thickness, the prospects of reducing

the detector thickness from present day applications is very limited.

N-on-p sensors Much studied approach to improve the radiation hardness of the

silicon particle detectors is the application of n+/p−/p+ (n-on-p, n-in-p) structures

instead of the conventional p-on-n configuration [10,56]. Since radiation introduces

acceptor-like defects, as discussed in section 3.1, no type inversion occurs in the p-type

bulk resulting in a favourable combination of the weighting and electric fields after

irradiation. The readout at n-type electrodes leads to a signal dominantly generated

by electrons. Since electrons have three times higher mobility and longer trapping

times than holes, the amount of trapped charge carriers during their drift is reduced.

This allows high speed readout and higher CCE in p-type devices than in conventional

detectors [10]. When p-type Cz-Si is used as a starting material, it is possible to adjust

the full depletion voltage of the detector by the introduction of thermal donors (TD).

TDs are complexes consisting of four or more oxygen atoms that, by compensating

some of the initial acceptors, lead to lower initial operating voltages [19]. Another asset

of the p-type sensor is the reduced dependence of CCE from the reverse annealing of

the effective space charge in highly irradiated detectors [11,31].
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The disadvantage of n-on-p devices is the more complex fabrication technology

due to required isolation structures between the n-electrodes [56]. High doping

concentrations in the isolation implantations can also lead to localized high electric

fields that increase the probability of early breakdowns. On the other hand, the electric

fields at the n+-strips are lower than in n-bulk sensors.

After long-term measurement campaigns accompanied by TCAD simulation studies

(shown in reference [57]) the planar n-on-p sensors have become the baseline for the

ATLAS and CMS strip tracker upgrades for the outer layers with maximum fluences

of approximately 2× 1015 neqcm−2.

3D columnar detectors In the 3D-columnar design [21, 32], discussed in sec-

tion 2.2.2, the maximum drift distance of the charge carriers and depletion depth

depend on the electrode spacing rather than the detector thickness. Compared to the

planar technology strip and pixel detectors with electrodes confined to the detector

surface, the advantages of 3D structure include shorter collection distances, faster

collection times and lower depletion voltages, depending on the electrode diameter and

pitch chosen. This makes the 3D columnar detectors resistant to radiation induced

increase of depletion voltage and charge carrier trapping in the silicon bulk. The

drawbacks of 3D columnar detectors were discussed in section 2.2.2.

Due to recent availability in mass production and an acceptable signal yield after

irradiation to fluences of 1× 1016 neqcm−2, the 3D sensors now populate 25% of the

ATLAS experiment’s insertable b-layer (IBL) [58].

Sensors with intrinsic gain The effect of charge multiplication has been observed

in several device types, namely the strip sensors, 3D sensors and diodes [59, 60, 61].

The enhancement arises from the carrier avalanche multiplication in the high electric

field of the junction, which results from a high negative space charge concentration in

the bulk after irradiation [62].

To understand the underlying mechanisms of the multiplication and to optimize

the CCE performances, dedicated charge multiplication sensors have been fabricated.

The sensors with intrinsic gain, i.e. Low Gain Avalanche Detectors (LGAD), are based

on avalanche photodiode technology and feature an implemented multiplication layer,

a deep p+ implant below the cathodes. An edge termination done by a low doping

n-well is needed to secure gain uniformity [63].

Gain values of up to ∼20 have been measured [64] in the non-irradiated LGADs

while the leakage current and noise are independent of the gain [65]. With this
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technology, thinner detectors can be produced to give the signal of thick ones, enabling

the investigation of ultra-fast detectors [66, 67] for HL-LHC. This requires first a

solution to the significant reduction of gain after irradiations to expected fluences.

Instead of trapping, the effective acceptor removal in the p+ layer is responsible for

the gain degradation by reducing the electric field [64].

3.2.3 Variation of detector operational conditions

Study of optimal detector operational conditions include the operation of silicon

detectors at cryogenic temperatures or in current injected mode.

Irradiated Si-detectors are typically cooled moderately to lower the leakage current

and to reduce reverse annealing [68]. When cooling is extended to cryogenic temper-

atures, trapping and de-trapping of the carriers in radiation induced levels modifies

the effective concentration Neff of the ionized charges. This will in turn change the

electric field distribution and thus affect the CCE.

At cryogenic temperatures, the de-trapping rate of electrons and holes is strongly

affected by the reduced thermal energy. When the de-trapping time is considerably

longer than the shaping time of the read-out electronics, trapping of the drifting charges

becomes the predominant effect. This leads to reduced |Neff| and to the condition

where a consistent fraction of deep levels are filled and therefore inactive. Thus, the

mobility and trapping times of the carriers increase significantly, producing much

faster output signals and higher collected charge. The cryogenic operation of heavily

irradiated silicon detectors leads then to a significant recovery of the CCE [69,70].

In forward-biased mode of a Current Injected Detector (CID), the electric field is

controlled by charge injection, i.e. charge is trapped in a radiation-induced defect but

not detrapped at a low T ≈ −50◦ C.

The injected carriers are trapped by the deep levels of silicon energy gap reducing

the absolute value of effective doping concentration |Neff|, i.e. the space charge

density. This changes the electric field distribution by making it continuous through

the entire detector bulk, increasing from the injecting contact as E(x)∼
√
x and having

a maximum at the opposite contact.

The detector is fully depleted regardless of the applied voltage and since the electric

field profile is independent of the material properties, no sensitivity to irradiation

fluence is expected. However, limited by the space charge, the optimal injected

current needs to be adjusted to a certain fluence and increased with the fluence

accumulation. Also, the injected current needed for the electric field stabilization
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depends on temperature since the steady state density (balance between trapping and

detrapping) of the trapped charge is temperature dependent [71,72,73].

The main disadvantage of the low temperature operation of tracking detectors is

the difficult implementation of a large-scale cryogenic tracker system [56].

3.3 Simulated radiation damage in silicon strip

sensors

Charge Collection Efficiency (CCE) can be considered as one of the essential properties

to determine the radiation hardness of a silicon detector. From the evolution of

CCE with fluence, it is possible to directly observe the effect of the radiation-induced

defects on the ability of the detector to collect charge carriers generated by the

traversing minimum ionizing particles. Also, understanding the factors that influence

its observed position dependence CCE(x) will lead to a more complete interpretation of

the degradation of CCE with fluence. Hence, the accurate reproduction and prediction

of CCE and CCE(x) by simulations can be a valuable tool in the R&D of radiation

hard sensors.

For segmented detectors with various configurations and dimensions, the electric

field profile becomes more complicated than in diodes. For efficient charge collection,

the electric field maximum produced by the applied bias voltage must be located in the

position of the weighting field maximum, i.e. at the segmented electrode. Although

the weighting field is the same for equal segmentation geometry, various electric field

profiles in irradiated strip detectors (e.g. p-on-n, n-on-p, n-on-n) will lead to differences

in charge collection. By optimizing the electric field distribution, fast, reliable and

efficient detector operation can be ensured. Thus, the knowledge of the electric field

distribution is important for the prediction of the detector operation in harsh radiation

environment [74].

Since the electric fields inside the detector cannot be measured directly, the TCAD

simulations are an invaluable tool in their study. When calibrated with the indirect

electric field information from the edge-TCT measurements, the TCAD simulations

offer the possibility to reliably study and predict the evolution of the electric field

profiles, both in the bulk and between the segmented electrodes, along with breakdown

behavior as a function of the parameter of choice (e.g. voltage, fluence, doping,

interface charge density, geometry, etc.).
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3.3.1 Implementation of defects to simulation

The quantity of the observed defect levels discussed in section 3.1 set up a vast

parameter space that is neither practical nor purposeful to model and tune. Thus, a

minimized set of defects constituting an effective defect model is the most meaningful

approach for the simulations of irradiated silicon detectors.

Before any implementation of radiation-induced defects to the simulation can take

place, the performance of the simulations before irradiation are evaluated comparing

the results of the simulation to the corresponding laboratory measurements performed

under equivalent conditions. This allows the tuning of the basic simulation parameters

as well as the systematic investigation of geometry and process parameter effects [57].

The information of the measured defect properties discussed in section 3.1 is used

as a starting point for the device simulations. The simulation of radiation damage in

the silicon bulk is based on the effective midgap levels (a deep acceptor and a deep

donor level with activation energies Ea = Ec - (0.525 ± 0.025) eV and Ev + 0.48 eV,

respectively). The model was first proposed in 2001 by Eremin, Verbitskaya & Li, and

entitled later as the ”PTI model” (also ”EVL model”) [5, 6, 75]. The main idea of

the model is that the two peaks in the electric field profile E(z) of both proton and

neutron irradiated detectors can be explained via the interaction of the carriers from

the bulk generated current simultaneously with both electron and hole traps. The

physical explanation behind all later models is the same combination of the hole and

electron traps.

Simulation by a custom-made software of a 1D diode structure presented in figure 3.1

shows the double peak formation and its dependence on the current generating level.

Since the PTI model, basically a three trap model with the two deep traps used to

create additional space charges and the third middle level to generate leakage current

only, was not designed for TCAD simulation packages, its adaptation to TCAD is not

straightforward. To avoid the artificial trap level which generates exclusively leakage

current and to account for the experimentally measured leakage current, modifications

for the implementation of the defect model to the Synopsys Sentaurus package is

required.

In the TCAD simulation packages, the leakage current can be generated either via

tuning the charge carrier lifetimes or by introducing defect levels for the non-irradiated

and irradiated sensors, respectively. In addition to the leakage current, the lifetime

tuning affects also the charge collection via modified trapping in the bulk while the

defect levels simultaneously affect the space charge and trapping. Thus, to build a
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Figure 3.1: The dependence of the simulated electric field profile in the Si bulk on
the current generating level of the PTI model. The 300 µm thick 1D diode structure
was set to irradiation fluence of 1 × 1015 neqcm−2 at V = 500 V. The double peak
formation is observed only when the two midgap levels are supplemented by the current
generating level [76].

TCAD defect model on the base of the PTI model with the same two deep levels

as those used for the double peak E(z) explanation, all their parameters have to be

determined in agreement with experimental data to correctly describe leakage current

Ileak (as given by equation 3.1), full depletion voltage Vfd, transient pulses and CCE

after irradiation.

The tuning procedure for the Synopsys Sentaurus defect models, producing bulk

properties quantitatively matching the measurements, is described in detail in references

[7,57]. To give a general idea of the process flow, the tuning is realized by first applying

parametrization of the generated current at fixed T = 253 K. Next, the C-V curves

are tuned to match experimental results by iterating the ratio of donor concentration

to acceptor concentration. Finally, by tuning the acceptor and donor capture cross

sections, the transient current curves are adjusted to match the measured signals,

shown in figure 3.2a. This is necessary for the simulated CCE to reflect trapping in a

real irradiated detector. By repeating the procedure at several fluences leads then to

the parametrization of the defect concentrations as a function of fluence.

In the innermost volume of the LHC the most damage producing particles are the

pions. The protons have a damage production rate in silicon closest to the pions. Since

the high fluence irradiations of protons are much easier to conduct, radiation hardness

studies are typically carried out using protons and reactor neutrons [77] to account

for the mixture of different particles in the experiment. Hence, the tuning of the

Sentaurus bulk defect models was done using data of proton and neutron irradiated
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Table 3.1: The parameters of the proton model for Synopsys Sentaurus [7, 57]. Ec,v
are the conduction band and valence band energies, σe,h are the electron and hole
trapping cross sections and Φ is the fluence.

Defect type Level [eV] σe,h [cm2] Concentration [cm−3]

Deep acceptor Ec − 0.525 1× 10−14 1.189× Φ + 6.454× 1013

Deep donor Ev + 0.48 1× 10−14 5.598× Φ− 3.959× 1014

detectors. The significant difference in measured Vfd(Φeq) for proton and neutron

irradiated detectors requires exclusive defect models for each radiation type.

First introduced by R. Eber in 2013 [7] the models, namely the proton model and

neutron model (parameters presented in tables 3.1 and 3.2), are valid for fluences from

1014 to ∼1.5× 1015 neqcm−2 expected for the strip sensors with different radii in the

CMS Tracker at the end of the high luminosity phase of the LHC.

The reliability of the simulated electric field distributions can be confirmed by

comparing the measured and simulated transient current curves and collected charges

from surface (TCT) and side-plane (edge-TCT) charge injections. The former method

is presented in the two plots in figure 3.2 where after red laser front surface illumination

the resulting carrier drift in the double peak (DP) electric field is reflected by a DP in

the transient signal. Figure 3.3a depicts the collected charges in a neutron irradiated

300 µm thick n-on-p strip detector after infrared laser injections from the side-plane

of the sensor at various depths, i.e. an edge-TCT simulation. Both the relative peak

values of the collected charges between voltages and the extension of the depletion

region (high collected charges), especially for the higher voltages, are in agreement

with the measurements in reference [78]. As also the DP formation observed in

the measurement is reproduced by the simulation, the electric field distributions in

figure 3.3b can be considered to model the real sensor reliably.

As shown in figure 3.4, the simulated CCE of a 300 and 200 µm active thickness

sensors compares well to the measured data from both neutron and proton irradi-

ated strip detectors (papers I, IV), [7, 57]. At this stage the surface damage was

approximated in the simulation by placing a fixed charge density Qf (also Nf [79])

at the SiO2/Si interface. However, to maintain strip isolation in the proton model

simulation, it was found that the maximal Qf values had to be limited to considerably

lower than expected for a real sensor at the highest investigated fluences (1− 2× 1012

cm−2 [46], [80]). At the studied fluence range the strips in the real sensors remain

isolated.
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Table 3.2: The parameters of the neutron model for Synopsys Sentaurus [7, 57].
Symbols are as in table 3.1.

Defect type Level [eV] σe,h [cm2] Concentration [cm−3]

Deep acceptor Ec − 0.525 1.2× 10−14 1.55× Φ
Deep donor Ev + 0.48 1.2× 10−14 1.395× Φ

(a) (b)

Figure 3.2: (a) Measured and Sentaurus proton model simulated transient signals in a
300 µm thick pad detector irradiated by the fluence of 1× 1015neqcm−2 at V = 400 V.
(b) Corresponding simulated electric field profiles in the detector bulk for varying bias
voltages [7].

(a) (b)

Figure 3.3: (a) Edge-TCT simulation using the Sentaurus neutron model with detector
parameters matched to a measurement by G. Kramberger et al. [78] of a neutron
irradiated 300 µm thick n-on-p strip detector at the fluence of 5 × 1014 cm−2 [57].
Corresponding measured ratios of the peak collected charges were ∼33% and ∼71%.
(b) Corresponding electric field distributions in the Si bulk with cuts made from the
center of the strip (x = 0) to the center of the interstrip gap (x = 40 µm).
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Figure 3.4: Measured and simulated CCE(Φeq) for the n-on-p strip sensors with a
strip pitch of 120 µm (paper I). Types of irradiation are marked in the plot as p =
proton, n = neutron and n/p = mixed fluence with the ratios of the particles indicated.
PM = proton model, NM = neutron model and e.g. 200P is a p-type sensor with a
200 µm active region thickness. The experimental data was measured with the SiBT
set-up [81,82].

3.4 Simulation Framework

Sentaurus TCAD is a commercial simulation software package produced by Synopsys.

Designed to simulate semiconductor technology for various applications, it offers a

variety of options to design silicon devices as well as several models to simulate silicon

sensors under operational conditions. These include the basic analysis of the leakage

current, the AC small signal analysis and the transient analysis for the time evolution

of signals generated by charge injections of multiple options (lasers, MIPs, alphas,

etc.).

3.4.1 Simulation flow

A straightforward way to apply the simulation package is to manage the simulation

runs and results analysis with a Sentaurus Workbench tool. Several tools are run

in succession to first generate the device structure to be modeled (Sentaurus Struc-

ture/Device Editor), then to carry out the actual physics simulation (Sentaurus Device)

and finally to analyze the results (Inspect/Sentaurus Visual). Also a processing step
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(a) (b)

Figure 3.5: (a) The front surface of a 2D-designed n-on-p sensor structure with a
double p-stop strip isolation (not to scale). Charge injection position for the CCE
simulations in figure 3.4 is also illustrated. (b) Close-up of the strip implantation and
metallization. The Al layer with a via-structure is in grey while the nitride and oxide
layers are in light brown and dark brown, respectively. The meshing is reduced at the
high doping gradient of the strip implant to produce its profile accurately.

for the doping implantations is possible. Minimum number of input files required for

a succesful simulation include the device structure file, the physics parameter file, the

simulation command file and the analysis file.

The parameter values under investigation are given as an input from the Workbench

to the physics command file during the simulation. In this manner, the needed

parameter variations can be achieved in a single simulation run.

The device structures can be generated in both 2D or 3D. Sensors that do not

have structural variations in the third dimension, i.e. diodes and strip sensors, can be

modeled in 2D, shown in figure 3.5, and extended to the dimensions of a real device

by an appropriate coefficient. This approach is time and memory efficient because it

requires significantly smaller number of mesh points where the physics equations for

each point are solved. The 3D device structures, although requiring much computing

time and capacity, model reality and are mandatory for reliable simulations of the

pixel and 3D columnar sensors, presented in figure 3.6.

Compact descriptions of the physics models, boundary conditions and the role of

grid size optimization in the simulation process are given in the appendix A.
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(a) (b)

Figure 3.6: Sensor structures designed in 3D. (a) A 100 µm thick p-on-p pixel sensor
with a 55 µm pitch. The field oxide has been stripped for a view of the meshing. (b)
Sliced view of a double column-double sided 3D n-on-p sensor with a p-stop isolation.
Aluminum and oxide have been stripped from the surface.
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Chapter 4

Results

The TCAD simulations in the following sections 4.1 and 4.2 applied p-type bulk

material with 〈1, 0, 0〉 crystal orientation. The modeled irradiations were always

considered in 1 MeV neutron equivalent fluences (neqcm−2).

4.1 Simulation model for surface and bulk

damage in silicon strip detectors

Investigation of the TCAD bulk damage models in segmented devices with surface

damage modeled by Si/SiO2 interface charge density Qf has revealed that the approach

is not sufficient to reproduce the observed surface properties of irradiated detectors.

As discussed at the end of the section 3.3.1, the strips became shorted at high proton

fluences when they were expected to be isolated by the experiment. Simultaneously

the resulting interstrip capacitances Cint remained several orders of magnitude above

the geometrical values expected from the measurements. Additionally, the observed

position dependence of CCE in irradiated strip detectors [47,48], i.e. CCE(x), was not

reproduced at a lower fluence of 3×1014 neqcm−2. Thus, these observations represented

a further demand for the parameter tuning of the defect models for segmented sensors.

This has been realized by implementing additional traps Nit at the SiO2/Si interface

(Silvaco Atlas [83]) or extending from the interface with a wider depth distribution

(Sentaurus papers I, II, [57]). Before these two approaches, no studies on the modeling

of combined bulk and surface damage in segmented sensors had been published.

Earlier published simulation studies for surface damage exclusively have modeled

damage by either interface charge density Qf [84,85] (as in section 3.3.1), by including

in the threshold voltage expression the induced flat-band voltage shift [86], or by

37
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three interface traps with parameters matching the measurements of X-ray irradiated

devices [45].

In the Silvaco Atlas TCAD model [83], it is assumed that for a given interface trap

density Nit 60% are deep acceptor traps (Ec - 0.60 eV) and 40% shallow acceptor traps

(Ec - 0.39 eV). Since the measured Qf and Nit values [46] are similar in magnitude,

Nit was set to a value equal to Qf for the simulations. Complemented by the 2-defect

bulk model with experimentally matching properties, the combined bulk & surface

damage model reproduces interstrip resistances Rint in very close agreement with the

measurements.

The inherent differences between the standard parameter sets of the two TCAD

simulation frameworks used throughout the HEP community, Synopsys Sentaurus and

Silvaco Atlas, have been shown to produce results that are decisively different from

one another [7]. Therefore, to produce equal results of irradiated sensors, the same

parameter values cannot be used in the defect models of the two packages.

When the Nit approach was applied with the Sentaurus proton model, it was found

that the expected Cint values were not reproduced [87] at the Qf range where CCE(x)

was matching the measurement. By applying a deeper distribution for the surface

traps, namely 2 µm from the Si/SiO2 interface, it was possible to reach agreement

with the measurement for the aforementioned surface properties and maintain strip

isolation also at high proton fluences, while leaving the bulk properties of the proton

model unaffected (papers I, II). Comparison with the proton model, presented in

figure 4.1a, shows the effect of the shallow acceptor traps resulting in a five orders

of magnitude decrease in the electron density at the interstrip region. It should be

emphasized that the depth distribution of the applied single shallow acceptor level (Ec
- 0.40 eV) is concentration dependent and other values could be used to same effect.

For the CCE simulations, the charge injection position was fixed in the middle of

the centermost strip, shown in figure 3.5a. For the CCE(x) simulations the position

was varied from the midgap between the strips to the center of the strip, presented in

figure 4.1b. This plot also provides information on the strip isolation; when the strips

are isolated, the cluster CCE (total collected charge in the sensor compared to the

corresponding charge in a non-irradiated sensor) decreases towards the midgap but

when shorted the cluster CCE becomes position independent. The cluster CCE loss

(comparison of the collected charges after injections at the midgap between the strips

and at the center of the strip) between the strips was then tuned to find agreement

with the measured values by scanning the interface charge density values, illustrated
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Table 4.1: Parameters of the shallow acceptor level included in the non-uniform
3-level model for Synopsys Sentaurus (paper I), parametrized for the fluence range
(0.3− 1.5)× 1015 neqcm−2. Symbols are as in table 3.1.

Defect type Level [eV] σe [cm2] σh [cm2] Concentration [cm−3]
Shallow acceptor Ec − 0.40 8×10−15 2×10−14 14.417×Φ+3.168×1016

in figure 4.2.

The test beam measured average cluster CCE loss between the strips [47] in the

200 µm active thickness Fz and MCz sensors with 120 µm pitch and p-spray and

p-stop isolations was reproduced by the simulation when the Qf = (8.5± 1.0)× 1011

cm−2 and (1.6± 0.2)× 1012 cm−2 on the left and right sides of figure 4.2, respectively.

The simulated interstrip capacitance Cint results, presented in figure 4.3, offer

a further tool to cross-check the functionality of the model. Since the geometrical

capacitance of ∼1.8 pF is expected at 0 V for both fluences, figure 4.3a shows that all

corresponding values of Qf determined by the CCE(x) simulations in figure 4.2a are

acceptable with respect to Cint. The corresponding plots for the higher fluence on both

figures display that the agreeable values are now limited by Cint to Qf < 1.42× 1012

cm−2.

Simulated CCE(x) was found to be dependent on the shallow acceptor concentration

in the 3-level defect model and on Qf at a given fluence. Thus, by fixing one it is

possible to parametrize the other as a function of fluence. Due to shortage of exact

measured data of Qf, estimated values were used, against which the shallow acceptor

concentration was tuned. Hence, at this stage the approach provides more a method

than exact quantitative information with regard to these properties. With the existing

measured CCE(x) data, a preliminary parametrization, presented in table 4.1, of the

’non-uniform 3-level model’ was performed for fluences from 3 × 1014 to 1.4 × 1015

neqcm−2 for the strip pitch of 120 µm (paper I). The observed behavior is further

analyzed and discussed in chapter 5.

4.2 Simulation study of a thin p-on-p pixel

detector

The initial motivation for this research was to understand the factors that led to the

significantly lower charge collection in the thin p-on-p pixel sensor than in its p-on-n

counterpart at a depletion voltage range of 15–100 V (paper V). The collected charges
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(a) (b)

Figure 4.1: Simulation results of a 200 µm active thickness n-on-p strip sensor with a
120 µm pitch using the non-uniform 3-level defect model after irradiation to 1.5× 1015

neqcm−2. (a) Comparison of electron density results with the proton model for
Qf = 1.2× 1012 cm−2. The cut was made at 50 nm below oxide between the n+ strips.
Positions of the double p-stops can be observed in the center of the plot, where both
concentrations reach their respective minima (paper II). (b) Simulated CCE(x) at
V = -1 kV. Charge injection positions x = 0, 60 µm correspond to the center of
the strip and the center of the interstrip gap, respectively. Varying the values of Qf
displays the evolution of the CCE loss between the strips.

(a) (b)

Figure 4.2: Measured [47] and simulated CCE loss of a 200 µm active thickness n-on-p
strip sensor with a 120 µm pitch using the non-uniform 3-level defect model at T =
263±10 K and V = -1 kV (paper I). (a) Φeq = 3×1014 cm−2. Measured detectors were
proton irradiated. (b) Φeq = 1.4× 1015 cm−2. Measured detectors were irradiated by
mixed fluences Φeq = (1.4± 0.1)× 1015 cm−2 with relative fractions n/p = 0.60± 0.04.
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(a) (b)

Figure 4.3: Corresponding simulated interstrip capacitances Cint for the sensor and
fluences in figure 4.2 at T = 253 K. The dashed curves indicate the Qf values where
the simulated CCE loss between the strips matches the measurement. The values of
Cint were determined by the method described in [88]. (a) Φeq = 3× 1014 cm−2. (b)
Φeq = 1.4× 1015 cm−2.

were injected by a keV energy range proton beam from the sensor backplane.

4.2.1 Simulation set-up

For the comparative simulation study of the electrical characteristics and charge

collection behaviour in the voltage range 0–100 V of the p-on-p and p-on-n thin

pixel sensors, the 3D-structure presented in figure 4.4 was applied. This was deemed

necessary since a 2D-structure accounts only for the interactions between a single

column of pixels. Also, the correct reproduction of the local electric fields at the

circular shaped pixels required a 3D-structure.

The simulated pixel sensor configurations replicated the design parameters of the

real sensors as closely as possible and had a 100 µm thickness, a 55 µm pitch and a

pixel implant diameter of 30 µm with the resistivities of ∼10 kΩ · cm and ∼5 kΩ · cm,

respectively. The aluminum metallizations above the pixel implants and their vias

through the oxide layer for the DC-coupled contacts are detailed in the cross-sectional

slice presented in figure 4.4b.

4.2.2 Electrical characteristics

The simulated C-V characteristics agreed within 10% in terms of the full depletion

voltage with the measurements in reference [89]. The results are different for the two
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(a) (b)

Figure 4.4: (a) A 3D-design of a pixel sensor front surface structure of 5 pixels with
the field oxide layer stripped. The magenta mesh regions at the center and rightmost
pixels highlight the positions of the DC-coupled contacts. The gray layers on the
top and bottom corners are the pixel metallization and via (Al contact to the Si
through the oxide layer) structures, respectively. Black contour lines around the
four pixels illustrate the edge of the stripped aluminum overhang. Pixel implants
are in white while the Si bulk is in light gray. The n+ layer and the metallization
of the non-segmented backplane are not pictured. (b) Cross-sectional view of the
simulated pixel implant and its metallization. Topmost is the gray aluminum layer
with a via-structure through the brown oxide layer. Below these the heavily doped
implant region is in red while the surrounding lightly doped Si is in yellow.
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sensor types because the depletion starts in the p-on-p from the non-segmented side

with an immediate increase of the depletion depth at small voltages, while for p-on-n

it starts from the segmented side, for which part of the voltage is used to deplete the

area between the pixels, slowing the extension of the effective depletion depth and the

change of capacitance, as presented in figures 4.5a and 4.6.

Figure 4.6 also shows that the depletion process of the p-on-p sensor is further

enhanced by the extension of the electric field from the electrode sides due to the

potential differences produced by the high doping gradients at the pixel edges. This

is reflected in figure 4.5a where around 6 V the rate of the bulk depletion changes

from equal to the p-on-n sensor to almost instantaneous. In figure 4.7 it is shown

that at higher values of the reverse bias voltage, the electric field maximum in the

p-on-p sensor is at the pixel side, thus good resolution and low collection times can be

expected.

As can be seen from figures 4.6 and 4.7, the peak electric fields at the pixels are

higher in the p-on-n sensor, especially at lower voltages. This would lead one to expect

generally better breakdown behaviour for the p-on-p sensor. However, as presented

in figure 4.8, the rapid increase of the electric fields with voltage at the pixel edges

in the p-on-p sensor eventually leads to a breakdown voltage that is very close the

p-on-n sensor. To reproduce the measured leakage current that was roughly three

times higher in the p-on-n sensor [89], the carrier lifetimes were tuned.

The interpixel resistance simulations in figure 4.5b display over three orders of

magnitude higher resistance for the p-on-n sensor until full depletion is reached in

the p-on-p sensor. With the Vfd result from figure 4.5a it can be seen from the Rint

curve of the p-on-p sensor that after the bulk is fully depleted it still requires ∼2 V to

deplete the inter-pixel region. After ∼9 V, the pixel isolation between the two sensors

is identical. Thus, no significant differences in charge collection due to the electric

field distribution and the interpixel isolation in the two sensor types can be expected

after about 9 V of bias voltage.

4.2.3 Charge collection

Since the measured charge was recorded from a single pixel using a trigger that

excluded all two pixel or larger cluster events, the chosen charge injection position at

the center of the sensor’s non-segmented backplane for the simulation was considered

to give sufficient approximation of the real measurement situation.

The initial charge collection simulations with the charge carrier lifetimes tuned to
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(a) (b)

Figure 4.5: (a) Simulated C-V curves for the two sensor types and their Vfd determined
from the crossing point of the linear fits to the dynamic and plateau regions of the
curves. (b) Interpixel resistances Rint as a function of bias voltage for the two sensors.

(a) (b)

Figure 4.6: (a) Simulated electric field distributions through the bulk of the two sensor
types at the lower part (V = 5 V) of the investigated voltage range. The cuts were
made in the middle of the centermost pixel (center), at the pixel implant edge (edge)
and at the center of the interpixel gap (midgap). The ratio of the electric field maxima
E(p-on-p)/E(p-on-n) at the pixel edge is ∼43%. (b) A 3D view displaying the spatial
distribution of the electric field cuts in (a).
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(a) (b)

Figure 4.7: Simulated electric field distributions through the bulk of the two sensor
types at the higher part (V = 90 V) of the investigated voltage range. The cuts were
made as in figure 4.6a. The ratio of the electric field maxima E(p-on-p)/E(p-on-n)
at the pixel edge is ∼87%. (b) A 3D view displaying the spatial distribution of the
electric field cuts in (a).

Figure 4.8: Simulated I-V curves for the two sensor types and their breakdown voltages
Vbd. The Vbd is ∼16 V lower for the p-on-n sensor.
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reproduce the experimentally observed difference in the leakage current (presented in

figure 4.8) displayed similar qualitative behaviour with the measured curves in (V). As

seen in figures 4.9 and 4.10a, the p-on-n sensor collects higher charges at low voltages

and at higher voltages the collected charges in the two sensors converge. However,

at e.g. 20 V the measured collected charge was ∼25% higher in the p-on-n sensor,

yet the corresponding difference was only ∼5% in the simulation. Also, the initial

collected charges for both sensors around 15 V are considerably higher than in the

measurement. Any effect from the charge sharing in the measurement was ruled out

by the charge collection conditions described above. Also, the interpixel resistance

simulations in section 4.2.2 displayed an identical pixel isolation in the two sensor types

after ∼10 V. Thus, the differences in this regard between simulation and measurement

could not be considered to explain the smaller difference in the simulated collected

charges between the two sensor types. In addition, since the backplane metallization

thicknesses and doping diffusion depths were essentially identical in the measured

sensors, no contribution from different scattering of protons or charge carrier losses at

the non-active region could be expected.

Tuning of the carrier lifetimes

Thus, further study of the charge collection was focused on the charge carrier lifetimes

in the two sensor types. The initial objective of the carrier lifetime tuning was to

reproduce simultaneously lower leakage current and lower charge collection at low

voltage for the p-on-p sensor. In the case of a hole dominated transient signal due to

the backplane charge injection, this was addressed by increasing the electron lifetimes

while decreasing the hole lifetimes with respect to the p-on-n sensor. The effect of the

tuning for the carrier collection is seen in figure 4.9 where the differences between the

two sensor types in electron (small t) and hole (larger t) contribution to the current

signal are clearly visible.

By decreasing the lifetimes of both carrier types, it is possible to significantly shift

the charge collection evolution with voltage towards the measured values in the p-on-p

sensor, as displayed by the solid red curve (p-on-pQcoll) in figure 4.10a. The ratio

of the collected charges by the 800 keV proton injection in the two sensors at 15 V

now matches the measurement, while the collected charge relative to the maximum

collection is within 10% of the measured p-on-p sensor. The crossing point of the two

curves is now only ∼10 V from the measured and at voltages beyond the crossing

point the p-on-p collects somewhat higher charges than p-on-n as was also seen in the
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measurement. Thus, this gives an indication that higher trapping rate of holes in the

p-bulk at low voltages leads to the observed charge collection difference in the two

sensors. At increased bias voltages, the total drift time of the carriers is reduced due

to the higher electric field leading to reduced number of trapped carriers and higher

collected charges [31].

Applying this approach also to the p-on-n sensor would provide a means to tune

the low voltage charge collection along with the charge collection and leakage current

ratios between the two sensors close to measured values. However, even though the

mutual ratio of the leakage current in the sensors would be preserved, its absolute

values would increase beyond measured values in the process. Thus, the tuning of the

carrier lifetimes should be considered as an effective approach to reach an estimation of

the higher hole trapping in the p-on-p sensor that could explain the measured charge

collection behaviour. The implementation of specific trap levels, i.e. deep traps with

high hole trapping probability and low contribution to the leakage current [35], to the

simulation with characteristical properties extracted from measurements would be a

more precise approach, but lacking such data, this is left to a later study.

Voltage of complete charge collection

A further simulation study of the voltage required for a complete charge collection

(Vcpl), presented in figure 4.10b, of injections from the front surface and backplane

revealed a strong dependence of Vcpl on the charge carrier type and a significant

dependence on the size of the generated carrier cloud.

Since only general tendencies were investigated, a simplified p-on-n 2D-structure

was applied. Of the four studied charge injections, the IR laser signal (produced by

both electrons and holes) is collected at Vcpl = Vfd ≈ 11 V. When a red laser (absorbed

within 10 µm) of equal intensity is injected from the backplane (front surface injection

resulted in a curve overlapping the IR laser curve) the signal produced by the hole

drift more than doubles Vcpl. The 800 keV proton injection generates a considerably

higher localized carrier density resulting in Vcpl ∼15 V from the front surface injection

(electron drift) and about three times higher Vcpl from the hole drift due to the

backplane injection. Thus, regardless of the approximations of the 2D-structure1 the

results show that a transient signal produced by a hole drift (with about three times

lower mobility to electrons) leads invariably to Vcpl higher than Vfd. Additionally, a

1Collected charges in figure 4.10b at low voltages are much lower than in the 3D simulations due
to the underestimation of the electric field evolution at the pixels.
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Figure 4.9: Simulated transient currents and collected charges in the p-on-p and p-on-n
sensors of figure 4.4 at V = 23 V. Charges in the range of a 800 keV proton resulting
from a backplane injection and collected at the centermost pixel are plotted. The
carrier lifetimes correspond to the tuned leakage current in figure 4.8. The collected
charge scales to energy as 4× 10−14 C ∼ 900 keV.

localized carrier density generated by an energy deposition in the range of hundreds

of keV results in a decrease of the mobility of the carriers, due to the increase of

carrier-carrier interactions, leading to a shift of Vcpl to higher voltages. Hence, these

two observations provide an interpretation of the measured Vcpl behaviour in (paper

V).

4.3 Simulation study of an epitaxial GaAs p-i-n

detector

This study was motivated by the need to verify the characterization measurements of

the newly processed detectors with less studied material in (paper III) as well as to

investigate whether the full simulation characterization, including electrical properties

and charge collection, of a GaAs detector can be performed using TCAD.
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(a) (b)

Figure 4.10: (a) Simulated charges collected at the centermost pixel of the structure
in figure 4.4a for p-on-p and p-on-n sensors. Normalization is done to the charge
collected by the p-on-n sensor at V = 100 V. LC indicates the curves produced by
the charge carriers with lifetimes tuned to reproduce experimentally matching leakage
current ratio in the two sensors. Qcoll corresponds to the carrier lifetime tuning to shift
the charge collection behavior closer to the measurement in (paper V). (b) Simulated
charges collected at the centermost pixel of a 2D three-pixel p-on-n sensor similar
to a diagonal slice of the 3D-structure in figure 4.4a. Normalization is done to the
maximum charge collected at each injection. Charge injections from the front surface
and the backplane are indicated accordingly.
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(a) (b)

Figure 4.11: (a) Simulated doping profiles of p+ and n+ layers with tuned diffusion
depths to create an effective structure similar to the measured GaAs pin-diode described
in (paper III). (b) Simulated C-V (f = 10 kHz) and I-V curves at T = 300 K for the
GaAs diode structure with an active thickness of 110 µm and surface area matching
the real diode, along with the observed deep donor level in the epitaxial layer. The
geometrical capacitance is ∼2.32 pF while the leakage current density is ∼8.5 nA/cm2.
The full depletion voltage of about 10 V was determined as in figure 4.5a.

4.3.1 Electrical characteristics

The initial simulated GaAs diode structure had the dimensions A× 10× 131.5 µm3,

where A is the area factor to match the 2D-structure dimensions with the real diode.

The electrical contacts were provided by the DC-coupled Ni contacts on the front

and backplanes. Presented in figure 4.11a, the doping profiles of the p+ and n+

implantations were tuned to create approximations for the layer thicknesses of the

p+/i/n+ configuration.

For the modifications of the simulation set-up from the silicon device simulations

new parameter files for the GaAs and Ni materials had to be generated and integrated

to the main physics command file. To reproduce the measured geometric capacitances,

full depletion voltages (∼10 V) and leakage current densities (∼10 nA/cm2) the deep

donor level suggested by the DLTS measurements was implemented to the GaAs epi-

layer. The simulations in figure 4.11b reproduced the measurements after the capture

cross section and concentration were tuned to σ = 5× 10−10 cm2 and Nt = 1.4× 1012

cm−3, respectively. Due to the limited temperature range of the used DLTS set-up

the parameters of the observed deep donor level were not unambiguously determined.

Therefore, the applied trap level Ev + 0.97 eV should be considered as preliminary.
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4.3.2 Transferred electron effect

In GaAs and materials of similar band structure, a negative differential mobility is

generated by high driving fields. This effect is caused by the transfer of electrons into

an energetically higher side valley with a considerably larger effective mass, i.e. when

the electric field in the material reaches a threshold level, the mobility of electrons

starts to decrease with increased electric field due to transferred electrons from one

valley in the conduction band to another. In the process, the electron effective mass

moves from small to large and the mobility decreases from very high to very low [15,16].

For the simulation of the effect, first the charge injection depth was set to ∼3

µm from the device front surface to generate the transient signal essentially from the

electron drift. Then the TransferredElectronEffect statement was added to the

high field saturation definition of the electrons in the mobility section of the physics

simulation command file.

As seen in figure 4.12, the simulated transient currents in the GaAs diode at T

= 300 K display the macroscopic result of the transferred electron effect, i.e. when

the voltage and the resulting electric field in the diode move closer to the values that

produce the peak electron drift velocity a reduced collection time tcoll is observed. In

the GaAs diode with an active thickness of about 110 µm, the voltage producing the

maximal velocities is in the range of 37–45 V [15,90]. Voltages below and above this

region will then lead to longer tcoll. The simulated transient signal shapes are in line

with the observed while the difference in signal heights agrees within 14% with the

measurements in (paper III).

To reproduce the measured differences in signal amplitude, the simple diode

structure described in section 4.3.1 had to be replaced by a wider structure that took

into account the lateral expansion of the electric field beyond the diode region. If the

lateral expansion of the electric field is not considered the fields for the given voltage

will be higher than in the real diode, affecting the drift velocities. For simplicity, the

deep donor level was not applied for the transient simulations that were carried out

to investigate the transferred electron effect. Hence, the absolute collection times are

shorter than those measured.
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Figure 4.12: Simulated transferred electron effect on transient current in GaAs diode.
The shortest tcoll is given by the voltage producing a drift velocity closest to the peak
value.



Chapter 5

Conclusions and discussion

5.1 Theoretical implications

5.1.1 Interaction of the interface charge density with
traps

As discussed at the end of section 4.1, the simulated CCE(x) was observed to be

governed by the shallow acceptor concentration close to the sensor surface and the

interface charge density Qf at a given fluence. This creates a possibility to parametrize

one of these variables as a function of fluence if the other variable can be fixed by

measurements.

Since the non-uniform 3-level model can be viewed as the proton bulk model

complemented by interface traps Nit with 2 µm depth distribution, it can be concluded

that the deeper distribution of Nit was the only approach from several options investi-

gated1 that simultaneously reproduced experimentally matching strip isolation, Cint

and CCE(x) in the Sentaurus TCAD simulations.

The effect of the non-uniform 3-level model to the CCE(x) leads to the interpretation

that the acceptor traps close to the surface of the sensor remove both accumulation

layer and signal electrons, i.e. the better the radiation damage induced strip isolation,

the higher the CCE loss between the strips. Conversely, if the shallow acceptor

concentration is kept constant and Qf is increased, more traps are filled leading to

increased charge sharing and decreased CCE loss between the strips.

In figure 4.2a, the simulated cluster CCE loss in the low Qf region falls below the

experimentally observed values. This is due to increased opposite sign contribution to

1The investigated alternatives (e.g. uniform distribution throughout the bulk, confinement strictly
to the Si/SiO2 interface, etc.) are elaborated in reference [87] and (paper II).
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the cluster charge from strips further away from the position of the charge injection.

When Qf is set to a small value, the number of electrons attracted to the Si/SiO2

interface is significantly reduced. This leads to vast increase of the negative space

charge, produced by the acceptor levels in the isolation implantations and the defect

model close to the surface for the given fluence, due to the lack of compensation from

the electrons in the accumulation layer.

Thus, when the charge is injected from the middle of the centermost strip in

figure 5.1, the center strip collects a positive charge from the signal electrons while the

two adjacent strips collect a negative charge that is generated by the movement of the

holes along the surface repulsed by the injected signal holes [91]. Charge sharing from

the signal carriers is minimal due to the domination of the acceptor states. Due to the

opposite velocity vector to both signal charge carriers along with opposite charge to

electrons, the induced current from the drift of the surface holes is necessarily of an

opposite sign to the signal current. This conforms with the Shockley-Ramo Theory,

where the induced current is proportional to the velocity vector and the charge of the

drifting carrier, I ∝ q~v, where q = ±e with e as elementary charge.

When the charge is injected at the center of the interstrip gap in this situation, the

effect of hole current along the surface is confined between the two n+ strips closest to

the injection point and both collect a positive signal reduced by the trapping. Hence,

as seen from the reduced CCE loss in figure 4.2a, the cluster charge collected from the

injection at the center of the strip moves closer to the corresponding charge collected

from the midgap injection. Studies on the effect of charge injection induced surface

current in non-irradiated strip sensors has been published in references [92,93].

5.1.2 Charge collection in the p-on-p sensor

The characterization study of the thin p-on-p pixel sensor by TCAD simulations

demonstrates their versatility in the investigation of an unknown or less studied device

configuration.

The initial charge collection simulations from a backplane injection with carrier

lifetimes tuned to reproduce experimentally matching leakage current ratio between the

two sensors resulted in a qualitative agreement with measurement but with considerably

smaller voltage dependence. The result displayed the prevalent effect of the more

favourable weighting field in the p-on-n sensor over the higher electric field at the

location of the charge injection in the p-on-p sensor at low voltages.

The voltage dependent charge collection of the p-on-p sensor was possible to tune
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Figure 5.1: A schematic illustration of the induced transient currents in a n-on-p strip
sensor from MIP injections at the center of the strip (1.) and at midgap between the
strips (2.). The drift vector ~v′ along the sensor surface is perpendicular to the drift
vectors between the anode and cathode resulting in an opposite sign contribution to
the cluster charge collected in the sensor.

close to the measured behaviour by further decreasing the charge carrier lifetimes.

This effective approach showed that the lower charge collection at low voltages in the

p-on-p sensor could be explained by the higher hole trapping in the p-bulk. Combined

with the measured lower leakage current in the p-on-p sensor this suggests the presence

of deep level traps in the p-bulk with significant hole trapping probability and a small

contribution to the leakage current [35]. To maintain the experimentally agreeing

leakage current levels, further tuning of the simulated charge collection should include

such traps.

5.1.3 Deep donors in the GaAs epi-layer

The DLTS analysis of the GaAs X-ray detectors revealed a significant concentration

of deep level electron traps in the epitaxial layer. When these were modeled in the

TCAD simulations with a deep donor defect level the measured leakage current density

and Vfd were reproduced. Compared to the preliminary estimation from the DLTS

measurements, the three orders higher effective capture cross section of the tuned

donor level needed for the simulation could be interpreted as an indication of another

deeper level not seen in the investigated DLTS temperature range. That is, if only

one defect level is implemented in the simulation, a higher concentration and cross

section values are required to compensate the absence of the possible additional deep

level in the real GaAs epi-layer.
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5.2 Practical implications

Improvement in the accuracy of the defect model to reproduce measured results

will inevitably also lead to increased predictive power. The ability to make reliable

predictions of detector performance evolution with accumulating fluence is an essential

element in the R&D of radiation hard detectors. The Sentaurus TCAD defect model

presented in the course of this thesis produces a comprehensive set of measurement-

calibrated detector properties (Vfd, Ileak, E(depth), CCE, Rint, CCE(x), Cint) in

both surface and bulk that govern the charge collection and resolution of a strip

detector irradiated to HL-LHC fluences.

The electric field distributions in the thin p-on-p pixel sensor show that, after full

depletion is reached, the field maximum is at the pixel edges, due to geometrical effect

seen on all segmented devices. Since the pn-junction in the p-on-p device is at the

non-segmented side, the electric field peaks at the pixels and the backplane lead to

a low full depletion voltage of the bulk. When the pn-junction is at the pixel side

as in the p-on-n sensor, the resulting Vfd is higher than in a non-segmented device

due to the lateral expansion of the electric field that slows the extension towards the

backplane.

The interpixel resistance simulations in the two sensor types displayed identical

behaviour after full depletion. Also, the difference in the simulated breakdown voltages

of the two sensors was negligible. Hence, the location of the pn-junction at the non-

segmented side in the p-on-p detector does not result in any significant advantage in

this regard.

Thus, the measurements and the simulation study of the thin p-on-p pixel detector

displayed equal electrical and charge collection performance to the more typical p-on-n

active edge pixel detector at voltages above ∼80 V. Since the sensors at the LHC

experiments are operated at over-depleted mode to maximize the carrier velocities,

the p-on-p sensors could offer a cost effective alternative to the current p-on-n sensors

at the outer layers with lower fluences in the foreseen upgrades without compromising

charge collection properties or resolution while providing more stable operation due to

the absence of the type inversion.

The close reproduction of the C-V/I-V and TCT measurements of the epitaxial

GaAs pin-diode radiation detectors by TCAD simulations displayed that the effective

semiconductor device modeling can be extended beyond silicon material. The possibility

to tune the properties of the modeled GaAs device by inserting experimentally observed

microscopic defects to the simulation as well as the ability to reproduce the transient



5.3. RELIABILITY AND VALIDITY 57

signal behavior characteristic to GaAs has a potential for high accuracy studies. This

could be exploited en masse in the field for accelerated and cost effective R&D of the

GaAs radiation detectors.

5.3 Reliability and validity

The baseline for all simulations conducted in the course of this research was to validate

the results at every step with respect to experimental data.

Detailed simulations with non-irradiated sensors and diodes have proven that the

implemented device design can reproduce the observed measurement results. Charge

carrier lifetimes and doping profiles of the simulation devices have been iterated and

adapted in the studies conducted by the CMS Device Simulations workgroup [57, 88].

This can be considered as a basic requirement before radiation-induced defects can be

implemented to the simulation.

Simulation results obtained by the Silvaco Atlas and Synopsys Sentaurus TCAD

defect models for bulk and surface damage have also been cross-checked whenever

possible. So far it has been established that both approaches, Nit confined to the

Si/SiO2 interface and having a wider depth distribution, provide the expected strip

isolation as well as similar electric field profiles between the strips at high proton

fluences and hence, at high values of Qf. However, at this time no Silvaco Atlas model

produced Cint or CCE(x) results have emerged preventing the full comparison and

validation of the approaches.

5.4 Recommendations for further research

For more complete modeling of the CCE(x), test beam measured charge collection

data of varying pitches of both strip and pixel detectors as well as higher number of

fluence points will be required. Future efforts of the defect model developments also

include further calibration with the measured edge-TCT data that enables the tuning

of the simulated E(z) profile with increased precision.

The ultimate objective of the CCE(Φ) simulations is to stretch the defect models

up to ∼2 × 1016 neqcm−2 to account for the fluences of the pixel and 3D columnar

detectors positioned closest to the vertex at the HL-LHC.

Furthermore, an effort should be made to find a way to tune the standard parameter

sets of the Synopsys Sentaurus and Silvaco Atlas packages to produce converging results
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of the basic sensor properties. This would lead to a more complete understanding and

control over the simulation process.

Even though the 3D-structures are the way to accurately model a real device,

the time budget and CPU memory requirements are substantial compared to the

2D-simulations. The parallelization option in the Sentaurus framework enables the

distribution of the computing tasks within one node between the available processors

in the system. In a typical parameter scan the number of nodes in the simulation can

be 10–20 while the simulation of a single node for a 3D-structure as in figure 4.4a

can take several days in a standard 32 GB tabletop. Therefore, the grid computing

option, where the different nodes would be distributed between several PCs, should

be investigated for the effective parameter space study of the pixel and 3D columnar

detectors.
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Appendix A

Simulation process in Sentaurus
TCAD

The Synopsys Sentaurus simulation framework utilizes the standard finite element

analysis (FEA) scheme of creating a mesh-like grid structure and then solving equations

at each mesh point to calculate physical properties.

The equations include Poisson’s equation, the current continuity equation and the

energy-balance equation for holes and electrons. The recombination and generation

models implemented in the packages use concentration and lifetime dependent Shockley-

Read-Hall (SRH), Auger and radiative recombination models, as well as concentration

and field dependent mobility models. The simulation packages enable the additional

generation of charge carriers via the impact ionization, as described by van Overstraeten–

de Man [94]. These models are used directly in the solution of the device equation in

a self-consistent manner.

Calculations are performed through a discretization process that yields the rela-

tionship between variables defined at triangular-shaped grid points. High solution

accuracy requires a fine grid that resolves the structure, whereas numerical efficiency is

greater when fewer grid points are used. Specifying an optimal grid is an essential part

of the device simulation and typically there is a trade-off between the requirements of

accuracy and numerical efficiency.

These techniques solve non-linear algebraic systems using an iterative procedure

that refines successive estimates of the solution. The non-linear iteration procedure

starts from an initial guess and the iterations continue until the corrections are small

enough to satisfy convergence criteria, or until a specified number of iterations have

been completed.

The simulated devices are described within the simulation packages defining different
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components, volumes, layers and electrodes reproducing the actual device design, and

assigning physical and electrical properties to each component. Reflecting Neumann

boundary conditions are imposed at the outer edges of the structure enabling a more

detailed mesh-like grid definition in a smaller volume.

At the guard ring electrodes of a microstrip device current boundary conditions are

imposed. By enforcing a condition of zero current during the solution of the equations

these electrodes are kept floating. The ohmic contacts at the main p+ or n+ strip

and backside contacts are implemented using Dirichlet boundary conditions. The

boundary conditions are described in detail in [57]. An example configuration and a

list of physical models used in Synopsys Sentaurus TCAD are given in the Appendix

of the reference [57].
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[77] S. Väyrynen, Irradiation of Silicon Particle Detectors with MeV-Protons, Ph.D.

thesis, University of Helsinki, Department of Physics (May 2010).

[78] G. Kramberger, V. Cindro, I. Mandić, M. Mikuž, M. Milovanović, M. Zavrtanik,
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