
Three Equivalent Codes for Autosegmental Representations

Anssi Yli-Jyrä
Department of Modern Languages, University of Helsinki, Finland

anssi.yli-jyra@helsinki.fi

Abstract
A string encoding for a subclass of bipartite
graphs enables graph rewriting used in au-
tosegmental descriptions of tone phonology
via existing and highly optimized finite-
state transducer toolkits (Yli-Jyrä 2013).
The current work offers a rigorous treat-
ment of this code-theoretic approach, gen-
eralizing the methodology to all bipartite
graphs having no crossing edges and un-
ordered nodes. We present three bijec-
tively related codes each of which exhibit
unique characteristics while preserving the
freedom to violate or express the OCP con-
straint. The codes are infinite, finite-state
representable and optimal (efficiently com-
putable, invertible, locally iconic, composi-
tional) in the sense of Kornai (1995). They
extend the encoding approach with visual-
ization, generality and flexibility and they
make encoded graphs a strong candidate
when the formal semantics of autosegmen-
tal phonology or non-crossing alignment
relations are implemented within the con-
fines of regular grammar.

1 Introduction
1.1 Autosegmental Phonology
Historically, Autosegmental Phonology (Gold-
smith, 1976) helped to articulate the independence
of the melody, the decomposition of contour tones
as level tones and the Obligatory Contour Principle
(OCP) that bans adjacent copies of phonological
units. Its multi-tiered design was also a crucial step
towards more complex phonological theories such
as Feature Geometry (Clements, 1985), Optimal
Domains Theory (Cassimjee and Kisseberth, 1998)
and Autosegmental-Metrical Theory (Ladd, 2008).
Moreover, autosegmental representations are time-
lessly interesting formal objects as they are similar
to certain alignment relations arising in statistical
machine translation.

Autosegmental Phonology continues to play an
appreciated role in language documentation efforts
for under-resourced languages. In particular, de-
scribing Bantu tone is extremely complex (Nurse

and Philippson, 2003) as the lexical, morphologi-
cal, phonological and syntactic dimensions of each
language are intertwined in unique ways although
there are tonological characteristics shared across
the Bantu family. Many prior accounts have re-
lied on autosegmental rules while constraint-based
approaches sometimes offer an equivalent solution
only too painfully via varying constraint rank-
ings. After all, languages with a young or de-
veloping orthography urgently need lexical trans-
ducers (Beesley and Karttunen, 2003) and, es-
pecially, tonologically enriched lexical transducers
(Hurskainen, 2009; Muhirwe, 2010) that can be
used to improve speech applications and various
text normalization tools. It is, therefore, desirable
that tone processing is incorporated into existing
and highly optimized finite-state toolkits and lex-
ical databases that have been primarily designed
for segmental phonology and morphology.

According to Autosegmental Phonology, phono-
logical tone is not a feature inside a phonemic seg-
ment, but rather a segment in its own right – thus
an autosegment. The phonological representation
consists of aligned tiers of strings: the autosegmen-
tal tonemes lying in one tier are associated with
segmental phonemes in the other tier. For clar-
ity, we naively discard the actual phonological and
metrical values of tone bearing units (TBUs) in
the segmental tier. A possible way to associate
the tone string HLHLH with the segmental string
VVVVVV is given by the autosegmental representa-
tion

H

V

L

∅

∅

V V

H L

V V

H

V

. (1)

The notion of autosegments formalizes five im-
portant characteristics (Yip, 2002) of the tone-
segment relationship:

1. “mobility”: The alignment between tones
and segments is mutable.

2. “stability of tone”: A tone can be tem-
porarily unattached to a segment.

3. “toneless segments”: A segment can be
temporarily unattached to a tone.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/33739238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

4. “one-to-many”: A tone can be associated
with multiple segments.

5. “many-to-one”: Many tones can be associ-
ated with a single segment.

Until recently, autosegmental processing ap-
peared to require advanced computational repre-
sentations and a graph rewriting system. Conse-
quently, the lack of a usable finite-state implemen-
tations has remained as a bottleneck.

1.2 Prior Computational Approaches
A few computational implementation approaches
for autosegmental representation have been pro-
posed. For example, there are software systems
such as the Delta programming language (Hertz,
1990), AMAR (Albro, 1994) and Tone Pars (Black,
1997). These systems do not explicitly rely on
automata, but there are other computational ap-
proaches that are clearly related to finite automata
and transducers:

1. OCP-bound finite-state approaches (Bird and
Klein, 1990; Bird and Ellison, 1994; Bird,
1995; Carson-Berndsen, 1998; Jardine, 2013)
hardwire the Obligatory Contour Principle
into their mathematical formalization of au-
tosegments. The principle was originally mo-
tivated by Leben (1973), but its status as a
universal constraint has been under scrutiny
ever since (see McCarthy 1986).

2. OCP-neutral finite-state approaches (Kor-
nai, 1995; Wiebe, 1992; Yli-Jyrä, 2013) see
that the OCP is sometimes violated unless
not maintained by the rules (Odden, 1986).
OCP-neutral approaches have been advocated
(Goldsmith, 1976; Odden, 1986; Prince and
Smolensky, 2004) and it is sometimes assumed
by field linguistic descriptions (Halme, 2004).

Both approaches have their merits. Since our in-
terest is in extending the capacity of generic finite-
state toolkits towards tonology rather than to de-
velop a principled phonological theory, the OCP-
neutral approach is now preferred.

The main prior contributions towards the im-
plementation of the OCP-neutral approach can be
summarized as follows:

• Wiebe (1992) and Kornai (1995) model au-
tosegmental representations via multi-tape
automata and the corresponding codes.

• Yli-Jyrä (2013) adopts some simplifying as-
sumptions and then models the representa-
tions as bracketed strings.

The bracket encoding of Yli-Jyrä (2013) is practi-
cally implemented and compatible with the stan-
dard technology for building lexical transducers.

Unfortunately, it supports only a particular subset
of all two-tiered autosegmental representations.

1.3 The Limits of the Prior Work
In the bracket-based encoding of Yli-Jyrä (2013),
the edge of each tone is indicated with a corre-
sponding bracket. For example, the representation
(1) reduces to string [V]()V[V)[VVV]. When we
replace symbols ()[] with HHLL, respectively,
this string reduces to HVHLLVHVLHVVVH.

It is not difficult to see that the encoding scheme
has some limitations that prompt further research:

• The approach is not expressed and analyzed
in terms of coding theory. Therefore, the issue
of existence of a compositional coding function
(Kornai, 1995) was not properly addressed.

• The encoding does not capture some tone
configurations of autosegmental bipartite
graphs: complex contour tones, skipping
of unlinked vertices and zigzag chaining:

V

H L H

V V

H

V

H

V

L

V .
• Associations and respective changes must be

hand-encoded, while the original formalism
(Goldsmith, 1976) is graphical and it indicates
insertions (...) and removals (ǂ) intuitively by
graphical signs such as:

V V

HH L

.
In the encoding, there is also a limitation that

is mainly useful. Namely, the encoding does not
equate the autosegmental representations

H

∅

∅

V

and
∅

V

H

∅

.

Instead, the order of unlinked elements is meaning-
ful: HHV ̸= VHH. This property that we now call
Inertia means that the order of isolated vertices
is fixed by the way in which they are concatenated
and changed only by force: via rewriting. As the
shuffling of floating tones and toneless segments is
now delegated to the rules, the OCP-neutral repre-
sentations are fully linearizable although the repre-
sentations discussed by Wiebe (1992) and Kornai
(1995) are not.

1.4 The Results of This Paper
This paper sticks to two-tiered autosegmental rep-
resentations since they can be used to build more
complex multi-tier representations. However, our
approach is more closely tied to the coding theory
(Berstel et al., 2010) in order to get formal results
that are fundamental to a practical finite-state im-
plementation such as Yli-Jyrä (2013).

The first consequence (Section 3) of this ap-
proach is that there is an optimal coding func-
tion (Kornai, 1995) for inertial autosegmental
graphs that are generated by an appropriately de-
fined infinite source “alphabet”.

The second major result is that a serial code with
an optimal coding function can also be visually at-
tractive (Section 4). Our visual code is easy to
read and write. This is handy as no separate visu-
alization step is required to make the code human
readable.

The third major result is that the previously pre-
sented bracket encoding extends to all non-crossing
link configurations via the symmetric bracket
code that supports complex contours, skipping
and chaining (Section 5).

We will also see that the visual code and the
symmetric bracket code are bijectively related via
a Polish code that is a simple, computationally
motivated code (Section 6).

2 Definitions
2.1 Autosegmental Graphs
Different axiomatizations for autosegmental
graphs have been proposed since Goldsmith
(1976). In particular, the Non-Crossing Con-
straint (NCC) is a common assumption in
autosegmental theory, although it has been con-
tested in prosodic morphology (Bagemihl, 1989;
McCarthy and Prince, 1996).

For us, the tone-segment associations are for-
malized as bipartite graphs whose vertices are
(auto)segments. The sets of vertices are ordered in
each graph since they correspond to tonal and seg-
mental strings. In addition, the associating edges
between them are ordered due to the NCC. The
vertices without incident edges are called isolates
and they are ordered due to the Inertia property
that was implicit already in Yli-Jyrä (2013) but is
now formalized for the first time.
Definition 1. An autosegmental graph is

• a bipartite graph G = (T ∪ V,E,≤T ,≤V ,≤E)
with vertices T ∪ V and undirected edges E ⊆
T × V ,

• with total order ≤T for T and ≤V for V ,

• with total order ≤E of edges E satisfying
(v, v′) ≤ (u, u′) ↔ v ≤ u ∧ v′ ≤ u′ for all
(v, v′), (u, u′) ∈ E.

If there is a total order ≤I over (T ∪ V) − {e |
(e, f) ∈ E}, G = (T ∪ V,E,≤T,≤V,≤E ,≤I) is an
autosegmental graph with Inertia.

Concatenation of disjoint a.s. graphs is defined
by extending the ≤-relations in a natural way, by
concatenating the ordered sets of tones, vowels,
edges and isolates.

2.2 Coding Functions
Kornai (1995) has formalized computational imple-
mentation of autosegmental graphs as a problem of
finding a coding function β such that for any au-
tosegmental graph G (called a bistring by Kornai),
its image β(G) is a string over a finite alphabet A.

There are infinitely many possible coding func-
tions, but Kornai narrows the task with four prop-
erties characterizing an optimal coding function β̂:

1. β̂ is computable e.g. by a Turing Machine;
ideally, the computation is carried out in real
time, e.g. with a finite state transducer.

2. β̂ is invertible i.e. at least injective; ideally,
this means that function β̂ is even bijective.

3. β̂ is iconic i.e. analogical rather than cryptic;
ideally, a local change in G corresponds to a
local change in β̂(G).

4. β̂ is compositional i.e. it is a mor-
phism that respects concatenation: β̂(GG′) =

β̂(G)β̂(G′).1

It is impossible to construct an ideal coding func-
tion for autosegmental graphs in general (Kornai,
1995). The lack of compositionality holds even
when these graphs are edgeless (Wiebe, 1992).
This relates to the fact that the Cartesian prod-
uct A∗×B∗ is not equidivisible and thus not a free
monoid (Sakarovitch, 2009).

2.3 Towards a Monoid Morphism
Although there is no compositional coding function
for all autosegmental graphs (Wiebe, 1992), we will
now exploit coding theory (Berstel et al., 2010) to
find a class of autosegmental graphs for which a
compositional coding function exists.

Let A be an alphabet. A subset X ⊆ A∗ is
a code over A if every word w ∈ X∗ is written
uniquely as a product of words in X. In other
words, for x1, . . . , xn, y1 . . . ym ∈ X, the condition
x1 . . . xn = y1 . . . ym implies n = m and xi = yi for
all l i ∈ {1, .., n}.

Observe that if the concatenation does not add
any new edges to disjoint graphs under the oper-
ation, there must be a separate code element for
every connected graph. Since the set of connected
graphs is infinite, a block code is not possible, but
the code must be infinite. In addition, possible iso-
lates intervening any pair of nodes of a connected
component must be coded along with the compo-
nent.

An infinite code is perfectly normal notion (Bers-
tel et al., 2010) although it requires more than a

1Beware the terminology: a coding function β can
be compositional (Kornai, 1995) without being com-
posable (Berstel et al., 2010).

finite table (for example, a graph serialization algo-
rithm). For example, the maximal semaphore code
X = A∗S − A∗SA+ for a semaphore set S ⊆ A+

is infinite at least when S ⊂ A. Furthermore, any
infinite or finite subset of some infinite code is also
a code and can be sufficient when the source text is
limited — e.g., a finite data set or a specific natural
language.

A morphism β : H∗ → A∗ from a monoid
(H∗, ·, ϵ) into a monoid (A∗, ·, ϵ) is a coding mor-
phism for a code X ⊆ A∗ if

1. β is injective and, thus, preserves the distinc-
tiveness of the elements of H, and

2. X = β(H), i.e., every code word corresponds
to a letter in H (Berstel et al., 2010).

Theorem 1. Let β : H∗ → A∗ be a coding mor-
phism for a code X ⊆ A∗. Then β is an invertible
and compositional coding function (Kornai, 1995).

Proof. Every morphism is compositional since the
condition β(hh′) = β(h)β(h′) for all h, h′ ∈ H∗ is
a part of the definition of morphisms. Moreover,
invertibility follows from the definition of a coding
morphism.

2.4 The Approach
Our current code theoretic approach can be sum-
marized as follows:

1. No free floating. Since the graphs must cor-
respond to uniquely tokenizable code words,
we will restrict ourselves to the autosegmen-
tal graphs with Inertia.

2. Infinite source alphabet and code. Theo-
rem 1 and the previous negative results guide
us to reject the prior assumption about a fi-
nite code (Kornai, 1995) and look for an in-
finite code X and an infinite source alpha-
bet H consisting of certain kinds of graphs.
The resulting approach differs vastly from ap-
proaches that enforce a finite source alphabet
and the OCP (e.g. Bird and Ellison 1994).

3. Finite channel alphabet. Defining mor-
phisms from an infinitely generated monoid
may seem scary, as formal languages are usu-
ally subsets of finitely generated free monoids.
However, after the graphs are encoded by a
code X∗ that is subset of a finitely generated
monoid A∗, they can be manipulated via finite
state relations over subsets of A∗.

3 Codability of Graphs
We will now choose a source alphabet H in such a
way that it generates a free monoid (H∗, ·, ϵ) and
coincides with our autosegmental graphs.

3.1 Non-trivial Connected Components
Theorem 2. All connected components of autoseg-
mental graphs are trees.

Proof. Assume that there is a connected autoseg-
mental graph that is not a tree. Such a bipartite
graph must contain a cycle that involves at least
four vertices and there is a crossing edge; contra-
diction.

Define the relation ≤S over connected compo-
nents C and C ′ of a graph G in such a way that
C ≤S C ′ if C = C ′ or every edge in C is be-
fore every edge in C ′. The relation ≤S is reflexive,
transitive and antisymmetric, thus a partial order.
Theorem 3. The ≤S-order of nontrivial (contain-
ing at least two vertices) connected components of
an autosegmental graph is a total order.

Proof. Let C and C ′ be nontrivial connected com-
ponents for which C ̸≤S C ′ and C ′ ̸≤S C. Then
there are distinct edges (s, s′), (t, t′) ∈ C, (u, u′) ∈
C ′ or edges (s, s′), (t, t′) ∈ C ′, (u, u′) ∈ C such that
(s, s′) <E (u, u′) <E (t, t′). Since vertices s and t
are connected and there are no crossing edges, they
are connected to vertices u and u′. This means,
however, that C = C ′; contradiction. Thus, the
order ≤S is total.

3.2 Embracements
An isolate vertex y is embraced by a connected
component C if C contains vertices x and z such
that x ≤T y ≤T z or x ≤V y ≤V z. We extend ev-
ery connected component C of an autosegmental
graph into a subgraph C ′ called an embracement
by adding to C ′ all isolates embraced by C.
Corollary 1. Every autosegmental graph consists
of a totally ordered set of embracements.

Thus, we obtain a complete set of generators for
all autosegmental graphs by expanding the con-
nected components with embraced isolates. This
infinite set of generators H is such that an optimal
coding function β̂ : H∗ → A∗ is possible.

4 New Codes for the Graphs
4.1 The Visual Code
The visual code is defined over the alphabet

A ={(/V), (\ T), (|VT), (-V), (.V),

(- T), (° T)}

=

{
/
V
,
T
\ ,

T
|
V
, -
V
, .
V
,
T
- ,

T
°

}
.

The idea is that autosegmental graphs such as

V

T T T

V V

T

V

∅

V

T

V

T

V

T

∅

(2)

are encoded as visually similar strings:
T
\
T
\
T
|
V

/
V
-
V

T
|
V

.
V

T
\ /
V

T
|
V

T
° .

The code is infinite and has a value for every
possible embracement. The code word for each
embracement ends with one of the semaphores
S = {(.V), (° T), (|VT)}. Corresponding to this,
we designate one of the rightmost vertices as the
root for any non-trivial tree in the embracement.
The code word for an embracement is constructed
leftwards from this vertex as explained in Table 1.
The resulting set of code words is given by regular
expression2

X =

{
.
V

∪ T
°

} ∪ {
/
V

-
V

∗ ∪ T
\

T
-
∗}∗

T
|
V
.

This set is recognized by the automaton in Fig. 1.

0

1(°T) (∅V)

2

ε

(|VT)

3
(/ V)

4

(\ T)
ε

(-V)

ε
(- T)

Figure 1: Recognizer for the visual code

Theorem 4. The language X is a code.

Proof. The set X is a subset of the maximal
semaphore code A∗S − A∗SA+ with semaphores
S. Thus, X is a code.

4.2 The Symmetric Bracket Code
The alphabet of the symmetric bracket code is
B = {[,],V,V, °}. As the vowels and tones re-
duce to paired symbols i.e. brackets, both vertex
types are treated symmetrically as autosegments.
For example, (2) is encoded with the symmetric
bracket code as

V[][][V] V[VV°VVV] VV V[][VVV] [].

The code word for each embracement ends with a
closing tone bracket (]) or a closing vowel bracket
(V). The code word for an embracement is con-
structed as explained in Table 2. The resulting set
of code words is

Z =

{
VV

∪
[]

} ∪
V[

{
]
{
[°]

}∗

[
∪

V
{
V°V

}∗

V
}∗

V].

2Here the regular expression operators are: concate-
nation, union (∪), star (∗), kleene plus (”+”), differ-
ence (−), and grouping ({}).

Table 1: Encoding a graph with the visual code

.
V
,
T
°

Non-embraced isolated vertices are indicated
by respective symbols that are ordered ac-
cording to the order of the isolates.

T
|
V

The rightmost edge of each non-trivial tree is in-
dicated by a bar.

/
V
· · · /

V

T
|
V

Additional vowels can be linked to the
tone of the rightmost vertice (the natural
limit is, however, three tones).

T
\ · · ·

T
\
T
|
V

Additional tones can be linked to the
vowel of the rightmost vertice.

T
\ · · ·

T
\ /
V

shared vertex↑

· · · /
V

T
|
V

Any shared vertex starts a
new subtree.

· · · /
V

T
\ · · ·

T
\ /
V
· · · /

V

T
\ · · ·

There is no limit for the
depth of chained sub-
trees.

/
V
-
V

T
|
V

T
\
T
-
T
|
V

Embraced isolates are indicated
with a dash.

Theorem 5. The language Z is a code.

Proof. The finite automaton in Figure 2 recognizes
the language Z. Although the drawn automaton is
not deterministic, it is easy to verify that it recog-
nizes a prefix-free stringset — thus a code (Berstel
et al., 2010).

0

1V̅
2V̅V, []

3[

4

]

5

V

[

[°]

] V̅

6
V̅°V

V̅

V̅°V

Figure 2: Recognizer for the bracket code

4.3 The Polish Code
The reverse Polish notation due to Jan Łukasiewicz
(Hamblin, 1962) is a parenthesis/bracket-free no-
tation for mathematical expressions. In this nota-
tion, every operator follows all its operands. The
notation can be generalized to cases where every
operand is operated twice.

Our Polish code is defined over the alphabet D =
{|,°,V,T}. For example, (2) is encoded as

|T|T|VT |V°V|VT V |T|V|VT T. (3)

Every edge (|) acts twice as an operand: for two
kinds of variadic operators, a tone (T) and a vowel
(V). One of these operators must be applied im-
mediately to each edge, but the other operator is
later applied to all edges that have not been op-
erated on. If an operator would otherwise have

Table 2: Encoding with the bracket code

[] =
T
° , VV = .

V

Non-embraced isolates
correspond to simple
brackets.

V[V] =
T
|
V

A one-edge tree is indicated with
tone brackets that overlap with seg-
ment brackets.

V[VVV· · ·VV] Additional vowels can be linked to
a tone after the first vowel.

V[]· · ·[][V] Additional tones can be linked to a
vowel before the last tone.

V[VVV· · ·︸ ︷︷ ︸
gr.dtr’s tree

daughter’s tree︷ ︸︸ ︷
V][]· · · [VV· · ·V]︸ ︷︷ ︸

topmost tree

Chained trees
share vertices via
interlocking.

· · · V[VV]· · ·[VV][V· · ·] There is no limit for
the depth of chains.

V[VV°VVV]
V[][°][V]

Embraced isolates are indicated
with a small circle.

some operands available, it can be forced to ap-
ply to no operands (edges) through a °-prefix. In
order to avoid spurious ambiguity, sequences |VT,
|VT· · ·T, |VTV· · ·V are equated with their non-
normalized equivalents |TV, |T· · ·TV, |VV· · ·VT
that will be excluded from the code. The code
word for an embracement is constructed as ex-
plained in Table 3. The resulting set of code words
is

Y = |
{
V
{
°V

}∗

|
∪

T
{
°T

}∗

|
}∗

VT
∪{

V,T
}
.

These code words are recognized by the finite au-
tomaton in Figure 3.

0

1
|

2T V

3

T

4

V

|

°T

| T

5
°V

|

°V

Figure 3: Recognizer for the Polish code

Theorem 6. The language Y is a code.

Proof. The language Y is a prefix code, thus, a
code: Y ∩ Y D+ = ∅ (Berstel et al., 2010).

5 Equivalences
In this section, we show that the autosegmental
graphs with Inertia have linear time coding func-
tions to the three codes presented above. In ad-
dition, we show that the bijections between the
codes are finite-state computable. This results into
equivalences in Figure 4.

Table 3: Encoding a graph with the Polish code

T, V Non-embraced isolates are nullary operators.

|VT A one-edge tree consists of an edge and two
vertices.

|V· · ·|V|VT Additional vowels can be linked.
|T· · ·|T|VT Additional tones can be linked.
|T|V|V|T|T|V|VT Trees can be chained.
|V°V|VT
|T°T|VT

Embraced isolates are nullary opera-
tors.

A.s. graphs
Thm. 10 ↔ ↕ Thm. 7

↔

Thm. 10
Visual code

Cor. 2 ↔ Thm. 9

↔

Thm. 8

Polish code ←→ Bracket code

Figure 4: The equivalence results

Theorem 7. There is a linear time bijection be-
tween the visual code and the set of possible em-
bracements in autosegmental graphs.

Proof. Let G = (T ∪ V,E,≤T ,≤V ,≤E ,≤I) be an
autosegmental graph with Inertia. Compute a
partial order ≤F over T ∪ V in such a way that

y <F z if and only if ∃(y, z), (x, z) ∈ E s.t.
y <T x or y <V x

y =F z if and only if ∃(y, z) ∈ E s.t
∀(x, z), (y, v) ∈ E we have
(x, z) ≤E (y, z) and (y, z) ≤E (y, z).

Let G′ = (T ∪ V,≤T ∪ ≤V ∪ ≤I ∪ ≤F) be a di-
rected graph. If this directed graph contains cycles
they are between =F -equivalent vertices. In order
to be able to view the graph as an acyclic graph
and sort it topologically, we temporarily eliminate
each cycle by unifying the vertices in it. This re-
sults into a graph with position indexes:

V3

T1 T2 T3

V4 V5 V6

T6 ∅

V7 V9V10

T8 T10

∅

T11

For example, T3 and V3 in this graph are are viewed
as a single vertex and assigned to a single position
during the sorting procedure. Using the position
indexes of the vertices, we encode each position
with an element of the alphabet A of the visual
code. In total, the encoding is computed in deter-
ministic linear time.

Conversely, let w ∈ X∗ be a visual code string.
We construct an autosegmental graph G = (T ∪
V,E,≤T ,≤V ,≤E ,≤I) from it: The boxes are num-
bered rightward by positive integers. These num-

bers give indices to the vertices. Then we ex-
tract, from w, the edges by complementing each
partial edge with the closes missing vertex to the
right. Then the total orders ≤T ,≤V ,≤E ,≤I are
extracted in the obvious way by a finite number of
scans through the string.

For example, the visual code string
T1
\

T2
\

T3
|
V3

/
V4

.
V5

T6
|
V6

.
V7

T8
\ /

V9

T10
|
V10

T11
°

gives rise to the autosegmental graph G = (T ∪
V,E,≤T ,≤V ,≤E ,≤I) with

• the ≤T -ordered set of tone vertices T =
⟨T1,T2,T3,T6,T8,T10,T11⟩

• the ≤V -ordered set of vowel vertices V =
⟨V3,V4,V5,V6,V7,V9,V10⟩,

• the ≤E-ordered set of edges E = ⟨(T1,V3),
(T2,V3), (T3,V3), (T6,V4), (T6,V6), (T8,V9),
(T10,V9), (T10,V10)⟩,

• the ≤I -order over isolates: V5 < V7 < T11.
Theorem 8. There is a finite state bijection be-
tween the Polish code and the visual code.

Proof. Figure 5 shows a finite state
transducer mapping the language Y ∗

0

T:(° T)
V:(.V)

1
|:ε

2V:(/ V)

3

V:(|VT)

4T:(\ T)

|:ε

°V:(-V)

T:ε

|:ε

°T:(- T)

Figure 5: Y ∗ ↔ X∗

to language X∗. It
is easy to verify that
both the transducer and
its inverse are functions.
In addition, it is pos-
sible to verify mechan-
ically that the preimage
and the image of this
function are exactly Y ∗

and X∗, respectively.
Thus, it defines a bijection.

The transducer in Figure 5 is constructed with
the 2-tape regular expression3:
|:ϵ

T:(\ T) °T:(- T)∗ |:ϵ
∪

V:(/ V) °V:(-V)∗ |:ϵ

∗

V:(|VT) T:ϵ

∪
T:(° T) ∪ V:(. V)

∗

□
Theorem 9. There is a finite state bijection be-
tween the Polish code and the symmetric bracket
code.

Proof. There is a finite state transducer (Figure
6) mapping strings Y ∗ to strings Z∗. The preimage
and the image of this function are Y ∗ and Z∗, re-
spectively. It is easy to verify that both the trans-
ducer and its inverse are total functions. Thus, it
defines a bijection.

3The additional operators are: cross product (:),
and composition (◦)

0

V : V̅V
T : [] 1

| : V̅
2

ε : [

3
T :]

4V

| : ε

 °T : [°]

T :]

 | : V̅ 5°V : V̅°V

| : V̅
°V : V̅°V

Figure 6: Function Y ∗ ↔ Z∗.

The transducer in Figure 6 is constructed by the
2-tape regular expression

Y ∗ ◦

(B\{| ∪ T ∪ °}) ∪ T:[] ∪ °T:[°] ∪ °V
∪

| { ϵ:[} {B\T}∗ { T:] }

∗

◦

(B\{| ∪ V}) ∪ V:VV ∪ °V:V°V
∪{

|:V
}
{B\V}∗ {V:V}

∗

◦
{
(B\|) ∪ |:ϵ

}∗

.

that implements the following intuition: (1) start
with Y ∗; (2) add tone brackets; (3) add vowel
brackets; (4) remove the remaining |-symbols.
When these steps are applied to input string (3),
we obtain the following derivation:

|T°T|VT |V°V|VT V |T|V|VT T⇒
|[][°]|[V] |[V°V|V] V |[]|[V|V] []⇒
V[][°]|[V] V[VV°VVV] VV V[]|[VVV] []⇒
V[][°][V] V[VV°VVV] VV V[][VVV] [].

□
Corollary 2. There is a finite state bijection be-
tween the symmetric bracket code and the visual
code.
Theorem 10. The direct constructions of the sym-
metric bracket encoding and the Polish encoding
from any autosegmental graph with Inertia pro-
duces the same encoded strings as obtained indi-
rectly via the visual code.

Proof. Clearly the same set of vertices and edges
are maintained by the alternative constructions.
We only need to show that also their order rela-
tions are maintained regardless of the construction.
For the lack of space, this proof is given only intu-
itively:

• The bijection Y ∗ ↔ X∗ implemented by
transducer in Figure 5 retains the total order
of tones, vowels, edges and isolates. The same
order is respected by the construction given
intuitively in Table 3.

• The bijection Y ∗ ↔ Z∗ implemented by trans-
ducer in Figure 6 retains the total order of
tones, vowels, edges and isolates. The same
order is respected by the construction given
intuitively in Table 2.

Thus, the considered indirect encoding methods
are equivalent to the direct ones that are now given
only intuitively.

6 Concluding Remarks
6.1 The Results
The current work links the coding theory to lin-
earizations for autosegmental graphs and obtains
the following results:

• An autosegmental graph with Inertia (and
NCC) consists of segments called embrace-
ments (Corollary 1) each of which consists of
a connected component and the corresponding
≤-embraced isolates.

• There is a compositional coding function for
the infinitely generated set of inertial autoseg-
mental graphs (Thm. 1). In particular, the
coding function for the visual code is com-
putable and invertible in deterministic linear
time (Thm. 7).

• In fact, there are multiple infinite codes (Thm.
4-6) that are related via finite state bijections
(Thm. 8-9; Cor. 2) with the visual code. The
bijections are not arbitrary, but preserve the
structure of the coded graphs (Thm. 10). In
fact, all the codes presented in this paper are,
in a certain sense, iconic.

• The symmetric bracket code is a generaliza-
tion of a bracket code that has been presented
informally and applied already successfully to
finite-state compilation of tonological gram-
mar components (Yli-Jyrä, 2013).

6.2 Further Work
The current presentation has not discussed finer
distinctions between the vertexes or how to use the
codes to build actual applications. Fortunately,
some extensions and applications are almost im-
mediate by analogy with the prior similar work
(Yli-Jyrä, 2013).

• Encoded Graph Processing. The current
work contributes to processing encoded graphs
via string transducers. Previously, Yli-Jyrä
(2013) has demonstrated an approach that
manipulates regular languages consisting of
encoded autosegmental graphs using a readily
available finite-state transducer toolkit. This
application of coding theory seems to con-
tain many fresh problems. Since the encoded
graphs are strings, their languages can be
closed under such operations as union, con-
catenation, quotients, Kleene star, and differ-
ence. It would be interesting to see what else
one can do with the regular languages of en-
coded graphs.

• Adding More Vertex Types. In more elab-
orated uses of autosegmental graphs, there are
several tone types (such as H and L) and dis-
tinct vowels. In our approach, such distinc-
tions can be encoded simply by expanding the
alphabet with labeled vertexes. In the sym-
metric bracket code, we can have different sets
of brackets for different level tones.

• Adding More Segments. In addition to
labeled T and V vertices, we often need to
add other phonemic segments and lexical-
morphological features as vertices into the
graphs. The set of vowels V can be easily
extended to contain all segmental phonemes
and morphological features as isolated ver-
tices. Such additional material increases the
effect of Inertia, but does not prevent mi-
gration of floating elements under appropriate
rules.

• Adding Metrical Structure. We have
naively assumed that vowels correspond to
tone bearing units. However, there are lan-
guages where the TBUs are moras or syllables.
Extensions for such descriptions are feasible
but not elaborated in this paper.

• Adding More Edge Types. The rule for-
malism of autosegmental phonology is graph-
ical and uses graphical clues (dotted lines and
overstriking) to indicate how the rule rewrites
an autosegmental representation. Typical
rules can be visualized without separated in-
put and output graphs using fading-in edges
..., ..., ... and fading-out edges ǂ, ǂ , ǂ. Such
edges could be used in the visual code as well
as in the Polish code. For example, rules

.
V

L
|
V
→ /

V

L
|
V

and /
V

L
|
V
→ .

V

L
|
V

can be written, respectively, as

...

V

L
|
V

and ǂ
V

L
|
V
.

• Adding More Tiers. In order to capture
Feature Geometry and more elaborated multi-
tier representations, we should extend the cur-
rent codes into n-partite graphs. This exten-
sion seems feasible under a tree-shaped feature
geometry.

Acknowledgements
The work has been done under the grant #270354
of the Academy of Finland and partly during my
Clare Hall Visiting Fellowship 2013-2014 allowing
me to visit the Cambridge University. I would
like to express special thanks to Arvi Hurskainen,

Andy Black, Lotta Aunio, Francis Nolan, Miikka
Silfverberg, and Steven Bird for inspiring discus-
sions and the reviewers for many useful comments.

References
Daniel M. Albro. 1994. Amar: a computational

model of Autosegmental Phonology. Ph.D. the-
sis, Massachusetts Institute of Technology.

Bruce Bagemihl. 1989. The crossing constraint
and ’backwards languages’. Natural Language &
Linguistic Theory, 7(4):pp. 481–549.

Kenneth R. Beesley and Lauri Karttunen. 2003.
Finite State Morphology. CSLI Studies in Com-
putational Linguistics. CSLI Publications.

Jean Berstel, Dominique Perrin, and Christophe
Reutenauer. 2010. Codes and Automata, vol-
ume 129 of Encyclopedia of Mathematics and Its
Applications. Cambridge University Press.

Steven Bird and T. Mark Ellison. 1994. One-level
phonology: autosegmental representations and
rules as finite automata. Computational Lin-
guistics, 20(1).

Steven Bird and Ewan Klein. 1990. Phonological
events. Journal of Linguistics, 26:33–56.

Steven Bird. 1995. Computational Phonology.
A constraint-based approach. Studies in Natu-
ral Language Processing. Cambridge University
Press.

H. Andrew Black. 1997. TonePars: A compu-
tational tool for exloring autosegmental tonol-
ogy. SIL Electronic Working Papers 1997-007,
December 1997. Summer Institute of Linguistics.

Julie Carson-Berndsen. 1998. Time Map Phonol-
ogy: Finite State Models and Event Logics in
Speech Recognition. Kluwer Academic Publish-
ers, Dordrecht.

Farida Cassimjee and Charles W. Kisseberth.
1998. Optimal domains theory and Bantu
tonology: A case study from Isixhosa and
Shingazidja. In L. Hyman and C. Kisseberth,
editors, Theoretical Aspects of Bantu Tone.
CSLI, Stanford.

George. N. Clements. 1985. The geometry
of phonological features. Phonology Yearbook,
2:225–252.

John Goldsmith. 1976. Autosegmental Phonology.
Ph.D. thesis, MIT.

Riikka Halme. 2004. A tonal grammar of
Kwanyama. Rüdiger Köppe Verlag, Köln.

Charles L. Hamblin. 1962. Translation to and from
Polish notation. Computer Journal, 5:210–213.

Susan Hertz. 1990. The Delta programming lan-
guage: an integrated approach to non-linear
phonology, phonetics and speech synthesis. In
J. Kingston and M. Beckman, editors, Papers in
Laboratory Phonology 1. Cambridge University
Press.

Arvi Hurskainen. 2009. Enriching text with tone
marks: An application to Kinyarwanda lan-
guage. Technical Reports in Language Technol-
ogy 4, University of Helsinki.

Adam Jardine. 2013. Logic and the generative
power of autosegmental phonology. In Proceed-
ings of Phonology 2013.

András Kornai. 1995. Formal Phonology. Garland
Publishing, New York.

D. Robert Ladd. 2008. Intonational Phonology.
Cambridge Studies in Linguistics. Cambridge
University Press.

William Leben. 1973. Suprasegmental phonology.
Ph.D. thesis, MIT. Published by Garland Pub-
lishing, New York, 1980.

John J. McCarthy and Alan Prince. 1996.
Prosodic Morphology 1986. Number 13 in Lin-
guistics Department Faculty Publication Series.
University of Massachusetts - Amherst, MA.

John J. McCarthy. 1986. OCP effects: Gemi-
nation and antigemination. Linguistic Inquiry,
17:207–263.

Jackson Muhirwe. 2010. Morphological analysis of
tone marked Kinyarwanda text. In Finite-State
Methods and Natural Language Processing, vol-
ume 6062 of Lecture Notes in Computer Science,
pages 48–55. Springer Berlin Heidelberg.

Derek Nurse and Gérard Philippson. 2003. The
Bantu Languages. Routledge, New York.

David Odden. 1986. On the role of the Obliga-
tory Contour Principle in phonological theory.
Language, 62:353–383.

Alan Prince and Paul Smolensky. 2004. Optimal-
ity Theory: Constraint Interaction in Genera-
tive Grammar. Blackwell Publishing.

Jacques Sakarovitch. 2009. Elements of Automata
Theory. Cambridge University Press.

Bruce Wiebe. 1992. Modelling autosegmental
phonology with multitape finite state transduc-
ers. Master’s thesis, Simon Fraser University.

Moira Yip. 2002. Tone. Cambridge Studies in
Linguistics. Cambridge University Press.

Anssi Yli-Jyrä. 2013. On finite-state tonology with
autosegmental representations. In Proceedings
of the 11th FSMNLP, pages 90–98, St. Andrews,
UK. Association for Computational Linguistics.

