
Using HFST–Helsinki Finite-State Technology
for Recognizing Semantic Frames

Krister Lindén. Sam Hardwick, Miikka Silfverberg, Erik Axelson

University of Helsinki
{krister.linden, sam.hardwick, miikka.silfverberg,

erik.axelson}@helsinki.fi

Abstract. To recognize semantic frames in languages with a rich morphology,
we need computational morphology. In this paper, we look at one particular
framework, HFST–Helsinki Finite-State Technology, and how to use it for rec-
ognizing semantic frames in context. HFST enables tokenization, morphological
analysis, tagging and frame annotation in one single framework.

Introduction

Language technology enables text mining, e.g. by recognizing semantic frames. In this
paper we will look at one particular framework, HFST–Helsinki Finite-State Technol-
ogy, and its use in processing text from tokenization to recognizing semantic frames in
context.

HFST–Helsinki Finite Technology is a framework for building morphologies in-
cluding morphological lexicons [13], [14], [15]. We present how HFST identifies se-
mantic frames in context. To do so, we first present how HFST supports building to-
kenizers and taggers, which is the minimum requirement for recognizing semantic
frames in languages with a rich morphology. In Section 1, we get an overview of the
HFST p-match syntax and some examples of how to develop a tokenizer based on
a lexicon containing multi-word expressions. In Section 2, we get an introduction to
building morphological taggers with HFST using machine learning. In Section 3, we
get an introduction to semantic frame recognition with HFST. In Section 4, we get a
brief evaluation of developing a rule set for semantic frame annotation. In Section 5,
we discuss our results compared with other approaches to semantic frame annotation.
In Section 6, we conclude the presentation.

1 Tokenization using hfst-pmatch

Tokenization is a necessary first step in most text-based natural language processing
tasks. For some languages, e.g. English, it is often considered to be a mechanical pre-
processing task without linguistic importance, and for others, e.g. Chinese, it is an intri-
cate task called segmentation. However, even in languages that generally insert spaces
between words, there are issues that influence the quality or feasibility of tools down
the pipeline. We may, for example, want to be able to identify multi-word units, identify

2

compound words and mark their internal boundaries, control various dimensions of nor-
malization, or produce possible part-of-speech tags or deeper morphological analyses.
We describe a general approach to these issues based on morphological transducers,
regular expressions and the pattern matching operation pmatch [10].

1.1 A Short Introduction to pmatch

pmatch [13] is a pattern-matching operation for text based on regular expressions. In
HFST, it has been further developed from the ideas in Xerox fst. The regular expres-
sions, i.e. rules, are named, and are invoked ultimately by a root expression , i.e. the top
level, which by convention has the name TOP. Expressions may refer to themselves or
each other circularly by special arcs which are interpreted at runtime, allowing context-
free grammars to be expressed.

Matching operates in a loop, accepting the largest possible amount of input from
the current position, possibly modifying it according to the rules and tagging left and
right boundaries of sub-rules, and continuing on the the next position in the input.
When the rules successfully accept (and possibly transform) some length of input, that
is a match. When the match has triggered the operation of a tagging directive, e.g.
EndTag(TagName) or [].t(TagName), the enclosed length of the input is tagged with
TagName. For example, here is a very naïve tokenizer for English

define TOP [[("’") Alpha+] | Sigma({,.;!?})]] EndTag(w);

where Sigma() is a function that extracts the alphabet of its argument, which in this
case is some punctuation marks given as a string denoted by curly braces. When op-
erated on the sentence “If I am out of my mind, it’s all right with me, thought Moses
Herzog.”, it produces output that looks like this

<w>If</w> <w>I</w> <w>am</w> <w>out</w> <w>of</w> <w>my</w>
<w>mind</w> <w>,</w> <w>it</w> <w>’s</w> <w>all</w> <w>right</w>
<w>with</w> <w>me</w><w>,</w> <w>thought</w> <w>Moses</w>
<w>Herzog</w> <w>.</w>

in normal matching mode. The runtime operation of matching can be controlled to only
output the matched parts, or give positions and lengths of tagged parts in locate mode
as well as operating as a more conventional tokenizer outputting one token per line in
extract-matches mode.

1.2 Tokenizing with a Dictionary

A tokenizer consists of the input side of a morphological dictionary. Good coverage in
vocabulary and derivation can satisfactorily solve many tokenization headaches on its
own. For example, consider the plural possessive of the compound in

(1) The Attorney-Generals’ biographies are over there.

3

To get the tokenization of the example exactly right, a tokenization rule needs to under-
stand that the hyphen is joining parts of a compound word, unlike in e.g. Borg-McEnroe,
and that the apostrophe is indicating the possessive form, not the end of a quotation. A
dictionary can also be augmented to recover from formatting or digitization issues. For
example, a text may split words at line boundaries with hyphens, as in

(2) He seemed suddenly to have been endowed with super-
human strength

In this example, the correct tokenization is superhuman rather than super and human,
but a dictionary would miss this possibility. However, we can use a finite-state opera-
tion to allow the string -\n (hyphen followed by a newline) to appear anywhere inside
the words in the dictionary. In regular expressions this operation is sometimes called
ignoring.

1.3 Preserving the Parts of a Multi-word Unit

Dictionaries are often equipped with a collection of short idioms, e.g. in view of, and
other tokens which include whitespace, e.g. New York. While these are useful, it may be
too early at this stage to fix the tokenization as the longest possible match. A discrimi-
native tagger may not be able to make the correct choice in

(3) The ball was in view of the referee.

if it only sees a tokenization where in view of is a single token.
We can extend the dictionary in a simple way to also contain the other possible

tokenizations and, in the case of a morphological dictionary, the analyses, as follows

define combined_tokens [dict].u .o. [dict | [" " dict]*]

where dict is our dictionary and [dict].u is its input projection. We compose it with
arbitrarily many copies of itself, interspersed with space characters. The result contains
every multi-word expression both as itself, and as a combination of other words found
in the dictionary.

In addition to bare tokens, many downstream tools use analysis cohorts, i.e. the
full set of possible base forms and morphological tags for the token in question. The
hfst-pmatch utility exposes an API that allows retrieval of the position, length, input,
output, tag and weight of each of the longest matches, so cohort formatters can be
written. For example, suppose our dictionary includes the following entries

in in AVP in NN0 in PRP
view view NN1 view VVB view VVI
of of PRF of PRP
in view of in view of PRP

4

when tokenizing in view of. The combined dictionary will then produce the full set of
combinations which may be formatted as follows

"<in view of>"
"in view of" PRP
"in" AVP "view" VVI "of" PRF
"in" NN0 "view" VVB "of" PRF
"in" NN0 "view" VVB "of" PRP
"in" NN0 "view" VVI "of" PRF
etc.

Since in pmatch multiple rules operate on the same input, it is possible to integrate
higher-level tokenization, such as chunking, named-entity recognition, grouping tokens
into sentences and sentences into paragraphs in the same ruleset.

2 Morphological Tagging using hfst-finnpos

In this section, we describe the morphological tagger hfst-finnpos.
FinnPos [20] is a data driven morphological tagging toolkit distributed with the

HFST interface. The term morphological tagging [6] refers to assigning one full mor-
phological label, including for example part-of-speech, tense, case and number, to each
word in a text. It can be contrasted with POS tagging where the task is to infer the
correct part-of-speech for each word.

The FinnPos toolkit is based on the Conditional Random Field (CRF) framework
[12] for data driven learning. Most work on CRF taggers and other discriminative tag-
gers has concentrated on POS tagging for English, which has a very limited selection
of productive morphological phenomena. In contrast, FinnPos is especially geared to-
ward morphologically rich languages with large label sets, that cause data sparsity and
slow down estimation when using standard solutions. FinnPos gives state-of-the-art re-
sults for the morphologically rich language Finnish [20] both with regard to runtime
and accuracy. In addition to morphological tagging, FinnPos also performs data driven
lemmatization. Moreover, it can be combined with a morphological analyzer to make a
data-driven morphological disambiguator. The capability of FinnPos to take advantage
of the linguistic choices made by developers of morphological lexicons is the reason for
including FinnPos in the HFST tool set.

In this section, we will focus on describing FinnPos from a practical point of view.
A more detailed description of the theoretical foundations as well as evaluation can be
found in [20].

2.1 FinnPos for Morphologically Rich Languages

In part-of-speech (POS) tagging, the label sets are usually fairly small. For example,
the Penn Treebank uses only 45 distinct label types. When tagging morphologically

5

complex languages, where full morphological labels are required, vastly larger label
sets are used. Label sets of around 1,000 distinct label types frequently occur.

Large label sets create a data sparsity problem. For example, for a second order
language model and a label set of 1,000 distinct label types, an overwhelming majority
of the one billion possible (1,0003) label trigrams are never seen in a training corpus of
realistic scope. Even label unigrams may be rare as many label unigrams tyically occur
only a couple of times in a training corpus.

Although morphological label sets can be very large, individual labels are usually
created by combining smaller sub-units from a relatively small inventory. A typical
example of such a structured morphological label is the label Noun|Sg|Nom, which
consists of three sub units: the main word class Noun, the singular number Sg and the
nominative case Nom. FinnPos utilizes the internal structure of complex labels by ex-
tracting features for sub-units as well as for the entire labels [19]. This alleviates the
data sparsity problem because features relating to sub-units of entire tags are used as
fall-back. Additionally, sub-unit features allow FinnPos to model grammatical general-
izations such as case congruence in isolation of the full labels.

In addition to data sparsity, large label sets cause long training times because the
complexity of standard CRF training of an nth order model depends on the (n+ 1)st
power of the label set size. To speed up training, FinnPos uses an adaptive beam search
and a label guesser [20] during inference and estimation. These substantially reduce
run-time.

2.2 Training and Using a Model

FinnPos uses an averaged perceptron algorithm with early stopping for estimation of
model parameters. The error-driven perceptron training algorithm iterates through the
training corpus one sentence at a time, labels the sentences and adjusts model weights
when erroneous labels are detected. Usually the Viterbi algorithm [2] is used for label-
ing. This, however, is too slow in practice when dealing with large label sets.

Instead of the Viterbi algorithm, FinnPos uses beam search with an adaptive beam
width [18]. Additionally FinnPos uses a generative label guesser modeled after the OOV
word model used in [1] to restrict label candidates during training. Because of inexact
inference during the training phase, FinnPos additionally uses violation fixing [8].

2.3 FinnPos and Morphological Analyzers

FinnPos benefits from a morphological analyzer for morphological disambiguation. The
analyzer can be used in two ways: to provide label candidates for words and as a genera-
tor of features. For words not recognized by the analyzer, FinnPos will use a data-driven
suffix-based guesser to generate label candidates. In addition to the morpological label,
FinnPos also uses the morphological analyzer for determining the lemma of a given
word. For words not recognized by the analyzer, a data-driven lemmatizer is used in-
stead. The data-driven components are learned from the training corpora, which means
that the FinnPos tagger could be used without a morphological analyzer, but a lexicon
with reasonable coverage improves the tagging performance.

6

3 Semantic Tagging using hfst-pmatch

In this section, we outline a scheme for extracting semantic frames from text using hand-
written rules. The rules and approach has been demonstrated in [7]. The current paper
is more extensive and includes an evaluation of the rule set. While it does not currently
represent a system for extracting a large number of different frames, the hfst-pmatch
tool has been extensively tested in a full-fledged named-entity recognizer for Swedish
[11]. Our motivation here is to present additional capabilities of hfst-pmatch as a
natural language processing system for extracting factoids from textual data to be used
in text and data mining.

3.1 Introduction

A semantic frame [5] is a description of a type of event, relation or entity and related
participants. For example, in FrameNet, a database of semantic frames, the description
of an Entity in terms of physical space occupied by it is an instance of the semantic
frame Size. The frame is evoked by a lexical unit (LU), also known as a frame evoking
element (FEE), which is a word, in this case an adjective, such as big or tiny, descriptive
of the size of the Entity. Apart from an Entity, which is a core or compulsory ele-
ment, the frame may identify a Degree to which the Entity deviates from the norm,
e.g., a really big dog, and a Standard with which it is compared, e.g., tall for a jockey.

Lexical Unit (LU) Adjective describing magnitude (large, tiny, ...)
Entity (E) That which is being described (house, debt, ...)
Degree (D), optional Intensity or extent of description (really, quite, ...)
Standard (S), optional A point of comparison (for a jockey, ...)

Table 1: The semantic frame Size.

For example:

[
Size

[
E

He
]
is
[

D
quite

][
LU

tall
][

S
for a jockey

]]

Table 2: A tagged example of Size

3.2 A Rule

A simple and common syntactic realization of the Size frame is a single noun phrase
containing one of the LUs, such as the big brown dog that ran away. Here we would
like to identify big as LU, brown dog as Entity and the combination as Size. Our first
rule for identifying this type of construction might be

7

define LU {small} | {large} | {big} EndTag(LU);
define Size1 LU (Adjective) [Noun EndTag(Entity)].t(Entity);
define TOP Size1 EndTag(Size);

Table 3: A simplified first rule

This rule set has been simplified for brevity – it only has a few of the permitted LUs, and
word boundary issues have not been addressed. The [].t() syntax in the definition of
Size1 is a tag delimiter controlling the area tagged as Entity. The extra Adjective
is optional, which is conveyed by the surrounding parentheses.

We can verify that our rules extract instances of our intended pattern by
compiling them with hfst-pmatch2fst and running the compiled result with
hfst-pmatch --extract-tags. In the following we have input the text of the King
James Bible from Project Gutenberg1 and allowed some extra characters on both sides
for a concordance-like effect

...
there lay a <Size><LU>small</LU> round <Entity>thing</Entity></Size>
...
there was a <Size><LU>great</LU> <Entity>cry</Entity></Size> in Egypt
...
saw that <Size><LU>great</LU> <Entity>work</Entity></Size> which
...

A natural next step is to add optional non-core elements, such as an adverb preced-
ing the LU being tagged as Degree and a noun phrase beginning with for a following
it as Standard.

define Size1 [Adverb].t(Degree) LU (Adjective) [Noun].t(Entity)
[{for a} NP].t(Standard);

Table 4: Extending the rule with optional elements

and here are some examples this rule finds in the British National Corpus 2

1 http://gutenberg.org
2 http://www.natcorp.ox.ac.uk/

8

...
presence of an <Size><Degree>arbitrarily</Degree>

<LU>small</LU> <Entity>amount</Entity></Size> of dust
...
one <Size><LU>small</LU> <Entity>step</Entity>

<Standard>for a man</Standard> </Size>
...

We can see that in small amount of dust, we might want to tag not just the immediate
noun as Entity but the entire noun phrase which could be implemented up to a context-
free definition of a noun phrase, and in one small step for a man a common indirect use
of the Standard construction. As well as correct matches, such as small round thing in
the biblical example, we have metaphorical meanings of Size, such as great cry. This
may or may not be desired – perhaps we wish to do further processing to identify the
target domains of such metaphors, or perhaps we wish to be able to annotate physical
size and physical size only.

3.3 Incorporating Semantic Information

Size is a very metaphorical concept, and syntactic rules as above will produce a large
amount of matches that relate to such uses, e.g., a great cry or a big deal. If we wish
to refine our rules to detect such uses, there are a few avenues to explore. First of all,
some LUs are much more metaphorical than others. A great man is almost certainly
a metaphorical use, whereas a tall man is almost certainly concrete. Accuracy may be
improved by requiring great to be used together with common nouns meaning several
individuals like a great crowd. In addition, there are semantic classifications of words,
such as WordNet [17]. We may compile the set of hyponyms of physical entity and
require them to appear as the nouns in our rules as shown in Table 5.

define phys_entity @txt"phys_entity.txt";

Table 5: Reading an external linguistic resource

3.4 Incorporating Part-of-speech Information

We have so far used named rules for matching word classes like Noun, without specify-
ing how they are identified. Also our collection of LUs might need some closer attention
– for example little could be an adverb. Considering that in writing our rules, we are
effectively doing shallow syntactic parsing, even a very simple way to identify parts of
speech may suffice, e.g. a morphological dictionary. For example, a finite-state trans-
ducer representing English morphology may be used to define the class of common

9

nouns as in Table 6. If we have the use of a part-of-speech tagger, we may write our
rules to act on its output, as in Table 7 where W refers to some word delimiter.

! The lexicon we want to read
define English @bin"english.hfst";
! We compose it with a noun filter and extract the input side
define Noun [English .o. [?+ "<NN1>" | "<NN2>"]].u;
! (NN1 is singular, NN2 plural)

Table 6: Using a dictionary to extract words of a given word-class

define Noun LC(W) Wordchar+ ["<NN1>"|"<NN2>"] RC(W);

Table 7: Using tags in pre-tagged text

3.5 Increasing Coverage

Having considered for each rule where Degree and Standard may occur, coverage
may be evaluated by also finding those cases where a LU is used as an adjective but
does not match the current rules, e.g.

define TOP Size1 | Size2 | [LU].t(NonmatchingLU);

The valid match is always the longest possible one, so NonmatchingLU will be the
tag only if no subsuming SizeN rule applies. For example in

the moving human body is <NonmatchingLU>large</NonmatchingLU>,
obtrusive and highly visible

we see another realization of the Size frame: the Entity is followed by a copula, and
the LU appears to the right. We can write a new rule Size2 to capture this, adding posi-
tions for non-core elements either by linguistic reasoning or by searching the corpus.

10

4 Evaluation

FrameNet has published a tagged extract of the American National Corpus 3 4, consist-
ing of 24 texts. Of these, one uses the Size frame 35 times, but the remainder use it
only an additional 6 times for a total of 41 times. This is too thin a selection, and sug-
gestive of some inconsistency in the use of this frame vs. some alternative ones such as
Dimension, and various metaphorical sub-cases of that frame. Evaluating the extrac-
tion of the Size frame on the basis of this minute corpus was unfeasible, but we used it
as a reference when developing our own training and test set.

To develop our rule set, we took 200 sentences of the British National Corpus con-
taining, as a token, one of the LUs, and tagged them by hand. We considered a LU to
be any inflected form of a word of the synonyms to size given by WordNet including
metaphorical meanings of size. The sentences had POS tags from the original material,
but punctuation and information about multi-word units was removed before develop-
ing the rule set. This corresponds to running surface text through a POS tagger which
does not recognize multi-word expressions before running the frame extractor.

We had one person spend a working day developing rules based on our set of train-
ing samples, iterating a process of spotting the difference between the hand-tagged sam-
ples and the tagging produced by our rules, and modifying the rule set. This resulted in
two top-level rules, one corresponding to cases where the LU precedes the Entity, and
one to cases where it follows as these were the only compulsory elements in the frame.
Overall, the rule set was 46 lines long, excluding comments and whitespace.

To get an idea of the quality of the rules, we also hand-tagged another 100 sentences
from the same corpus. These do not necessarily contain the Size frame to test that the
rules do not over-generate. Of these sentences, 81 were tagged completely correctly by
the rule set. Results by LU are in Table 8.

Number of sentences 100
Number of LUs 113
Number of LUs corresponding to a Size frame 56
Number thereof matched by the rules 50
Total number of matches made by the rules 54
Coverage 89%
Accuracy 93%

Table 8: LU-level semantic tagging performance on the 100 sentence test set

In Table 8, a match in the test material is considered correct if the relevant LU is cor-
rectly identified. We explore some further details regarding the quality of both correct
and incorrect test matches in Table 9.

We note that the test tagging was not independent of us but no other tagging existed
and that the overall amount of both training and test material is rather small. We do not

3 http://www.anc.org
4 The FrameNet-annotated texts are at

https://framenet.icsi.berkeley.edu/fndrupal/index.php?q=fulltextIndex

11

Matches where wrong Entity was tagged 4 (8%)
Matches where Entity was partially wrongly tagged 8 (16%)
Matches where Degree was incorrectly tagged 2 (33% of hand-tagged Degrees)
Incorrect tagging due to insufficient rule sophistication 9 (53% of mistakes)
Incorrect tagging due to mistakes in POS tagging 5 (29% of mistakes)
Incorrect tagging due to lacking multi-word unit information 2 (12%)
Incorrect tagging due to lacking punctuation information 1 (6%)

Table 9: Quality of matches made by the rules in the test samples

think this is a conclusive result, but it is an indication of the semantic tagger that could
be developed in a relatively small amount of time with this approach.

5 Discussion

In this section, we contrast HFST with some other semantic frameworks for recognizing
semantic frames, i.e. Shalmaneser [4], LTH [9] and SEMAFOR [3].

Shalmanser treats semantic frame extraction as a pipeline of syntactic parsing, frame
identification, semantic argument identification and semantic role labeling. Syntactic
parsing uses an external toolkit. Note that frame identification precedes role labeling,
i.e. they are not done in parallel. However, Erk and Pado [4] claim that this would give
very small gains in accuracy while incurring huge CPU cost. Shalmaneser can be trained
for any semantic annotation scheme provided appropriate training data exists. Users can
replace some components of the system with customized components. Full scale models
for English and German are available. Evaluation was done on manually annotated data.
FrameNet 1.2 for English and the SALSA corpus for German. Evaluation is with regard
to to the F1-score on unlabeled argument chunks and labeling accuracy for argument
labels. The F1-score for argument chunks was 0.751 for English and 0.6 for German.
Argument label accuracy was 0.784 for English and 0.673 for German.

LTH also treats semantic frame extraction as a pipeline of syntactic parsing, frame
identification, semantic argument identification and semantic role labeling. In contrast
to many other systems, LTH uses a dependency syntactic parser instead of a constituent
parser. Frame identification is accomplished using a classifier based on input words and
dependency structure. To aid argument identification, the FrameNet lexical database
was extended with WordNet data. A classifier was trained to identify words that were
likely to belong to a given semantic frame. Evaluation was with regard to F1-score for
frames and frame elements. As training data, FrameNet 1.3 was used and, as test data,
three manually annotated segments from the American National Corpus. The data sets
come from the SemEval 2007 joint task on frame semantic structure extraction. The
F1-score for English on the test data was 0.621.

The basic architecture of SEMAFOR is similar to Shalmaneser and LTH. The frame
parsing task is divided into two sub-tasks: predicate identification and argument identi-
fication. SEMAFOR features a latent-variable model, semi-supervised extension of the
predicate lexicon and joint identification of the entire argument set of a predicate using
linear programming. This allows for integration of linguistic constraints on the argu-

12

ment sets in a principled way. A model for English is available. The evaluation and data
was the same as for LTH. The F1-score on English is 0.645.

In contrast, HFST treats semantic frame extraction as a pipeline in only two stages:
morphological tagging and semantic labeling, i.e. frame identification, semantic argu-
ment identification and semantic role labeling are done in parallel. The fact that HFST
recognizes the whole frame in one step, means that HFST has access to the whole frame
element configuration when making the decision to commit to the frame and the argu-
ment labels. In addition, HFST can take linguistic constraints into consideration both
in the morphological and the frame and role labeling tasks. This contributes to the high
coverage and accuracy in the evaluation which no doubt is still much too limited. When
the whole semantic frame and all its argument roles are considered at the same time,
HFST removes part of the need for syntactic processing as an intermediate step, but
nothing prevents a user from replacing or enriching the morphological tagging with in-
formation from a syntactic parser. Future work is a large-scale evaluation of HFST for
semantic frame and role labeling of a semantically rich language like Finnish where we
will draw on the availability of FinnWordNet [16] to extend the lexical unit coverage.

6 Conclusion

In this paper, we have outlined the steps involved when using HFST–Helsinki Finite-
State Technology for recognizing semantic frames in context. A small-scale evaluation
indicates that the setup is capable of highly accurate semantic information labeling.

References

1. Brants, T.: TnT: A statistical part-of-speech tagger. In: Proceedings of the sixth conference
on Applied natural language processing. pp. 224–231 (2000)

2. Collins, M.: Discriminative training methods for hidden markov models: Theory and exper-
iments with perceptron algorithms. In: Proceedings of the ACL-02 Conference on Empirical
Methods in Natural Language Processing - Volume 10. pp. 1–8. EMNLP ’02, Association
for Computational Linguistics, Stroudsburg, PA, USA (2002)

3. Das, D., Chen, D., Martins, A., Schneider, N., Smith, N.: Frame-semantic parsing. Compu-
tation Linguistics (2014)

4. Erk, K., Pado, S.: Shalmaneser – a flexible toolbox for semantic role assignment. In: Pro-
ceedings of the Fifth International Conference on Language Resources and Evaluation
(LREC’06) (2006)

5. Fillmore, C.J.: Frame semantics and the nature of language. Annals of the New York
Academy of Sciences: Conference on the Origin and Development of Language and Speech
280(1), 20–32 (1976)

6. Grzegorz Chrupala, G.D., van Genabith, J.: Learning morphology with Morfette. In: Pro-
ceedings of the Sixth International Conference on Language Resources and Evaluation
(LREC’08). European Language Resources Association (ELRA), Marrakech, Morocco
(May 2008)

7. Harwick, S., Silfverberg, M., Lindén, K.: Extracting semantic frames using hfst-pmatch. In:
Proceedings from NODALIDA 2015. pp. 305–308. Vilnius, Lithuainia (May 2015)

13

8. Huang, L., Fayong, S., Guo, Y.: Structured perceptron with inexact search. In: Proceedings
of the 2012 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. pp. 142–151 (2012)

9. Johansson, R., Nugues, P.: LTH: Semantic structure extraction using non-projective depen-
dency trees. In: Proceedings of SEMEVAL 2007 (2007)

10. Karttunen, L.: Beyond morphology: Pattern matching with FST. In: Mahlow, C., Piotrowski,
M. (eds.) Systems and Frameworks for Computational Morphology. Communications in
Computer and Information Science, vol. 100, pp. 1–13. Springer, Berlin Heidelberg (2011)

11. Kokkinakis, D., Niemi, J., Hardwick, S., Lindén, K., Borin, L.: Hfst-sweNER - A New NER
Resource for Swedish. In: Proceedings of the 9th edition of the Language Resources and
Evaluation Conference (LREC’14), Reykjavik 26 - 31 May 2014. pp. 2537–2543 (2014)

12. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic mod-
els for segmenting and labeling sequence data. In: Proceedings of the Eighteenth Interna-
tional Conference on Machine Learning. pp. 282–289. ICML ’01, Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA (2001)

13. Lindén, K., Axelson, E., Drobac, S., Hardwick, S., Kuokkala, J., Niemi, J., Pirinen, T., Sil-
fverberg, M.: HFST – a system for creating NLP tools. In: Mahlow, C., Piotrowski, M. (eds.)
Systems and Frameworks for Computational Morphology. Communications in Computer
and Information Science, vol. 380, pp. 53–71. Springer, Berlin Heidelberg (2013)

14. Lindén, K., Axelson, E., Hardwick, S., Pirinen, T.A., Silfverberg, M.: HFST—framework for
compiling and applying morphologies. In: Mahlow, C., Piotrowski, M. (eds.) Systems and
Frameworks for Computational Morphology. Communications in Computer and Information
Science, vol. 100, pp. 67–85. Springer, Berlin Heidelberg (2011)

15. Lindén, K., Silfverberg, M., Pirinen, T.: HFST tools for morphology—an efficient open-
source package for construction of morphological analyzers. In: Mahlow, C., Piotrowski, M.
(eds.) Systems and Frameworks for Computational Morphology. Lecture Notes in Computer
Science, vol. 41, pp. 28–47. Springer (2009)

16. Lindén, K., Carlson, L.: FinnWordNet – WordNet på finska via översättning (in Swedish
with an English abstract). LexicoNordica – Nordic Journal of Lexicography 17, 119–140
(2010)

17. Miller, G.A.: Wordnet: A lexical database for English. Communications of the ACM 38(11),
39–41 (1995)

18. Pal, C., Sutton, C., McCallum, A.: Sparse forward-backward using minimum divergence
beams for fast training of conditional random fields. In: Acoustics, Speech and Signal Pro-
cessing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on. vol. 5,
pp. V–581–V–584. IEEE (2006)

19. Silfverberg, M., Ruokolainen, T., Lindén, K., Kurimo, M.: Part-of-speech tagging using con-
ditional random fields: Exploiting sub-label dependencies for improved accuracy. pp. 259–
264. Proceedings of the 52nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), Association for Computational Linguistics (2014)

20. Silfverberg, M., Ruokolainen, T., Lindén, K., Kurimo, M.: FinnPos: An Open-Source Mor-
phological Tagging and Lemmatization Toolkit for Finnish. Language Resources and Evalu-
ation, Springer (2015)

