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Abstract

DNAJBG is the causative gene for limb-girdle muscular dystrophy 1D (LGMDI1D). Four different coding missense mutations, p.F891, p.F931,
p-F93L, and p.P96R, have been reported in families from Europe, North America and Asia. The previously known mutations cause mainly
adult-onset proximal muscle weakness with moderate progression and without respiratory involvement. A Finnish family and a British patient have
been studied extensively due to a severe muscular dystrophy. The patients had childhood-onset LGMD, loss of ambulation in early adulthood and
respiratory involvement; one patient died of respiratory failure aged 32. Two novel mutations, ¢.271T > A (p.F911) and ¢.271T > C (p.F91L), in
DNAJBG6 were identified by whole exome sequencing as a cause of this severe form of LGMDID. The results were confirmed by Sanger
sequencing. The anti-aggregation effect of the mutant DNAJB6 was investigated in a filter-trap based system using transient transfection of
mammalian cell lines and polyQ-huntingtin as a model for an aggregation-prone protein. Both novel mutant proteins show a significant loss of
ability to prevent aggregation.
© 2015 Elsevier B.V. All rights reserved.
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1. Introduction Most of the reported LGMDID patients remained ambulatory
even in late adulthood.

LGMDI1D showed linkage to 7q36 in several Finnish families
[2,3], and later DNAJBG6 was identified as the causative gene for
the disease [4,5]. DNAJB6 belongs to a class of co-chaperones
characterized by a J-domain in the N-terminus [5]. All four
reported disease-causing coding mutations, p.F89I, p.F93l,
p-F93L, and p.P96R, are located in the G/F-rich linker domain of
DNAJBG6 [4-8]. The previously reported mutations usually cause
adult-onset, slowly progressive proximal muscle weakness.
However, occasional patients with earlier onset have been reported,
S although in these patients the further evolution was moderate with
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Autosomal dominant limb-girdle muscular dystrophies
(LGMD1) are a clinically and genetically heterogeneous group of
progressive muscle diseases characterized by muscle weakness
predominantly affecting the proximal limbs. Eight genetically
distinct forms of LGMDI1 are identified to date [1]. The severity of
the different disorders vary and, except of LGMDIB, these
dominant forms are usually considered to have a later onset and
milder course of the disease than the recessive LGMD?2 forms.
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and was reported to show a rather selective pattern of muscle
involvement on muscle imaging [9].

A Finnish family and a British patient have been studied
extensively in the past due to severely progressive childhood-onset
muscle disease and respiratory failure. Two novel mutations in
the same codon of DNAJBG6 gene were identified. Functional
studies indicate they are associated with a more severe loss of
anti-aggregation capacity.

2. Patients and methods

2.1. Patients

In Finnish family A with four affected members (Fig. 1), three
siblings and their mother, the mother’s parents were reported to
be healthy. The mother had died at age 32 due to respiratory
insufficiency. From the age of 14 years, she underwent repeated
clinical examinations, muscle biopsy and electromyography
(EMG). Her three daughters were first examined in their early
teens (aged 12—15 years). Several muscular dystrophies as well as

myofibrillar and rimmed vacuolar myopathies had been ruled out
earlier with genetic testing. Spirometry tests were performed in all
patients and echocardiography in the three siblings.

The British patient BII:1, is a 37-year-old female with negative
family history. After years of progressive muscle weakness around
age 15, she underwent extensive investigations including skin
biopsy (with normal COLVI labeling) and genetic testing
especially for rimmed vacuolar and myofibrillar myopathies with
normal results. Spirometry tests were done at ages 21, 31 and 33
years.

The study was approved by the IRB of Tampere University
Hospital. All participants provided appropriate consent.

2.2. Muscle pathology

Muscle biopsies were obtained after informed consent from
three patients (AIl:2, Alll:1, BII:1) and AIIl:1 had a muscle
biopsy twice. Histochemical analysis were performed on
cryosections using standard methods with hematoxylin and
eosin, modified Gomori trichrome, reduced nicotinamide
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Fig. 1. Pedigree of the family A.
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adenine dinucleotide-tetrazolium reductase (NADH-TR), and
ATPase at pH 104, pH 4.6, and combined succinate
dehydrogenase—cytochrome  oxidase, (SDH-COX). For
immunohistochemistry antibodies against the following
proteins were applied: myosin fast, myosin slow, fetal and
neonatal myosin heavy chains (clones NCL-MHCH,
NCL-MHCs, NCL-MHCd and NCL-MHCn, Leica
Biosystems, Newcastle, UK), MHC class 1 (M0736, Dako,
Glostrup, Denmark), dystrophin (NCL-DYS2, Novocastra,
UK), desmin (Biogenex, USA), myotilin (Novocastra, UK), and
aB-crystallin (Novocastra, UK), DNAJB6 (Abnova, USA),
LC3b (Cell Signaling technology, USA), p62 (Santa Cruz

Biotechnology, USA). Ventana Benchmark automated
immunostainer  with ~ DAB-detection was used for
immunohistochemistry.

2.3. Genetic studies

Genomic DNA was extracted from blood by standard methods.
Whole exome sequencing was performed on patients AIIl:1 and
AIII:3 at ATLAS Biolabs GmbH using SeqCap EZ Human Exome
Library v2.0 (Roche NimbleGen) for DNA capture. The enriched
DNA was sequenced with an Illumina HiSeq 2000 platform,
2x100bp. Reads were aligned to the human genome reference
GRCh37/hgl9 with Burrows—Wheeler Aligner and duplicate
reads were removed with Picard [10,11]. The Genome Analysis
Toolkit was used to realign the reads, recalibrate base quality
scores and call variants [12]. Variants were annotated using
wAnnovar and variants with frequency more than 1% in the 1000
Genomes or Exome Variant Server (ESP6500) databases were
filtered out [13,14]. Variants present in both AIIL:1 and AIIIL:3 were
analyzed further.

Sanger sequencing was performed using DreamTaq™ DNA
Polymerase (Thermo Scientific) according to standard protocol.
Primers were designed using Primer3 software and PCR
products were sequenced on an ABI3730x] DNA Analyzer
(Applied Biosystems), using the Big-Dye Terminator v3.1 kit
and analyzed with Sequencher 5.0 software (Gene Codes
Corporation).

All family A members were genotyped for microsatellite
markers D7S559, D7S2465, D7S2423, D7S427 and D7S594
spanning a region of 2.6 Mb around DNAJBG6. Fluorescently
labeled PCR products were analyzed using ABI3730x] DNA
Analyzer and GeneMapper v4.0 software (Applied Biosystems).
For patient BII: 1 bidirectional sequencing analysis, using Mutation
Surveyor software (v4.0.6), has been used to screen exons 2—10 of
the DNAJBG6 gene.

2.4. Plasmid constructs

The DNAJB6a, DNAJB6b, DNAJB6b p.F891 and
DNAJB6b p.F93L and pEGFP/HD-120Q constructs have been
described earlier [5,15]. The F91 mutations (c.271T > A,
p.FOIT and c.271T>C, p.F9IL) were introduced to the
pcDNAS/TO-DNAJB6b  construct  using  site-directed
mutagenesis. All constructs were verified by Sanger
sequencing.

2.5. Functional studies

Filter-trap assays were performed essentially as described in
reference 5. Briefly, T-REx 293 cells were co-transfected
with pcDNAS5/TO-DNAJB6 and pEGFP/HD-120Q constructs
and induced after 4 h with 1 ug/ml tetracycline. Cells were
harvested after 48 h and lysed in 750 ul FTA buffer (10 mM
tris-HCL, pH 8.0, 150 mM NaCl, 50 mM dithiothreitol)
containing 2% SDS and 1x Complete, triturated 5x through a
27G needle, sonicated at room temp for 1 min and heated to
98 °C. Sample for western blotting of soluble polyQ-HTT was
taken and 100 ul of the lysate filtered with light suction
through a 0.2 um cellulose acetate membrane filter (Whatman
GmbH). The filter was washed three times with 300 ul FTA
buffer containing 0.1% SDS. The western blots and FTA
membranes were stained using anti-V5 (Invitrogen) and
anti-GFP (Santa Cruz) primary and Alexa Fluor-labeled
(Invitrogen) secondary antibodies. The fluorescence was quantified
using Odyssey software (LI-COR) and the aggregation score
calculated from the levels of soluble and aggregated
GFP-polyQ-HTT in induced and uninduced cells as: aggregation
score = ([aggregated/soluble]inauces/[aggregated/soluble]uninduced)-
Statistical significance was calculated as a two-tailed test using
the Mann—Whitney U-Test Calculator in Excel. The P-values
were not corrected for multiple testing.

3. Results

Clinical details and muscle investigations of the patients are
presented in Table 1, and muscle strength evaluation (the
Medical Research Council Scale, MRC) with muscle MRI
findings in three siblings of Family A are shown in Table 2.

3.1. Family A

The age of onset of marked proximal muscle weakness was
10 to 12 years in most patients, although, three of them reported
difficulties in running in early school ages. The disease
progressed fast in the mother and she became wheelchair bound
at age 27. She was unable to lift her arms, lumbar lordosis was
marked and she had nasal voice but no dysphagia. She had
severe restriction in the last spirometry and she died of
respiratory failure at age 32 after having declined ventilatory
support. The second eldest daughter (AIIl:3) was the most
severely affected; she had toe walking and ankle contractures
already at age 6. Contractures were not observed in the others.
The three siblings had all marked proximal lower limb
weakness, which progressed to proximal upper limbs and to
some extent also to distal lower limb muscles causing walking
difficulties in early adulthood. CK levels were normal or
slightly elevated. EMG was myopathic in all patients studied.
Bone density test and cardiac evaluations showed normal
results (at ages 2024 years). All siblings had also dyspnea and
showed mild to moderate restriction in spirometry (Table 1).

3.2. Patient BII:1

She had never been good in physical exercise and was unable
to climb ropes or ride a bike. She underwent Achilles tendon
release surgery due to ankle contractures and had a muscle
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Table 1

Clinical data of the patients.

Feature AlL:2 AlIL:1 AIIIL:3 Alll:4 BIIL:1

Age/sex 32%/F 24/F 21/F 20/F 37/F

Age of onset 10 13 6 <10 12

First symptoms Running difficulties Difficulties climbing Toe walking, ankle Running difficulties, Toe walking, ankle
stairs contracture climbing stairs contracture

Muscle weakness

CK levels
EMG

Nasal voice, lumbar
lordosis, prox UL, LL
WCB (aged 27)

N-2 x UNL
Myopathic (proximally)

Neck flex, prox UL, LL
Mild elbow flex/ext

1.5-2 x UNL
Myopathic

Nasal voice, neck flex,
prox UL, LL, elbow
flex/ext

Mild distal UL, LL

Neck flex, prox LL
Mild prox UL, elbow
flex/ext

Prox and distal LL > UL,
neck, WCB (aged 28);
Mild: facial, weak voice,
pharyngeal weakness

Muscle histology Excess of fat, granular

degeneration, vacuoles

Fibrosis, atrophy,
necrosis, excess of fat,
RV, myofibrillar
aggregations

FVC 2.63 (68%)
FEV1 2.52 (74%)

Spirometry FVC 1.42 (34%)

FEV1 1.40 (33%)

FVC 2.47 (60%)
FEV1 2.24 (61%)

N N N
Myopathic Myopathic NA
ND ND Fibrosis, atrophy,

necrosis, excess of fat,
RV, myofibrillar
aggregations

Age 33:

FVC 1.90 (47%) FEV1
1.73 (49%)

FVC 2.79 (66%)
FEV1 2.79 (73%)

* Age at death.

F, female; UL, upper limbs; LL, lower limbs; WCB, wheelchair bound; CK, creatine kinase; UNL, upper normal limit; N, normal; EMG, electromyogram; NA, not
available; RV, rimmed vacuoles; ND, not done; FVC, forced vital capacity; FEV1, forced expiratory volume in 1 second.

biopsy at the age of 12. Around age 15, she started to
experience difficulties climbing stairs or getting up from the
floor. She also reported distal weakness in her upper limbs. The
proximal weakness increased over the years and she became
fully wheelchair dependent at age 28. Minor contractures of
neck, finger flexion and ankles were observed, as well as, spinal
rigidity. Prominent distal wasting of upper and lower limbs was
present. She had weak voice and dysphagia since age 20
but no cardiac involvement to date. CK was normal. Severe
osteoporosis was diagnosed at age 32 after a fracture of right

Table 2
Muscle strength and imaging findings in three siblings of Family A.
Muscle strength 1II:1 II:3 11I:4
according to MRC
Neck Flexion 3 3+ 3+
Extension 5 5 5
Arm Abduction 3+ 3 4
Elbow Flexion 4 3+ /4— 4
Extension 4+ 4-/3 + 4
Finger Flexion 5 5—/4 + 5—
Extension 5— 4/5— 5—
Hip Flexion 3 3- 3+
Abduction 4 3 4+
Adduction 3+ 3- 4
Knee Flexion 34+ /4— 4-— 4-
Extension 5— 4 5—
Ankle Dorsiflex 5 4+ /4— 5—
Plantarflex 5— 4+ 5
Degenerative changes Age 23, severe: Age 17, Age 16,
on muscle MRI Glut, Hamstrings,  severe: Glut, moderate:
Gmed, Glat, S, D, Hamstrings,  Glut,
Subscapularis Glat, S; Hamstrings,
moderate: Subscapularis
Vastus
muscles

MRC, the Medical Research Council Scale; Glut, gluteus muscles; Gmed,
gastrocnemius medialis; Glat, gastrocnemius lateralis; S, soleus; D, deltoideus.

femur. FVC decreased constantly; at age 21: 2.71 liters (71%),
at age 31: 2.21 liters (56%), and at age 33: 1.90 liters (47%).

3.3. Muscle imaging

All three siblings were examined by muscle MRI of the pelvis
and lower limbs, and in AIIl:1 and AIIl:4 also of the upper limbs.
Muscle MRI findings varied in severity (Table 2, Fig. 2), although,
all of them had clear fatty degenerative changes more pronounced
in the posterior thigh muscles and calf muscles. The most affected
muscles were gluteal muscles, adductor magnus, long head of
biceps femoris and in the lower legs gastrocnemius medialis and
lateralis and soleus muscles. Vastus lateralis muscles were mildly
to moderately affected in all patients. Iliopsoas was moderately
degenerated in one patient. In the upper limbs of AIll:1, deltoid
and subscapularis muscles were involved, and subscapularis to a
lesser degree in AIIl:4.

3.4. Muscle pathology

All biopsies showed dystrophic changes, i.e. fiber atrophy,
necrosis, excess of fat and fibrosis (Table 1). In addition, there was
marked rimmed vacuolar pathology in all samples. Myofibrillar
aggregations were observed in the second biopsy from patient
AIIIl:1 and in occasional fibers in BII:1. Myofibrillar aggregates
stained strongly for myotilin and o.B-crystallin and to somewhat
lesser extent for desmin and dystrophin (Fig. 3A,B). Rimmed
vacuoles were reactive for p62 and LC3b.

3.5. Genetics

Variants present in both AIIl:1 and AIIIl:3 were analyzed from
the whole exome sequencing data. Both AIIl:1 and AIII:3 had a
heterozygous missense mutation ¢.271T>A (NM_005494) in
DNAJB6 changing phenylalanine to isoleucine (p.F91I) in the
same G/F-rich region where other known DNAJB6 mutations are
located.



J. Palmio et al./Neuromuscular Disorders 25 (2015) 835842 839

Fig. 2. Muscle MRI of the Finnish siblings. In all patients, severe fatty degenerative changes are seen in gluteal muscles, hamstrings (especially adductor magnus,
semimembranosus and long head of biceps femoris), and calf muscles. Vasti muscles of the quadriceps are less severely affected, with sparing of rectus femoris,
sartorius and gracilis. AIIL:1 at age 23 (A), AIIl:3 at age 17 (B): The patient has a more severe disease starting earlier than her siblings, and AIIl:4 at age 16 (C).

All family A members were Sanger sequenced and genotyped.
The DNAJB6 mutation ¢.271T > A (p.F91I) segregated with the
disease, being present in all affected members but not in any
healthy ones, and it was found to be a de novo mutation in AIl:2
based on haplotype segregation (Fig. 1).

DNA from BII:1 was analyzed by direct fluorescent
sequencing for exons 2—10 of the DNAJB6 gene. The patient
was found to be heterozygous for the c.271T > C (p.Phe91Leu)
variant in exon 5 of the DNAJB6 gene.

3.6. Functional data

Both new mutations, p.F911 and p.F91L, show a significant
reduction of the anti-aggregation function compared to the
wild-type and p.F93L mutation (Fig. 4). The original p.FO3L
and p.F89I mutations are in this setup not significantly changed
from wild-type b and wild-type a, respectively.

4. Discussion

The previously reported mutations in DNAJB6 are known to
cause adult-onset LGMDI1D with mild to moderate progression
and without respiratory muscle involvement [4-8]. The two novel
mutations in DNAJBG6 reported here, however, cause severe
childhood-onset disease with reduced walking, contractures and
progressive respiratory insufficiency with a loss of ambulation in
early adulthood.

Respiratory involvement has not been undoubtedly associated
with the LGMDID disease before. Only one patient, out of

approximately 100, had dyspnea and sleep-associated breathing
disorder with reduced FVC in mid-adulthood [7]. The two
mutations in our patients caused marked respiratory problems
already in early adulthood with important clinical relevance.

A pathognomonic pattern of muscle involvement on imaging
has been reported in the patients with LGMDI1D [9]. The first
muscles involved in most patients have been soleus, adductor
magnus, semimembranosus and biceps femoris followed by
medial gastrocnemius, adductor longus and later vasti muscles of
the quadriceps. Gluteal muscles were only mildly affected and later
in the disease evolution. The same pattern could be identified in
our patients in that marked soleus and hamstrings involvement was
evident, although the early age of these changes and the more
severe involvement of gluteal muscles, gastrocnemius lateralis and
to a variable degree of vasti muscles of the quadriceps are new
findings contributing to their earlier walking difficulties. In typical
cases, gastrocnemius medialis has been involved earlier and
lateralis later in the disease course [9]. The opposite was found in
our patients whose gastrocnemius lateralis was more affected than
medialis. The anterolateral compartment muscles in the lower legs
were spared also in our patients. In the upper body, involvement of
subscapularis seems to be quite a constant feature as it was
observed in two of our patients and also earlier in LGMDID
patients [16]. Muscle pathology showed previously reported
findings consisting of autophagic rimmed vacuolar degeneration
and protein accumulations containing myotilin, desmin,
aB-crystallin, and ectopic dystrophin, which overlap with
myofibrillar myopathy. Muscle imaging findings and pathology in
the patients in their teens were of the same severity as observed in
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Fig. 3. Immunohistochemical stainings of tibialis anterior muscle of AIIIl:1. Figure 3A shows myofibrillar aggregates in several non-atrophic fibers that are reactive
for DNAJBG. In these areas, there is a strong reactivity of aB-crystallin and myotilin with desmin and dystrophin-2 stainings showing less intensity. Figure 3B shows
fibers with rimmed vacuolar pathology. Vacuolar fiber can show reactivity for myofibrillar proteins and in particular for autophagic degradation markers p62 and

LC3b.

previously reported LGMDID patients in their late adulthood
emphasizing the difference in the phenotype severity.

DNAJB6 belongs to the evolutionarily conserved DNAJ/
HSP40 family of proteins, which regulate molecular chaperone
activity [17]. Mutations in DNAJB6 have been shown to impair its
ability to prevent aggregation of aggregation prone proteins [5].
Even if the detailed role of DNAJB6 in muscle is still largely
unknown it has been shown to interact with components of the
chaperone assisted selective autophagy (CASA) machinery and
localize to the sarcomeric Z-disc. These interactions appeared
unaltered by the previously reported mutations. We have earlier
reported that the LGMDI1D-mutations cause a reduction in
DNAIJB6’s ability to prevent aggregation of polyQ-huntingtin [5].
The two new mutations cause a more severe loss of anti-
aggregation function in transiently transfected cells compared to
the originally reported p.F93L mutation, but less than the p.F891
mutation [5]. Our findings are compatible with the molecular

mechanisms discussed earlier [5]. An understanding of the
pathological changes in LGMDID could yield therapeutic
opportunities, such as silencing of the mutant allele or
biochemically enhancing the anti-aggregation machinery.

5. Conclusions

The spectrum of clinical phenotypes is wider than previously
reported and LGMDID should definitely be included in the
differential diagnosis of patients with childhood-onset progressive
muscle weakness with or without respiratory symptoms and
contractures.
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