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Abstract

Palaeoecological information provides means for 
understanding the processes behind past chang-
es in forest composition, and offers valuable in-
formation on the potential impacts of predicted 
changes in climate on boreal vegetation. To fully 
understand the processes behind the long-term 
boreal forest dynamics both local and regional 
factors need to be considered. 

In this work, the Holocene history of the 
western taiga forests, a continental variant of 
boreal forest characterized by the presence of 
Siberian larch (Larix Sibirica), in northern Eu-
rope is investigated using fossil pollen and sto-
mata records from small forest hollow sites. The 
importance of the potential drivers of long-term 
boreal forest composition is quantitatively as-
sessed using novel approaches in a palaeoeco-
logical context. The statistical method variation 
partitioning is employed to assess relative im-
portance of climate, forest fires, local moisture 
conditions and human population size on long-
term boreal forest dynamics at both regional (lake 
records) and local scales (small hollow records). 
Furthermore, wavelet coherence analysis is ap-
plied to examine the significance of individual 
forest fires on boreal forest composition. 

The results demonstrate that Siberian larch 
and Norway spruce have been present in the re-
gion since the early Holocene. The expansion of 
spruce at 8000 – 7000 cal yr BP caused a notable 
change in forest structure towards dense spruce 
dominated forests, and appears to mark the on-
set of the migration of spruce into Fennoscan-
dia. The mid-Holocene dominance of spruce and 
constant presence of Siberian larch suggests that 
taiga forest persisted throughout the Holocene at 

the study sites in eastern Russian Karelia. 
Climate is the main driver of long-term veg-

etation changes at the regional scale. However, 
at the local scale the role of climate is smaller 
and the influence of local factors increases, sug-
gesting that intrinsic site-specific factors have an 
important role in stand-scale dynamics in the bo-
real forest. When the whole 9000 year period is 
considered, forest fires explain relatively little of 
the variation in stand-scale boreal forest compo-
sition. However, this may be attributable to the 
variation partitioning method. Forest fires have 
a significant role in stand-scale forest dynamics 
when observed in shorter time intervals and the 
results from wavelet coherence analysis suggests 
that fires can have a significant effect on short-
term changes in individual tree taxa as well as 
a longer profound effect on forest structure. The 
relative importance of human population size on 
variation in long-term boreal vegetation was sta-
tistically assessed for the first time using this 
type of human population size data and the re-
sults showing unexpectedly low importance of 
human population size as a driver of vegetation 
change may be biased because of  the difference 
in spatial representativeness between the human 
population size data and the pollen-derived for-
est composition data.

Although the results strongly suggest that cli-
mate is the main driver of long-term boreal forest 
dynamics, the local disturbances, such as fires, 
species interactions and local site specific char-
acteristics can dictate the importance of climate 
on stand-scale boreal forest dynamics.
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Tiivistelmä

Paleoekologisen tiedon avulla on mahdollista 
ymmärtää paremmin metsän rakenteessa tapah-
tuneiden pitkäaikaisten muutosten taustalla vai-
kuttavia prosesseja. Tämä on tärkeää arvioita-
essa todennäköisiä muutoksia, joita muuttuva 
ilmasto tulevaisuudessa aiheuttaa boreaalisissa 
havumetsissä. Pohjoiset havumetsät ovat moni-
tahoisia ekosysteemejä ja ajallisten muutosten 
lisäksi on tärkeää ymmärtää metsän rakentee-
seen vaikuttavien prosessien alueellinen mitta-
kaava. Tämän vuoksi menneitä kasvillisuudes-
sa tapahtuneita muutoksia ja niihin potentiaali-
sesti vaikuttaneita ympäristötekijöitä on tärkeä 
tarkastella sekä alueellisessa että paikallisessa 
mittakaavassa. 

Tässä työssä tutkitaan läntisimpien taigamet-
sien kehitystä viimeisten 10 000 vuoden eli ho-
loseenin aikana. Taigametsiä luonnehtii Siperian 
lehtikuusen (Larix Sibirica) esiintyminen ja ne 
edustavat pohjoisten havumetsien mannermais-
ta muotoa. Tutkimusalue sijaitsee Siperian lehti-
kuusen läntisimmällä luontaisella esiintymisalu-
eella ja kasvillisuuden kehitystä tutkitaan pienistä 
metsäpainanteista saaduista fossiilisista siitepö-
lyaineistoista ja havupuiden neulasten huulisolu-
aineistoista. Lisäksi työssä tutkitaan tilastollisin 
menetelmin eri ympäristötekijöiden merkitys-
tä boreaalisessa kasvillisuudessa tapahtuneissa 
muutoksissa. Hajonnan ositus (variation pariti-
tioning) -menetelmän avulla selvitetään miten 
suuri suhteellinen merkitys ilmastolla, metsäpa-
loilla, paikallisilla kosteusolosuhteilla ja ihmis-
populaation koolla on ollut boreaalisessa kas-
villisuudessa tapahtuneissa muutoksissa sekä 
paikallisella (pienistä metsäpainanteista kerät-
ty aineisto) että alueellisella (järvisedimenteistä 
kerätty aineisto) tasolla viimeisen 9000 vuoden 
aikana. Lisäksi metsäpalojen merkitystä metsän 
rakenteeseen määritetään tarkemmin aikasarja-
analyysin (wavelet coherence) avulla. 

Tulokset osoittavat, että Siperian lehtikuusi ja 
kuusi (Picea abies) ovat esiintyneet tutkimusalu-
eella yhtäjaksoisesti jo viimeisten 10 000 vuoden 
ajan. Metsän rakenteessa on tapahtunut selkeä 
muutos 8000 – 7000 vuotta sitten, kun kuusen 
populaation huomattavan kasvun seurauksena 
mäntyjen, koivujen ja lehtikuusten luonnehti-
mat avoimemmat metsät muuttuivat tiheäm-
miksi kuusivaltaisiksi metsiksi. Tämä kuusen 
huomattava yleistyminen Luoteis-Venäjällä tu-
kee aiempia tuloksia, jotka osoittavat kuusen le-
viämisen idästä Fennoskandian alueelle alkaneen 
noin 7 000 – 6 500 vuotta sitten. Siitepölyaineis-
ton osoittama kuusen vallitsevuus puulajistossa 
keski-Holoseenin aikana ja lehtikuusen esiinty-
minen läpi holoseenin viittaavat siihen, että tai-
gametsät ovat säilyneet tutkimusalueella koko 
holoseenin ajan, eikä alueella ole havaittavissa 
jalojen lehtipuiden yleistymistä holoseenin läm-
pökauden aikana kuten vain hiukan lännenpänä 
Fennoskandian alueella.  

Tutkituista ympäristömuuttujista ilmasto 
on selkeästi merkittävin tekijä pitkän aikavälin 
muutoksissa boreaalisessa kasvillisuudessa alu-
eellisessa mittakaavassa. Toisaalta paikallisessa 
mittakaavassa ilmaston rooli on selkeästi vähäi-
sempi paikallisten tekijöiden merkityksen kasva-
essa. Tämä viittaa siihen, että paikkaan sidotuil-
la tekijöillä on huomattava rooli metsän raken-
teen muodostumisessa, kun muutoksia tarkas-
tellaan paikallisessa metsäkuviotason mittakaa-
vassa. Koko tutkimusajanjaksoa (9000 vuotta) 
tarkasteltaessa metsäpalot selittävät vain vähän 
metsärakenteessa tapahtuneista muutoksista, tä-
mä voi kuitenkin olla seurausta käytetyn hajon-
nan ositus -menetelmän rajoituksista metsäpa-
lo- ja siitepölyaineiston yhdistämisessä. Tulok-
set osoittavat, että metsäpaloilla on tärkeä rooli 
paikallisessa mittakaavassa boreaalisessa met-
sän rakenteessa tapahtuvissa lyhyen aikavälin 
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(< 1000 vuotta) muutoksissa. Aikasarja-analyy-
si osoittaa, että metsäpalot voivat olla merkittä-
vä tekijä yksittäisten lajien lyhytaikaisissa muu-
toksissa, minkä lisäksi metsäpalojen seurauksena 
metsän rakenteessa voi tapahtua pidempiaikai-
sia perustavanlaatuisia muutoksia. Ihmispopu-
laation koon suhteellinen merkitys pitkän ajan 
kasvillisuuden muutoksissa osoittautui yllättä-
vän vähäiseksi. On kuitenkin huomattavaa, että 
tässä työssä ihmispopulaation koon vaikutusta 
kasvillisuuden muutoksiin määritettiin tilastol-
lisesti ensimmäistä kertaa käyttäen tämän tyyp-
pistä radiohiiliajoitetuista arkeologisista löydöis-
tä johdettua ihmispopulaation kokoa kuvastavaa 

aineistoa. Tämän vuoksi on mahdollista, että ih-
mispopulaation koon vähäinen suhteellinen mer-
kitys kasvillisuuden muutoksissa on seurausta 
eroista ihmispopulaation kokoa kuvaavan aineis-
ton ja kasvillisuutta kuvaavan siitepölyaineiston 
alueellisessa edustavuudessa. 

Tutkimustulokset osoittavat, että vaikka il-
masto on merkittävin pohjoista havumetsäkas-
villisuutta säätelevä tekijä, synnyttävät paikalli-
set tekijät, kuten metsäpalot ja paikalliset kasvu-
paikkaolosuhteet, alueellisia eroja boreaalisessa 
kasvillisuudessa tapahtuviin muutoksiin.   
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1 Introduction

1.1 Boreal forests in changing 
environmental conditions
Although located in northern latitudes with low-
er productivity, boreal forests have an impor-
tant role in biodiversity offering a large vari-
ety of habitats for native species (Gauthier et 
al., 2015). The Boreal biome consists of 32 % 
of the world’s forest cover and expands over 
a large circumpolar region in northern latitudes 
(Pan et al., 2011). Low winter and high sum-
mer temperatures together with low precipita-
tion characterize the boreal ecosystem and its 
northern boundary is defined by the 10 – 13 °C 
July isotherm (Bonan and Shugart, 1989). Cli-
matic conditions in the boreal region differ re-
gionally and maritime climatic factors temper 
the boreal climate in western North America 
and Fennoscandia, while in Siberia and central 
Canada climate is colder and drier. Boreal for-
ests are characterized by low species diversity 
and are dominated by few coniferous and de-
ciduous tree species (Bonan and Shugart, 1998). 
Tree species composition differs regionally and 
in Fennoscandia the main forest forming tree 
species are Norway spruce (Picea abies), Scots 
pine (Pinus sylvestris), European aspen (Populus 
tremula), birches (Betula sp.), willows (Salix sp.) 
and alders (Alnus sp.),  whereas larches (Larix 
sp.) are present in the taiga forests in Russia. In 
North American boreal forests, Black spruce (Pi-
cea maritima), White spruce (Picea glauca), and 
Jack pine (Pinus banksiana) are dominant spe-
cies (Baldocchi et al., 2008). The Russian taiga 
forests cover approximately two thirds of the 
circumpolar boreal zone (Potapov et al., 2008) 
and the western range limit of Siberian larch 
(Larix sibirica), situated east of Lake Onega in 
NW Russia, is considered to mark the western 
boundary of the Russian taiga forest. 

The boreal biome is projected to experience 
a rapid increase in temperature (Christensen et 
al., 2013) and predicting the ecological response 
of boreal forest to future climate changes is chal-
lenging (Jackson et al, 2009). The changing cli-
mate may alter abiotic (e.g. disturbances) and 
biotic (e.g. competition, insect outbreaks) driv-
ers of boreal vegetation (Lindner et al., 2010; 
Scheffer et al., 2012) and these changes can have 
significant effect on diversity and the role of bo-
real forest as an important carbon stock (Lutz 
et al., 2013; Seidl et al., 2011; Thom and Seidl, 
2015). Due to differences in forest composition 
between circumboreal regions, possible chang-
es in climate may also affect these forests dif-
ferently (Lindner et al., 2010).  The water and 
energy exchange between boreal forests and the 
atmosphere play an important role in global cli-
mate dynamics, and changes in boreal vegetation 
composition can affect the climate. Therefore it 
is important to understand the process behind 
these changes in boreal forests. 

Forest fires are considered as one of the 
most important disturbance factors regulating 
the age structure, species composition and suc-
cession dynamics of boreal forests (Kuuluvain-
en et al., 1998; Ryan, 2002; Kelly et al., 2013; 
Lehtonen & Kolström, 2000; Bradshaw et al., 
2010). Projected climate change has been pre-
dicted to intensify the disturbance regimes in the 
boreal forests (Selikhovkin, 2005; Seidl et al., 
2011, 2014) and increased  fire frequency can 
influence boreal forest dynamics and their role 
in carbon storage (Carcaillet et al., 2002; Lindner 
et al., 2010; Seidl et al., 2014). The effect of for-
est fires on boreal forest dynamics is controlled 
by the fire regime, which includes such factors 
as fuel consumption, fire spread, intensity and 
severity of fire, seasonality and fire frequency 
(Bond & Keeley, 2005; Bowman et al., 2009; 
Conedera et al., 2009). Although climate is con-
sidered as the main controlling factor over fire re-



11

gimes in boreal forests, under natural conditions 
the occurrence and spread of natural forest fires 
are controlled by complex interactions between 
climate, vegetation composition and structure, 
landscape variables and fire ignition (Higuera 
et al., 2009; Girardin et al., 2013: Marlon et al., 
2013). Therefore the impact of fire on boreal 
forest composition also differs within the bore-
al region. European boreal forests include tree 
species that can resist fires, such as Scots pine, 
and fires in pine forests are mostly low inten-
sity surface fires. In forests that are dominated 
by fire intolerant Norway spruce, fires can be 
severe and kill the spruce forest, but in these 
forests fire frequency is usually low (Wallenius 
et al., 2004; Ohlson et al., 2011 Rogers et al., 
2015). In contrast, in North America the boreal 
forests are dominated by species that favor fre-
quent fires, such as Black spruce, and fires have 
a more severe impact on boreal vegetation than 
in Europe (Rogers et al., 2015). 

In addition to natural drivers, anthropogen-
ic activity has influenced boreal forest dynam-
ics. Before the advent of agriculture, the hunt-
er-gatherers had local impact on the surround-
ing vegetation through burnings and favoring 
food-plants (Birks et al., 2014). Palynological 
and archaeological evidence demonstrates that 
the effect of Mesolithic hunter-gatherers can be 
locally detected even in northern Fennoscandia 
(Bergman et al., 2004; Hörnberg et al., 2005). A 
more apparent effect of human activity on boreal 
forests is connected to agriculture and farming 
practices. Slash-and-burn cultivation was widely 
used in Fennoscandia and it changed the natural 
fire regime and hence affected the structure of 
the boreal forests (Huttunen, 1980; Angelstam 
1998; Granström and Niklasson, 2008; Walle-
nius et al., 2011). For example, burnings had a 
strong impact on boreal forests in Finland caus-
ing a compositional shift toward pine dominated 
forests, since the nutrient-rich spruce and decidu-

ous forests were utilized for slash-and-burn culti-
vation (Heikinheimo 1915; Taavitsainen, 1987). 
During the 20th century, after cessation of the 
slash-and-burn cultivation, humans have mainly 
influenced the boreal forest composition through 
forest logging and related management strategies 
such as fire suppression (Halme et al., 2013). 

Today boreal forests provide important eco-
system services and economic opportunities 
(Gauthier et al., 2015) and the majority of the 
boreal forests in Europe are extensively exploit-
ed. The last large unmanaged forested areas are 
found in remote and less accessible northern ar-
eas such as in the European Russian taiga (Yaro-
shenko et al., 2001; Potapov et al., 2008). Consid-
ered as the best preserved natural forest ecosys-
tems in Europe, these taiga forests are crucial for 
understanding the natural long-term boreal forest 
dynamics in order to create successful manage-
ment and conservation practices to maintain and 
restore the diversity of boreal forests (Angels-
tam et al., 1997; Kuuluvainen and Aakala, 2011). 

1.2 Reconstructing regional and 
local scale boreal forest dynamics 
from sedimentary records
Sedimentary fossil records from natural archives 
such as lakes, peatlands and small forest hol-
lows provide a valuable source of information  
on past changes in surrounding vegetation and 
environmental conditions. Reconstruction of past 
vegetation requires understanding of the spatial 
scale of the pollen deposited in the sediments in 
relation to the surrounding vegetation. The con-
cept of source area of pollen has been widely 
addressed during the last decades. Jacobson and 
Bradshaw (1981) developed a simple qualitative 
model showing that pollen records from lake 
sediments reflect regional vegetation patterns, 
whereas pollen data from small forest hollows 
reflect the local vegetation around the site. Dur-
ing the last decades, the theoretical framework 
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and quantitative models of pollen-vegetation re-
lationships have been developed further. Prentice 
(1985, 1988) and Sugita (1993) presented the 
model of pollen representativeness on a lake sur-
face (the ‘Prentice-Sugita model’). Sugita (1994) 
developed this further and showed that there is a 
linear relationship between the size of the given 
site and the distance-weighted plant abundance 
of the surrounding vegetation represented in the 
pollen record. In small forest hollow sites (< 0.1 
ha) a significant amount of the pollen originates 
less than few hundred meters from the coring 
site reflecting local vegetation around the site, 
whereas the pollen in larger sites (> 50 ha) can 
originate from tens of kilometers from the shore 
of the sampling site and can thus reflect regional 
vegetation dynamics (Jacobson and Bradshaw, 
1981; Sugita 1993 2007a, 2007b).

The Holocene changes in regional vegeta-
tion patterns have been widely studied using lake 
records. However, the forest succession and the 
effects of stand-replacing disturbances, such as 
wind throws or forest fires, typically take place 
at the scale of a forest stand (Kuuluvainen, 2002; 
Shorohova et al., 2009). The past stand-scale for-
est dynamics can be successfully reconstruct-
ed from small forest hollows (e.g. Andersen, 
1970; Bradshaw, 1988; Calcote, 1995; Davis et 
al. 1998; Parshall, 1999; Colpron-Tremblay & 
Lavoie, 2010; Sugita 2007; Overballe-Petersen 
and Bradshaw, 2011). Forest hollows are small 
(< 0.1 ha) depressions  within a closed forest 
canopy and the pollen from these sites reflect 
vegetation within close proximity of the sites 
providing spatially high resolution data which 
is comparable to surveys of modern vegetation 
(Bradshaw, 2013). Furthermore, records from 
these small closed canopy sites reflect the lo-
cal fire events and, compared to lake sediments, 
have less uncertainty about the source area of 
charcoal (Ohlson & Tryterud, 2000; Bradshaw 
et al., 2010). Therefore, records from these sites 

provide data for investigating the relationship 
between stand-scale changes in forest composi-
tion and local disturbances such as forest fires. 
In order to better understand the processes be-
hind the past changes in boreal forest dynamics, 
both regional and local scale changes in long-
term boreal forest composition and environmen-
tal conditions need to be considered.

1.3 Aims of this study
The long-term ecological dynamics of the Rus-
sian taiga forest have been previously studied 
(e.g. Syrjänen et al., 1994; Drobyshev et al., 2004; 
Shorohova et al., 2009; Aakala et al., 2011), but 
the Holocene paleoecology at the western margin 
of the Russian taiga forest, defined by the western 
range limit of Siberian larch, is less understood 
than that in the boreal forests in Fennoscandia. 
In this work, the general aim is to investigate the 
Holocene history of these western taiga forests 
in northern Europe and quantitatively assess the 
importance of the potential drivers of long-term 
boreal forest composition using novel approach-
es in palaeoecological studies. Though climate is 
considered as the main driver behind the range 
shifts of boreal tree species (e.g. Prentice 1998; 
Jackson and Overpeck, 2000; Soja et al., 2007; 
Bonan, 2008; Fisichelli et al., 2014), recent stud-
ies have highlighted that local processes mediate 
the effect of climate on vegetation composition 
at the sub-regional and local scale (Chapin et al., 
2004; Kröel-Dulay et al., 2015). In this work, the 
relative importance of climate, forest fires, local 
moisture conditions and human population size 
on long-term boreal forest dynamics, at both re-
gional and local scales, is quantitatively assessed 
utilizing the variation partitioning method (Bor-
card et al., 1992). To examine the significance 
of individual forest fires on boreal forest com-
position, wavelet coherence analysis (Grinsted 
et al., 2004) is employed.  More specifically the 
aims of this thesis are as follows: 
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i) 	 To investigate the Holocene history of 
	 the two keystone species, Siberian   
	 larch and Norway spruce, in the west
	 ern range margin of the taiga forest in 
	 NW Russia, using fossil pollen and sto-
	 mata records from small forest hollows 
	 (Papers I, II).

ii) 	 To test the hypothesis that climate ex-
	 plains more of the variation in long-
	 term boreal forest composition at the 
	 regional (lake records) than at the lo-
	 cal (small hollow records) scale (Pa
	 pers I, III).

iii) 	 To examine the importance of forest  
	 fires in stand-scale boreal forest dy-
	 namics (Papers I, III) and assess the
	 linkages between individual forest fires
	 and boreal tree taxa (Paper II).

iv) 	 To explore whether the human populat-
	 tion size, derived from the frequency 
	 distribution of radiocarbon dated ar-
	 chaeological findings, can be applied 
	 as a potential driver of long-term bo-
	 real forest composition (Paper III).

2 Material and methods

2.1 Study area and sites
Four small forest hollow sites, analyzed for this 
work, are located at the ecological boundary be-
tween the boreal forest of Fennoscandia and the 
taiga forest in NW Russia (Fig. 1) (papers I, II, 
III). Geologically, the western part of the study 
area is part of Baltic shield with crystalline bed-
rock and the eastern part is located at the Russian 
(East European) Plain with predominantly cal-

careous bedrock (Gromtsev, 2002; Systra, 2003; 
Elina et al., 2010). The area was deglaciated 14 
000 – 13 000 years ago (Svendsen et. al., 2004) 
and the landscape is characterized by undulating 
glacial topography. The climate becomes more 
continental towards the east, with a higher Gor-
czynski continentality index in the Russian taiga 
(35 – 40) than in Fennoscandia (30 – 35) (Gor-
czynski, 1922). The mean annual temperature 
is +3 °C, the coldest month is February with a 
mean temperature of -9 °C to -10.5 °C and the 
warmest month is July with a mean temperature 
of 16 – 17 °C (Nazarova, 2003). Biogeographi-
cally the study area is located in the middle taiga 
zone and the forests are characterized by Norway 
spruce, Scots pine, silver birch (Betula pendula), 
downy birch (Betula pubescens), aspen, grey al-
der (Alnus incana) and black alder (Alnus gluti-
nosa). On the Russian plain (east of Lake Onega) 
Siberian larch, a more continental tree species, 
is growing in pine and spruce dominated forests 
and demonstrates the western range limit of the 
Russian taiga forest (Elina et al., 2010; Gromtsev, 
2002). For paper III, the study area was expand-
ed to cover an area spanning a west-east transect 
from Sweden (14°37’ E) to Finland and Russia 
(37°46’ E) located between 59° N and 63° N in 
the boreal forest zone and 17 sites (nine lakes 
and eight small hollows) were included in the 
study (Fig. 2 and paper III). 

In order to trace the natural vegetation and 
fire history, four small forest hollows were se-
lected from less populated, forested regions away 
from fields, villages or other visible forms of hu-
man activities. The study sites are small peat de-
pressions within closed-canopy forest stands. To 
explore the Holocene history of Siberian larch 
at its western range margin, three sites were se-
lected so that there are individual larches grow-
ing in the vicinity of the sites. Two of these sites, 
Larix Hollow (unofficial name) (N 61°50.755`, 
E 37°45.390`) and Mosquito Hollow (unofficial 
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Figure 1. Map of the study area and small hollows analyzed in this study. a) Larix Hollow, b) Mosquito Hollow, c) 
Olga Hollow and d) Kukka Hollow. The locations of the sites are marked with yellow circles in the map. Distribution 
of Larix sibirica is based on modern distribution maps (Jalas and Suominen, 1973) and the extent of the ice sheet 
during the Last Glacial Maximum (LGM) and at 11 ka BP is based on Svendsen et al. (2004).

Figure 2. Map showing the location of the study sites used in this work. Small hollow sites analyzed in this work 
are shown as yellow crosses. Previously analyzed small hollow sites are expressed as black crosses and lake sites 
as black circles. Background map shows the present-day intensity of anthropogenic influence on the area derived 
from the human influence index (Wildlife Conservation Society –WCS and Center for International Earth Science 
Information Network – CIESIN 2005).



15

name) (N 61°51.112`, E 37°46.217`) are located 
in the Eastern Karelian region about 800 me-
ters apart (Fig. 1). Both sites are surrounded by 
mixed forest, with spruce, birch, pine and larch 
as the main forest forming species (Fig. 1). The 
third site, Olga Hollow (unofficial name) (N 
61°12.096`, E 37°35.430`), is located about 70 
km south of Larix Hollow and Mosquito Hollow 
in the northern part of Vologda district (Fig. 1). 
Spruce is the dominant tree species surrounding 
Olga Hollow, with young trees and seedlings of 
larch. On the surrounding slopes of mineral soil, 
larch grows in a pine and spruce dominated for-
est. The fourth site, Kukka Hollow (unofficial 
name) (61° 38.957’ 32° N, 45.174’ E)(Fig. 1), 
is an elongated peat depression located in the 
Karelian district approximately 250 km west of 
the other three small hollow sites and outside 
the modern distribution range of Siberian larch. 
More detailed description of the sites is found 
in Table 1 and corresponding articles.

2.2 Sediment sampling 
and chronology	
Sediment cores from the four small hollow sites 
were obtained with a Russian sediment corer 
(Jowsey 1966) in August 2010 and 2011. A 
165-cm-long sediment core was extracted from 
Larix Hollow, a 200-cm-long core from Mos-
quito Hollow, a 226-cm-long core from Olga 
Hollow and a 616-cm-long core from Kukka 
Hollow. The cores were examined and photo-
graphed in the field for visible charcoal layers, 
transported to the laboratory at the University of 
Helsinki and stored at +4 °C for further analy-
sis. Subsamples of 0.5 cm3 were extracted for 
pollen, stomata and microscopic charcoal anal-
yses at 1 cm intervals from Larix Hollow (159 
samples in total), at 2 cm intervals from Olga 
Hollow (110 samples in total), at 8 cm intervals 
from Mosquito Hollow (26 samples in total) and 
from Kukka Hollow at 10 cm intervals for pol-

len (61 samples in total). Subsamples of 1 cm3 
were extracted for macroscopic charcoal analy-
ses at 1 cm intervals (607 samples in total) from 
Kukka Hollow. Subsamples for the measurement 
of peat humification were extracted at 2 cm in-
tervals from Larix and Olga Hollows and at 8 
cm interval from Mosquito Hollow. 

The chronology of the cores is based on AMS 
radiocarbon dating conducted by the Poznan Ra-
diocarbon Laboratory, Poland and in the Labora-
tory of Chronology at the University of Helsinki, 
Finland. Terrestrial macrofossils and bulk sam-
ples of peat were used for dating and the dated 
levels of the cores were selected based on the 
changes in the pollen diagrams. Details of the 
dated samples can be found in table 1 and cor-
responding publications. All radiocarbon dates 
were calibrated using the IntCal09.14C calibra-
tion curve (Reimer et al., 2009) and the age-depth 
models for each site were constructed using the 
non-Bayesian Clam model package 2.1 (Blaauw, 
2010) in the statistical software R (R Develop-
ment Core Team 2015). The dates are expressed 
as calibrated years before present (cal yr BP).

2.3 Laboratory analyses

2.3.1 Fossil pollen and stomata data
All samples for pollen identification were pre-
pared with standard procedures of KOH-, ac-
etolysis- and HF-treatment (Fægri and Iversen, 
1989). The samples were mounted in silicone oil 
and a minimum of 500 terrestrial pollen grains 
were identified using a 400x magnification. Pol-
len identification is based on Beug (2004), Moore 
et al. (1991), and a reference collection of the 
Department of Geosciences and Geography, Uni-
versity of Helsinki.  In order to obtain more reli-
able information about the local presence of tree 
species during the Holocene, the fossil conifer 
stomata were identified from the pollen slides 
simultaneously with pollen identification. Sto-
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Table 1. Description of small hollow sites analyzed in this study and related methods.

 Larix Hollow Mosquito Hollow Olga Hollow Kukka Hollow 
Coordinates 61°50` N, 37°45` E 61°51` N, 37°46`E 61°12` N, 37°35`E 61°38` N, 32°45`E 
Size < 0.1 ha < 0.1 ha < 0.1 ha < 0.1 ha 
Modern 
vegetation 
 

Main tree species: 
Mixed forest with 
Picea, Pinus, Betula 
and Larix sibirica 
 
Ground layer: 
Vaccinium myrtillus, 
Vaccinium 
uligonosum, 
Rhododendron 
tomentosum and 
Andromeda polifolia 

Main tree species: 
Mixed forest with 
Picea, Pinus, Betula 
and Larix sibirica 
 
Ground layer: 
Vaccinium myrtillus,  
Vaccinium 
oxycoccus, 
Potentilla palustris, 
Menyanthes 
trifoliata, 
Carex spp. and 
Equisetum spp. 

Main tree species: 
Mixed forest with 
Picea, Pinus, Betula 
and Larix sibirica 
 
Ground layer:  
Vaccinium 
oxycoccus, 
Andromeda polifolia, 
Rhododendron 
tomentosum, 
Potentilla palustris, 
Menyanthes trifoiata 
and Equisetum spp. 

Main tree species: 
Recently clear cut. 
Mixed forest with 
Picea, Pinus and 
Betula on 
surrounding slopes 
 
Ground layer:  
Eriophorum 
angustifolium, 
Deschampsia 
cespitosa, 
Dryopteris 
carthusiana 

Chronology Dated samples:  
six 14C dates of peat 
samples and one 14C  
date of terrestrial 
macrofossil 
 
 
Calibration: IntCal09 
  
Age-depth model: 
non-Bayesian Clam 
model 

Dated samples: 
three 14C dates of 
peat samples and 
three 14C  dates of 
terrestrial 
macrofossils 
 
Calibration: IntCal09 
  
Age-depth model: 
non-Bayesian Clam 
model 

Dated samples:  
one 14C date of peat 
sample, four 14C  
dates of terrestrial 
macrofossils and two 
14C  dates of gyttja 
 
Calibration: IntCal09  
 
Age-depth model: 
non-Bayesian Clam 
model 

Dated samples:  
nine 14C dates of 
terrestrial 
macrofossil 
 
 
 
Calibration: IntCal09 
  
Age-depth model: 
non-Bayesian Clam 
model 

Sample 
analysis 

- Pollen 
- Stomata 
- Microscopic 
  charcoal 
- Peat humification  
  Analysis 

- Pollen 
- Stomata 
- Microscopic 
  charcoal 
- Peat humification  
  analysis 

- Pollen 
- Stomata 
- Microscopic 
  charcoal 
- Peat humification  
  analysis 

- Pollen 
- Stomata 
- Macroscopic 
  charcoal 

Statistical 
analyses 

- Wavelet   
  coherence 
- Variation 
  partitioning 
- RDA 

- Variation 
  partitioning 
- RDA 

- Wavelet   
  coherence 
- Variation 
  partitioning 
- RDA 

- Variation 
  partitioning 
- RDA 

Paper I, II, III I, II, III I, II, III II, III 
 

mata identification was based on the identifica-
tion key by Sweeney (2004) and modern refer-
ence samples.  

2.3.2 Sedimentary charcoal analyses
Microscopic charcoal analysis was conducted 
concurrently with pollen and stomata identifi-

cation for Larix, Mosquito and Olga Hollows. 
In order to calculate the charcoal concentra-
tions Lycopodium marker spores were added to 
the samples (Stockmarr, 1972). Opaque, sharp 
edged particles were identified as charcoal (Scott, 
2010). The total amount of charcoal fragments 
was calculated from each slide and the concen-
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tration (particles/cm3) of particles larger than 40 
µm was used for the diagrams and the statisti-
cal analyses in this study. From Kukka hollow 
macroscopic charcoal analysis was conducted by 
Jennifer Clear in Liverpool. Subsamples were 
soaked in NaOH, sieved through 300 µm mesh 
and the residues were added to 80 ml of double 
distilled water. Charcoal particles >300 µm were 
counted on a petri dish using a grid base. Mac-
roscopic charcoal concentrations are presented 
as total count of particles/cm3.

2.3.3 Peat humification analyses
As an independent proxy for the local hydro-
logical conditions, the degree of peat humifica-
tion was analyzed from three small hollow sites 
(Larix, Mosquito and Olga Hollows) (paper I). 
Warmer and drier conditions are indicated by 
well composed peat layers, while less decom-
posed layers indicate cooler and wetter local con-
ditions. The degree of peat humification was an-
alyzed following the protocol defined by Cham-
bers et al. (2010) based on the method of Aaby 
and Tauber (1975) and Blackford and Chambers 
(1993). Peat samples were soaked in NaOH and 
the amount of light transmitted through an extract 
was measured with a spectrophotometer (Lange 
DR 5000). The results are expressed as percent-
age (%) of light transmitted through the samples. 
See more detailed description of the method in 
paper I. Pollen, stomata, charcoal and peat hu-
mification data was plotted using C2 program 
(Juggins, 2003). 

2.4 Climate data and human 
population size data

Climate data
Climate data was derived from LOVECLIM-
climate model providing regional climate data 
at a monthly resolution. The model is an Earth 
system model of intermediate complexity and it 

includes atmosphere, ocean and sea ice, land sur-
face and ice sheets and the carbon cycle (Rens-
sen et al., 2009; Goosse et al., 2010). The cli-
mate variable used in the analysis includes three 
parameters; mean summer (summT) and winter 
(wintT) temperatures (papers I, III) and oxygen 
isotope (δ18O_SAAR) (paper III). Mean summer 
(June – August) and winter (December – Febru-
ary) temperatures were calculated and the values 
expressed as difference from the pre-industrial 
(250 – 550 cal yr BP) mean. In order to have an 
independent palaeoclimatic variable for chang-
es in summertime effective humidity, the oxy-
gen isotope (δ18O) record from Lake Saarikko 
in southern Finland (Heikkilä et al., 2010) was 
included in the analysis. The values reflect δ18O 
composition of past lake water and are based on 
lake sediment cellulose (Heikkilä et al., 2010).

Human population size data
Two separate data sets were used for the hu-
man population size in paper III. For the pre-
historical time period (9000 – 1000 cal yr BP) 
the human population size was derived from an 
archaeological data set (Tallavaara et al., 2010), 
which is assumed to reflect relative trends in 
the Holocene human population (Oinonen et al., 
2010; Tallavaara et al., 2010). In paper III, the 
frequencies of calibrated median ages of radio-
carbon dated archaeological findings were used 
to reconstruct the human population size. For 
the historical time period in Finland (1000 – 0 
cal yr BP) the absolute human population data 
were derived from historical literature references 
(Huurre 1998; Virrankoski 2001; Meinander and 
Autio 2006; Tilastokeskus 2015).

2.5 Statistical analyses
Variation partitioning (Borcard et al., 1992) was 
used to investigate the relative importance of po-
tential drivers on the variation in long-term boreal 
forest composition (Papers I, III). This method 
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provides quantitative means to assess the rel-
ative importance of individual environmental 
variables in palaeoecological data (Reitalu et al., 
2013). It allows the decomposition of the total 
variation in community data into components re-
vealing the variation explained by independent 
variables, their joint effects and the fraction of 
the variation, which is unexplained by the known 
variables. In papers I and III long-term boreal 
forest composition reflected by pollen data was 
used as a response matrix. In paper I, three envi-
ronmental variables; temperature (mean summT 
and wintT), forest fires (charcoal concentrations) 
and growing site wetness (degree of peat humi-
fication) were used as explanatory variables. In 
paper III, climate (mean summT and wintT and 
δ18O isotope proxy for effective moisture), forest 
fires (charcoal concentrations) and human pop-
ulation proxy (frequency distribution of radio-
carbon dated archaeological findings) were used 
as explanatory variables. Variation partitioning 
analyses were conducted using the Vegan pack-
age (Oksanen, 2011) in the statistical software R 
(R Development Core Team, 2015).  

Ordination method redundancy analysis 
(RDA) (Legendre and Legendre, 1998) was em-
ployed to assess the quantitative relationship be-
tween long-term boreal forest composition and 
environmental variables (Paper III). The climate 
parameters (summT, wintT and δ18O_SAAR) 
forest fires (charc) and site variable were used 
as constraining variables. The pollen percentages 
of the most common pollen taxa present in all 
studied sites, reflecting the changes in long-term 
boreal forest composition, were used as the re-
sponse variable. The significance of the marginal 
effects of a single constraining variable was as-
sessed by ANOVA permutation test with (999 
randomizations). RDA was conducted using the 
Vegan package (Oksanen, 2011) in the statistical 
software R (R Development Core Team, 2015).  

Wavelet coherence application of wavelet 

analysis by Grinsted et al. (2004) was employed 
to examine the associations between forest fires 
and the four most common boreal tree taxa (Pi-
cea, Pinus, Betula and Alnus) (Paper II). Wavelet 
coherence analyses provides a novel approach 
to examine the relationship between past forest 
fires and vegetation composition (Cazelles et al., 
2008; Torrence and Compo, 1998). The method 
can decompose the observations between two 
variables into the time-frequency profiles and 
measure the local correlation between the pre-
dictor and response variables in time frequency-
windows. This allows the examination of the 
phase and strength of the effect of fires on tree 
taxa at different timescales. To test the statisti-
cal significance of the results, the Monte Carlo 
permutation methods are built into the analysis 
based on the red noise assumption with a first 
order autocorrelation. Wavelet coherence analy-
ses were conducted in MATLAB with package 
by Grinsted et al., (2004). 

3 Summary of original 
publications

3.1 Paper I
In paper I, the Holocene stand-scale vegetation 
dynamics were investigated based on pollen and 
stomata records. The main aim was to investigate 
the Holocene history of Norway spruce and Si-
berian larch in NW Russia. The second aim of 
the paper was to statistically assess the relative 
importance of the potential drivers of Holocene 
boreal composition by applying the variation par-
titioning method. For statistical analysis, the ap-
proximation of the Holocene boreal forest com-
position was derived from pollen data and pollen 
percentages of the ten most common pollen taxa 
(Alnus, Betula, Corylus, Picea, Pinus, Ulmus, Sa-
lix, Ericaceae, Cyperaceae, Poaceae) was used 
as the response matrix and temperature (mean 
summT and wintT), forest fires (charcoal) and 
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growing site wetness (degree of peat humifica-
tion) were used as explanatory variables. For the 
analysis, all data were averaged over 100-year 
intervals and analyses were carried out for four 
small hollows for the last 9000 years. In order 
to examine the relative importance of environ-
mental variables through time, a moving win-
dow approach (Reitalu et al., 2013) was applied. 
The method provides information on the relative 
roles of the environmental variables over time 
by allowing the variation partitioning for subsets 
of data in different time windows. In addition, 
we examined the relative importance of climate, 
forest fires and growing site wetness separately 
on four most common tree taxa, namely spruce, 
pine, birch and alder. In this paper we also tested 
the hypothesis that temperature explains more 
variation in boreal forest dynamics at the regional 
scale rather than at the local scale by comparing 
the results from four small hollows (reflecting 
local vegetation) and two lakes (reflecting more 
regional vegetation).

The most conspicuous result is that pollen 
and stomata records clearly demonstrate the local 
presence of the two key taxa, Norway spruce and 
Siberian larch, at the western range limit of the 
Russian taiga since 10 000 cal yr BP. Spruce was 
widely present, but not dominant in the early Ho-
locene in NW Russia. The expansion of spruce 
population at 8000 – 7000 cal yr BP significant-
ly changed the forest structure, when the mixed 
pine-birch-larch forest declined and spruce be-
came the dominant species. The spruce expan-
sion in NW Russia occurs at the same time as 
the onset of the spruce migration westward into 
Fennoscandia.

Variation partitioning results indicate that 
temperature was the main driver of long-term 
changes in the Holocene vegetation composition 
in Russian taiga forests, whereas the role of lo-
cal factors (forest fires and growing site wetness) 
was relatively low. However, when the analysis 

was conducted for shorter time periods, the da-
ta indicated a higher importance of forest fires. 
The relative importance of temperature in the 
variation in individual tree taxa varied between 
sites suggesting that the effect of temperature is 
connected to local characteristics of the site. The 
comparison between small hollows and lakes re-
vealed that temperature explained larger propor-
tion of the variation in regional forest compo-
sition. This is an expected result, as it is logi-
cal that the regional vegetation reflected by the 
pollen data from lakes in more in balance with 
changing climate than the local vegetation re-
flected by the small hollow data. 

3.2 Paper II
Paper II focused on the Holocene fire history 
and the significance of forest fires in stand-scale 
dynamics in the unmanaged taiga forest in NW 
Russia. Fossil pollen, stomata and charcoal re-
cords were studied from three small hollows lo-
cated in the western range limit of Siberian larch. 
Wavelet coherence method was applied to statis-
tically assess the significance of forest fires on the 
vegetation composition at different time-scales. 
In the analysis, the phase and strength of the as-
sociation between the four most common tree 
taxa (Picea, Pinus, Betula and Alnus) and forest 
fires were analyzed in a time-frequency window.

The results show remarkably different fire 
histories between the sites. In Larix Hollow the 
sedimentary charcoal layers corresponded with 
peaks in the microscopic charcoal concentration 
data and suggest frequent local fire events. How-
ever, in the data from Mosquito Hollow, located 
only 800 m apart from Larix Hollow, the ab-
sence of charcoal layers and the low charcoal 
concentrations suggest that site has acted as fire-
free refugium throughout the Holocene. In Olga 
Hollow, the charcoal concentrations are gener-
ally low, but indicate increased fire activity be-
tween 7500 – 5500 cal yr BP. The differences 
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in the fire histories between the sites located in 
a small geographical area demonstrate the im-
portance of site-specific factors rather than cli-
mate as the driver of the local fire regime in the 
unmanaged taiga forests.

The wavelet coherence results demonstrate 
the significance of the forest fires in stand-scale 
forest dynamics. The impact of forest fires 
on vegetation varied from the short-term (< 
200-year period) increase or decrease in indi-
vidual tree taxa to the profound, longer-term (400 
– 800 years or more) changes in vegetation com-
position. The clearest result is the strong negative 
association between spruce and local fire events, 
reflecting the fire-sensitivity of the spruce popu-
lation.  In contrast, birch and alder have strong 
positive associations with fires, which demon-
strate their role as pioneer species that colonize 
the area after fire. Interestingly, pine had a neu-
tral association with forest fires and the results 
suggest that the abundance of pine in our sites 
is connected to other factors, such as competi-
tion, rather than forest fires.

3.3 Paper III
In paper III, the importance of climate, forest 
fires and human population size on long-term re-
gional and local boreal forest composition were 
addressed using variation partitioning. To test the 
hypothesis that climate explains more variation 
in long-term boreal forest composition at the re-
gional scale compared to the local scale, pollen 
data from 17 sites (nine lakes and eight small 
hollows) spanning from Sweden across Finland 
to Russia were used to reconstruct the long-term 
vegetation composition. Climate, generated from 
LOVECLIM-climate model and δ18O data, past 
forest fires as reflected by sedimentary charcoal 
data and human population size derived from 
the frequency variations in radiocarbon-dated 
archaeological findings, were used as drivers of 
Holocene boreal forest composition.

The results demonstrate that the climate 
clearly explains the highest proportion of the 
regional scale variation in boreal forest dynam-
ics. However, this mostly concerns the regional 
vegetation and its importance at local scale is 
relatively small. Interestingly, the forest fires ex-
plain relatively low proportion of the variation 
in long-term boreal forest composition at both 
regional and local scale. The relative importance 
of human population size was assessed only us-
ing pollen data from lakes and the analyses were 
carried out separately for the prehistorical (9000 
– 1000 cal yr BP) and historical (1000 cal yr BP 
to present) time periods. In general, the relative 
importance of human population size as a driv-
er of changes in long-term forest composition 
is relatively low in both time-periods. Howev-
er, since the human population size record is an 
average estimation for the whole study region, 
the low proportion of explained variation may 
be due to mismatch between the scales of the 
pollen data reflecting regional vegetation and 
the human population size data representing a 
much larger area. 

4 Discussion

4.1 Holocene forest dynamics in tai-
ga forest in NW Russia (papers I, II) 
One of the most conspicuous results in this work 
is the constant presence of Siberian larch at its 
western range margin throughout the Holocene 
revealed by pollen and stomata records (Fig. 3). 
Though a small amount of larch pollen have been 
recorded in previous pollen diagrams from East-
ern Russian Karelia (Devyatova, 1986; Demidov 
and Lavrova, 2001; Filimonova, 2006), the local 
presence of larch in the area has not been pre-
viously demonstrated by using stomata records 
or macrofossils. The stomata evidence is critical 
because larch is a notoriously silent species in 
palynological records, since its pollen is easily 



21

Figure 3. Diagrams showing the Picea and Larix-type pollen and stomata records from three small hollows from 
western range limit of Russian taiga a) Larix Hollow, b) Mosquito Hollow, and c) Olga Hollow. Pollen abundances 
are expressed as percentage of terrestrial pollen sum and shown with silhouette curves. Stomata concentrations 
(stomata/cm3) are shown with bars and charcoal concentrations (particles/cm3) with silhouette curves. d.) Climate 
data derived from LOVECLIM -climate model (Goosse et al., 2010) showing the mean winter (wintT) and summer 
(summT) temperatures in the study area and cellulose-inferred δ18O record from Lake Saarikko in eastern Finland 
(Heikkilä et al., 2010).
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broken and difficult to identify. Larch stomata 
are more abundant and easily identifiable, pro-
viding reliable evidence on local presence of the 
species at the study sites (Clayden et al., 1996). 
The previous studies from the study region have 
not included stomata analysis and therefore the 
presence of larch may have remained undetect-
ed. The early-Holocene presence of larch trees 
in the study area contradicts the previous hy-
pothesis that, like spruce, the species would have 
migrated westwards during the Holocene (Bin-
ney et al., 2009). As discussed in paper I, larch 
is a continental species which can compete ef-
fectively with other tree species in harsh peri-
glacial conditions, with cold winters and strong 
winds, due to its thick bark and deciduous leaves 
that offer protection against winter desiccation 
and wind abrasion (Gower and Richards, 1990; 
Kharuk et al., 2007). Therefore it is probable that 
during the late glacial, larch trees survived in 
periglacial conditions near the ice sheet margin 
and may have been more abundant in the light 
mixed Pinus-Betula-Larix forests that dominat-
ed the early Holocene landscape in the study 
area.  Furthermore, Kullman (1998) and Öberg 
and Kullman (2011) reported the potential pres-
ence of larch in the Scandes mountains during 
the early Holocene. 

However, presently larch grows in scattered 
populations in spruce and pine dominated for-
ests in its western range margin. The reason why 
larch stayed in its western range margin for the 
last 10 000 cal yr BP, but has not migrated west-
ward can only be speculated. Like larch, spruce 
favors nutrient rich habitats, but unlike larch it 
is a shade tolerant species (Gower and Rich-
ards, 1990). Since these two species have partly 
overlapping ecological niches, it is probable that 
the change towards a warmer climate favored 
spruce at the expense of more continental larch. 
This is corroborated by the studies from Siberian 
larch dominated forest from Siberia indicating 

ongoing greening with dark conifers, such as 
spruce, overtaking the light larch dominated for-
ests (Kharuk et al., 2007; Shuman et al., 2011).

An equally important feature in our pollen 
and stomata records is the widespread presence 
of spruce in Russian Karelia from 10 500 cal 
yr BP onwards. This together with other stud-
ies (Subetto et al., 2002; Wohlfarth et al., 2002, 
2004, 2007; Elina et. al., 2010) in the surround-
ing areas in Karelian Isthmus and eastern Russian 
Karelia suggest that spruce was widespread, but 
not dominant in the late-glacial and early Holo-
cene forest vegetation.

The expansion of spruce population at 8000 
– 7000 cal yr BP initiated significant change in 
forest structure (Fig. 3), when the light Pinus-Bet-
ula-Larix forest was replaced by denser spruce 
dominated coniferous forest and spruce remained 
as the dominant tree species until the late Holo-
cene. This together with the constant Holocene 
presence of Siberian larch suggests that taiga for-
ests were growing in the region throughout the 
Holocene.  No notable increase in temperate tree 
species in forest composition occurred during the 
Holocene Thermal Maximum (HTM) in the re-
gion. These results differ from the clear north-
ward range shift of temperate tree species, such 
as Corylus, Tilia, and Quercus in Fennoscan-
dia (e.g. Heikkilä and Seppä, 2003; Alenius and 
Laakso, 2006; Miller et al., 2008; Seppä et al., 
2015) during the HTM between 8000 – 4000 cal 
yr BP (Heikkilä and Seppä 2003; Seppä et al., 
2009a). This may be attributable to more conti-
nental climate setting with low winter tempera-
tures in the region, since the lower tolerance of 
temperate deciduous trees to the extremely low 
winter temperatures, which can occur in more 
continental parts of Europe, may have favored 
coniferous tree taxa (Miller et al., 2008). 

The rise to dominance of spruce is roughly 
synchronous at all studied sites in Russian Kare-
lia (in paper I, figure 4) and roughly concomi-
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tant with the well-established westward spread 
of spruce to Fennoscandia starting in eastern 
Finland at 7000 – 6500 cal yr BP (e.g. Tallan-
tire 1972; Giesecke and Bennet, 2004; Latalowa 
and van der Knaap, 2006; Seppä et al., 2009b). 
Therefore, the widespread expansion of spruce 
population seems to mark the beginning of the 
westward migration of spruce to Fennoscandia 
that is traditionally connected to the change in 
climate towards more cool and moist conditions 
(Miller et al., 2008; Seppä et al., 2009b). How-
ever, the spruce expansion in Russian Karelia 
coincides with the onset of the HTM at 8000 
cal yr BP. As discussed in paper I, it is possible 
that the prevailing climatic conditions with low-
er-than-present winter temperatures and warmer 
summers with longer growing season favored 
spruce that may have outcompeted other tree 
taxa. In addition, the oxygen isotope records indi-
cate short-term increase in moisture little before 
8000 cal yr BP (Fig. 3). This may have been a 
facilitator for the expansion of spruce. Similar 
response have been recorded by (Borisova et 
al., 2011) from western Siberia, where change 
from light larch dominated forest to dark spruce 

dominated coniferous forests was attributed to 
changes in moisture conditions. 

During the late Holocene, pollen records 
from four small hollows show decline in Picea 
pollen curve from 2000 cal yr BP to present (see 
paper I, figure 4). Similar trend in the Holocene 
history of the species have been recorded in small 
hollow and lake records in Fennoscandia and 
Baltic countries. In general, spruce decline has 
been connected to increased human induced fires 
and especially to slash-and-burn cultivation prac-
tices (e.g. Alenius et al., 2008; Heikkilä and Sep-
pä, 2010; Niinemets and Saarse, 2006; Pitkänen 
et al., 2002). However, as the fire histories from 
the small hollow sites in eastern Russian Karelia 
demonstrate (Fig. 3) the concurrent spruce de-
cline in each site during the last two millennia 
cannot be explained by increased fire activity. 
This suggests that the spruce decline is a large 
scale phenomenon in northern Europe, probably 
initiated by the changes towards less continen-
tal climate conditions during the Late Holocene.

  

Figure 4. Variation partitioning results for the whole 9000 year study period. a) In pollen data from all lakes pooled 
together in terms of fractions of variation explained by climate and site variables, b) In pollen data from all lakes 
with charcoal record pooled together in terms of fraction of variation explained by forest fires and site variables, c) 
Variation partitioning results for the last 9000 cal yr BP in all small hollows pooled together in terms of fractions of 
variation explained by climate, forest fires and site variables.
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4.2 Climate drives the long-
term boreal forest dynamics at 
regional scale (Papers I, III)

The Holocene range shifts of tree taxa in 
connection to changing climate in Europe is 
well recognized (e.g. Birks, 1986; Prentice et 
al., 1998; Soja et al., 2007; Miller et al., 2008; 
Giesecke et al., 2011; Hickler et al., 2012) and 
corroborated by the results of papers I and III 
demonstrating that climate is the main driver of 
the regional long-term boreal forest dynamics. 
In general, temperature and moisture conditions 
are considered as the main limiting factors for the 
growth of boreal tree taxa (Bonan and Shugart, 
1989; Woodward, 2004) and as our climate 
variable was comprised of mean summer and 
winter temperatures and the affective humidity, 
the results were expected. Noteworthy is the 
high amount of variation explained by site 
factor (Fig. 4) and that a substantial amount 
of variation was left unexplained. This 
demonstrates the importance of differences 

in vegetation composition, succession stage 
and the disturbance regimes that may govern 
the impact of climate on long-term changes 
in boreal forest dynamics in different regions 
(Lindner et al., 2010). However, the forest fires 
explain individually, very little of the regional 
scale variation, which probably is attributable 
to the local nature of fires. 

4.3 Drivers of stand-scale boreal 
forest dynamics (Papers I, II, III) 
Although climate explains the highest amount of 
the variation also at local scale, its importance is 
clearly less prominent than at the regional scale. 
The high amount of variation explained by the 
site factor and the fact that almost half of the 
variation is left unexplained (Fig. 4c) demon-
strates the complexity of the processes behind 
the long-term stand-scale boreal forest dynam-
ics. It is important to note that in addition to the 
factors included to the analysis in this work, the 
stand-scale boreal forest dynamics may be at-

Figure 5. Results for variation partitioning for ten most common pollen taxa (Alnus, Betula, Corylus, Picea, Pinus, 
Ulmus, Salix, Ericaceae, Cyperaceae, Poaceae) from Larix Hollow in terms of fraction of the variation explained by 
temperature, forest fires and growing site wetness. The variation partitioning has been carried out in the subset of 
ten successive pollen samples.
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tributable to several other factors, such as soil 
characteristics (Bonan and Shugart, 1989; Kolb 
and Diekmann, 2004; Kunes et al., 2011), light 
availability (Diekmann 1996; Miller et al., 2008), 
natural disturbances such as wind throws and 
insect outbreaks (Peterken, 1996; Selikhovin, 
2005; Hof and Svahlin, 2015) and interspecif-
ic competition (Mitchell et al., 2006; Seppä et 
al., 2009b; Post, 2013; Zhang et al., 2015). The 
significance of the factors not included in this 
work is also evident from the results of moving 
window approach that show the relative impor-
tance of used environmental variables on boreal 
vegetation composition through time in subsets 
of ten samples reflecting shorter time periods 
(varying in length due to the uneven sedimen-
tation rate) (Fig. 5). The variation explained by 
climate, forest fires and growing site wetness var-
ies notably and rarely exceeds over half of the 
explained variation. Therefore, it can be assumed 
that the changes in stand-scale boreal composi-
tion are also attributable to several other factors, 
which were not possible to include in this work. 

Senici et al. (2013) demonstrated the signifi-
cance of local moisture conditions on fire regime 
and hence to the local vegetation. In paper III, 
the peat humification data were employed as a 
proxy for changes in local moisture conditions 
in order to detect the relative importance of lo-
cal hydorogical conditions on stand-scale for-
est dynamics. The degree of peat humification 
has been used as palaeoclimatic proxy indicating 
especially the shift in moisture conditions (e.g. 
Blackford, 2000; Borgmark, 2005; Chambers et 
al., 2012). However, the peat-forming ecosystem 
is sensitive to the changes in local vegetation 
(Yeloff and Mauquoy, 2006) and disturbances, 
such as forest fires, may affect water-table level. 
Thus, the local microclimatic conditions inter-
preted from peat humification data may be biased 
and needs to be considered with caution. How-
ever, there are several studies suggesting that 

there may have been substantial changes in the 
groundwater level and associated trends in palu-
dification in Fennoscandia (e.g. Almquist-Jacob-
son, 1994; Hammarlund et al., 2003; Väliranta 
et al., 2007; Weckström et al., 2010; Edvards-
son et al., 2012). Therefore, it is evident that in 
future studies the local hydrological conditions 
need to be included as one of the potential driver 
of stand-scale forest dynamics. 

Both local factors, forest fires (papers I, II, III) 
and local moisture conditions (paper I), explain 
a relatively low amount of variation in stand-
scale boreal forest dynamics (paper I) when the 
whole 9000 year study period was included in 
the analysis. However, especially the importance 
of fires increase when the shorter time intervals 
(consisting of subsets of ten samples) are ob-
served  (Fig. 5 and see paper I). Although the low 
importance of local factors in long-term boreal 
forest composition may be an artefact created 
by the variation partitioning method (see chapter 
4.5), these results suggest that when investigat-
ing the drivers of local boreal forest dynamics, 
the consideration of temporal scale is necessary. 

4.3.1 Importance of fire on stand-scale 
boreal forest dynamics (Papers I, II, III)

Since fire is considered as one of the key fac-
tors maintaining the mosaic age structure and 
patchy composition characteristic to natural bo-
real forests (e.g. Zackrisson, 1977; Hörngberg et 
al., 1995; Kuuluvainen and Aakala, 2011; Droby-
shev et al., 2014), the relative importance of for-
est fires in the variation of long-term boreal stand-
scale dynamics was unexpectedly low (Fig. 4). It 
is probable that this result is biased and attributed 
to the variation partitioning analysis method used 
in this study (see chapter 4.5). However, in boreal 
forests the lifespan of dominant tree species may 
be equal or even longer than the fire intervals 
(Josefsson et al., 2010), which may hold back 
the effect of fire on vegetation dynamics. Fur-
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thermore, Scots pine can resist fires and though 
the fires are usually frequent in pine dominated 
sites they do not necessarily cause fatal damage 
to the trees (Zackrisson, 1977).

Although the results suggest low importance 
of fires in the long-term perspective, the signifi-
cant role of fires on short-term stand-scale boreal 
forest dynamics is demonstrated when the varia-
tion partitioning analysis is performed in shorter 
time intervals in moving window approach  (Fig. 
5). Furthermore, the results of wavelet coherence 
analysis do not only demonstrate the significant 
role of fires in the changes of individual spe-
cies in short-term (<200 year period ), but indi-
cate longer (>400 – 800 year period) profound 
changes in stand-scale forest composition (Fig. 
6). For example, it is probable that in Larix and 
Olga Hollows the period of high-intensity fires at 
7500 – 7000 cal yr BP has destroyed the extant 
forest type and top soil and thus created openings 
for spruce invasion and facilitated a shift towards 
spruce dominated closed forest (Fig. 3). Thus, it 

can be assumed that change in fire frequency is 
an important driver of the changes in stand-scale 
forest composition. However, the local vegeta-
tion composition and the severity of fires may 
regulate the impact of fires (Ryan, 2002). The 
significance of fires in stand-scale succession 
dynamics in short intervals is demonstrated by 
the species specific wavelet analysis indicating 
strong short-term (≤ 200 year period) associa-
tion with all four analyzed tree taxa and forest 
fires (Paper II). The results clearly demonstrate 
the strong positive short-term effect of fires on 
birch and alder suggesting that fire has initiated 
the succession of these pioneer species through-
out the Holocene. The strong negative associa-
tion between spruce and forest fires is coherent 
with the known fact that spruce is a fire intolerant 
species (Heikinheimo 1915, Zackrisson, 1977). 
Considering that spruce has been present at the 
sites from the early Holocene and that the max-
imum values of Picea pollen correspond with 
periods of low fire frequency in all studied sites 

Figure 6. Wavelet coherence results from Larix Hollow of Picea pollen and charcoal concentrations (a) and between 
Alnus pollen and charcoal concentrations (b). Pollen curve (% of terrestrial pollen sum) and charcoal concentrations 
(particles/cm3) are shown on top of the wavelet output figure. The wavelet figure shows the correlation between two 
fluctuating time series (charcoal concentration and pollen values). Age (cal yr BP) is shown on the x-axis and the time 
period (year) on y-axis. The color bar expresses the strength of correlation, where shades of red mean strong and 
shades of blue weak correlation. Arrows pointing to the left indicate an anti-phase fluctuations expressing negative 
correlation and arrows pointing to the right indicate an in-phase fluctuations showing positive correlation. Black 
contour lines indicate regions in which the observed wavelet coherence values are statistically significant based on 
Monte Carlo calculations.
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(Fig. 3), it seems that fires have an important 
role in the changes of spruce population in the 
unmanaged taiga forest, at least at local scale in 
the region of a strong continental climate. 

4.4 Human population size as 
potential driver of Holocene boreal 
forest dynamics (Paper III)

Traditionally the pollen data have been used to 
track the past human influence on vegetation 
(Behre, 1988) and especially the onset of cultiva-
tion practices (e.g. Rankama and Vuorela, 1988: 
Taavitsainen et al., 1998; Alenius and Laakso, 
2006). However, in this work the applicability of 
human population size proxy, derived from the 
frequency of radiocarbon dated archaeological 
findings, as one potential driver of the long-term 
regional boreal forest dynamics was statistically 
assessed for the first time. Previously Reitalu et 
al. (2013) made an effort to assess the relative 
importance of human activity in boreonemoral 
vegetation in Estonia during the last 5000 years 
based on palynological records. Their results dis-
played a higher impact of human activity com-
pared with the results obtained in this work that 
demonstrates relatively low importance of the 
human population size on long-term changes in 
boreal forest composition during the Holocene. 
Especially the importance of human population 
size during the historical time period was un-
expectedly low in general (paper III, figure 6). 
The differences between the results presented 
in this work and Reitalu et al. (2013) may be 
partly attributable to the earlier onset of cultiva-
tion in Estonia than in Fennoscandia (Poska et 
al., 2004). However, there are also notable dif-
ference between the analysis used by Reitalu et 
al. (2013) and the method applied in this study. 
Reitalu et al. (2013) reconstructed the human im-
pact variable from the sedimentary fossil pollen 
and charcoal records as one parameter of the hu-
man impact variable, whereas in this study the 

human population size proxy were independent 
from the fossil record. The advantage of using 
sedimentary fossil records is that they provide 
a more local signal of human activity than the 
data reconstructed from a regional data set of ar-
chaeological findings. However, the human im-
pact variable reconstructed from the same pol-
len data from which the forest composition is 
reconstructed creates a danger of circularity. The 
advantage of our analysis is the independence of 
the human population size proxy from the pollen 
records that are used to reconstruct the long-term 
forest composition. Therefore, it offers a unique 
opportunity to assess the relative importance of 
human population size on the changes in Holo-
cene boreal forest composition in Finland. 

The method of using the frequency of radio-
carbon dated archaeological findings to recon-
struct the human population size is widely ap-
plied (e.g. Gamble et al., 2005; Shennan and Ed-
inborough, 2007; Tallavaara et al., 2010). How-
ever, the variation in calibration methods of ra-
diocarbon dates and sample size may hamper the 
detection of the correct short-term variation in 
human population size (Williams, 2012; Shen-
nan et al., 2013). Moreover, the older sites may 
be underrepresented due to the time-dependent 
taphonomic loss of archaeological sites (Surov-
ell and Brantingham, 2007; Surovell et al., 2009; 
Williams, 2012). Most importantly, the estimate 
of the prehistoric human population size is an av-
erage value for southern and central Finland, and 
the historical population estimate is for whole of 
Finland. Hence, it is likely that these values do 
not reliably reflect the changes in human popula-
tion size around the individual lakes from where 
pollen data for reconstructing the forest compo-
sition were derived.  Since this was the first time 
that the importance of this type of human popula-
tion size data on long-term boreal forest compo-
sition was statistically assessed, and considering 
the possible source of bias in the analysis, the 
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results (presented and discussed in more detailed 
in paper III) demonstrating the unexpectedly low 
individual effect of human population size on the 
long-term boreal forest dynamics must be con-
sidered with particular caution. 

4.5 Assessment of the 
methods and data
The variation partitioning method is commonly 
applied in ecological studies. However, in the 
context of paleoecology the method has been less 
utilized. Reitalu et al. (2013) showed the potential 
of variation partitioning in assessing the relative 
importance of past environmental variables on 
the variation in past vegetation composition. In 
this work, the variation partitioning method was 
employed in papers I and III, and the results for 
the entire 9000 year study period gives ground 
to discuss the usefulness of this method to assess 
the importance of abrupt and short-term local 
environmental factors on changes in vegetation 
in long-term perspective. It can be assumed that 
the method detects the connection between the 
overall trends in Holocene climate and regional 
vegetation patterns rather reliably and the results 
regarding the importance of climate on the long-
term changes in vegetation can be considered 
trustworthy. However, since the wavelet coher-
ence analysis suggests the significant role of fires 
in both the short-term and longer time-perspec-
tive, and the RDA results show the significance 
of fires also in long-term forest dynamics at the 
local scale, it is probable that the variation par-
titioning results showing the unexpectedly low 
relative importance of fires on the variation in 
long-term stand-scale forest composition might 
be biased. It is important to note that variation 
partitioning analysis considers the entire time pe-
riod included in the analysis and the method re-
cords the overall trend, but not the direction of the 
change. Therefore, the short-term positive asso-
ciations between the stand-scale vegetation and 

environmental variable at one point may be can-
celled with negative association in another point 
of time. Therefore the impact of the short-term 
changes in fire frequency and in the local mois-
ture conditions on changes in long-term stand-
scale forest dynamics may remain low or uniden-
tified. Thus, the results of this work suggest that 
employing the variation partitioning method to 
assess the connection between past vegetation 
and local environmental conditions needs to be 
carefully considered. 

The wavelet coherence analysis was proven 
to be a useful method for examining the asso-
ciation between forest fires and boreal tree taxa. 
Whereas the variation partitioning method only 
records the overall relative importance, wavelet 
coherence also reveals the phase and the strength 
of the association providing more comprehen-
sive information of the relationship between the 
two variables. Moreover, the post-fire plant suc-
cession may take place over tens of years (Lam-
painen et al., 2004; Angelstam and Kuuluvainen, 
2004; Shorohova et al., 2009) and the peak in 
charcoal record might not match with the corre-
sponding change in pollen record. Such a time-
lag may remain undetected when using the vari-
ation partitioning, however wavelet coherence 
analyses observes the change of two variables 
in moving time frequency window and therefore 
can better spot the correlation between two vari-
ables. In future, more flexible techniques based 
on for example, Bayesian approaches (Toivonen 
et al., 2001; Holmström and Erästö, 2002) could 
be used to better detect the long-term importance 
of fires or other short-term events on stand-scale 
forest dynamics. 

It is also important to note that in this work 
the temperature data was derived only from one 
climate model and it would be beneficial to test 
if the results would differ depending on the ap-
plied climate model. However, the LOVECLIM-
climate model was chosen for this study, because 
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it is a regional climate model that provides better 
temporal resolution compared to other available 
models. Furthermore, the derived temperatures 
correspond with changes in independent δ18O 
record (Fig. 3) and with the climate reconstruc-
tions for northern Europe (e.g. Heikkilä and Sep-
pä, 2003; Seppä et al., 2009a). In addition, as 
discussed in paper III, the charcoal data might 
be biased since for example in lake sediments 
the prolonged charcoal accumulation after fire 
may cause a ‘false positive’ signal in the records, 
whereas in small hollows the fine-scale patterns 
of the fire may result in too conservative esti-
mates of fire frequency, when the fire may not 
advance over the whole surface of the site (Pit-
känen et al., 2003; Higuera et al., 2005). 

4.6 Implications for future research

The constant Holocene presence of Siberian 
larch at its modern western range limit, presented 
in this work, together with studies of Kullman 
(1998, 2008) and Öberg and Kullman (2011) 
suggesting the early Holocene presence of the 
species in the Scandes mountains, evokes the 
question of the late glacial – early Holocene dis-
tribution of the species. When and where larch 
migrated to its modern western range limit? An-
swering these questions would require temporal-
ly longer records from a wider area east of the 
present western distribution limit of the species. 
To detect the possible early Holocene presence 
of larch in southern Fennoscandia, small hol-
lows along a transect from the modern western 
range limit of the species across Russian Karelia 
to southeastern Finland should be sampled.  Also 
in future studies the stomata records should be 
employed in order to detect the local presence 
of Siberian larch.

The changes in long-term boreal forest com-
position, reflected by pollen data, in relation to 
Holocene changes in climate in the Russian taiga, 

show different pattern compared to the changes 
in the Fennoscandian boreal forest. The next step 
towards a more comprehensive understanding of 
these taiga forests could be the reconstruction 
of the actual vegetation cover in the region dur-
ing the Holocene. In recent years, the method-
ological advances in quantitative reconstructions 
of past vegetation from fossil pollen data have 
led to development of quantitative REVEALS- 
and LOVE-models (Sugita 2007a, 2007b; Su-
gita et al., 2010), which have been successfully 
used in reconstructing the Holocene land cover 
(e.g. Gaillard et al., 2008; Mazier et al., 2012; 
Nielsen et al., 2012; Marquer et al., 2014). While 
the reconstruction of past vegetation has previ-
ously reflected the changes in pollen percentag-
es or concentrations, these new models provide 
means to reconstruct the actual vegetation cover 
and reveal the actual proportion of certain spe-
cies of the vegetation composition.   Applying 
these approaches could increase the knowledge 
of the Holocene dynamics in the Russian taiga 
forests. However, these models require a higher 
number of large lake and small forest hollow 
sites as well as information of the pollen pro-
ductivity of tree species, which is depended on 
the forest type and regional habitat characteris-
tics (Baker et al., 2015). Currently there are no 
pollen productivity estimates of Siberian larch in 
taiga forests, which would be crucial in recon-
structing the actual vegetation cover in European 
Russian taiga forests. 

This work also confirms the assumption of 
the connection between regional climate setting 
and vegetation patterns, often intuitively as-
sumed in palaeoecological studies and used as 
grounds for the species distribution modelling or 
to reconstruct past climates. Species distribution 
models that are used to reconstruct and predict 
the past and future changes in species distribu-
tion are based on climate data and results of this 
work imply that these models are relevant only 
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for regional-scale vegetation patterns. The stand-
scale changes in vegetation are influenced by a 
complex set of local factors and hence probably 
too intricate to be modelled by presently avail-
able modelling approaches. The pollen data from 
lake sediments have been used in paleoclimate 
reconstructions to reconstruct past temperatures 
(e.g. Huntley et al., 1989; Seppä and Birks, 2001; 
Bartlein et al., 2011). These reconstructions are 
based on pollen-climate calibration models that 
assume that pollen composition is related to re-
gional climate (Seppä et al., 2004; Salonen et 
al., 2012). Results from this work demonstrate 
the high importance of climate on the variation 
in pollen data from lake records, hence confirm-
ing the usability of these sites for paleoclimate 
reconstruction, whereas the pollen data obtained 
from small hollows reflect the local vegetation 
pattern and are not appropriate for paleoclimate 
reconstructions.

5 Conclusions

In this work, fossil pollen, stomata and charcoal 
records were used to enhance knowledge of the 
Holocene history of unmanaged taiga forest in a 
lesser studied area of NW Russia. In addition, the 
importance of the potential drivers of long-term 
boreal forest dynamics were statistically assessed 
with variation partitioning and wavelet coher-
ence methods that are novel approaches in pal-
aeocological context. The main findings of this 
study can be summarized as follows: 

i)	 Pollen and stomata records from small 
hollow sites demonstrate that Siberian larch and 
Norway spruce have been present in the study 
region since the early Holocene. The expansion 
of spruce population at 8000 – 7000 cal yr BP 
caused notable change in forest structure, when 
the light pine-birch-larch forest was replaced by 
dense spruce dominated forests. Moreover, the 

spruce expansion seems to mark the onset of the 
migration of spruce towards Fennoscandia. The 
mid-Holocene dominance of spruce and constant 
presence of Siberian larch suggests that taiga for-
est persisted throughout the Holocene at the sites 
in eastern Russian Karelia.

ii) 	 Climate is the main driver of long-term 
regional scale vegetation changes. However, at 
the local scale the role of climate is smaller, 
whereas the role of local factors increases. Fur-
thermore, the relatively high amount of variation 
in long-term boreal forest composition explained 
by site and the relatively high amount of the vari-
ation remained unexplained by the environmen-
tal variables included in this work suggest that 
intrinsic site-specific factors have an important 
role in stand-scale dynamics in the boreal forest.

iii) 	 In long-term perspective, when the 
whole 9000 year study period is considered, for-
est fires explain relatively little of the variation 
in stand-scale boreal forest composition. How-
ever, the low importance of forest fires on long-
term forest composition might be attributable to 
the variation partitioning method. When shorter 
time periods are considered forest fires have a 
significant role in stand-scale forest dynamics. 
The results from wavelet coherence analysis sug-
gest that fires can have a significant effect on the 
short-term changes in individual tree taxa as well 
as have a longer profound effect on forest struc-
ture.

iv) 	 The results show relatively low impor-
tance of human population size on variation in 
long-term boreal vegetation. However, it is not 
suggested that the effect of human population 
size on long-term boreal forest composition is 
insignificant, but the low importance is likely due 
to the differences in the spatial representativeness 
between the human population size data and the 
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forest composition derived from pollen data.

Although the results strongly support the im-
portance of climate as the main driver of long-
term boreal forest dynamics, it is important to 
note that in stand-scale forest dynamics, the ef-
fect of climate is largely modified by the local 
characteristics. Therefore better understanding of 
the processes behind the boreal forest dynamics 
requires investigations into different spatial and 
temporal scales. Disentangling the species spe-
cific interactions between environmental vari-
ables and tree species as well as the large scale 
dynamics of the boreal forest ecosystem pro-
vides information to predict the possible future 
changes in boreal forest dynamics and also pro-
vide a means to better forest management prac-
tices and the conservation of the diversity of the 
boreal forest.
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