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1 Introduction

Early records of research into brain function analysis and neural pattern recognition
go back to at least the 19th century, with the common example of Paul Broca’s
research involving patients who suffered unfortunate traumatic brain injuries result-
ing in odd behavioral effects [DPIC07]. In the 20th century, less invasive, safer, as
well as better imaging modalities became available, which, coupled with advances in
statistical methods lead to further understanding of brain function [DaV10]. As an
example, since the introduction of functional magnetic resonance imaging (fMRI) in
1992, it has featured in well over 12.000 published papers already [Rai09] [PMBO09|

Nowadays machine learning is widely applied in the field of functional neuroimaging
to analyze signals such as fMRI, EEG and MEG (see section 2 for a brief overview
of these modalities). One such application is the design of brain-function decoding
methods, where different types of stimuli or tasks can be inferred (predicted) based
on the analysis of neuroimaging signals [KPHH12|. Most brain-function decoding
studies so far have been based on fMRI [PMB09|; fMRI however is limited by its
relatively low temporal resolution, making it an unsuitable modality for exploring
the analysis of fine spectral and temporal signatures of particular brain states. For
example, we know that high frequency oscillatory synchronized (electrical) activity
in the brain can be associated with different brain states [Sin93]. Neuroimaging

modalities capable of capturing at high temporal resolution are for example EEG
and MEG [HKS10).

In 2012 Kauppi, Parkkonen, Hari and Hyvérinen published a novel brain-function
decoding method that combines a feature extraction scheme utilizing spectrospatial
information of neural activity captured with MEG with a sparse logistic regression
method [KPHH12|. Earlier research had shown that the efficient feature selection
provided by the regularized logistic regression model used is crucial for data where
the feature count is (much) higher than the sample count [HKT13|, as tends to be

the case with neuroimaging data.

In this thesis, we take the data processed by this brain-function decoder and perform
the final classification step using eight different classification methods, in combina-
tion with four input scaling methods, as shown in figure 1. We hope to replicate the
(good) results of the original decoder implementation, published as SpeDeBox!, as a

validation of their "Spectral LDA" decoder, as well as see how these results compare

http://www.cs.helsinki.fi/group/neuroinf/code/spedebox/
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to other, both simple and sophisticated, classification methods, further outlined in
section 3.4. Additionally we evaluate the effectiveness of different feature reduction

methods prior to classification outlined in section 3.1.



Subjects are exposed to four different
A kinds of stimuli while their brain activity is
monitored using magnetoencephalography
(MEG), Ramkumar et al., 2012b.

Y

MEG data is used by Kauppi et al. [KPHH12| to evaluate their brain-function
decoder. The method used is called spectral linear discriminant analysis (Spectral
LDA), and its source code has been published as part of the Spectral decoding
toolbox (SpeDeBox %). Briefly, using patterns in rhythmic neural activity as markers
for different brain states corresponding to processing the four distinct stimuli from

the experiment.

%http://www.cs.helsinki.fi/group/neuroinf/code/spedebox/

Y

The authors evaluate the processed data
using a logistic regression based classifier,
based on previous good experience with

this method [HKT13|.

Y

We take the same processed MEG data and train and classify this data using

eight classification methods (including logistic regression) using four different initial
scaling methods. Additionally we evaluate the effects of applying feature reduction
before classification. The goal is to better validate the classification pipeline of the
original decoder, as well as to suggest possible useful machine learning methods for

inclusion in SpeDeBox.

Figure 1: The work done in this thesis and its relation to the work of Kauppi et al.
The experimental setup is described in section 4.1. The processing pipeline of the
spectral LDA decoder (first yellow box) is be described in more detail in section 4.2.
Our work (green box) is described in section 4.3 with our results shown in section
5.



2 Functional neuroimaging

A typical neuroimaging experiment consists of observing neural activity (brain activ-
ity) under specific conditions, such as the subject performing certain tasks or being
exposed to certain stimuli [LBDM11]. A typical goal of such an experiment is to
increase our understanding of the workings of the brain in general, and to find (prac-
tical) applications for this new knowledge. For obvious reasons such experiments

are best done using non-invasive and safe procedures.

We can roughly separate the imaging modalities, i.e. the method by which we
observe or infer particular brain activity, between those which observe direct physi-
ological effects of the neural activity (for example changes in blood pressure, blood
flow, oxygen or glucose levels in the blood, temperature, swelling/pulsating, and so
on), referred to as the hemodynamic response, and those which observe the indirect

effects of the neural activity, such as in the form of electromagnetic activity [Sav01].

2.1 Hemodynamic response

A popular neuroimaging modality exploiting the hemodynamic response is func-
tional magnetic resonance imaging (fMRI) [PMBO09]. fMRI exploits the blood oxy-
gen level dependent (BOLD) effect [Sav01l]. When brain activity increases, blood
flow is increased to supply (among other things) more oxygen to the active areas.
This changes the relative levels of oxygenated and deoxygenated blood around the
active areas, which are dia- and paramagnetic, respectively, and can be detected
using fMRI [PMBO09].

An inherent limitation of the hemodynamic response, and thus also of fMRI, tends
to be a relatively low temporal resolution, because of the relatively slow rate of
observable changes [Sav01l| [Rai98|. It takes time for blood flow to increase, for
tissue to move, for temperature to change, and so on, in response to a stimulus. In

addition, the sensor reaction or readout times may be a limiting factor.

Spatial resolution however tends to be relatively high. fMRI, for example, can
image a complete brain volume in voxels measured in cubic millimeters [HKS10]. It
is expected that spatial resolution will be ultimately bound by practical limitations
of the imaging modality (noise, heat, undesirable effects of large magnetic fields,

and so on) rather than by physiological limitations [Sav01].



2.2 Electromagnetic response

Firing neurons inside the brain produce tiny current flows, which in turn generate
tiny magnetic fields. When large enough areas fire more or less together, the sum

of their effects can be measured at some distance away from the brain [Sav01].

Electroencephalography (EEG) measures the electrical effects; magnetoencephalog-
raphy (MEG) measures the magnetic effects. There are a number of similarities
between the two: both methods use tens to hundreds of channels (different observa-
tion points), both methods can detect brain activity to a depth of about 4cm, both
methods are able to sample at very high (kilohertz range and higher) rates providing
excellent temporal resolution that is limited only by the neural response itself, and

both methods have, at this point, a spatial accuracy of about lem [Sav01] [HKS10].

Both methods also share the weakness of poor three-dimensional spatial localization.
Volumetric localization inside the head, i.e. determining the source of a signal, must
be done using only data recorded from outside the head; this is a mathematically

ill-posed problem, also referred to as the inverse problem [Sav01].

There are also a number of interesting differences between both methods.

2.2.1 Electroencephalography

In EEG electrodes are placed in a grid pattern across the scalp, making contact
with the skin. The residual conductivity of electrical brain activity results in small
voltage differentials between the different electrode locations. A single electrode is
designated as the reference channel (cf. an electric ground, or one pole of a battery),
and the voltage differentials to the other electrodes are measured [PSGS05]| [Sav01].

The required equipment is, by today’s standards, cheap and uncomplicated. Spe-
cial electrode "hats" exist (a kind of netting) to make electrode attachment less
cumbersome (the electrodes should be placed at more or less identical locations for
each session, if the results are to be compared or correlated to each other). Because
the electrodes are attached directly to the scalp, subject movement does not affect

readings, which simplifies post-processing (cleanup) requirements.

EEG has however two major weaknesses. Firstly there is the requirement of the ref-
erence channel. There does not exist a stable reference point (cf. electrical ground),
so the reference channel is also an active channel, affecting all measurements with

its own fluctuations. Secondly the conductivity depends on the conducting medium,
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i.e. is affected by the shape and density of the various tissues, particularly the skull,

which means signals are attenuated according to individual and local physiology.

2.2.2 Magnetoencephalography (MEG)

In MEG highly sensitive gradio/magnetometers are positioned in a grid pattern sur-
rounding the scalp in order to pick up extremely small (tens of femtotesla) magnetic
fields [HKS10]. Because these field strengths lie below the normal ambient back-
ground noise a shielded environment and highly sensitive superconducting quantum
interference devices (SQUIDs) are needed. MEG therefore requires expensive and

wieldy experimental setups, such as shown in figure 2.

Physical contact with the scalp is not needed, this however also means that the sub-
ject will likely move with respect to the sensor array, complicating post-processing
as the measured intensity of the magnetic fields depends on the distance between
the (moving) source and the (fixed) sensors. Algorithms that sufficiently compen-
sate for (among other things) subject motion [TaK05| [TSKO05] have however been
developed and have greatly improved the usefulness of MEG.

MEG does not need a reference channel like EEG, and the magnetic fields are
not affected by physiological variations. Furthermore there is one more important
difference to EEG. The orientation of the magnetic fields depends on the physical
orientation of the corresponding current flow, i.e. the orientation of the neurons.
Radially oriented fields are not seen by MEG, only tangentially oriented fields. This
means MEG sees "less" of the same brain activity than EEG. Generally, due to
brain physiology, signals originating from deep inside the brain tend to be more
radially oriented (less visible), whereas signals originating from the outer areas of
the brain are more tangentially oriented (more visible). One can argue this to be an

advantage or a disadvantage over EEG; in practice it has not deterred applications
of MEG [HKS10].

Additional imaging variants include combining EEG and MEG, or even EEG, MEG
and fMRI [HHPO5].



Figure 2: MEG recording setup example. Image credit: National Institute of Mental
Health (NIMH).



3 Classification

Fundamentally what we mean by classifying is assigning or inferring a particular
label to a particular set of observations, or properties [HTF09|. For example, we
can tell apart different types of fruits by their physical appearance, which is made up
of their color, size, shape, but also by their taste, texture, or background information
such as the type of plant they grow on, the time of year they bloom, and what the
ideal growing conditions are. Of course, at some point we have had to learn the

properties of these different types of fruits.

In this thesis we attempt to classify (label) neuroimaging data. By looking at
recorded data, we try to infer (guess, or predict) what kind of stimulus the brain
was processing at that particular moment. To do this we first look at examples; we
look at recorded data where we know there was a visual stimulus, at recorded data
where we know there was an auditory stimulus, and so on. Afterwards, we use this
knowledge to try and assign a label to unlabeled recording data. This process is a

form of supervised learning [Bis06].

Unsupervised learning would be looking at unlabeled data, and trying to find dif-
ferent classes. A simple example would be giving a bucket filled with apples and
bananas to someone who does not know what apples or bananas are, and asking

them to sort the bucket by what they would assume to be different types of fruit.

Consider the left plot in figure 3, as the result of a neuroimaging experiment where
we recorded 2 channels of data, shown in the x-axis and y-axis. Based on visual
inspection, we would probably conclude we observed two distinct brain states. This
is a form of unsupervised learning, as we do not know the actual exact answer. But
consider the right plot, where we recorded data under controlled conditions where
we labeled each recording sample with the corresponding stimulus. We can now try
and learn (model) the particular features of both brain states. Using this model, we
can take unknown samples (shown in green), and assign them to a particular class
based on their properties. L.e., by looking at a particular reading we try to predict

if the subject was listening to music, or watching a video, at the time of recording.

We refer to a classifier as a particular combination of input processing, modelling,
and predicting methods [DHS06]. For example, one classifier may work by learning
statistical properties of the different classes, whereas another classifier may compare
unknown samples directly to the known samples to try and find its closest match.

A trained classifier thus maps inputs (in our case high dimensional neuroimaging
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Figure 3: Both plots contain the same data points. On the left, we do not have any
class information, and we can use unsupervised learning to deduce that there are
probably two different states (classes), as well as learn the properties which allow us
to assign future samples to either of the classes. Of course, this is highly ideal data,
from real world data it can be difficult to deduce how many different classes there
are. In the right plot we do have class labels, i.e. we do know to which activity each
sample belongs. Based on this class information, we can try to assign a class label to
future (unknown) samples. Approaches can vary from using statistical properties,

to simply looking for the known sample which most closely mirrors the unknown

sample.
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data) to outputs (in our case one of four class labels).

Consider figure 4. A classifier, in this case a minimum distance classifier (see section
3.4.1) was trained on the colored samples shown, on the left with five classes, and
on the right with four classes. For each of the possible observations of input data
(two dimensional in this case, the x-axis and y-axis) the corresponding mapping to
its class label is shown as the background color. This particular classifier creates
linear decision boundaries, but we will also introduce some non-linear classifiers. A
classifier may also project its input data, for example a classifier could attempt to
"unroll" the spiral data on the right, which would result in a stacked bar that can
be linearly separated. The difficulty is of course in knowing when and how to do

this, i.e., determining the distribution of the input data.

Note that we assume the data has been appropriately pre-processed; real world data
can come with noise, random outliers, missing values, and so on. A first step is to
clean up this data, which in our case has been done as part of the brain-function

decoder, the yellow blocks in figure 1, further described in section 4.2.

3.1 Feature reduction

Consider the right plot of figure 3. In the end our goal is to distinguish between the
different classes, in this case "Music" and "Video". Do we need all of the data to
do this? Do we need to preserve the exact structure, or can we simplify the data by
discarding information which does not aid in separation of the classes? A reason we
may want to ask this is that as a general rule, more data means more complexity,
which means more processing requirements. If we have very large datasets with very
high dimensionality, it may be a good idea to try and reduce this data volume, insofar
as it does not (significantly) affect what we ultimately care about: separability (class

discrimination).

Consider an example of learning to distinguish between cats and dogs. Suppose we
list as many properties as we can, in order to maximize our chances of correctly
classifying future observations. We may end up with the "number of legs", as well
as "number of paws". Of course, these are redundant, as they correlate perfectly.
We can then discard either of them, or, choose to keep one of them. This is feature
reduction by feature selection. (Additionally, both cats and dogs tend to have four
legs, so this property can be discarded entirely as it does not help us to distinguish

between cats and dogs).
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Figure 4: Decision boundaries as found by the minimum distance classifier. This
classifier is further described in section 3.4.1, but it basically looks at how far a
sample is removed from the means of the different classes’ samples. The shaded
areas indicate how any sample inside those areas would be classified. As this is a
linear classifier (linear decision boundaries), it is unable to partition the spiral data

adequately.

Another possibility is to combine features. For example, we may derive a body mass
index (BMI) from height and weight properties. If this BMI is -for the purpose of
separating between the classes- just as useful as having height and weight separately,
we can replace those two features with a single new feature. This is feature reduction

by feature extraction.

In figure 5 we apply feature reduction by projecting the data onto the y- and x-axis,
thereby reducing the data from two-dimensional to one-dimensional. The bottom
row shows the prevalence of the different classes on their new single axis. Here we
can see that by projecting onto the x-axis we maintain separability; if we would
project the three green samples from figure 3 onto the x-axis as well we would still

be able to confidently classify them.

The choice of projecting onto the y- or x-axis is of course arbitrary. We can project
any way we want, such as for example in figure 6. It would appear from visual
inspection that these projections are inferior to an x-axis projection, because there
is a small section where both classes are represented, and where we are thus unable

to confidently assign a sample to either class.
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Figure 5: Top row: projecting the data in figure 3 onto the y- and x-axis. Bottom

row: the distribution of the samples after projection. For good separability we want

distinct peaks and as little overlap as possible. If we project onto the y-axis, we lose

all class discrimination information. If we project onto the x axis, we hardly lose

any separability when compared to the two-dimensional data before the projection.
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projecting onto the y-axis, but less than projecting onto the x-axis.
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In the first case, projecting onto the x- and y-axis, we are performing feature re-
duction through feature selection: we choose one feature (z or y), and completely
discard the other (y or z). In the second case, we are using both x and y values to
calculate a new single feature, here we perform feature reduction through feature

extraction.

These differences lead to a question: can we find out the optimal projection (optimal

in the sense of maximizing class discrimination or separability)?

3.1.1 Principal component analysis (PCA)

In figure 7 we perform principal component analysis (PCA). PCA is a method of
finding the orthogonal projection vectors which project the data in a way which fits
as much variance into as few principal components as possible, yielding an ordered
set of principal components where each component contains less variance than the
previous component, with as much variance in a single component as possible |Bis06]
[DHS06]. We can use this for feature reduction by taking only those vectors with
the highest variance, and discarding those with the lowest, using any thresholding
we choose, for example by choosing a specific number of principal components, or
choosing those principal components which contain a certain amount of the total
variance. In this example in figure 7, we can see that the two vectors are aligned
with the data clouds, such that on the left the variance is maximized, and on the
right it is minimized.

However, our ultimate goal is separating the different classes. If we would imagine
one of the data clouds to be rotated by 90 degrees, then a projection which would
maximize the variance for one of the classes would minimize the variance of the
other. It is also not the case that components with higher variance are necessarily

more important or useful for regression than components with smaller variances

[Jol82] [BHPTO6|.

3.1.2 Linear discriminant analysis (LDA)

Another possibly useful feature reduction method is linear discriminant analysis
(LDA), a method published already in 1936 [Fis36], its application shown in figure 8.
Unlike PCA, LDA’s objective is to maximize class separability (class discrimination).
It produces one linear function for each class, with each sample belonging to the class

whose linear function returns the highest value [DHS06]. When the dimensionality
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want to have as little overlap between the curves as possible, but it is not important
how much surface area the curves have. Particularly: the right plot has better

separability than the left, despite preserving the least variance.
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is higher than the number of classes, this automatically results in feature reduction.
However, high dimensional data with relative low sample counts (as is the case with
our MEG data) is a bad fit for LDA. Consider having 2 points in a 2-dimensional
space: one can always find a separating hyperplane. Now consider 100 points in
256-dimensional space: again, one can again always find a separating hyperplane.
However, these hyperplanes are most likely to just fit the training data, and not
to generalize to the true data model or distribution. This effect is demonstrated
in figure 9. Section 5.3 shows this effect to apply also to our tested MEG data,

resulting in poor classification accuracies.

3.1.3 Independent component analysis (ICA)

Independent component analysis (ICA) is an unsupervised, blind source separating
(BSS) feature extraction method which works by minimizing statistical dependence
[HKOO1]. When there are n sources generating a signal (example: people in a
room speaking simultaneously), and there are least n linear combinations of these
signals observed (example: microphones located throughout the room), ICA is able
to, under certain assumptions, separate the original n sources. Because one of these
is an assumption of non-Gaussianity, we use a different example than figure 3 to
illustrate the effect. Figure 10 shows linearly combining two separate digits from
the well-known [Bis06, p.2] [HTF09, p.4] MNIST dataset, and then separating their

sums into the original digits.

However, because ICA is unsupervised it has no knowledge of the class labels, and
there is no guarantee that the original sources provide as much class discrimination
as the original (mixed) sources. This can be seen in the results in section 5.3.
Supervised variants of ICA have been created, specifically for classification purposes
[KCCO01| [BrVo05] [SYKO1], but have not been considered in this thesis.

3.2 Scaling

Depending on the classifier method and its particular implementation, results may
be improved by standardizing the input data. Typically this means scaling to unit
variance, and shifting to zero mean. Additionally some classification methods may
have standardization built-in, or as an option. We have used four different scaling

methods, listed in section 5, page 42.
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Figure 9: In each plot we show 50 samples taken from the same multivariate Gaussian

distribution and assign them randomly to four different classes.

We then apply

LDA feature reduction. In the top-left 10-dimensional data, in the top-right 50-

dimensional data, in the bottom-left 130 dimensional-data, and in the bottom-right

145 dimensional-data. We can see that as the dimensionality rises, the relatively low

number of samples causes LDA to overtrain and amplify existing random variance

to suggest separability where there is none. As the MEG data has a similarly high

dimensionality relative to its sample counts, we should be cautious when applying

LDA.
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Figure 10: Top row: 2 separate digits from the MNIST dataset. Middle row: two

independent linear mixes of the two digits. Bottom row: blind source separation

applied in the form of ICA, recovering the individual digits.
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3.3 Training, validation, and testing

After processing the input data, applying possible scaling and/or feature reduction
methods, the first step in classification is training: building a model by identify-
ing the characteristics of the different classes, and what sets them apart [HTF09)
[DHSO06]. For example, if we were to classify flowers, we may learn that certain flow-
ers only come in certain colors, that some types of flowers have thorns, and grow
taller than others. The more useful (varied) training samples -examples- we have,

the more accurately we can build such a model.

Then, when we have completed the model, we can start to categorize (classify)
unknown flowers. When we see a red flower with thorns we would therefore be
quite confident that this flower is in fact a rose, and not a tulip. Of course, in this
example the properties of flowers are intuitively understood. When it comes to brain
state classification, we have many hundreds of features that by themselves have no
particular meaning; instead, we look for statistical properties of the features that
most convincingly partition the samples (the readings) by the corresponding brain

state.

When we build such a model, there may be several choices that we have to make. For
example, how sensitive are we to outliers? We would therefore also like to optimize
our choices, i.e. the set of adjustable parameters, also called hyperparameters,
which a particular classification algorithm takes as an input. A good approach
to do this is to pick some initial hyperparameter values to the best of our ability
(which could even mean randomly), and then iterate by retraining using different
values, and observing the effects on the final classification accuracy. However, a risk
with this approach is that a classifier becomes optimized for a very specific set of
samples, instead of for the general model the samples come from. To prevent this,
we introduce the concept of having a specific set of samples, called the validation set
[DHS06], specifically for the purpose of repeatedly trying out different combinations

of hyperparameter values.

Once we have determined the best choice of parameters, we then try to classify an
independent set of samples to evaluate how well the classifier really works. It is
important that this test set consists of samples that are as independent as possible
of the training and validation samples. In our case, the test data consists of a

completely independent recording session, representing more or less the ideal case.

If we have a relatively low number of samples, as is the case with the MEG data,
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we can also mix the samples that we have available for training and validation
into several different combinations of training and validation sets, classifying all
of them and taking the average accuracy. This way we smooth out the result of
the hyperparameter choice, making it less susceptible to optimizing for a particular

outlier or unfavorable partitioning. This approach is called cross-validation [DHS06.

3.4 Classification methods

In addition to logistic regression used by Kauppi et al. [KPHH12|, we have tested
seven other popular classification methods, described in the following pages, and

summarized on page 42.

3.4.1 Minimum distance classification

A minimum distance classifier (also called a centroid classifier) is a very straight-
forward and intuitive method of classification, which works well when the data is
clustered in data clouds such as in the left side of our example in figure 3 [DHS06].
For each of the classes the center value (centroid) is calculated, and each point
is classified according to the centroid it is closest to. Note in particular that the
variance of a given class distribution is ignored. The decision boundaries of the

minimum distance classifier were shown in figure 4.

3.4.2 k-Nearest neighbor classification

The k-nearest-neighbor classifier works by treating the training data as a corpus
of lookup data, or reference samples [DHS06|. Classification is then performed by
finding the k& most similar reference samples to a test sample, and choosing the most
likely class label, typically based on plurality. This classifier makes no assumptions
about the particular distribution, or shape, of the class data, and can function very
well when there is enough separation between samples of different classes compared
to the distances between samples of the same class. This is demonstrated in figure
11, which also shows the effect of various choices of k. Several optimizations exist to
speed up the search for neighbors or provide indexing methods [AMNSWO98| [BKLO6]
[HASZ11].
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3.4.3 Naive Bayes classification

Consider the artificial data in figure 12. For each sample we wish to classify, we
can ask, for each class C, the question "what is the probability that a random
sample drawn from the underlying distribution belonging to class C' would be this
exact sample?". The particular class C' for which this probability is highest is then

assigned to this sample.

Of course, this requires one to know, or to be able to fairly accurately model, the
underlying distribution of each class. Suppose we assume the class distributions are
normal distributions with a mean and variance that can be learned from the known

samples.

Let x be an unknown sample having features fi, fa,..., fn. Let ¢ be the class label

belonging to x, which ¢ € C be class label i. Then:
p(C = CZ|:E) = p(C = Oi|f1a ey fn)
Using the Bayes Theorem (Bayes Rule), [DHS06, p. 614] this can be written as:

p(C = Oz)p(fl; ...,fn|C = CZ)
p(fb ceey fn>

where p(C;) is the prior probability of any given sample belonging to this distribu-

plc=Cilz) =

tion. In our example case the probability for each of n classes is %

We want to find for which 4 this probability is highest (i.e.: which distribution is
the mostly likely to have produced this particular sample).

We can simplify by ignoring the denominator, as the value of fi,..., f,, does not

change, i.e.:

p(c = Cilz) o< p(c = Ci)p(f1, ... fulc = Ci)

This becomes:

p(C = Cl|x) X p(C = Cl)p<f1|c - O’L)p(fQ‘c = CZ?fl)p(fn|C = Oiu f17 f27 ey fn—l)

which however becomes computationally more challenging as n (the number of fea-

tures) gets larger.
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A surprisingly effective [Ris05] simplification is to assume conditional independence,
that is, for any ¢ and j, to assume that the value of f; is independent of the value

of f;, i.e. for n possible classes and m features:

p(c= Cilz) o< p(c = Ci)p(file = Ci)p(fale = Ci)...p(fulc = C;)

which gives us

Hp file =
7j=1

Because of this naive assumption (of conditional independence) this method is com-
monly known as the naive Bayes classifier. The decision boundaries for the naive

Bayes classifier are shown in figure 12.

3.4.4 Linear SVM classification

Support vector machines (SVM) attempt to find the optimal separating hyperplane
separating two classes, maximizing the distance to the closest point from either class
[DHS06] [HTF09], see the top-left plot in figure 13

A hyperplane can be written as the set of points x such that
w-r—b=0

where w is the normal vector of the hyperplane, and ﬁ is the offset of the hyper-

plane along w.

As can be seen in the top-left plot in figure 13, there will exist two (in this 2-
dimensional example) margin hyperplanes, the dotted lines, which fully separate
the two classes. It follows that these intersect some of the datapoints (if not, then
either the margin could be moved further away and still separate the classes, or
the margin would not be separating in the first place, which contradicts the initial
assumption), these select datapoints are called the support vectors, and are circled
in green. It is these support vectors that define the SVM model. Classification is
done by checking on which side of the hyperplane datapoints fall, i.e. smaller or
larger than 0 (in the unlikely case that the result is exactly 0 the outcome can be

assigned randomly).
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Lying on either side of the hyperplane, these margin planes can be conveniently
defined as:

w-r—b=1
and

w-r—b=-—1

All z; of the first class must then give a result > 1, and all x; of the second class
must give a result < —1. Letting y; be the class label as well as functioning as the
sign (by using classes —1 and 1), and n the number of training samples, this gives
the following function:

yi(w-x; —b) >1
It then becomes an optimization problem to find w and b such that the margin Hi_\l
is maximized [HTF09).

While adaptions of the SVM method have been made to enable multiclass classifica-
tion [HsLO02| [LLWO04], the original binary SVM classifier can be used by decomposing
the multiclass classification task into a set of binary classification tasks. Two com-
mon approaches are one-versus-all classification (where each class is separated from
the combination of the remaining classes) and one-versus-one classification (where
each class is separated from each other class individually). The results of these
binary classifications can be combined via voting, or a technique based on error
correcting codes [DiB94|. The results here are obtained using libsvm [ChL11| are

based on one-versus-one classification.

The decision boundaries of the linear SVM classifier are shown in figure 13, show-
ing the effect of the choice of the cost factor (the slack factor) in the left plots.
In the bottom-left, the decision boundaries are perfectly symmetrical between the
outermost samples of the neighboring classes, whereas in the top-left the decision
boundaries have significant slack in them and ignore the positions of the outermost

samples of the neighboring classes.

The decision boundaries for the linear SVM classifier are shown in figure 14.

3.4.5 Non-linear (RBF kernel) SVM classification

A non-linear variant of SVM classification works by applying a kernel function to
transform the data to some other, possibly higher-dimensional, space, and to do so
while still allowing efficient optimization [HTF09]. The resulting separating hyper-

plane can then be non-linear in the original input space. A common approach is to
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apply to a radial basis function (RBF) kernel [ChL11|. Figure 15 illustrates the type
of decision boundaries produced by SVM when applying a RBF kernel. Using an
RBF kernel variant of SVM requires optimizing two hyperparameters. Other kernel
variants (polynomial, etc.) exist, but require more hyperparameters that need to be

optimized, and will not be considered here.

3.4.6 Multilayer perceptron classification

An artificial neural network can be considered as a processing unit with a number of
input and output nodes [DHS06], see for example figure 16. Depending on the levels
of the input signals, particular output signals are produced, similar to an electric

circuit.

A neural network consists of an input layer with n inputs, an output layer with m
outputs, and k£ hidden layers, each of which can have any number of n; nodes itself.
Nodes are connected "left-to-right", i.e. all nodes in the input layer are connected

to all nodes in the next layer, and so on, until the final output layer.

Each node has a transfer function, typically linear or sigmoidal, whose parameters
are automatically optimized during classifier training. The node produces a partic-
ular output based on its input value (in the case of the input layer this is the input
value directly, otherwise it is the sum of all the inputs of that node). Nodes therefore
threshold or transform their input signals. Because each node is affected by all of

its inputs, complex transformations are possible. This is illustrated in figure 17.

Training a neural network consists of providing the input values, or features, together
with the desired output values, and having the node parameters iteratively evolve to
produce (close to) the desired outputs by altering their transfer function properties

in a feedback loop.

For our data we have 256 input features. These 256 input features should be mapped
to network outputs describing class labels. There are different ways in which we can
encode the output. We can have a single output, and have class label 1 produce
a value of 0, class label 2 a value of 0.33, and so on. For better accuracy however
we specify 4 outputs, representing the 4 output classes. This way the output value
for each class is produced separately. For each class label, the corresponding output
signal is 1, the other signals are 0. The classification result is then simply found by
comparing the confidence (probability) of the input belonging to each of the four

possible classes.
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Figure 18 shows the classification boundaries for a multilayer perceptron classifier.

3.4.7 Random forest classification

Consider the left plot of figure 19, and the optimal linear decision boundary as
determined by the SVM classifier in figure 13. All datapoints falling to the right
(the red side) of the decision boundary are convincingly classified as red, however
some of the datapoints falling to the left (the blue side) will be classified wrong.
We can split this classification problem by subtracting the red "half" and applying
a new classifier to the remaining left side, and repeat this procedure until all leafs
of the resulting classification tree provide definitive classification outcomes. The
result will be a binary decision tree. Each node in a decision tree consists of some
predicate p (in itself a classifier) which performs a test on a localized part of the
data, and emits a true or false result, sending classification down the left or right
branch respectively. In each branch the remaining data window is reduced, leading

to a finite tree depth and eventual convergence on a classification result.

The right plot of figure 19 shows the decision boundaries created by an exhaustive
decision tree (the choice of partitioning on the x value is an arbitrary implementation
detail of the demonstrated example, a decision tree is free to use any predicate which
somehow separates its partition further). Everything falling on the right side of the
middle boundary is classified as red, everything on the left is classified as blue,
except when falling exactly between the two boundaries on the left, then the sample

is red again.

We notice from figure 19 that while the decision boundaries fully classify the training
data correctly, the resulting classifier probably does not generalize well. Outliers are
unlikely to be restricted to the exact narrow band based only on the = feature. We
also notice that the two red outliers are only outliers when considering the x feature,
not when considering the y feature. While this particular example is unfortunate, as
the data loses separability when projected onto the y axis, it raises the possibility of
employing multiple decision trees restricted to different subsets of the feature space,

and classifying according to the plurality of their outcomes.

Classifiers employing such a set of decision trees, trained on random selections of
the feature space, are called random forests [PBN11], or random forest classifiers
(other methods involving multiple decision trees may also speak of bags of trees).

Employing multiple decision trees reduces overtraining; while outliers may end up as
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single leafs it is unlikely to affect classification in general, as the likelihood of such an
exact sample occurring in the test data is small when considering the real domain.
Pruning decision trees, and employing heuristics such as not allowing a new leaf to
be created unless more than some k samples are affected (a smoothening effect),
are used less to improve classification, and more to reduce storage requirements and

tree complexity.

Random forest based algorithms and classifiers are especially popular in computer
vision applications [PBN11] [DFPLR12| [SSKFFBCM13|. RF based classification
of our sample data is shown in figure 20. This classifier performs well with minimal

hyperparameter tuning efforts.

3.4.8 Logistic regression

Logistic regression is a form of regression suitable for binary dependent variables,
that is, an output being exactly 0 or 1, instead of being continuous. For each of the
four class labels we use logistic regression to give us a probability for a particular
datapoint belonging to that class. We then choose the class label with the highest
probability as the classification result, similar to how we encode the outputs of a

neural network with four output nodes.

The difference to linear regression can be nicely explained visually. Consider the
datacloud on the left in figure 21, we can find an optimal predictor function with
least-squares regression. Note that the dependent variable here is continuous. Now
consider the binary data on the right, and assume it expresses whether a particular
datapoint belongs to some class, by having the value be 1 or 0 respectively. Here such
a linear regressor does not make sense, because we want the result to be bounded

between 0 and 1.

Logistic regression solves this problem by making the dependent variable the log of
the odds ratio:

P
1—-p

In

which is called the logit. The regression equation then gives us this logit, which is

then converted to a probability using:

elog it

p= 1+6logit
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This then gives the nicely bounded transition between 0 and 1 seen on the right in

figure 21.

The classifier we use is glmnet [FHT10|, which uses a multinomial variant to give

us the four class probabilities per sample, and which uses elastic net regularization
[ZoHO05].

Figure 22 shows the classification boundaries for the glmnet classifier for our sample
data.
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Figure 11: Decision boundaries as found by the kNN classifier. In these three rows,
top-to-bottom, k was chosen as 1, 50, and 200 respectively. As can be seen, k needs
to be chosen carefully to prevent both under-training and over-training. This plot
suggests lower values of k£ would be safer than larger values, as these have the risk

of classes bleeding into each other.
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Figure 12: Decision boundaries as found by the naive Bayes classifier. Note the test

data in the left plot is in fact normally distributed with its features conditionally

independent, and thus ideal for the naive Bayes classifier. In the right plot we see

that accounting for the variance provides significant improvement over a mean-only

model (the minimum distance classifier in figure 4).
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Figure 13: The solid line represents the decision boundary found by the linear SVM
classifier; the circled datapoints represent the chosen support vectors which were
used to establish the decision boundary and its margins. The top left shows the
ideal case, clean separation without any outliers. The top-right shows the effect of a
single outlier: the support vector is placed suboptimally. The bottom-left shows the
result of introducing a slack factor (a tolerance for outliers). The bottom right shows
how this outlier tolerance leads to good separation where actual linear separation
would otherwise not even be possible (due to the additional red datapoint deep

inside the blue area).
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Figure 15: Decision boundaries as found by the non-linear (RBF kernel) SVM clas-
sifier. The hyperparameters must be chosen to avoid overtraining (bottom row), but

if chosen optimally (middle row) RBF-SVM provides good separation.
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Articifial Neural Network
"Black Box"

Feature 1

Feature 2
Feature 3

Output 1

Output 2

Output 3

Output 4

Feature 254

Feature 255

Feature 256

Input layer Possigl;.el:;dden Output layer

Figure 16: An artificial neural network with 256 inputs and 4 outputs. We let each
output be the probability that the input sample belongs to the corresponding class,
by training the neural network on for example the output 1000 for class 1, the output
0100 for class 2, and so on. This way each output is optimized for recognizing its

corresponding class.

Layer i Layer j

node 'k node Jl&

input ff \ output : f

Figure 17: All outputs from layer :—1 are connected to each node in layer ¢. Transfer
function f;, combines/thresholds these inputs to produce a single output. Together

each output of the nodes in layer ¢ is connected to each node in layer 7, and so on.
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Figure 18: Multilayer perceptron classification, from top to bottom: no hidden

layers, tangent sigmoid output function (tansig), one hidden layer with five (left

plot) and four (right plot) nodes, tansig output, and two hidden layers, both with

five and four nodes, all tansig output functions. With no hidden layers the decision

boundaries are linear and not very good in either plot. One hidden layer improves

the result dramatically, but it takes two hidden layers to properly capture the proper

decision boundaries in both cases, without overtraining (note the blue outlier in the

spiral graph which is correctly ignored in the bottom plot).
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Figure 19: Basic example of decision boundaries for a maximally trained decision

tree. There are four horizontal partitions, corresponding to the blue, red, blue, and

red classes. This is also an example of overtraining, as the individual outliers should

not warrant their own partitions. A reasonable choice would have been a single

decision boundary.
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Figure 20: Decision boundaries as found by the random forest classifier. The decision

boundaries are not smooth lines or curves, but the effect of partitioning. This

classifier provides decent separation for both plots, without overtraining, and needs

almost no tuning. However, we can see that in sparse areas the decision boundaries

are not placed as well as shown in the SVM example in figure 13.
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Figure 21: On the left continuous data showing its linear regressor; on the right
binomial data for which the red regressor makes no sense. By using the log of the
odds ratio as the dependent variable (i.e. using logistic regression) we get a result

bounded between 0 and 1, the cyan curve.
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Figure 22: Decision boundaries as found by the logistic regression classifier.
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4 Brain-function decoder design and experiments

In sections 4.1 and 4.2 we describe the MEG decoding experiment and brain-function
decoder design from earlier work (Ramkumar et al., Kauppi et al.). In section 4.3
we describe how different classifiers and preprocessing options have been evaluated

in this thesis.

4.1 Experimental setup

Consider figure 1. In a previous, unrelated experiment (Ramkumar et al., 2012b)
MEG data was acquired for eleven subjects. Two sessions had to be discarded due

to problems, leaving session data for nine subjects.

Subjects each took part in two separate 12-minute long MEG recording sessions.
Both sessions can thus be considered completely independent; data from the first
session is used for training and validation, and data from the second session for the

final testing.

Subjects were exposed to three kinds of stimuli: auditory, visual and tactile. Lack

of stimuli, i.e. moments of rest, is considered a fourth state.

Visual stimuli consisted of silent home-made video clips of either people (with a focus
on their faces or hands), or buildings. Auditory stimulation consisted of specific
beeps and pre-recorded speech. Tactile stimulation was applied to left and right
hands simultaneously, using pneumatic diaphragms operating at 4 Hz attached to

index, middle and ring fingers.

This data was then analyzed using the brain-function decoder described in the next
section, after which we performed our classifier evaluation, outlined in the section
after that.

4.2 Preprocessing and feature extraction

As noted in the introduction, and shown as the yellow boxes in figure 1, the brain-
function decoder by Kauppi et al. [KPHH12| is based on correlating the observed
rhythmic neural activity patterns to exposure to the different stimuli, built around
a method called spectral LDA (SLDA).

Figure 23 shows a schematic of the high level building blocks of the brain-function

decoder, on which we elaborate more below.
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Figure 23: Preprocessing pipeline. 204 channels are recorded. The data is then
filtered via signal space separation (SSS) to reduce artifacts and perform motion
correction, after which the signals are decomposed using a short-time Fourier trans-
form using 2 second windows and 50% overlap for the first session, and no overlap
for the second session. 64 independent components are estimated using Fourier-ICA
(fICA), by frequency band selection, outlier removal, dimension reduction, whiten-
ing, and finally estimation. Spectral LDA vector projection and combining then

yields 256 dimensional data.
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4.2.1 Artifact removal

MEG measures the magnetic fields created by electrical brain activity. Because
these levels lie below the ambient background noise, and depending on setup and
shielding, these readings may be sensitive to outside magnetic field interference. An
elegant method dubbed signal-space separation (SSS, [TaK05]) exploits fundamental
properties of magnetic fields to decompose the recordings into signals originating
from inside and outside the measuring volume (i.e. signals originating from inside
the brain, and signals which have come from outside interference and are therefore
noise), very effectively suppressing external interference, while reducing artifacts and
providing motion correction. Signal-space separation development has been a very

important development and enabler for MEG data processing.

4.2.2 Epoch extraction

The signals are then divided into two-second windows (epochs) to which a short-
time Fourier transform is applied, creating a time-frequency decomposition for each
window. In order to create more training data, epochs from the first session were
created with a 50% overlap; this was not done for the second session (to be used as

test data) so as to avoid bias when estimating classification accuracy.

Epochs which contain data from multiple brain states (i.e. those which capture a
moment where the stimulus was changed) were discarded. In order to have equal
priors for each of the four brain states the number of epochs per brain state were

made equal.

4.2.3 Feature reduction

From the Fourier transformed data components below 5 Hz and above 30 Hz are
discarded. The 30 Hz upper limit is a somewhat arbitrary trade-off above which the
SNR becomes too poor. The 5 Hz lower limit is to avoid the tactile feedback applied
at 4 Hz from becoming an easy (but false) pattern to associate with the tactile brain

state.

Outliers are removed, and principal component analysis (PCA) is used to whiten
the data and reduce the number of features from 204 to 64, chosen as this is the

effective dimension of the data after signal-space separation.

A variant of independent component analysis [HKOO1]|, Fourier ICA, is used to esti-
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mate 64 independent spectral components, i.e. 64 spatial patterns and corresponding

time-frequency decompositions.

4.2.4 Splitting and combining

LDA was applied to the independent spectral components for feature reduction
[KPHH12|, with the resulting components combined as shown in figure 23 producing
the 256 dimensional feature data we will be using. To avoid overfitting, regularized
LDA was used, where for each class distribution a spherical and identical covariance

matrix was assumed.

4.3 Classifier and scaling method evaluation

The data at this point (flowing into the green box in figure 1) is 256-dimensional.
Also note that temporal order of the data points has so far been preserved. The
following table shows how the data from the two independent MEG sessions has

been used. Note particularly the independence of the testing data (session two).

MEG session | Usage of corresponding data

1 Cross-validation data used to iteratively find the optimum
hyperparameter values, followed by training the final classifier

using the found optimum hyperparameter values

2 Evaluating final classifier performance
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The following table shows the eight classification methods we used, as well as the

particular implementation used.

Classifier Linear boundary | Implementation | Hyperparameters

Minimum distance | Yes Own

k-Nearest neighbor | No Matlab k

Naive Bayes No Matlab

Neural net (MLP) | No Matlab # and size layers, transfer functions
Linear SVM Yes libsvm [ChL11] Cost

RBF SVM No libsvm [ChL11] Cost, RBF kernel vy

Random forest No rf-matlab [BcLwJ10] | Number of features in random trees
Logistic regression | Yes glmnet [FHT10] Regularization A, alpha, scaling

Finally, the following table shows

the four scaling methods which were used to

process the data before classification.

Method | Description

W N =

S

No scaling at all, using original input data
Samples are shifted to zero mean and scaled to unit variance
Features are shifted to zero mean and scaled to unit variance

Features are shifted to zero mean (c.f. removing DC bias)

On a high level the entire classifier evaluation process, i.e. the green box of figure

1, can then be summarized by the sequence in the following figure.
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for each subject do

for each scaling method do

for each classifier do

load training and validation data for the subject (session 1)
scale data according to the current scaling method

for all classifier-specific hyperparameter values do

for all cross-validation blocks do
create classifier instance with current hyperparameter values

train classifier using current training block
classify current testing block

calculate accuracy

store accuracy
end

calculate average accuracy over all cross-validation blocks

store accuracy and hyperparameter values

end

take hyperparameter values for best performing iteration
load all of session 1 data for the subject

scale this data according to the current scaling method
create a classifier instance using found hyperparameter values
train classifier instance with this data

load all of session 2 data (testing data) for the subject

scale this data according to the current scaling method
classify (predict) testing data with classifier instance

calculate accuracy and store result

end

end

end
aggregate results per subject, classifier, and scaling method

generate tables and figures

Figure 24: Classifier evaluation sequence, corresponding to the green box in

figure 1.
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5 Results and discussion

The following figure shows the overall results, with the per-subject details for each

scaling method shown in tables 1 through 4.

Note that applying feature reduction methods to the input data, as outlined in
section 3.1, did not appear to offer any improvement (see for example tables 5 and
6). We discuss this further in section 5.3.

*  Scaling 1
0.8 |t x  Scaling 2
O  Scaling 3
0.7 b ] O Scaling 4
%
061 . o |
% ® | | B x
B | | % &
3 al o ) 5
5 05} , X 2 0 I X g
5 8 | |
<
04 i
0.3L
0.2t i
mindist knn bayes nnet linsvmnonlinsvm rf Ir
Classifier

Figure 25: Comparing the eight classification methods for all four scaling methods
outlined in section 4.3. From left to right: minimum distance classifier, k-nearest-
neighbor classifier, naive Bayes classifier, neural-net classifier, linear-SVM classifier,
RBF-kernel-SVM (nonlinear) classifier, random forest classifier, logistic regression
classifier. The scaling method numbering corresponds to the numbering on page 42,
with method 1 being no scaling. We also point out that classifier implementations
may be non-deterministic, using for example randomized initializers, such that the
exact results may differ slightly between runs. The overall ranking, however, is

consistent.



Classifier 1 2 3 4 5 6 7 8 9 | Mean
mindist 0.426 0.559 0.676 0.750 0.647 0.353 0.544 0.544 0.735 | 0.582
knn 0.426 0.515 0.765 0.750 0.574 0.324 0.559 0.588 0.721 | 0.580
bayes 0.412 0.574 0.662 0.735 0.559 0.250 0.294 0.353 0.544 0.487
nnet 0.515 0.500 0.485 0.647 0.515 0.368 0.294 0.559 0.721 0.511
linsvm 0.397 0.485 0.779 0.794 0.603 0.250 0.544 0.412 0.603 | 0.541
nonlinsvm || 0.397 0.618 0.779 0.824 0.618 0.471 0.574 0.559 0.750 | 0.621
rf 0.426  0.456 0.574 0.647 0.647 0.382 0.603 0.412 0.750 | 0.544
Ir 0.471 0.676 0.794 0.838 0.647 0.544 0.691 0.559 0.824 | 0.672
0.434 0.548 0.689 0.748 0.601 0.368 0.513 0.498 0.706
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Table 1: Results of all classifiers per subject, scale method 1: no scaling. We note

however that classifier implementations (in particular LR) may also apply scaling

of their input data. Logistic regression here performed convincingly better than the

other methods.

Classifier 1 2 3 4 5 6 7 8 9 | Mean
mindist 0.397 0.574 0.735 0.750 0.603 0.353 0.574 0.544 0.721 | 0.583
knn 0.368 0.588 0.765 0.765 0.544 0.368 0.544 0.559 0.735 | 0.582
bayes 0.441 0.647 0.706 0.632 0.588 0.265 0.309 0.353 0.618 | 0.507
nnet 0.324 0426 0.618 0.574 0.603 0.338 0.426 0.368 0.721 | 0.489
linsvm 0.397 0.588 0.794 0.794 0.618 0.368 0.559 0.588 0.676 | 0.598
nonlinsvm || 0.397 0.574 0.779 0.824 0.618 0.353 0.529 0.588 0.676 | 0.593
rf 0.397 0471 0.603 0.603 0.544 0.368 0.588 0.279 0.706 | 0.507
Ir 0.471 0.662 0.765 0.838 0.632 0.382 0.676 0.559 0.765 | 0.639
0.399 0.566 0.721 0.722 0.594 0.349 0.526 0.480 0.702

Table 2: Results of all classifiers per subject, scale method 2: samples shifted to zero

mean and scaled to unit variance. The linear SVM classifier particularly benefits
from this scaling [ChL11].

Classifier 1 2 3 4 5 6 7 8 9 | Mean
mindist 0.426 0.574 0.603 0.647 0.529 0.368 0.397 0.500 0.618 | 0.518
knn 0.485 0.426 0.706 0.676 0.559 0.294 0.456 0.412 0.632 | 0.516
bayes 0.456 0.529 0.647 0.603 0.471 0.279 0471 0.382 0.500 | 0.482
nnet 0.382 0.471 0.456 0.382 0.441 0.294 0.426 0.426 0.559 | 0.426
linsvm 0.426 0.441 0.618 0.618 0.544 0.338 0.456 0.426 0.632 | 0.500
nonlinsvm 0.500 0471 0.662 0.662 0.544 0.353 0.441 0.471 0.706 0.534
rf 0.426 0.471 0.647 0.691 0.559 0.471 0.559 0.397 0.750 0.552
Ir 0.485 0.456 0.647 0.603 0.485 0.353 0.456 0.397 0.529 0.490
0.449 0.480 0.623 0.610 0.517 0.344 0.458 0.426 0.616

Table 3: Results of all classifiers per subject,

scale method 3: features shifted to

zero mean and scaled to unit variance. The effects of this method appear to be

consistently detrimental.
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Classifier 1 2 3 4 5 6 7 8 9 | Mean
mindist 0.426 0.559 0.691 0.750 0.647 0.353 0.544 0.544 0.735 | 0.583
knn 0.441 0.515 0.765 0.750 0.574 0.324 0.574 0.588 0.721 | 0.583
bayes 0.412 0.574 0.662 0.706 0.456 0.235 0.324 0.353 0.574 | 0.477
nnet 0.485 0.471 0.676 0.647 0.515 0.368 0.309 0.500 0.735 | 0.523
linsvm 0.426 0.485 0.779 0.794 0.603 0.250 0.544 0.397 0.588 | 0.541
nonlinsvm || 0.397 0.603 0.794 0.824 0.618 0.471 0.544 0.559 0.750 | 0.618
rf 0.500 0.529 0.618 0.691 0.500 0.412 0.618 0.324 0.691 0.542
Ir 0.471 0.662 0.794 0.824 0.647 0.544 0.676 0.559 0.853 0.670
0.445 0.550 0.722 0.748 0.570 0.369 0.517 0.478 0.706

Table 4: Results of all classifiers per subject, scale method 4: features shifted to
zero mean. Results are basically identical to not performing any input scaling. This
method does not appear to have any significant effect when compared to not shifting

the mean.
5.1 Immediate observations

Logistic regression (section 3.4.8) performs best, outperforming the popular [PMB09]
[LBDM11] SVM family of classifiers (section 3.4.4 and 3.4.5). For a possible expla-
nation of why LR here outperforms SVM, Parra et al. [PSGS05] mention "the
breakdown of the intuitive idea of a margin when most examples fall within it" as
a possible weakness of SVM with this particular kind of data. We also refer to
earlier work of Kauppi et al. showing the robustness of the logistic regression based
classifier [HKT13].

An additional observation is that the in comparison rather unsophisticated minimum
distance (section 3.4.1) and k-nearest neighbor (section 3.4.2) classifiers also perform

rather well.

The need for input feature scaling depends on the exact classifier implementation
used. Some classification implementations (for example LR) will have their preferred
data preprocessing steps built-in, and other implementations (for example SVM)
suggest input scaling is done separately for best results [ChL11]. Based on the
results in figure 25, input feature scaling is generally not needed, with the notable
exception of the linear SVM classifier which for best results expects its input data

have already been normalized [ChL11].

We find it interesting that the minimum distance classifier performs better than the
naive Bayes classifier, as the former is a version of the latter which disregards the
variance. Non-linear SVM, while achieving second place, requires tuning at least
two hyperparameters and is therefore, together with the neural network classifier,

the most resource intensive to run in practice (in our experience, but this is also
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implementation dependent).

5.2 Notes on classifiers

Figure 26 shows the effect of parameter k£ on classification accuracy of the k-nearest
neighbor classifier. For its simplicity, this classifier performs reasonably well. Based
on the results of figure 26, especially the consistently low number of neighbors se-
lected, we can hypothesize that the ratio of samples to features of our input data
is suboptimal for the kNN classifier. Because of the high dimensionality the entire
space of samples is very sparse, with neighbors spread out very far, making it diffi-
cult to reliably connect to a particular cluster of samples (belonging to a class). We
would expect the results to improve if more good quality (representative) samples

were available - an assumption which generally goes for all classifiers.

Figure 27 shows the effect of the cost parameter on classification accuracy of the
linear SVM classifier. Figure 28 shows the effect of the cost and gamma parameters
of the RBF kernel SVM classifier. Figure 29 shows the effect of the regularization
and alpha parameters of the logistic regression classifier (please note the caption

carefully for interpretation).

We particularly note the cross validation accuracies tend to be very high, and do
not correlate well with the real classification accuracies for those hyperparameter
values, which suggests that the number of training and validation samples is rather

too low.

5.3 Notes on feature reduction

We have not found feature reduction to generally improve the classification out-
comes, however the results of applying PCA, shown in figure 30 may invite further
research as for some subjects it appears a very small number of principal compo-
nents are enough to provide good classification accuracy. This does not apply to
all subjects however, so for overall performance not applying PCA provides better

averaged accuracies than applying PCA.

Figure 5 shows the result of various classifiers after applying LDA feature reduction.
Since the number of samples is low relative to the dimensionality, LDA suffers from
the effect shown in figure 9. Overall accuracies when applying LDA (at least, when

applying a non-specific generic LDA projection to the input data without exercising
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Figure 26: The effect of parameter k on the k-nearest neighbor classifier. The y-axis

shows the accuracy, the x-axis the choice of k. The red line shows the validation

accuracy which is used to choose the final k£ used for testing, shown as the green line.

In the ideal case, both red and green peak for the same k. Whenever the accuracy

during validation hits 1.0, however, we should evaluate whether our approach is

sound, and whether this really translates to an optimal set of parameter values

(i.e. are the training and validation sets truly representative of the real data). We

find that the optimal £ is usually small, suggesting that our data is too sparse (in

dimensionality as well as samples) to reliably reconstruct the class structures.
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Figure 27: The effect of the cost parameter (outlier tolerance) in the linear SVM
classifier. The y-axis shows the accuracy, the x-axis the choice of the cost parameter.
The red line shows the validation accuracy used to choose the final cost value for
testing, shown as the green line. In the ideal case, both red and green peak for the
same choice of parameter values. We find that the range of effective cost values
is quite narrow, but that the validation data peaks line up quite well with the
real peaks. SVM thus performed well, and iterating to optimize the cost value is

straightforward.
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Figure 28: In the non-linear SVM classifier we optimize for two parameters; cost,
and gamma, on the x-axis and y-axis respectively. Accuracy is represented by the
color, using a heatmap between 0.0 and 1.0. The blue circle represents the hyper-
parameter values chosen based on results using cross-validation. Ideally these are
somewhere in the "hottest" area. As we now have two hyperparameters to opti-
mize (for simplicity of the iteration algorithm we assume these are independent)
this is fairly time consuming. Interesting observations are that no matter what the
choices, some subjects are much easier to classify (for this SVM variant) than others,

indicated by the overall peaks (towards yellow-white) in the heatmaps.
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Figure 29: Plotted are the regularization (x-axis) against the accuracy (y-axis); red
for the training validation results, and green for the testing results. The spread of
both areas represent the difference between o« = 0 and o = 1 (the spread only, any
« can correspond to the maximum, and any « to the minimum; it is also not the
case that the a values are ordered. It is simply intended to show the effect of the
parameter). The blue line represents the actual accuracy achieved (as reported in
figure 25). We find that the training and validation data is "too easy" to classify,
perhaps too because of sparsity, and that the real optimal values do not align well
with those found via validation. There are still some improvements possible (ideally,

the blue lines line up with the highest points of the green areas).
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Figure 30: Effects of applying feature reduction using PCA. Each plot shows the
number of principal components used (selected in order of most variance, x-axis)
against the accuracy (y-axis), taking the average accuracy over all nine subjects.
Top-left: minimum distance classifier, top-right: random forest classifier, bottom-
left: linear SVM classifier, bottom-right: RBF kernel SVM classifier. In each plot,
the blue line represents the accuracy achieved for the original, non-scaled input data
(as reported in figure 25). No choice of principal components provides significantly
better classification accuracies than not performing PCA, and we do not have a
strategy of choosing a set of principal components which provides similar accuracy.
Note that the raggedness of the random forest plot (top right) is due to the inherent

randomization done by this classifier.
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any domain knowledge) were significantly worse than when not applying LDA.

Finally, there are two possible ways in which applying ICA may help. First, it
extracts the original sources that contributed to the recorded data (potentially a
cleaner source), and secondly, if it finds fewer sources than there are features it
implies redundant information which could confuse the classifier has been removed,
effectively providing feature reduction. However, because of our relatively low sam-
ple counts (in comparison to the dimensionality) ICA is limited in how many sources

it can recover.

The result of several of the classifiers when provided with ICA projected data is
shown in figure 6. As noted in section 3.1.3, supervised variants of ICA designed for

classification application remain an interesting option to further explore.

Classifier 1 2 3 4 5 6 7 8 9 | Mean
mindist 0.176  0.221 0.294 0.279 0.206 0.294 0.265 0.221  0.206 0.240
knn 0.176  0.221 0.294 0.279 0.206 0.294 0.265 0.221  0.206 0.240
bayes 0.147 0.250 0.265 0.235 0.265 0.294 0.279 0.235 0.265 0.248
nnet 0.324 0.353 0.250 0.265 0.206 0.279 0.279 0.235 0.294 0.276
linsvim 0.176  0.221 0.294 0.279 0.191 0.294 0.265 0.221 0.206 0.239
nonlinsvm 0.235 0.235 0.250 0.250 0.250 0.250 0.250 0.250 0.250 0.247
rf 0.176  0.221 0.294 0.221 0.324 0.294 0.265 0.221 0.206 0.247
0.202 0.246 0.277 0.258 0.235 0.286 0.267 0.229 0.233

Table 5: Results of all classifiers per subject, no scaling, and data processed with
LDA. Results appear to be no better than random selection (our prior is 0.25 because

of four classes with identical sample counts).



Classifier 1 2 3 4 5 6 7 8 9 | Mean
mindist 0.426 0.338 0.368 0.471 0.309 0.353 0.382 0.206 0.456 | 0.368
knn 0.250 0.206 0.279 0.250 0.265 0.265 0.191 0.265 0.176 | 0.239
bayes 0.250 0.250 0.250 0.250 0.250 0.235 0.250 0.250 0.250 | 0.248
nnet 0.294 0.206 0.235 0.353 0.206 0.279 0.382 0.250 0.235 0.271
linsvim 0.250 0.221 0.382 0.382 0.221 0.279 0.250 0.206 0.309 0.278
nonlinsvm 0.382 0.324 0.353 0471 0.294 0.353 0.426 0.191 0.441 0.359
rf 0.206 0.309 0.324 0.191 0.265 0.279 0.309 0.279 0.471 | 0.292
0.294 0.265 0.313 0.338 0.258 0.292 0.313 0.235 0.334

o4

Table 6: Results of all classifiers per subject, no scaling, and data processed with
ICA. While at first glance better than LDA, results are still much worse than without

feature reduction as in figure 25.
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6 Conclusion

In this thesis, we evaluated several classifier and preprocessing options for the Spec-
tral LDA brain-function decoder. Among all tested options, the original processing
pipeline based on sparse logistic regression proposed by Kauppi et al. provided the
most accurate results in terms of classification accuracy. This is highly interesting,
because the sparse LR was originally chosen to enhance neuroscientific interpretation

of the results, and not purely to maximize classification accuracy.

If more time would have been spent on iterating over hyperparameter values, the
exact outcome values could possibly be improved. However, we believe we have
established a fair ranking of the various classification algorithms with the current
simulations. Of course, the real goal is not to be able to tell from neural activity
when a person has a pneumatic diagram attached to his or her index finger, but to

use the results to help further our knowledge of the functioning of the brain.

We look forward to future improvements in both functional neuroimaging modalities
and processing algorithms, and believe the analysis of rhythmic neural activity is a
key approach in brain-function decoding. It will be interesting to see what more can
be learned from this method, both in terms of processing algorithms, and in what

it teaches us about the functioning of the brain.

We hope that the classification algorithms and preprocessor schemes we used will
prove, or hint at, useful additions for SpeDeBox, and would like to see SpeDeBox

become a de facto toolkit in neuroimaging research.

Finally, it will be especially interesting to see what kind of applications, or treat-
ments for neural disorders, will ultimately be borne out of this, and similar types

of, research.
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