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Traditional natural language processing has been shown to have excessive reliance on human-
annotated corpora. However, the recent successes of machine translation and speech recognition,
ascribed to the effective use of the increasingly availability of web-scale data in the wild, has given
momentum to a re-surging interest in attempting to model natural language with simple statistical
models, such as the n-gram model, that are easily scaled. Indeed, words and word combinations
provide all the representational machinery one needs for solving many natural language tasks.

The degree of semantic similarity between two words is a function of the similarity of the linguistic
contexts in which they appear. Word representations are mathematical objects, often vectors,
that capture syntactic and semantic properties of a word. This results in words that are semantic
cognates having similar word representations, an important property that we will widely use. We
claim that word representations provide a superb framework for unsupervised learning on unlabelled
data by compactly representing the distributional properties of words.

The current state-of-the-art word representation adopts the skip-gram model to train shallow neural
networks and presents negative sampling, an idea borrowed from Noise Contrastive Estimation, as
an efficient method of inducing embeddings. An alternative approach contends that the inherent
multi-contextual nature of words entails a more Canonical Correlation Analysis-like approach for
best results. In this thesis we develop the first fully Bayesian model to induce word embeddings.
The prominent contributions of this thesis are:

1. A crystallisation of the best practices from previous literature on word embeddings and
matrix factorisation into a single hierarchical Bayesian model.

2. A scalable matrix factorisation technique for structured sparse data.
3. Representation of the latent dimensions as continuous Gaussian densities instead of as point

estimates.

We analyse a corpus of 170 million tokens and learn for each word form a vectorial representation
based on the 8 surrounding context words with a negative sampling rate of 2 per token. We would
like to stress that while we certainly hope to beat the state-of-the-art, our primary goal is to develop
a stochastic and scalable Bayesian model. We evaluate the quality of the word embeddings against
the word analogy tasks as well as other such tasks as word similarity and chunking. We demonstrate
competitive performance on standard benchmarks.
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1 Introduction

I have a little brown cocoon of an
idea that may possibly expand into
a magnificent moth of fulfilment.

Anne’s House of Dreams

These last few years have seen a wide flourish of successful attempts at solving nat-
ural language processing tasks such as machine translation [Koe10, BPPM93] and
speech recognition [RS10, RJ93] and more sedate forays into others such as ques-
tion answering. A good part of this success is owed to machine learning algorithms
– mostly shallow, statistical models – that despite blithely ignoring the linguistic
intricacies of the data they attempt to model, perform surprisingly well on standard
benchmarks. This has given momentum to a re-surging interest in attempting to
model natural language using simple statistical models. While we strongly advocate
the use of machine learning to aid progress in natural language tasks, we also qualify
such an espousal by noting that most progress in natural language is limited to spe-
cialised domains and a generic framework that allows for a computer to understand
natural language has yet to be developed. Until such a time, we are content to
incrementally develop unsupervised algorithms that tackle niches.

The demonstrable efficacy of such unsupervised algorithms when used with copious
amounts of data has slowly begun edging out earlier supervised techniques that were
as much a product of human endeavour as of computers into obsolescence [SACJ11].
As Halevy et al [HNP09] have rightly pointed out, the success of machine translation
can be ascribed not so much to the increased complexity of the algorithms used as
to the existence of massive training sets of input–output behaviour that comes to
us in the wild, in contrast to more traditional natural language problems such as
parsing and part-of-speech tagging that heavily rely on human-annotated corpora
to achieve satisfactory results. Therefore, instead of constructing algorithms with
the eventual hope of stumbling upon annotated data, we reckon it more congenial
to develop such ones as learn from existing unlabelled data1. We also wish to make
it amply clear that we use unlabelled data in the order of gigabytes, if only because
it exists, and that it would be daft not to avail oneself of the free web-scale data to

1We duly note that the much-vaunted deep learning algorithms shown to be state-of-the-art
in machine vision and speech recognition owe their success not to unlabelled data but to copious
amounts of labelled data.
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improve our model parameters. We do not advocate big data as an end in itself.

The crux of unsupervised learning is to design a model described by a set of pa-
rameters Θ that adequately – the precise definition of which varies from problem to
problem – reflects the reality we are faced with. Given a set of data DN of N points,
one infers an optimal Θ∗ such that

Θ∗ = arg max
Θ

p(DN |Θ).

This is called maximum likelihood estimation (MLE). However, the model is too
simplistic as it (a) does not allow for any encoding prior knowledge about the model
parameters; and, (b) provides only point estimates. Point (a) is usually resolved by
introducing priors over Θ:

Θ∗ = arg max
Θ

p(DN |Θ)p(Θ)

p(DN)
.

This type of inference is known asmaximum a posteriori (MAP). To resolve point (b)

one opts for a more Bayesian approach which favours distributions that give a cred-
ible range over the posteriors, over point estimates. Thus, the posterior distribution
is defined [BS94] to be

p(Θ∗|DN) =
p(DN |Θ)p(Θ)∫
p(DN |Θ)p(Θ) dΘ

.

It follows that that when N tends to 0 the posterior is the prior and as N tends
to infinity the mean of the posterior would be centred on the MLE. Of course, the
elegance of such an approach is shattered when we see that the denominator (known
as the marginal likelihood) is in all but the simplest of formulations an intractable
integral. In most practical cases integrating over a dimensionality of the order of
millions is prohibitive. One therefore generally resorts to stochastic approximations
such as Markov Chain Monte Carlo (MCMC), and repeatedly draws samples to
inspect statistics. While MCMC theoretically promises asymptotically exact pos-
teriors, we contend that such procedures are computationally prohibitive and in
practice produce just finite time approximations. Instead, we use deterministic ap-
proximation techniques such as variational inference, an attractive proposition that
is not only scalable, but also allows one to perform easy model selection by produc-
ing a variational lower bound as a spin-off. More about variational inference can
be found in Chapter 2. Perhaps the strongest argument in favour of the Bayesian
methodology is this: when Θ consists of latent variables as well as model parame-
ters, MLE and MAP require evaluation of the parameters even if our desideratum
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were to find the distribution over the latent variables. Here, latent variables are hid-
den variables that are responsible for generating the observed data and are generally
of a lower dimension than the observed data. For example, in the case of mixture
models, the latent variable is the cluster assignment of the observed data point. If
Z constitutes the latent parameters, then

p(Z∗|DN) =

∫
p(Z|DN ,Θ)p(Θ|DN) dΘ.

The Bayesian approach thus allows more robust inference of the latent variables by
marginalising over the model parameters [GG07].

1.1 Problem Definition

Words are known by the contexts they appear in. One can turn this contextual
information to good account and infer semantic and syntactic properties of a word.
Word representations are real-valued vectors that accurately capture these proper-
ties. We learn a k-dimensional vector for each word such that the vectors of word
pairs that behave similarly in a language tend to have a smaller Euclidean distance
between them than those that don’t behave similarly. Consider, for example, the
words Finland and Sweden. We see from Figure 1 that the contexts they appear in
are largely similar and therefore expect these words to be either semantic or syn-
tactic cognates and the vectors learnt for these words to have a small Euclidean
distance. However, the contexts of any one of these words, say Finland, differs quite
drastically from those of stocks as shown in Figure 1. The vectors learnt for Finland
and stocks therefore have a very large Euclidean distance between them. One utilises
the contexts of a word to unsupervisedly learn its vector representation. This re-
sults in words that have similar contexts having similar vector representations. This
simply implies that similar words have smaller Euclidean distances amongst their
vector representations. This property can be, for instance, used in retrieving all the
synonyms of a given word.

Let V be the total number of unique words (the size of the vocabulary) in the corpus
D. The input to the Bayesian model is given as running text, where each word and
its left and right contexts are hashed into an integer between 0 and |V|, succinctly
representing a sparse binary vector. A hashed word w and its hashed contexts
c ∈ C(w) can thus be modelled as entries in a sparse vector of dimension 1 × |V|.
Such a vector xw for w is set to one for all c ∈ C(w) and to zero otherwise, known
traditionally know in the word embeddings literature as the one-hot representation
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Figure 1: The words appearing as contexts of Finland (top left) and Sweden (top
right). Since the contexts of these two words overlap to a significant extent, we
could argue that the Finland and Sweden share syntactic and semantic properties.
However, the contexts of either of these words differs significantly from those of
stocks (bottom). Thus, the vectors learnt for Finland and Sweden would have a
small Euclidean distance with each other. The Euclidean distance between the
vectors of either Finland or Sweden and stocks is much higher.

[TRB10]. Usually, all c′ 6∈ C(w) implicitly are assumed to be zero. For |D| such
tokens, this constitutes a sparse binary matrix X. It is this matrix that we seek to
factorise as a product of U and V.

In typical matrix factorisation problems the dimension of U is |D| × k and that of
V is |V| × k, where k is the dimension of the embedding. This provides each entry
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in X with a corresponding unique latent entry in U. However, we recognise that
not all tokens of |D| are unique and that several of them correspond to a unique
word that can be represented as a single latent entry in U. To account for this, we
instead use a U of dimension |V|×k. Thus every occurrence of w ∈ D is mapped to
a unique uw ∈ U. Furthermore, since the entries of X are sparse, we propose to use
the logistic model for factorisation instead of the more typical Gaussian model. This
affords us the flexibility to either actively penalise every c′ 6∈ C(w) or simply ignore
those c′ 6∈ C(w) that could potentially appear in a later token of the same word.
Having defined our model, we employ variational inference to induce the actual
word embeddings over the corpus. To make our model scalable, we use two variants:
firstly, we employ stochastic variational inference; secondly, we use a multithreaded
implementation. This results in a latent embedding uw for every w that accounts
for all possible contexts w appears in.

[CWB+11] first showed how these word representations come in handy in augmenting
such tasks as chunking, semantic role labelling and named entity recognition. Since
then [DRFU12], [MCCD13], [LL13] and [LC14] have improved upon these results to
furnish better and better embeddings. In this thesis, the Bayesian model we present
not only infers embeddings with good semantic properties but is also the first to
offer continuous Gaussian densities as part of its inference process.

1.2 Contributions

This thesis presents a matrix factorisation model that attempts to model word-
context tuples as lower-dimensional vectors with high predictive accuracy. Such
vectors can be used to bolster existing NLP systems and push the state-of-the-art.
The following contributions feature prominently in this work:

1. A crystallisation of the best practises from previous literature on word embed-
dings and matrix factorisation into a single hierarchical Bayesian model.

2. We derive and implement a scalable, stochastic binary matrix factorisation
model for huge sparse binary matrices. Such a model finds use not only in
inducing word embeddings, but also in movie recommendation tasks and doc-
ument subspace clustering [ZLDZ07].

3. Representation of the latent dimensions as continuous Gaussian densities in-
stead of as point estimates.
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1.3 Layout

Chapter 2 provides a brief mathematical background. Chapter 3 on word represen-
tations gives a brief review of a formal definition of vector space representation as
well as a host of previous works done on it. Chapter 4 develops a Bayesian matrix
factorisation model that will be used in learning word embeddings. Chapter 5 will
list a few practical tweaks that we add to make the inference in the Bayesian model
scalable and practical. We present our results in Chapter 6. Chapter 7 draws con-
clusions and briefly retrospects our various claims, while Chapter 8 enumerates a
few possibilities that could be adopted as extensions to the existing model.
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2 Mathematical Background

But if you call me Anne, please call
me Anne with an ‘e’

Anne of Green Gables

We saw previously how we run into difficulties in Bayesian inference during estima-
tion of p(Z|D) owing to its intractability. One solution is to use an Expectation-
Maximisation style algorithm, by calculating the log likelihood expectation of the
data over the posterior distributions of the parameters. However we run into one of
the following problems [Bis06]:

1. The dimensionality of the latent space is too high to work with, prohibiting
numerical integration.

2. The complexity of the posterior distribution renders computing expectations
analytically intractable with no closed-form solutions.

Variational approximation provides a deterministic framework by allowing us to
approximate the posterior by

1. Allowing the distributions to have parametric forms, such as the exponential
family, which in addition to being summarised by sufficient statistics have
conjugate priors.

2. Allowing specific factorisations over the posterior (called mean field factorisa-
tion [Par88]).

In this chapter we briefly introduce the exponential family and how it relates to the
variational scheme.

2.1 Exponential Family

A member of the exponential family of distributions over x can be represented as

p(x|λ) = h(x) exp(λT · T (x)− A(λ)).
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Distribution λ T (x) A(λ) h(x)

Gaussian

 Σ−1µ

−1
2
Σ−1

  x

xxT

 1
2
µTΣ−1µ+ 1

2
ln |Σ| (2π)−

k
2

Gamma

[
α− 1

−β

] [
lnx

x

]
ln Γ(α)− α ln β 1

Dirichlet


α1 − 1

...
αk − 1




lnx1

...
lnxk

 ∑k
i=1 ln Γ(αi)− ln Γ

(∑k
i=1 αi

)
1

Categorical


ln p1

...
ln pk




[x = 1]
...

[x = k]

 0 1

Table 1: Some common distributions represented as exponential family distributions.

Here,

λ constitutes the natural parameter,

T (x) constitutes the sufficient statistics,

A(λ) constitutes the log normaliser,

h(x) constitutes the base measure.

Note that x could be discrete or continuous, scalar or vector. In fact, most familiar
distributions can be recast as a member of the exponential family. Some common
examples are shown in Table 1.

2.2 Conjugate priors

The usefulness of the exponential family becomes more apparent when we realise
that each of its members has a conjugate prior which can be represented as

p(λ|χ, ν) = f(χ, ν) exp(λ>χ− νA(λ))

where ν is the number of observations to which the prior contributes, χ is the
number of pseudo-observations contributing to the sufficient statistics and f(χ, ν)
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is a normalisation constant. νA(χ) is the log-normaliser and can also be re-written
as

p(λ|χ, ν) = f(χ, ν)g(λ)ν exp(λ>χ).

Consider now the data set D = {d1 . . .dn} where

p(D|λ) =
∏
i

p(di|λ)

=
∏
i

h(di)g(λ) exp(λT · T (di))

=
∏
i

h(di)g(λ)n exp(λT ·
n∑
i

T (di)).

The posterior can thus be defined as

p(λ|D,χ, ν) ∝ p(D|λ)p(λ|χ, ν)

= g(λ)n exp(λT ·
n∑
i

T (di)) · g(λ)ν exp(λ>χ) + const

= g(λ)ν+n exp(λ>χ+ λT ·
n∑
i

T (di)) + const.

Owing to conjugacy the posterior has the same functional form as the prior and is
defined as

p(λ|D,χ, ν) = p(λ|χ+
n∑
i

T (di), ν + n).

The sufficient statistics alone are enough to infer the posterior of λ.

2.3 Variational Approximation

Consider the marginal likelihood p(D) of the data set D which is also intractable.
That is,

p(D) =

∫
p(D, θ) dθ

where θ includes the parameters as well as the latent variables and are more often
than not vector-valued. The variational approximation [Att99] introduces a para-
metric distribution q to approximate true posterior:

ln p(D) = ln

∫
q(θ)

p(D, θ)
q(θ)

dθ

≥
∫
q(θ) ln

p(D, θ)
q(θ)

dθ

= L(q).
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ln p(D)

L(q)

KL(q‖p)

Figure 2: Variational Bayes in a nutshell [Bis06]: L(q) lower bounds the log evidence
ln p(D). To achieve the best bound, we maximise L(q) over q, which effectively
minimises KL(q‖p) letting q approximate p better.

The KL divergence between the two continuous distributions q and p is given as
[Bis06]

KL(q‖p) =

∫
q(θ) ln

q(θ)

p(θ|D)
dθ

and the expected lower bound L(q) as,

L(q) = −
∫
q(θ) ln

q(θ)

p(θ,D)
dθ.

This leads to the following equivalence between the KL divergence and the marginal
likelihood:

KL(q‖p) =

∫
q(θ) ln

q(θ)

p(θ|D)
dθ

=

∫
q(θ) ln

q(θ)

p(D, θ) dθ + ln p(D)

= −L(q) + ln p(D).

The relationship between L(q), KL(q‖p) and ln p(D) is given in Figure 2. As KL is
non-negative,

ln p(D) ≥ −
∫
q(θ) ln

q(θ)

p(D, θ) dθ

= Eq[p(x, θ)]− Eq[q(θ)]

= L(q).
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In other words, L(q) lower bounds the marginal log likelihood. To achieve the
best bound, we maximise L(q) over q, which effectively minimises the KL(q‖p). Of
course, we see that L(q) is intractable as well. To evaluate L(q), we will assume a
factorised form of q(θ), to wit, q(θ) =

∏
i q(θi) where θi are the parameters we need

to optimise over. We then do a gradient-based optimisation for each q(θi),

∇λlL = ∇λlEq[ln p(D, θ)]−∇λlEq[ln q(θ|λ)].

This so-called mean field factorisation allows one to factorise q(θ|λ) as, q(θ|λ) =∏
i qi(θi|λi). Let us suppose each of q(θi|λi) is a member of the exponential family.

Then, they have the following parametrisation:

qi(θi|λi) = h(θi) exp(λ>i t(θi)− A(λi))

= h(θi) exp(λ>i
∂A(λi)

∂λi
− A(λi)).

This leads to,

∇λlEq[ln q(θi|λi)] =
∂

∂λi
(λ>i

∂A(λi)

∂λi
− A(λi))

= λi
∂2A(λi)

∂λi∂λ>i

= λiV(λi).

Similarly for p(D, θ), if a is the Markov blanket of θi – constituting its parents, its
children and its children’s other parents – and Sa = Eq(ln pa(D, θ)), each in the
conjugate exponential family

∂Sa
∂λi

= V(λi)Eq[ηa(x, θ−i)]

where ηa(x, θ−i) constitutes the natural parameter. Thus,

∇λlL = V(λi)Eq[ηa(x, θ−i)]− V(λi)λi

= V(λi)(Eq[ηa(x, θ−i)]− λi)
= 0

=⇒ λi =
∑
a

Eq(ηa(x, θ−i)).

In summary, we can write the update equations tersely as follows

q(θi|λi) ∝ exp(Eq−i
[ln p(D, θ)])
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Algorithm 1: Mean Field Variational Bayes.
input : The data set D and appropriately parametrised q(θi|λi) ∀i ∈ [1, w]

output: λi, ∀i
1 while evidence lower bound L not converged do
2 for i← 1 to w do
3 q(θi|λi) ∝ exp(Eq−i

[ln p(D, θ)])

leading to the alternate maximisation scheme presented in Algorithm 1.

In this chapter we presented a deterministic framework to approximate the posterior
p(θ|D) by q(θ) factorised as q(θ) =

∏
i q(θi|λi) where each q(θi) belongs to the

conjugate exponential family parametrised by λi with the posteriors retaining the
same distribution as the prior. We then resort to alternative optimisation techniques
such as in Algorithm 1 to iteratively estimate the values of λi that minimise the
expected lower bound. We will in later sections introduce more efficient optimisation
algorithms that scale well over large data sets.
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3 Word Representations

“Words aren’t made – they grow”
said Anne.

Anne of the Island

Noscitur a sociis or the notion that a word is known by the company it keeps, is
probably as old and intuitive a concept as language itself – we often catch ourselves
teasing out a word’s meaning with a little hand from its neighbours. This was
first formalised in linguistics by Zellig Harris2, when he stated that “The degree of
semantic similarity between two linguistic expressions A and B is a function of the
similarity of the linguistic contexts in which A and B can appear”.

It comes as no surprise then that this notion can be extended to draw plausible con-
clusions about the semantic nature of words. Simply put, words occurring in similar
contexts are semantic cognates. Such relations have a broad and sweeping coverage
in that they accommodate anything from synonyms and antonyms to hypernyms
and hyponyms within their purview.

Luckily, this intuition is easily translated into simple probabilistic models that ad-
equately capture the semantic properties. The resulting representations drawn are
inherently valuable as they encode the predictive nature of a word as a vector. How-
ever, their real worth is manifest in their power to push the current state-of-the-art
systems – essentially improvements that cost nothing in terms of human labour3.

As an illustration, consider the words Harvard, Stanford and Princeton. We intuit
that since these all are private universities in the United States, they are bound
to have similar neighbours in a good part of their occurrences. It wouldn’t be
unreasonable to expect words like graduate, school or university to occur in their
vicinity. We list down for the benefit of the reader the top occurrences of each of
these words. If the word representations are accurate at all, this triad should have
similar representations. We will later see in Chapter 6 if our rationale is justified.

2We wryly observe that much of Harris’ work is absent from mainstream linguistics. Known to
cite only himself and his colleagues, he has had the courtesy largely returned. He perhaps owes it
to the machine learning community for breathing new life into his work.

3That is, if one were to discount the initial effort spent on putting such a system in place.
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Figure 3: Contextual word clouds for 607 occurrences of Harvard, 367 occurrences
of Stanford and 270 occurrences of Princeton. The context window size is 2 to the
left and right. The data has been cleaned to remove stop words. That university
and professor figure so prominently in each cloud validates our claim of the three
words having similar contextual distributions.

3.1 Definition

Formally, a word representation is a vector space model, with each dimension hav-
ing either an explicit or an inherent grammatical or semantic interpretation. The
similarity of two such vectors is given, say, by the cosine distance. The simplest
form of such a word vector is the one-hot representation with a vector the size of
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the vocabulary with a single dimension turned on. At the risk of stating the obvi-
ous, the sparsity and the high dimensionality result in poor parameter estimation.
Our desideratum is therefore, a vector of reduced dimension with the discriminative
power of the higher dimensional representation.

Consider a set D of word, context pairs (w, c) of size n with w drawn from a vocab-
ulary of size d. Let C(w) be the set of all contexts for a given w. We model D as
a sparse binary matrix X using the one-hot method described above. That is, for
each row entry w, only c ∈ C(w) is turned on. The rest are assumed to be zero.
This naturally yields a rather unwieldy matrix of dimensions n × d. However, we
obtain a reduced dimensional approximation by factorising X = UV. Usually such
factorisation is carried out by MAP estimates which are prone to overfitting [SM08].
Alternatively, one could probabilistically cast X as a linear model with Gaussian
noise [SM08]. That is, xi ∼ N (u>i V, τI). While [SM08] suggested a Gibbs sampler
for inference, another option is to employ variational methods elaborated in Section
2.3. The resultant lower dimensional U captures several semantic and syntactic
properties of the words.

We shall now discuss different kinds of word representations in literature and their
limitations.

3.2 Global Representations

Distributional representations rely on the global co-occurrence matrices of words,
where each row corresponds to the co-occurrence frequencies of a word with all its
contexts, to generate reduced dimensional representations. This includes the widely
popular Latent Semantic Analysis (LSA). LSA [LD97] works by performing Singu-
lar Value Decomposition (SVD) on the global co-occurrence matrix X = UΣV>

where U is an orthogonal matrix of the eigenvectors of XX>, V is an orthogo-
nal matrix of the eigenvectors of X>X, and Σ is diagonal matrix with the square
roots of the non-zero eigenvalues of XX> as its diagonals. Choosing the k largest
eigenvalues corresponds to a k-dimensional reduction, which is the best least square
approximation to the original matrix X.

[Kas98] introduced a random-mapping based dimensionality reduction Z = RX>

where R is a random matrix with normalised columns and Z is the matrix with
reduced dimensionality d. Given a′,b′ ∈ Z and a,b ∈ X, we see that a′>b′ =

a>R>Rb. Representing the matrix R>R as I + εi,j where εi,i = 0 and εi,j = rirj,



16

[Kas98] proved that E(εi,j) = 0 and σ2
ε ≈ 1

d
. Clearly, the higher the value of

d, the better the approximation is. More specifically, if a′>b′ = a>b + δ, where
δ =

∑
k 6=l εk,lakbl, it was proved that E(δ) = 0 and σ2

δ ≤ 2σ2
ε ≈ 2

d
. That is, the

distortion of a′>b′ has zero mean and a variance of at most 2
d
.

[LB96]’s Hyperspace Analogue to Language (HAL) select columns with the highest
variances from the co occurrence matrix X as the latent dimensions while [VH05]
uses Independent Component Analysis (ICA) to transform X to a lower dimen-
sion. However, distributional techniques have proved to be expensive in general,
and [TRB10] claims that the exact settings necessary for a distributional represen-
tation to be used for prediction tasks such as parsing and for labelling tasks such as
chunking is not well understood.

3.3 Cluster-based Representations

As early as 1992, Brown et al [BdM+92] in their seminal paper attempted to build a
coherent n-gram based language model that was capable of predicting a word from
the previous n words and developed strategies to assign these words to classes based
on the frequency of their co-occurrence with other words. Suppose f : V 7→ C is a
function that maps each word w ∈ V to a word class c ∈ C, where |C| << |V |. One
then defines a n-gram class based model as

p(wk|wk−1
1 ) = p(wk|ck)p(ck|ck−1

1 ) ∀k ∈ [1, n].

For k = 2, [BdM+92] defined the quality of such a mapping f as

L(f) =
1

n
ln
∏

p(wi|ci)p(ci|ci−1)

=
1

n

∑
w,w′

ln p(w|c)p(c|c′)

=
∑
w

p(w) ln p(w) +
∑
c,c′

p(c, c′) ln
p(c, c′)

p(c)p(c′)

= −H(w) + I(c, c′).

where H(w) is the entropy of the unigram word distribution and I(c, c′) is the
average mutual information of the adjacent classes. [Lia05] presents an optimised
clustering algorithm defined in terms of I(c, c′). A disadvantage of [BdM+92] is that
it is limited to bigram contexts alone and has to be redefined for larger context
windows. This largely cripples the scalability of the bigram model, which is perhaps
its only selling point.
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3.4 Distributional Representations

In contrast to earlier representations, distributed representations rely on their imme-
diate contexts to generate dense, low-dimensional and real-valued representations.
Collobert et al. [CWB+11] in their phenomenal paper presented a unified neural
network model to demonstrate that such word embeddings could be used for regular
NLP tasks such as chunking, semantic role labelling and named entity recognition.
While it was impressive as a demonstration of the use of word embeddings, it per-
formed abysmally in comparison to later work, both in terms of predictive accuracy
and training time.4 [MH07] presented a log-bilinear algorithm that learnt a neural
network that predicted the embeddings of the nth word given the embeddings of the
previous n− 1 words.

3.4.1 word2vec

If c ∈ C(w) is the context for w ∈ V , then the skip-gram model is defined by the
objective function:

arg max
vc vw

∑
w∈C

∑
c∈C(w)

ln p(c|w) p(c|w) =
exp(v>c vw)∑
c∈C exp(v>c vw)

.

In order to maximise the predictive power of a word, we take the gradient of ln p(c|w).
However, computing ∇ ln p(c|w) is rendered impractical by the summation term in
the denominator. If, instead, one replaces the softmax function with a logistic
function, σ(x) = (1 + exp(x))−1 the objective becomes

arg max
vc vw

∑
w∈C

∑
c∈C(w)

σ(v>c vw)

which is trivially maximised by setting v>wvc to arbitrarily large values.

[MCCD13] uses the skip-gram model and presents negative sampling, an idea bor-
rowed from [GH12] as an efficient way to induce word embeddings. In order to
discourage trivial solutions, one introduces (c, w) samples that do not exist in the
corpus (hence, negative sampling) modifying the objective to

arg max
vc vw

 ∑
w∈C, c∈C(w)

σ(v>c vw) +
∑

w∈C, c′ 6∈C(w)

σ(−v>c′ vw)

 .
4[LL13], as a sane afterthought to their neural network architecture, proposed using Hellinger

distance based PCA on the co-occurrence matrix of words. Since the word distributions are in-
herently discrete, metrics such as the Bhattacharya and the Hellinger distance are well suited for
measuring the divergence between them.
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It has been shown empirically that setting the noisy distribution to 3
4

th of the un-
igram probabilities of the word works reasonably well. Recently, [GL14] proved
that the embeddings induced by [MCCD13] constitute implicit matrix factorisa-
tion, where the matrix to factorise consists of as its entries the point-wise mutual
information between a word and its context.

3.4.2 Multi-view embeddings

[DRFU12] proposed using Canonical Correlation Analysis (CCA), a cousin of Prin-
ciple Component Analysis (PCA), for pairs of matrices. For any two matrices L

and R, CCA finds a pair of linear projections ΦL and ΦR, such that the correlation
between LΦL and RΦR is maximised. This can be formally represented as

max
E[〈L,ΦL〉〈R,ΦR〉]√

E[〈L,ΦL〉2]E[〈R,ΦR〉2]
.

[DRFU12] claim that whilst assuming the n-gram model for natural language, the
two left and right contexts are conditionally independent given the current word,
forming the two views of the CCA. They posit that by exploiting the multi-view
nature of such data, the resultant dimensionality reduction retains much of its pre-
dictive power. If L were to denote the left context matrix, R the right context,
C = [L R] the entire context, and W the word matrix, the one-step CCA is formu-
lated as

CCA(W,C) =⇒ (A,ΦC)

and two-step CCA is defined as

CCA(L,R) =⇒ (ΦR,ΦR),

S ⇐= [LΦL,RΦR],

CCA(S,W) =⇒ (ΦS,ΦW ).

[DRFU12] provides further multi-view models which we shall not discuss as they are
simply modified versions of CCA with randomised SVD as a preprocessing step.

We contend that the efficacy of CCA is not so much because of its taking into
account the multi-view nature of the data as of its proper factorisation of its con-
textual matrices. In fact, in practice we have found that the left and right view are
distributionally similar and there is no significant gain in viewing them as two sep-
arate, independent entities. Our contention is not entirely without rationale as the
Hellinger PCA[LL13] has produced evaluation scores much better and faster than
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the CCA algorithm. Rather than use negative sampling, they inadvertently model
the missing contexts rather than the contexts themselves. Since they do it so per-
fectly and since the latent features correspond to the tokens themselves rather than
the unique vocabulary items, falsely modelling missing data as negative instances
does not affect their model adversely.

3.5 A Final Word

Before we begin and define our model, we make some observations and examine a
few deficiencies in the extant ones:

1. We note that all previous word embedding literature uses empirical means to
set the value of k, the dimension of the latent embeddings.

2. Insofar as the current methods are concerned, they all limit themselves to a
given (albeit large) data. None of them are designed to work on data streams.
We propose a method that can learn on practically infinite data in addition
to a scalable algorithm from large but finite data.

3. The performance of word embeddings requires significant fine-tuning. Every
new publication has either been a claim of pushing the state-of-the-art, or
oddly enough, a retraction of a previous result. Hence we strongly suspect
that these are fine-tuned to a given data set and task for optimal performance.
In the following chapters, while we certainly hope to beat or match a few such
benchmarks, our primary goal is to build an algorithm that is scalable and
stochastic

4. Finally, we see that none of the existing models are Bayesian. As far as we
know, ours is the first practical, completely Bayesian model to induce word
embeddings. It will also be the first such model to induce continuous Gaussian
distributions on the latent features instead of producing point estimates. This
comes at a steep price though – we will have to model the covariance matrix
for each vocabulary item.

This concludes our discussion of the existing literature on word embeddings. In the
next chapter we address the issue of designing a feasible Bayesian model for word
embedding induction.
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4 Factor Analysis of Sparse Data

Everything that’s worth having is
some trouble. . .

Anne of Avonlea

We had already described, albeit briefly, how the skip-gram model introduced by
[MCCD13] implicitly constitutes matrix factorisation – an observation reinforced
by promising view-specific CCA results obtained by [DRFU12]. In this chapter we
shall formally introduce Bayesian methods for matrix factorisation and CCA and
describe an efficient and scalable Bayesian model for factorising extremely sparse
binary matrices.

4.1 Matrix Factorisation

Matrix factorisation refers to the decomposition of a matrix into a product of two or
more matrices as shown in Figure 4, usually with a mind to capture the interaction
between two entities in terms of a lower-dimensional latent features.

n× d

X

n× k

U

k × d

V

≈

≈ ×

Figure 4: Matrix factorisation: The matrix Xn×d with n rows each of dimension
d, which is presumably high dimensional is factorised into two matrices Un×k and
Vk×d where k << d. In matrix factorisation literature the entries of U are known
as the latent features or factors and those of V are known as factor loadings.

One of the most famous applications of matrix factorisations is arguably the rec-
ommender system[RV97]. For example, a large, sparse user-item matrix could be
factorised into two smaller ones allowing us to determine relationships between users
and between items or recommend items to users of similar interest[PKW14].
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Figure 5: Graphical models for Bayesian factor analysis (left); CCA with shared
latent variables (centre); CCA with view specific latent variables (right) – this is
hardly ever used in practice.

4.2 Bayesian Factor Analysis

Matrix factorisation involves modelling correlations in higher-dimensional data as
a lower-dimensional, oriented subspace [Bea03]. Consider a matrix X ∈ <d×n gen-
erated by a linear transformation of a zero-mean, unit-variance Gaussian matrix
U ∈ <k×n and some additional zero mean diagonal covariance Gaussian noise ε,
where k ≤ d,

X = U>V + ε

Ui ∼ N (0, Ik) εi ∼ N (0,Ψd)

where V ∈ <k×d constitutes the linear transformation, also known as the factor
loadings or the projection matrix. Marginalising over Ui, it is not hard to see that
xi ∼ N (0,VV> + Ψ). By constraining the noise to be a diagonal covariance ma-
trix, the xi becomes conditionally independent for a given ui [TB99]. This results
in the εi capturing the variation unique to an axis, while V captures the rest of
the correlations presumed to be of interest. The components of the resulting latent
vectors Ui are uncorrelated. Factor analysis differs from traditional PCA in that
it differentiates between the variance and the correlations. This can be rectified by
replacing Ψ with an isotropic covariance, in which case the model reduces to PCA.
Incidentally, for a transformation such as Xi → AXi factor analysis is covariant un-
der component-wise rescaling when A is diagonal, while Bayesian PCA is covariant
under rotation when A is orthogonal [TB99].

4.3 Bayesian Canonical Correlation Analysis

CCA seeks to find linear components that capture correlations between two multi-
variate data sets. Given to two sets of random vectors X1 ∈ <d1×n and X2 ∈ <d2×n
with a joint distribution, CCA first finds a pair of linear mappings to maximise
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p(Xm|U,V, τ ) =
∏
m,i

N (xmi |uTi Vm, τ−1
m I)

p(U) =
∏
i

N (ui|0, I)

p(τ ) =
∏
m

G(τm|a, b)

p(V|α) =
∏
m,k

N (Vm
k |0, αmk I)

p(α) =
∏
m,k

G(αmk |a, b)

Figure 6: Plate diagram for the Bayesian CCA: Each entry in a given view xmi is
modelled as a linear transformation of the latent vector uiV

m with some added
noise. The dimensionality of Vm is automatically inferred. For CCA M = 2, while
[VKKK14] presents presents a similar model for M ≥ 2.

correlation between the two sets. This constitutes the first pair of new coordinates.
The next pair of linear transformations maximises the correlation, conditional on it
being uncorrelated to the first pair. [KVK13] presents a fully Bayesian model for
CCA, shown in Figure 6.

Here, Vm constitutes the set of linear transformations for the mth view. Again, the
components of vi are uncorrelated. [BJ06] presents an alternative interpretation of
CCA where the latent vectors are themselves view-specific (shown in Figure 5) as
well as proves Linear Discriminant Analysis(LDA) to be a special case of CCA. This
model is extended to more than two views discussed at length in [VKKK14].

4.3.1 Inferring dimensionality of the latent space

Choosing k, the dimensionality of the latent space is a thorny problem. Too low
a value of k would result in discarding some of the interesting correlation as noise,
while too high a value of k captures spurious correlations. Automatic Relevance
Determination (ARD), described in [Bis99], replaces the discrete selection of k with
a continuous prior that discourages large factor loadings. While not inferring the
actual value of k, the posterior of α, when concentrated at large values effectively
switches off the extraneous dimensions, resulting in only relevant factors being al-
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lowed to remain active [Bis99]. ARD is modelled as

p(V|α) =
∏
k

N (Vk|0, α−1
k I),

p(α) =
∏
k

G(αk|a, b).

Each hyperparameter αk controls the precision of kth row of V, such that as αk →∞,
the entries of the kth row would tend to zero, resulting in the factor being ignored. As
far as we know, this little piece of ingenuity represents the first instance of automatic
inference of k5 in the word embeddings narrative.

While the extraneous rows are close enough to zero for practical purposes, sometimes
we need a model that would make them exactly zero. One such alternative is use the
spike-and-slab prior, where each entry in V is drawn from a two-component prior.
One of these components, the slab corresponds to the delta distribution at zero while
the other, the spike is drawn from the relatively uninformative Gaussian prior. The
choice between either component is provided by the Bernoulli distribution. Formally,
we define the model as [KVK13]

p(Vk|Hmk, αk) =

{
N (0, α−1

k I) : Hk = 1

δ0 : Hk = 0
,

p(Hk) = Bernoulli(π),

p(π) = Beta(1, 1).

where δo is the Dirac delta function at 0. For classical CCA, the empirical approach
to inferring the latent dimensionality is to construct a scree plot of canonical cor-
relations against the dimension [GDMB08]. A sharp drop between two successive
values indicates that rank corresponding to the higher of the two values is the latent
dimensionality [GDMB08]. Another non-Bayesian alternative is to use k-fold cross
validation techniques to estimate the value of k that best explains the validation
data upon reconstruction [KVK13].

4.4 Shortcomings

The Bayesian models presented hitherto pose some trouble adapting to the data
we consider, namely endless tuples of words. The words – represented as one-hot

5We hypothesise that the entropy of a language plays a major role in inferring the dimension-
ality of the embeddings; one can analytically reason about how chaotic a language is from the
dimensionality inferred.
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vectors – result in extremely sparse binary matrices.

1. [KVK13] and most other models assume Gaussian likelihood suitable only for
continuous valued data. [Kla14] refined this by introducing the Polya-Gamma
augmentation [PSW13] to approximate the logistic function, also easily ex-
tended to negative binomial distribution for over-dispersed count data.

2. The existing model treats each xi as a unique entry. This is simply not true
in the case of words where the entries are drawn from a vocabulary V . Thus,
the latent matrix, instead of being n-dimensional should have only as many
entries as the vocabulary size.

3. As we shall see in the ensuing section, approximations of the logistic function
result in inversion of k × k matrices. If we were to allocate a latent vector for
each data point this would result in n inversions which is impractical to say
the least. The model would not scale.

4. Finally, having latent vectors corresponding to each token requires us to come
up with reasonable schemes to approximate the embedding corresponding to
each unique word by considering all appearances of such a word in the data
stream. This is hard owing to the transience of data streams.

Taking these above concerns into account, we detail the factorisation model of
[PKW14] which replaces the Gaussian likelihood with the logistic approximation
described in the next section.

4.5 Logistic Approximation

Consider the logistic function σ(x) = 1
1+exp(−x)

. As a likelihood function, this proves
inconvenient as it destroys the conjugacy6 existent in the Gaussian likelihood. The
Jordan-Jaakkola bound [JGJS99] provides a Gaussian variational lower bound to
logistic. With a little reordering,

lnσ(x) =
x

2
− ln

(
exp

(x
2

)
+ exp

(
−x

2
)
))

.

6It is entirely possible to replace the conjugate updates that result from the approximation
with non-conjugate updates where the logistic likelihood is preserved. Although the asymptotic
normality of the posterior ensures that posterior updates can be approximated by a multivariate
normal with centred at the mode with a inverse Fisher matrix covariance, the computational cost
arising as out of numerical quadratures and the complexity of the resulting derivatives serve as
sufficient disincentives.
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Let f(x) = ln(exp(x
2
)+exp(−x

2
)). Since f(x) is a concave function in x2 (the second

derivative being non-negative), a tangent to the f(x) – approximated by the first
order Taylor expansion in x2 – is a global lower bound as shown in Figure 8. That
is, for x ∈ <,

f(x) ≥ f(ξ) +
∂f(ξ)

∂ξ2
(x2 − ξ2)

where ξ is the variational parameter to optimise. The bound is exact whenever
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Figure 7: Left: f(x), a convex function in x2 is lower bounded by its first order
Taylor approximation, shown here for different values of ξ2. Right: The logistic
sigmoid function σ(x) (shown in red) is lower bounded by the Gaussian (shown in
blue). The approximation is exact when ξ = ±3 (shown in green).

ξ2 = x2. We state that λ(ξ) = ∂f(ξ)
∂ξ2

= 1
4ξ
tanh( ξ

2
) and,

f(x) ≥ σ(ξ)− x

2
+ λ(ξ)(x2 − ξ2).

Thus, the lower bound for σ(x) is given as

σ(x) ≥ exp
(
ξ + x

2
+ λ(ξ)(x2 − ξ2)

)
.

One could as well trade off some of the accuracy and tightness of the Jaakkola bound
for efficiency by using the Bohning bound [Boh92], a quadratic alternative. The
Bohning bound forms a second order Taylor approximation to the lnσ(x) function
at ξ, and replaces the Hessian H(ξ) with a constant matrix A such that A−H(ξ)

is positive definite for all ξ. While the Hessian approximation makes the Bohning
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Figure 8: Left: The Bohning approximation to σ(x) at ξ = (1, 3, 5) the curvature
of which is determined by A. The Jaakkola approximation shown at ξ = ±(1, 3, 5)

provides a tighter bound, but is computationally expensive. We use the Jaakkola
bound in our model.

bound computationally efficient, it results in fixed curvatures unlike the Jaakkola
bound. For this thesis, we will stick to the tried-and-tested Jaakkola bound instead
of the Bohning bound as we are unsure of the practical implications it entails.

4.6 The Case For Logistic Assumption

A word w and its contexts c ∈ C(w) can be modelled as entries in a sparse vector
of dimension 1 × |V| where |V| is the size of the vocabulary. The vector xw for w
is set to one for all c ∈ C(w) and to zero otherwise. This is traditionally know in
the word embeddings literature as the one-hot representation and has been consis-
tently employed and borne out by good results [TRB10]. Arguably, this may not be
the best way to represent contextual information. For instance, probabilistic data
structures such as the bloom filters [MU05] could be used to concisely express the
same information with reasonable accuracy. However, it is usually the case that the
sparse vectors for a given w are represented as a stream (w, c) pairs for c ∈ C(W )

with c 6∈ C(w) implicitly assumed to be zero.

The usual assumption of a Gaussian generated data with unique latent entries for
each observation, xw ∼ N (u>wV, τI) results in a bloated sparse matrix of size |D|×|V|
where |D| is the number of distinct tokens in the data set D. It is easy to see the
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Gaussian assumption fails to hold when xw is a sparse binary vector. Furthermore,
besides making the running time dependent on the vocabulary size |V|, this model
also confuses the non-occurrence of the context c′ 6∈ C(w) in an entry with its express
absence and models it as a negative instance (w, c′). This is not necessarily true, as
a context c not found in a particular occurrence of w ∈ D may happen to appear in
a different occurrence of w. The drawbacks of this may not be as pronounced were
we to model each observed entry xw in D with a corresponding latent entry uw.

However, we recognise that tokens in D are not unique, but are instead all drawn
from V . That is, each observed token w ∈ D corresponds to a unique word in V .
Therefore, it seems more fitting to model all occurrences of w ∈ D as a unique latent
entry uw instead of |w ∈ D| distinct latent entries. In such cases, the Gaussian model
performs abysmally because we begin to unnecessarily (and, indeed, quite wrongly)
penalise the unique uw for non-occurrences of the contexts for a given word token.

If we were to model each entry j in xi by the logistic function as,

xij =

{
σ(u>i vj) : xij = 1

1− σ(u>i vj) : xij = 0

it would alleviate several problems. Firstly, this assumption is a more faithful repre-
sentation7 of the data generation process. Secondly, it offers us a great deal of flex-
ibility in deciding which absences of contexts we chose to cast as negative instances
and which we do not. Thirdly, it is computationally efficient and is dependent only
on the window size W plus the number of negative instances as opposed to the
size of the entire vocabulary V in the previous model. Finally, because the logistic
assumption preempts conjugacy we use the normal approximation discussed in the
previous section to replace it.

This concludes our defence of the use of the logistic link function for factorising
sparse binary matrices. In the following sections we discuss at length a Bayesian
model that overcomes the several barriers enumerated so far.

4.7 The Generative Story

This and the following sections draw some ideas from [PKW14]. To remain true to
our assumption of truly unsupervised learning, let us assume we are presented with
a corpus of natural language text, where sentences are tokenised by ([\.?!]+\s+)

7All models are wrong, but some are useful. George E.P. Box
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and words by ([[:punct:]]∗\s+). This constitutes all the preprocessing we shall do8.
Let the input arrive as tuples of the form (l, w, r), where l and r represent the left
and the right contexts of the word w. We will generically represent a single instance
of the context as c. Let U,V ∈ <k×d. We construct a hash table to map w to uw

and c to vc.

Suppose that we pick w with probability πw and c with probability ψc. Note that we
could better model the probability of context ψc by making it conditional on w, but
we refrain from doing so. The probability of observing this tuple is σ(u>wvc) and of
censoring it is 1−σ(u>wvc). Let us also introduce normal biases bw and bc. Intuitively,
if w occurs in a wide variety of contexts, such as the or a, it is modelled by a large
positive bias bw, while a negative bias indicates w occurs in very specific contexts.
Since we do not use it in our experiments, we shall limit ourselves to describing the
idea. Let D = (T,w, c) constitute the observed set of tuples and D′ = F , the set of
unobserved, censored negative samples. We do not as yet know the value of D′, but
according to [MCCD13] for large corpora, setting the ratio r = D

D′ to 5 appeared
to work well. Let θ = (U,V,b,π,ψ) The probability of coming across a tuple
(w, c) ∈ D is

p(T,w, c|θ) = πwψcσ(u>wvc + bw + bc)

while the probability of censoring an unknown tuple (w′, c′) ∈ D′ becomes a mixture
over d2 components,

p(F |θ) =

∫
p(o = F |w′, c′,θ)p(w′|π)p(c′|ψ) dw′ dc′

=

∫
(1− σ(u>wvc + bw + bc)p(w

′|π)p(c′|ψ) dw′ dc′.

We model U as N (0, I), and V as a zero mean Gaussian with ARD priors. The
censored data stream forms a negative background that discourages large values for
σ(u>wvc + bw + bc). The joint likelihood of D = (D ∪D′) is therefore given by

p(D,θ) =

 ∏
(w,c)∈D

σ(u>wvc + bw + bc)

 ∏
(w,c)∈D′

(1− σ(u>wvc) + bw + bc)

 .

We shall use Θ = ((w, c) ∈ D′,θ) to denote the entire parameter set. Having
described the intuition behind the model, we present it in the following section.

8Of course, this might be a poor idea for agglutinative language families like Finno-Ugric and
Dravidian which require further rule-based but exhaustible preprocessing.
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4.8 The Model

M

w′ c′w c

T F

ui vjbi bj

α

d d

Do D′

Figure 9: Plate diagram of the model: We draw (w, c) pairs from a uniform distri-
bution. We observe D such pairs with probability σ(u>wvc) while censoring D′ such
pairs with probability (1 − σ(u>wvc)) assuming we know what the censored pairs
were. We employ ARD priors for dimensionality selection.

The model and its priors are shown in Figure 9. The joint probability is given by,

p(D,Θ) =
∏

(w,c)∈D

σ(u>wvc + bw + bc)
∏

(w,c)∈D′
(1− σ(u>wvc + bw + bc)

× p(U) · p(V) · p(b) · p(α)

where,

p(U) =
∏
w

N (uw|0, I),

p(V|α) =
∏
m,k

N (vk|0,
1

αk

I),

p(α) =
∏
m,k

G(αk|a, b),

p(bw) =
∏
w

N (bw|0, τw),

p(bc) =
∏
c

N (bc|0, τc).
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4.9 Variational Approximation

Let (w, c) ∈ D be the set of observed data. The complete log likelihood of the model
in Figure 9 is

L(q) ∝ ln p(D|Θ) + ln p(Θ)

=
∑

(w,c)D

Eq

[
lnσ(ξwc)− λ(ξwc)

(
(u>wvc + bw + bc)

2 − ξ2
wc

)
+

1

2
(u>wvc + bw + bc)−

ξwc
2

]

+
∑

(w,c)∈D′
Eq[wd′cd′ ]Eq

[
lnσ(ξwc)− λ(ξwc)

(
(u>wvc + bw + bc)

2 − ξ2
wc

)
−1

2
(u>wvc + bw + bc)−

ξwc
2

]
+
∑
w

Eq[ln p(uw)] +
∑
k

Eq[ln p(vk)] +
∑
k

Eq[ln p(αk)].

Approximating the intractable ln p(Θ|D) with q(Θ), we note that the lower bound
to optimise becomes,

ln p(D) ≥ ln

∫
pξ(D,Θ)dΘ ≥ ln

∫
q(Θ)

pξ(D,Θ)

q(Θ)
dΘ = L(q),

where pξ(D,Θ) is joint distribution when the Gaussian lower bound replaces the
logistic function so as to preserve conjugacy. We assume the following mean-field
factorisation to approximate the posterior as

q(Θ) =
∏
w

q(uw)q(bw)
∏
c

q(vc|α)q(bc).

Finally the updates for unconstrained optimisation over each of the factor distribu-
tions are

q(Θi) ∝ exp
(
Eq−i

[ln p(D,Θ)]
)

+ const

or, equivalently

ln q(Θi) ∝ Eq−i
[ln p(D,Θ)] + const.

For the rest of this section we shall derive the variational updates for each of the
parameters. For the sake of clarity, we shall state the updates as is leaving further
optimisation to Section 5. Equations of relevance are starred.
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4.9.1 Gaussian Updates

Consider q(U) of the form
∏

w q(uw) =
∏

wN (uw|µw,Σw). The contribution of uw

towards L is given as

ln q(uw) ∝
∑

(w,c)∈D

Eq
[
λ(ξwc)

(
(uw

>vc + bw + bc)
2
)

+
1

2
(u>wvc + bw + bc)

]

+
∑

(w,c)∈D′
Eq
[
−λ(ξwc)

(
(u>wvc + bw + bc)

2
)
− 1

2
(u>wvc + bw + bc)

]
− 1

2
tr
(
Eq[uwu>w ]I

)
.

Rearranging,

ln q(uw) ∝− 1

2
trEq[uwu>w ]

I +
∑

(w,c)∈D

2λ(ξwc)Eq[vcvc>] +
∑

(w,c)∈D′
2λ(ξwc)Eq[vcvc>]


+ Eq[u>w ]

 ∑
(w,c)∈D

(
1

2
+ 2λ(ξwc)Eq(bw + bc)

)

−
∑

(w,c)∈D′

(
1

2
+ 2λ(ξwc)Eq(bw + bc)

)
Eq[vc]

 .

This clearly has a the form of a Gaussian posterior and the updates for q(uw) are
given by

Σw =

I +
∑

(w,c)∈D

2λ(ξwc)Eq[vcvc>] +
∑

(w,c)∈D′
2λ(ξwc)Eq[vcvc>]

−1

, (?)

µw = Σw

 ∑
(w,c)∈D

(
1

2
+ 2λ(ξwc)Eq(bw + bc)

)

−
∑

(w,c)∈D′

(
1

2
+ 2λ(ξwc)Eq(bw + bc)

)
Eq[vc]

 . (?)

This completes the updates for q(uw). The update of the parameters for each uw is
an embarrassingly parallel task – that is, the each uw can be computed independently
of others with no communication – and multithreading speeds up the inference
greatly.
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The biases again have the Gaussian form q(bi) =
∏

iN (bi, µi, τi) where i is either w
or c. The contribution of bw toward L(q) is given as

ln q(bw) ∝
∑

(w,c)∈D

Eq
[
λ(ξwc)

(
(uw

>vc + bw + bc)
2
)

+
1

2
(u>wvc + bw + bc)

]

+
∑

(w,c)∈D′
Eq
[
−λ(ξwc)

(
(u>wvc + bw + bc)

2
)
− 1

2
(u>wvc + bw + bc)

]
− 1

2

(
Eq[b2

w]τw
)

=− 1

2
Eq[b2

w]

τb +
∑

(w,c)∈D

2λ(ξwc) +
∑

(w,c)∈D′
2λ(ξwc)


+ Eq[bw]

 ∑
(w,c)∈D

(
1

2
+ 2λ(ξwc)Eq(u>wvc + bc)

)

−
∑

(w,c)∈D′

(
1

2
+ 2λ(ξwc)Eq(u>wvc + bc)

) .

We now see the updates for q(bw) are given by

τw =

τb +
∑

(w,c)∈D

2λ(ξwc) +
∑

(w,c)∈D′
2λ(ξwc)

 , (?)

µw = τ−1
w

 ∑
(w,c)∈D

(
1

2
+ 2λ(ξwc)Eq(u>wvc + bc)

)

−
∑

(w,c)∈D′

(
1

2
+ 2λ(ξwc)Eq(u>wvc + bc)

) . (?)

Similarly, the updates for q(bc) are given by

τc =

τc +
∑

(w,c)∈D

2λ(ξwc) +
∑

(w,c)∈D′
2λ(ξwc)

 , (?)

µc = τ−1
c

 ∑
(w,c)∈D

(
1

2
+ 2λ(ξwc)Eq(u>wvc + bw)

)

+
∑

(w,c)∈D′

(
1

2
+ 2λ(ξwc)Eq(u>wvc + bw)

) . (?)
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4.9.2 ARD Updates

The ARD updates look very similar to those of the Gaussian updates except that
the prior for vc takes the form

Eq[ln p(vc)] = −1

2
tr
(
Eq[vcvc>]diag(α)

)
.

The contribution of vc towards L is given by

ln q(vc) ∝
∑

(w,c)∈D

Eq
[
λ(ξwc)

(
(uw

>vc + bw + bc)
2
)

+
1

2
(u>wvc + bw + bc)

]

+
∑

(w,c)∈D′
Eq
[
−λ(ξwc)

(
(u>wvc + bw + bc)

2
)
− 1

2
(u>wvc + bw + bc)

]
− 1

2
tr
(
Eq[vcvc>]diag(α)

)
.

Rearranging,

ln q(vc) ∝−
1

2
trEq[vcv>c ]

diag(α) +
∑

(w,c)∈D

2λ(ξwc)Eq[uwuw
>] +

∑
(w,c)∈D′

2λ(ξwc)Eq[uwuw
>]


+ Eq[v>c ]

 ∑
(w,c)∈D

(
1

2
+ 2λ(ξwc)Eq(bw + bc)

)

−
∑

(w,c)∈D′

(
1

2
+ 2λ(ξwc)Eq(bw + bc)

)
Eq[uw]

 .

The updates for q(vc) are then given by

Σc =

diag(α) +
∑

(w,c)∈D

2λ(ξwc)Eq[uwuw
>] +

∑
(w,c)∈D′

2λ(ξwc)Eq[uwuw
>]

−1

, (?)

µc = Σc

 ∑
(w,c)∈D

(
1

2
+ 2λ(ξwc)Eq(bw + bc)

)

−
∑

(w,c)∈D′

(
1

2
+ 2λ(ξwc)Eq(bw + bc)

)
Eq[uw]

 . (?)

This completes the updates for vc. Again, we see that the updates are embarrass-
ingly parallel.
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4.9.3 Gamma Updates

The contribution of αk to L(q) is given by

Lξ(q) = Eq

[
d

2

∑
k

lnαkm −
1

2

∑
k

αkvk
>vk +

∑
k

((a− 1) lnαk − bαk)
]

= Eq

[(
d

2
+ (a− 1)

)∑
k

lnαk −
(

1

2
vk
>vk + b

)∑
k

αk

]
.

The updates are of q(α) are

a′ = a+
d

2
, (?)

b′ = b+
1

2

∑
k

Eq
[
vk
>vk

]
. (?)

The value for
∑

k Eq
[
vk
>vk

]
is given by

∑
k tr Eq

[
vkvk

>].
4.9.4 Logistic Bounds

[PKW14] treats the logistic bound separately for the observed values (i, j) while
tying down the bound for censored observations to ξ∗. Consider a given view m. By
differentiating its contribution to L(q) w.r.t ξij, the optimal bound becomes

Lξ(q) =Eq
[
lnσ(ξij)− λ(ξij)

(
(u>i vj + bi + bj)

2 − ξ2
ij

)
+

1

2
(u>i vj + bi + bj)−

ξij
2

]
.

Differentiating w.r.t ξij and maximising,

∂Lξ(q)
∂ξwc

= λ′(ξwc)
∂

∂λ(ξwc)
Eq
[
lnσ(ξwc)− λ(ξwc)(

(u>wvc + bw + bc)
2 − ξ2

wc

)
+

1

2
(u>wvc + bw + bc)−

ξwc
2

]
= 0

=⇒ 0 = λ′(ξwc)(Eq[(u>wvc + bw + bc)
2]− ξ2

wc)

=⇒ ξ2
wc = Eq[(u>wvc + bw + bc)

2]. (?)

Storing the logistic parameter for each unique (w, c) is prohibitively costly. Instead,
we calculate it on the fly.

4.9.5 Biases

From the above equations it is not hard to see that dispensing with the biases leads
to a reduction in the number of calculations required for an update. For example,
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in the logistic updates, when the biases are done away with, the equation for ξwc
simply reduces to

ξwc = tr(Eq[uwu>w ]Eq[vcvc]).

We contend that since the biases possess just informative value by giving an estimate
of the contextual nature of the word, they do not prove strictly necessary for our
model, losing them does not affect the quality of the word embeddings. Thus, in
our actual algorithms presented in Chapter 5 we simply choose to ignore them.

4.10 Negative Sampling

The idea of negative sampling [MCCD13] is to generate a so-called negative data
stream (w, c) ∈ D′ that helps push the value σ(u>wvc) down [GL14]. In the absence
of a negative stream, the likelihood for the observed data,

arg max
vc vw

∑
w∈C, c∈C(w)

σ(v>c vw)

is maximised by trivially setting uw = vc such that u>wvc = k for a large enough k.
This results in all the vectors looking the same. [GH12] first showed that by intro-
ducing artificially generated noise distinct from the observed data leads to consistent
estimation of parameters in logistic regression. [MCCD13] borrowed this paradigm
and showed that by pushing the vectors away from certain artificially generated
combinations, one obtains non-trivial solutions. Thus the modified likelihood is

arg max
vc vw

 ∑
w∈C, c∈C(w)

σ(v>c vw) +
∑

w∈C, c′ 6∈C(w)

σ(−v>c′ vw)


where c′ 6∈ C(w) is appropriately sampled from suitable distribution. This is the
basic intuition behind negative sampling. Note that by fixing either vc or vw, this
model simply reduces to logistic regression.

We can employ a number of schemes for negative sampling the simplest being sam-
pling from the vocabulary uniformly. While more complex schemes such as popular-
ity based sampling as is common in recommendation system can be used, we found
the uniform sampler to work just fine.
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5 Scalable Bayesian Word Embeddings

As a rule, I am very careful to be
shallow and conventional where
depth and originality are wasted.

Lucy Maud Montgomery

Variational inference through alternating updates offers a quick and satisfactory
solution although it does have a tendency to get stuck in local minima. That said,
variational inference fails to scale up to large data sets – sweeping through the
entire data set for each update of the parameters becomes infeasible in the long
run. Recently [HBWP13] introduced a stochastic variant of variational inference, a
scalable method which borrows techniques from stochastic optimisation [RM51] to
optimise the objective function by obtaining noisy estimates of the gradient This
overcomes the previously mentioned hurdle and helps handle massive data sets. In
this chapter we offer two solutions to make our algorithm a practical one.

• In keeping with our promise of a stochastic and scalable algorithm we offer a
purely SVI-type algorithm to scale up to any length of data.

• The second solution is a hybrid of batch and stochastic versions that uses a
potpourri of multithreading, mini-batches and noisy downsampling to estimate
a better approximation of the likelihood than one estimated by a purely SVI-
based algorithm.

Before defining our algorithms, we briefly review some preliminaries for stochastic
inference.

5.1 Natural Gradients

In this section we briefly review the usefulness of natural gradients for quick con-
vergence. According to [HTRK08], in stochastic variational updates, the parameter
space is not Euclidean. Thus the traditional gradient, that points in the direction
of steepest gradient in the Euclidean case with an orthonormal coordinate system,
is not accurate when the parameter space is a curved manifold with no orthonor-
mal coordinates. This curved manifold is known as the Riemannian space. Let us
suppose we aim at optimising an objective function with respect to a parametrised
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probability distribution q(β|λ). In case of a Euclidean space, the gradient ∇λf(λ)

points in the same direction as

arg max f(λ+ dλ) ‖dλ‖2 < ε2.

[HBWP13] suggests the use of summarised KL divergence as the natural measure
of dissimilarity between two distributions

Dsym
KL (λ, λ′) = Eλ

[
log

q(β|λ)

q(β|λ′)

]
+ Eλ

[
log

q(β|λ′)
q(β|λ)

]
.

Now let us replace the Euclidean metric with Dsym
KL , a Riemannien metric. Then,

the direction of the steepest ascent becomes

arg max f(λ+ dλ) Dsym
KL (λ, λ+ dλ) < ε.

Unlike the Euclidean gradient, the natural gradient according to [Ama98] points in
the direction of steepest descent in the Riemannian space and the distance between
the two distributions parametrised by λ and λ+dλ is the change in Dsym

KL . For most
of the probability distributions, this warping of the Euclidean manifold is done by
multiplying the normal gradient with the inverse of the Fisher information matrix
V where

V(λ) = E[∇λ ln q(θ|λ)(∇λ ln q(θ|λ))>].

In the exponential family of distributions, the Fisher information is found by taking
the second the second derivative of the log normaliser A, ∂

2A(λi)

∂λi∂λ>i

Recalling from Section 2.3 the natural gradient for L(q) is given by

∇̃λlL = V(λi)
−1∇λlL

where V(λi)
−1 is the inverse of the Fisher information matrix. It is not hard to see

that

∇̃λlL = V(λi)
−1∇λlL

= V(λi)
−1(V(λi)Eq(ηa(x, θ−i))− λiV(λi))

= Eq[ηa(x, θ−i)]− λi
= 0

=⇒ λi =
∑
a

Eq(ηa(x, θ−i))
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Moreover, if any factor in Sa is not in the conjugate exponential family, then

∇̃λlL = V(λi)
−1∇λlL

= V(λi)
−1(∇λlEq[ln p(D, θ)]− V(λi)λi)

= V(λi)
−1∇λlEq[ln p(D, θ)]− λi)

= 0

=⇒ λi = V(λi)
−1∇λlEq[ln p(D, θ)].

We shall however restrict ourselves to the conjugate exponential family of distribu-
tions with the neat update

λi =
∑
a

Eq(ηa(x, θ−i)).

5.2 Scaling up

Stochastic ascent optimises the objective function by obtaining noisy estimates of the
gradient. Robbins-Munro[RM51] showed that if the step sizes εt at the tth iteration
satisfy the conditions ∑

t

εt =∞,∑
t

ε2t <∞

then λt will converge to either the global or local optimum with the following stochas-
tic update

λt+1 = λt + εt∇̃λL.

In other words if ∇̃λlL is a noisy estimate of the gradient and λ̂i =
∑

a Eq(ηa(x, θ−i))
is the noisy natural parameter obtained, then

λt+1 = (1− εt)λt + εtλ̂i.

While theoretically a single data point can be used to obtain a noisy estimate of
the gradient by multiplying the gradient estimate of that single point by the total
number of data points, in practice we tend to use gradient estimates from small
batches of data times the number of batches to obtain a less noisy estimate of the
gradient. This leads to a simple algorithm shown in Algorithm 2.

In most cases, the variational parameters can be conveniently split into local vari-
ables corresponding to each observation and global variables. Since any given local
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Algorithm 2: Stochastic Variational Bayes.
input : The data set D and appropriately parametrised q(θi|λi) ∀i ∈ [1, w],

the forget rate κ and the decay rate τ
output: λi, ∀i

1 while true do
2 Sample a data point d ∈ D for i← 1 to w do
3 λ̂i = |D|∑a Eq(ηa(d, θ−i))

4 λt+1 = (1− εt)λt + εtλ̂

5 εt = (1 + τ)κ

variable is conditionally independent of all other local variables given the global
variables, [HBWP13] proposes an algorithm that optimises the local parameters of
a given batch to produce an intermediate global estimate. This estimate is weighted
with the current estimates of the global parameters to produce a new global estimate.

As a case in point, [HlHG14] employs this clear-cut distinction to characterise a
stochastic binary factorisation model xi = u>i V + ε for each observation i. It is
straightforward to see that ui corresponds to the local parameter for each observation
and the factor loading matrix V is global.

Our model, however, does not allow for local and global variational updates as ex-
pected in traditional stochastic inference; rather, we resort to semi-global parameter
updates, with only those words updated that exist in the mini-batch under consid-
eration. To elaborate, we choose only those rows of U and V that correspond to
the unique vocabulary subset in the mini-batch to optimise and use the intermedi-
ate estimates to update our current global estimates corresponding to these rows
alone. What this means is that we do not have the luxury of throwing away the
local estimates of ui after a global update of V, but instead are forced to use these
to update a semi-global U matrix.

5.2.1 Downsampling

Since the relationship between the words and their frequencies follows a power law,
we find that a small number of words constitute a large percentage of the total tokens.
Words, such as the and a or certain prepositions are inherently less informative than
their rarer counterparts. For example, the pair (cloudy, sky) is of more value than
(the, sky) as the occurs probably with every other word. [MCCD13] suggests
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a policy of downsampling that aims to address the disparity between words by
aggressively downsampling frequent words according to the following heuristic

p(w) = 1−
√

t

f(w)

where t is the threshold, typically 10−5, and f(w) is the frequency of the words. This
heuristic downsamples only those words whose frequency exceeds t, while leaving
the rest untouched. Besides giving better quality embeddings, downsampling speeds
up the algorithm significantly.

5.3 Algorithms

In this section, we present two novel algorithms that arise as a culmination of all
our previous discussion. The updates in the algorithms roughly reflect those derived
in Section 4.9.

5.3.1 Stochastic Version

We first provide the stochastic version of our model. For the sake of clarity we
shall use U to denote all parameters associated with U such as its means Uµ, its
precisions UΛ, its second moments Uuu and mean-times-precision Uν .

Algorithm 3 takes as its input the current batch, the current estimates of the nat-
ural parameters of the two matrix factors and the forgetting and the delay rates,
producing their converged values as the output. Line 1 calculates the factor for
each word with which to multiply the current gradient to get a noisy estimate of
the original gradient. Lines 3-11 show how U is updated with negative sampling.
The ‘real’ parameters are recovered from the natural ones. The updates look similar
for V. Finally, the original natural parameters are gathered using Robbins-Munroe
style updates. The algorithm thus meets our promise of a stochastic and a scalable
variational technique.

5.3.2 Multithreaded Version

Now consider Algorithm 4 which in many ways seems similar to the stochastic version
in Algorithm 3.
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Algorithm 3: Stochastic Variational Inference for Word Embeddings
input : batch, U, V, κ, τ , n
output: U and V

1 Û← U

2 V̂← V

3 β ← Total count of each item
Count of each item in current batch

4 for iter in niter do
5 Uν ,UΛ ← 0

6 Vvv ← VµV
>
µ + V−1

Λ

7 foreach w in batch do
8 foreach c in window(w) do
9 Uν [w]← Uν [w] + 0.5 ·Vµ[c]

10 UΛ[w]← UΛ[w] + 2 · λw,c ·Vvv[c]

11 foreach c in sample(n) do
12 Uν [w]← Uν [w]− 0.5 ·Vµ[c]

13 UΛ[w]← UΛ[w] + 2 · λw,c ·Vvv[c]

14 foreach w in n do
15 Uν [w]← β[w]Uν [w]

16 UΛ[w]← β[w]UΛ[w] + I

17 Uµ[w]← UΛ[w]−1Uν [w]

18 Similar updates for V. Except, instead of adding I at 16 one adds diag(α),
the ARD priors.

19 for w in n do
20 U[w]← (1− ε[w])Û[w] + ε[w]U[w]

21 V[w]← (1− ε[w])V̂[w] + ε[w]V[w]

22 ε[w]← (β[w] + κ)τ

It takes as its input, two Gaussian distributed matrices factorised by rows and
outputs their converged values. The algorithm creates a number of threads each
working in a different part of the file, to obtain the unscaled noisy estimate for
the gradient. These are finally combined into the ‘true’ estimate of the gradient.
Arguably, this estimate is far more accurate than the stochastic gradient estimate.
We use mutex locks to prevent race conditions. While this is not a problem for
infrequent words, words occurring very frequently do result in race conditions making
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Algorithm 4: Multithreaded Version
input : data, U, V, number of threads, n
output: U and V

1 for iter in niter do
2 Uν ,UΛ ← 0

3 Vvv ← VµV
>
µ + V−1

Λ

4 foreach i in num_threads do
5 Create thread i. fseek to the part of the data the thread i is working on
6 foreach w in data do
7 mutex-lock(w)

8 for c in window(w) do
9 Uν [w]← Uν [w] + 0.5 ·Vµ[c]

10 UΛ[w]← UΛ[w] + 2 · λw,c ·Vvv[c]

11 foreach c in sample(n) do
12 Uν [w]← Uν [w]− 0.5 ·Vµ[c]

13 UΛ[w]← UΛ[w] + 2 · λw,c ·Vvv[c]

14 mutex-unlock(w)

15 Destroy thread i.

16 foreach i in num_threads do
17 foreach w in n do
18 UΛ[w]← UΛ[w] + I

19 Uµ[w]← UΛ[w]−1Uν [w]

20 Similar updates for V . Except, instead of adding I at 18 one adds
diag(α), the ARD priors.

the gradient estimate noisier than it ought to be although this is not a serious issue
at all. However, since the mutex lock is a trifling price to pay for slightly improved
estimates, we stick with it – although an aggressive downsampler might render a
mutex lock redundant.

It remains to be argued why Algorithm 4 should converge to a better local optima
than Algorithm 3. The simplest explanation is that Algorithm 4 takes into account
the entire data set to produce to better estimate of the gradient than the one ob-
tained by Algorithm 3 [HBWP13] in the same amount of wall-clock time. However
there exists a much subtler reason for this. The per word forgetting rate scheme
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used in Algorithm 3 does not take into account the contexts surrounding the word.
Thus, if for instance, a particular set of contexts appear much later in the corpus,
the updates reflected on the parameters turn out to be much weaker than what one
would desire in such “fresh” set of contexts. Of course, this problem is alleviated to
a certain extent by using random mini-batches. Even then it remains starkly infe-
rior to the case where one would use a separate forget rate for each unique (word,
context) pair: a rather unrealisable possibility preempted by the space requirements
imposed.
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6 Experiments and Visualisations

It’s delightful when your
imaginations come true, isn’t it?

Anne of Green Gables

In this chapter, we shall attempt to prove that our embeddings are visually and
qualitatively sound. Firstly, we will demonstrate that our model indeed works by
running it on synthetically manufactured data. Then, in order to visualise the
embeddings we make use of t-distributed stochastic nearest neighbour embeddings
(t-SNE) [ME08] to reduce the dimensionality of the word embeddings. Next, in
order to qualitatively evaluate the embeddings we employ the following tasks:

• Word Similarity Test

• Word Analogy Tasks

• Chunking

Finally, we will also employ theWord Similarity test to conclude that the embeddings
produced by Algorithm 3 are generally inferior to the ones generated by Algorithm 4.

6.1 Synthetic Data Set

The synthetic data ought to be so designed as to verify that the model really works.
To this end, we had to dispense with the randomly generated negative data stream
and instead depend on pre-generated negative stream so as to faithfully predict the
expected lower bound of the model.

The data generation is rather straightforward. Data is sampled from the model
specified in Figure 6, with the biases ignored. I set the value of the underlying
original dimension to k = 10. U and V are sampled from standard Gaussian
distributions. The vocabulary size of the word and its context are assumed without
loss of generality to be m = n = 50. Thus, the dimensions of U and V are m×k and
n × k respectively. A data sample constitutes a pair x and y, sampled from [1,m]

and [1, n] respectively. A sample (x, y) is positive if σ(u>x vy) > 0.5. Otherwise, it
contributes to the negative stream. For the purposes of the experiment, the size
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Figure 10: The plot shows the maximisation of the expected lower bound, for the
synthetic data, over 100 iterations. The size of the sample space m = n = 50. From
these sample spaces, a sample data set of size |D| = 10000 is generated from the
model specified in Figure 6. The model converges in around 20-25 iterations. The
size of the latent vectors, k ranges from 2 to 50 with the optimal lower bound at the
true dimension k = 10. For k < 10, the lower bound remains lower while for k > 10,
the ARD effectively switches off all extraneous dimensions. All trials took anywhere
between 1 and 5 minutes to complete. In all cases where k > 10, the model was able
to infer the true underlying dimension of the data as approximately 10.

of the data set D was set to |D| = 10000. The algorithm used here is a single-
threaded version of Algorithm 4. I ran the experiment for the latent dimensions
k = 2, 5, 10, 15, 20, 30, 50. From Figure 10, it is clear that the original dimension
k = 10 has the best lower bound of all cases. When k < 10, even though all the
dimensions are utilised, the lower bound is worse than the optimal at k = 10. For
k > 10, the ARD prior effectively switches off the extraneous dimensions leaving
only approximately k = 10 dimensions ‘on’. This is shown using the Hinton diagram
of the ARD in Figure 12. The red corresponds to the active components and the
green to the components that are switched off. The values for the Hinton diagram
are obtained from ln〈α〉, where α is the ARD hyperparameter. Figure 11 compares
the lower bounds at the end of the 100th iteration of all the various dimensions tried
and proves that the lower bound corresponding to the true dimension is optimal.
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Figure 11: The final lower bound after 50 iterations for each of the dimensions. The
lower bound is maximal for the true dimension k = 10, while the other dimensions
fare worse in comparison. For all k > 10 all the extraneous components are switched
off allowing only the relevant components to remain active.

6.2 Reuter’s Corpus

Reuter’s corpus (RCV1) is a collection of Reuter’s news stories from the year 2000
for use in research and natural language processing. The corpus is distributed by
National Institute of Science and Technology (NIST). The size of RCV1 after the
preprocessing steps of removing capitalisation, punctuation and numbers is 987MB.
The number of unique tokens with a frequency of at least 10 is 136789. RCV1 has
nothing special to recommend it save its traditional use in inducing and evaluating
the quality of word embeddings on standard tasks. In order to evaluate our embed-
dings, we ran both variants of our models on RCV1. Both were run for 200 iterations
over a span of 2 days. The dimension of the embedding was set to 50, the minimum
frequency to 10, the negative sample size per token to 2, the downsampling rate to
1 × e−5 and the window size to 8. In order to evaluate the progress of variational
Bayesian methods, one customarily uses the expected lower bound. However, we
ran into problems estimating the exact value of ELBO owing to the random negative
samples. We therefore instead resorted to using the log likelihood of the data, given
the current parameters as a metric to evaluate the progress of the algorithm. This
applies for the second variant, Algorithm 4, as shown in Figure 13.
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Figure 12: Hinton diagram of the weights given by ln〈α〉. On the x-axis, the number
of active components is given. The y-axis corresponds to the dimensions the model
is run with, which range from k = 2 to 50 with the true dimension at k = 10. The
red corresponds to the active components of the ARD while the green denotes the
components that have been effectively switched off. It is seen that where the number
of components exceeds the true dimension of the generating model, most extraneous
components are switched off.

As for the SVI variant, Algorithm 3, it is common practice to shy away from measur-
ing the progress of the algorithm with the lower bound and instead use the per-word
predictive log likelihood in the case of Latent Dirichlet Allocation [HBWP13] and
recall in the case of binary matrix factorisation [HlHG14]. This is because mea-
suring the convergence of SVI algorithms is extremely problematic [Paq14]. One
alternative is to evaluate the improvement of the scaled log likelihoods for each
batch and plot them after some smoothing. However, I ran into some difficulty do-
ing this since the behaviour of the log likelihood was rather wild. I instead use the
word similarity tasks (see Section 6.4.1) to pit Algorithm 3 against Algorithm 4 and
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Figure 13: The log likelihood of the RCV1 data, the positive samples alone, plotted
against the number of iterations for Algorithm 4. We chose this metric as it proved
infeasible to accurately calculate the expected lower bound when taking into account
the random negative data samples. The algorithm was run for 200 iterations with
a latent dimension of k = 50 over a span of 2 days. It however converged to a near
optimal result in 20-25 iterations.

demonstrate that the embeddings furnished by the latter prove to be far superior
to the former. Thus, for all intents and purposes, when we refer to our ‘model’ we
mean Algorithm 4.

6.3 t-SNE

t-SNE is a nonlinear dimensionality reduction technique developed by [ME08] that
lends itself particularly well to visualisation tasks. Unlike typical dimensionality
reduction techniques that seek to preserve the global structure, t-SNE constructs
two distributions – one over every pair of the original data points such that simi-
lar data points have a higher probability of being chosen, and another over every
pair of the low-dimensional map – and reduces the KL-divergence between them.
Given n k-dimensional vectors, t-SNE calculates the probabilities proportional to
the similarities between vectors xi and xj, defined as

pij =
pi|j + pj|i

2n
, pj|i =

exp(−‖xi − xj‖2/2σ2
i )∑

k 6=i exp(‖xi − xk‖2/2σ2
i )
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where σi is defined as the perplexity of the conditional distribution – larger the
perplexity less dense the data space. t-SNE learns n d-dimensional vectors yi, d < k.
The values of yi are determined by minimising the KL divergence of Q with P

KL(P‖Q) =
∑
i 6=j

pij log
pij
qij

using gradient descent, where qij is defined by

qij =
(1 + ‖yi − yj‖2)−1∑
k 6=l(1 + ‖yk − yl‖2)−1

.

This gives a visual output with which to verify our embeddings.

In order to come up with visually pleasing embeddings I clustered the embeddings
using k-means with 7000 centres and then picked those words that fell in a few
important clusters. The colouring of the words refers to the cluster the word fell in.
Note that this colouring is completely unsupervised. We do not have any previous
labels to assign the colours. A few such interesting but randomly chosen clusters
t-SNE are plotted in the Figures 14, 15 and 16.

6.4 Word Similarity

As the most basic validation of the word embeddings we present the Word Sim-
ilarity-353 Test Collection [FGM+01] a collection of English word pairs as well
as corresponding human-assigned similarity judgements. The first set consists of
153 word pairs with similarity scores assigned by 13 subjects while the second set
has 200 word pairs with similarity scores assigned by 16 subjects. They were all
asked to rate the relatedness of a word on a scale of 1 to 10. The collection whose
scores reflect the extent of semantic similarity between the word pairs is used to test
algorithms implementing semantic similarity measures. [DRFU12] claim that the
Spearman’s correlation test scores of the similarity scores and the cosine distance
between the vectors of the corresponding word pairs to accurately gauge the qual-
ity of embeddings. This is shown in Table 2. We also find it necessary to caution
that the correlation score is a noisy metric in that while it does measure semantic
relatedness, it doesn’t reflect the syntactic correlations between words, as we later
found out. We note that Algorithm 4 outperforms all the current published word in
the word similarity task.
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Word Embeddings Model Citation ρ× 100

Algorithm 3 19.47

Turian (CW) [TRB10] 28.08

PCA [LL13] 30.25

Turian (HLBL) [TRB10] 35.24

Eigenwords (LR - MVL(II)) [DFU11] 37.9

word2vec (SK) [Dhi14] 42.73

word2vec (CB) [Dhi14] 42.97

Eigenwords (OSCCA) [DRFU12] 43.00

SENNA [CWB+11] 44.32

Eigenwords (TSCCA) [DRFU12] 44.85

Eigenwords (LR - MVL(I)) [DFU11] 43.83

Algorithm 4 46.86

Table 2: Word Similarity Test: The Spearman correlation between the cosine sim-
ilarity of the word embeddings and the human-assigned scores are evaluated. Note
that our vectors are 50 dimensional and have been trained on the RCV1 corpus with
a window size of 2 and a vocabulary size of 100000. We had to eliminate two entries
in the data set corresponding to (tiger, carnivore) and (precedent,antecedent) since
these did not exceed our minimum count stipulation of 10. Clearly, on this metric
Algorithm 4 outperforms a wide range of recent works.

6.4.1 Comparison of the Two Algorithm Variants

From Table 2, we also see that the performance of Algorithm 3 is rather poor in
comparison both to Algorithm 4 as well as the other models. Thus, in the absence
of more reliable benchmarks we tentatively conclude that the performance of Al-
gorithm 4 is far superior to that of Algorithm 3 which is also in keeping with our
line of argument we posited in Section 5.3.2. To be fair, the stochastic algorithm
incorporates only the most necessary and basic features of the SVI paradigm and
enjoys the potential for vast improvement.

6.5 Semantic and Syntactic Word Analogy Tasks

In order to more systematically evaluate the quality of the representations, we use
the comprehensive test set of [MCCD13] that consists of five types of semantic



54

Task Pair 1 Pair 2

capital-common-countries Paris France Helsinki Finland
capital-world Astana Kazakhstan Harare Zimbabwe
currency Angola kwanza Iran rial
city-in-state Chicago Illinois Stockton California
family brother sister father mother

adjective-to-adverb apparent apparently rapid rapidly
opposite easy hard legal illegal
comparative big bigger tall taller
superlative easy easiest hard hardest
nationality-adjective Switzerland Swiss Finland Finn
past-tense walking walked swimming swam
plural moose mooses goose geese
plural-verbs work works talk talks

Table 3: Examples from the analogy type tasks. The top section constitutes the
semantic questions while the bottom section constitutes the syntactic questions.

questions and seven types of syntactic questions. Some examples from this test
set are shown in Table 3. Previous papers [TRB10] used the word vectors to find
semantic relatedness between similar objects. For example, it is not hard to establish
the closeness of two countries, say France and Finland. However, it is a much more
complicated task to recognise the relationship between a word pair, say, France and
Paris and use that to correctly predict that Helsinki holds a similar relationship
to Finland. In the case of syntactic analogies, given easy and easiest, the model
should recognise the superlative relationship between these and accurately predict
the superlative of hard to be hardest.

The questions are all framed in this pattern: A : B :: C : X, where A and B are
the first word pair, and we need to find X that holds the same relationship to C as
A does to B. This relationship can be either syntactic or semantic. There are in
total 19544 such questions of which 8869 are semantic and the rest syntactic. The
questions were formed by taking a fixed number of word pairs and listing a Cartesian
product between them. Only single token words were included.

The percentage of semantic relationships accurately predicted for each kind of se-
mantic analogy relationship is shown in Table 4. Similarly, Table 5 shows the results
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Semantic Analogies word2vec Our model

capital-common-countries 63.24 53.75
capital-world 44.41 41.20
currency 39.65 36.88
city-in-state 31.58 27.92
family 30.86 26.96

Table 4: Semantic word analogy results : We compare our embeddings with the
embeddings from word2vec, both trained on the RCV1 corpus with a window size
of 8. The results are the percentage of the analogy tasks gotten right. It is clear
that our model, though outperformed by word2vec shows competitive results.

Syntactic Analogies word2vec Our model

adjective-to-adverb 11.29 4.54
opposite 7.72 3.43
comparative 14.61 6.49
superlative 13.68 5.18
present-participle 14.40 6.46
nationality-adjective 25.48 19.36
past-tense 23.58 17.79
plural 23.65 17.22
plural-verbs 22.66 16.29

Table 5: Syntactic word analogy results : We compare our embeddings with the
embeddings from from word2vec, both trained on the RCV1 corpus with a window
size of 8. The results are the percentage of the analogy tasks that were accurately
predicted. However the word2vec representations perform significantly better than
ours.

obtained from syntactic analogy tasks. Clearly, our model performs comparably to
word2vec in most semantic tasks, although word2vec proves better in all cases. How-
ever, as far as syntactic questions are concerned, the word2vec representations beat
our model by a significant margin. We will try and analyse the cause of this in
Section 7.1

For the sake of fairness, we ought to mention that the word2vec model easily out-
performs our model if we were to tweak a few of its parameters. But all factors
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Chunker Features

Baseline The current word, the two left and right contexts and
their corresponding tags

Extended Baseline + the embeddings corresponding to the words
and their contexts.

Table 6: Feature templates used for CRFsuite.

being the same, we can with some confidence assert that our model gives semantic
results that are comparable to the word2vec model.

6.6 Chunking

Text chunking consists of splitting text into syntactically coherent groups of words.
For example, the sentence

The rain in spain stays mainly in the plain

can be chunked into

[NP : The rain][PP : in Spain][VP : stays][ADVP : mainly][PP : in the plain]

where NP, PP and ADVP refer to noun phrases, prepositional phrases and adverbial
phrases. Such chunks can be viewed, at some level, as intermediaries to full-blown
textual parsing.

A commonly used baseline chunker in word embeddings literature is offered by by
Sha and Pereira’s linear conditional random field shallow parser [SP03]. In keeping
with most previous literature on word embeddings we utilise the CRFsuite by Naoaki
Okazaki [Oka07] for the chunking task. The features used by the baseline chunker
and the extended chunker using the word embeddings are given in Table 6

The data set from CoNLL 2000 shared task for chunking [TKSB00] consists of a
training set of 8936 sentences, out of which 1000 sentences are sampled randomly
for development in practice. The CRFchunker is trained on the remaining 7936 sen-
tences along with their extended features and the resulting F1-scores are evaluated,
as shown in Table 7. It is important to note that the L2-regularisation parameter
has a lot of effect on the F1-score.
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System Citation Dev Test

Baseline [TKSB00] 94.16 93.79
Our Model 94.26 93.90
word2vec [MCCD13] − 94.02
CCA [DRFU12] − 94.23
Brown clusters [BPPM93] 94.67 94.11

Table 7: F1-scores for the chunking task. While our model managed to beat the
baseline scores, we were unable to improve on the F1-scores of already existing
models. This is because our model does not capture synactic relationships well
enough.

While running the baseline, we obtained the results claimed by [TRB10], not using
a L2- regularisation constant of 2 or 3.2, but of 0.05 The reason behind this strange
behaviour remains a mystery. While our model did beat the baseline scores in both
the development and the test set, we unfortunately failed to improve on the already
existing models. We attribute this failure to the inability of our model to capture
syntactic relationships.

6.7 Summary

We now summarise the results. We first demonstrated that our model works by
running it on a synthetic data set. The results speak for themselves. We then plotted
the progress of Algorithm 4, by using the log likelihood instead of the more typical
expected lower bound. This is because the existence of random negative samples
renders an accurate estimation of the lower bound hideously difficult. However, this
too convinces us that our model indeed learns. We then established the effectiveness
of our representations using the word similarity tasks, where Algorithm 4 proved to
be the best representation. We then used this task, to corroborate – perhaps not
too satisfactorily – our initial suspicion that the stochastic variant of our model
Algorithm 3 performs poorly. We then used t-sne to reduce the dimensionality of
the vectors, to visualise the representation. A simple clustering of the embeddings
and selecting a few choice clusters evidenced that our intuition was correct. We
also showed how our model shows results comparable to word2vec in semantic word
analogy tasks, while performing rather badly in syntactic analogy tasks. Clearly, this
latter aspect of our model needs to be rectified. Finally, in keeping with most word
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embeddings literature, we tested our representations on chunking tasks. Although
our representations did beat the baseline scores, we found that it performed worse
than some of the other more popular models. However, the margin of difference
between the state-of-the-art and the baseline is rather minuscule and the F1-scores
are not too significant.
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7 Conclusion

The end of all our exploring will be
to arrive where we started and
know the place for the first time

T. S. Eliot

In the preceding chapters we saw how word embeddings of reasonable quality could
be induced with a fully Bayesian model. Before recapitulating we will briefly address
the deficiencies of our model and hypothesise as to their causes.

7.1 Retrospection

Why did the model do relatively well on semantic tasks but not so much so on
syntactic tasks? It is hard to say. My first conjecture was that this behaviour
had something to with the window size. The words within a small window provide
semantic information, while increasing the size helps account for the syntactic in-
formation. However, the word2vec runs with the window size of 2, producing much
better syntactic results than our own model. Arguably, their downsampler does
a much better job of increasing the effective window size by discarding frequent
contexts.

My second line of argument is that the model learns what I shall call centroid -based
vectors, where the vectors agglomerate strongly around a mean. This agrees with
the characteristics of the Bayesian model with a mean square error risk function
where the mean of the posterior minimises the mean square error and the Bayes risk
is given by its variance. For example, while the vectors for king and queen, and man
and woman would cluster separately using k-means, simple vector operations such
as

vec(king)− vec(queen) + vec(man) ≈ vec(woman)

would fail to hold. If anything, this portends appalling results for syntactic tests.
Alternatively, we can view the vectors as not being pushed far apart enough to
allow the vector operations to be of any account. My speculation is that this is
because of our negative samples being drawn from a uniform distribution instead
of a categorical distribution such as the one used in word2vec. While this might
prove to be the reason, we have, in our defence, evidence from previous literature
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[PKW14] that uniform negative samples give an estimate superior to frequency-
based selection. We conclude that our model effectively learns semantic information
as evinced strongly in our experiments.

7.2 Recapitulation

The idea that words are recognised by the the contexts in which they occur lan-
guished in desuetude until processor evolution allowed us to put it to good use. The
earliest word representations were induced with n-gram cluster-based representation
[BdM+92] and global representation schemes such as latent semantic analysis [LD97].
Unlike these, distributional representations employ immediate word contexts to gen-
erate dense and real-valued representation. This thesis attempted to bring about a
convergence of two such prominent works, namely the word2vec [MCCD13], a shal-
low neural network model employing negative sampling and the multi-view CCA
style embeddings of [DRFU12]. These both attempt to solve the same problem:
factorising a word co-occurrence matrix into two or more matrices.

In our thesis, apart from crystallising the best ideas of both, we also introduced a
completely Bayesian, stochastic variational algorithm that potentially scales to any
length of data. The third contribution was that while all previous literature pro-
duced point estimates of the embeddings, our model predicts continuous Gaussian
densities in the latent space. Such a model, as far as we know, is the first to predict
such densities as part of its inference process. Clearly, this has its drawbacks in
that it increases the inference time polynomially in proportion to the size of our
latent embeddings. For example a latent embedding of dimension k would require
a covariance of k(k+1)

2
. While we were not able to convincingly demonstrate the use

of such covariances, we surmise that such covariances could be potentially used to
mitigate the problems mentioned in Section 7.1. The usefulness of the ARD priors
fades away when we limit the size of k to small values. An alternative is to create a
global co-occurrence matrix [LC14] for the entire corpus and run the model on this.
This should reduce the computation time to the order of a few hours as well as do
away with the need for negative sampling (resulting in a calculable lower bounds)
and will be the subject of future investigation.

The stochastic version, with its noisy likelihood, provides a good approximation, but
a still better one can be obtained by modifying it into a scalable version for finite
data. We employ a multithreaded model where each thread locally calculates noisy
estimates of likelihoods with downsampling in the part of the data it is working on
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and combines the estimates to obtain a better approximation of the likelihood than
one obtained by a purely stochastic version. This has provided demonstrably better
results.

Finally we trained the modified multithreaded algorithm on the Reuters’ Newswire
Corpus, a 1.2 gigabyte textual corpus of news data from the years 1996–1997. We
let the algorithm run for 200 iterations, with a context window of 2 over a span
of one and a half days and used the resultant embeddings for all of our evaluation
tasks. We resorted to the t-distributed stochastic neighbour embedding as visual
sanity tests.

As a quantitative sanity check, we used the WordSim-353 data set and calculated
the Spearman’s correlation scores to support our claim that the distance between
the vectors corresponded to the human similarity scores. Because our model had a
strong tendency to learn semantic properties, we obtained the highest score among
all embeddings.

However, we did not beat the state-of-the-art embeddings in the semantic and syn-
tactic analogy and chunking tasks. We added the embeddings as feature vectors to
CoNLL chunking challenge, hoping to improve upon the baseline scores. Unfortu-
nately, the improvement was not remarkable – owing to poor syntactic discrimina-
tion.
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8 Future Work

Because when you are imagining,
you might as well imagine
something worth while.

Anne of Green Gables

It is common practice to leave this section as a footnote to the conclusion. But
we realise the work we have done is woefully inadequate and only the first step in
what we hope shall be a fully Bayesian approach to unsupervised natural language
processing. In the following subsections we look and try to formalise briefly a few
directions of progress.

8.1 Direct Extensions

One of the prominent, albeit underutilised, contributions of this thesis is the repre-
sentation of the latent dimensions as Gaussian densities instead of the more typical
point estimates. The covariance of the Gaussian densities allows us to take the
uncertainty of each dimension into account. For instance, we earlier used the Eu-
clidean distance between the Gaussian means for the WordSim-353 [FGM+01] which
gave very good results. An even better alternative would be to use the probability
product kernel [JKH04] of the Gaussian densities as a measure of word similar-
ity. Given the Gaussian densities corresponding to two words p(w) ∼ N (µw,Σw)

and p(c) ∼ N (µc,Σc) the probability product kernel or the inner product of two
Gaussians is again a Gaussian given by [VM14]:∫

N (x;µw,Σw)N (x;µc,Σc) dx = N (0;µw − µc,Σw + Σc).

This result directly follows from the convolution property of Gaussians – the convo-
lution of two Gaussians is a Gaussian.

Another possibility is to investigate the effective use of the ARD prior. In our
experiments, we had to limit the latent dimensionality to k = 50 because of the
constraints imposed by the dimensionality of the covariance matrix k(k+1)

2
and by

the large vocabulary size. Since there were no extraneous dimensions, the working
of the ARD could not be properly demonstrated. By limiting the vocabulary size to
the n most frequent words (usually in the order of 103) along the lines of [LL13], we
can run our model over a much larger latent dimension k and let the ARD choose the
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dimension best suited. Finally, to improve the performance of the stochastic variant
of our algorithm we could resort to more careful step-size selection as demonstrated
by [RWBX13].

In the sections that follow, I will outline a few ideas that are only tangential extrap-
olations of our model, but nevertheless enjoy immense practical benefits.

8.2 Unsupervised POS Tagging

Unsupervised POS tagging is simply the end of a long list of research on word clus-
ters by [BdM+92] and [CWB+11] inter alia. [GG07] discusses a fully unsupervised
Bayesian approach involving a simple trigram based POS tagger defined as,

ti|ti−1 = t, ti−2 = t′, τ (t,t′) ∼ Mult(τ (t,t′))

wi|ti = t, ωt ∼ Mult(ωt)

with symmetric Dirichlet priors for ωt and τ (t,t′). By integrating over ωt and τ (t,t′)

they present a collapsed Gibbs’ sampler for inference and reportedly achieved a
tagging accuracy of 86.8%. It is not hard to see the striking resemblance this bears
with Latent Dirichlet Allocation (LDA) [Ble12]. To begin with, we could posit a
simple ensemble learning method that uses many-to-one POS mapping learnt from
the word clusters obtained from our model in conjunction with [GG07] for better
predictive performance. A bolder attempt involves incorporating [GG07] as a cog
in our Bayesian machinery. Incidentally, adapting non-parametric models, such
as the Dirichlet process, allows for modelling language independent POS taggers
[VGVG09].

8.3 Bayesian Grammar Induction

[KS06] presents a variational Bayesian grammar induction algorithm. Consider a
Probabilistic Context Free Grammar (PCFG) tuple G = (VN , VT , R, S,θ), constitut-
ing the non-terminals, the terminals, the production rules, the start symbol and the
probabilities of the production rules respectively. For any A ∈ VN , a ∈ (VN ∪ VT )+

the corresponding production rule r : A → a ∈ R, has probability θA(a). Clearly,
θA is Dirichlet distributed with hyperparameters ua, and θ is a product of such
Dirichlet distributions. [Kur04] outlines a variational approximation for estimating
the posteriors of u. Grammar induction proceeds roughly as follows:
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1. Begin with an initial grammar and estimate the posterior of u.
2. While the free energy decreases

(a) Split the ith rule and re-estimate u.

(b) Delete production rules while free energy decreases

(c) If there is no decrease in free energy, quit.

3. While the free energy decreases

(a) Merge rules with highest cosine similarity between their parameters θi
and re-estimate u.

(b) Delete production rules while free energy decreases

(c) If there is no decrease in free energy, quit.

4. Output the induced grammar.

[KS06] reports that the Bayesian approach to grammar induction showed better
results than earlier ones using the Inside-Outside algorithm [SRO93] or its modi-
fications [HM98] for induction. Let us now discuss the dependency grammar as a
special case of grammar induction.

8.3.1 Dependency Grammar Induction

[KM04] introduced a modified unsupervised dependency grammar induction that
employed part-of-speech tags as part of its generative story to model its parameters.
[SACJ11] demonstrated that Brown clusters and used as word classes for dependency
grammar induction surpassed the performance of gold part-of-speech tags. They
performed a number of experiments involving different class assignment schemes such
as one-to-one, union-all and most frequent tags among others. They then study the
effects of hierarchical and flat Brown clusters go on to conclude that the drawback
of word embeddings is not so much the lack of supervision as the the prevalence of
the one class per word schemes, that is, the inability of word clusters to represent
polysemous words. We hypothesise that a unified Bayesian model inducing word
classes and a dependency grammar iteratively should show improved results to the
two-step pipeline introduced by [SACJ11]. A good while ago, [WSM08] presented
a Pitman-Yor process Bayesian model for dependency parsing. Incorporating this
into our existing model, while perhaps requiring some effort, seems possible. One
could also come up with cyclic models that alternate between improving induced



65

grammars from the current embeddings and using the dependency parses of the
current grammar as contexts for the subsequent embeddings.

8.4 A Unified Bayesian Model for Unsupervised NLP

We draw inspiration from [CWB+11] to speculate upon a Bayesian model that per-
forms unsupervised learning of four classical NLP tasks, viz,

1. POS tagging
2. Chunking
3. Parsing
4. Semantic Role Labeling (SRL)

The first three items are clearly incremental in nature, and we could form a simple
Bayesian pipeline. SRL might prove harder, but we think that we could use Markov
Logic Networks [RD06] in conjunction with the embeddings induced to reason prob-
abilistically about thematic relations.

Will a computer ever be able completely draw valid rules and patterns from natural
language on its own? Is it fair that we model something so monstrous on our
subjective whims? Should we try and mimic the way humans learn language9, or are
we better off creating statistical models that are better understood? These questions
continue to haunt us and time alone will reveal whether the structure intrinsic to
natural language can ever be completely disentangled from all that seeming chaos.

9The neural network community didn’t get very far modelling the human brain.
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