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Computation offloading can be used to leverage the resources of nearby computers to ease
the computational burden of mobile devices. Cloudlets are an approach, where the client’s
tasks are executed inside a virtual machine (VM) on a nearby computing element, while the
client orchestrates the deployment of the VM and the remote execution in it.

Mobile devices tend to move, and while moving between networks, their address is prone
to change. Should a user bring their device close to a better performing Cloudlet host,
migration of the original Cloudlet VM might also be desired, but their address is then prone
to change as well. Communication with Cloudlets relies on the TCP/IP networking stack,
which resolves address changes by terminating connections, and this seriously impairs the
usefulness of Cloudlets in presence of mobility events.

We surveyed a number of mobility management protocols, and decided to focus on
Host Identity Protocol (HIP). We ported an implementation, HIP for Linux (HIPL), to the
Android operating system, and assessed its performance by benchmarking throughput and
delay for connection recovery during network migration scenarios.

We found that as long as the HIPL hipfw-module, and especially the Local Scope Iden-
tifier (LSI) support was not used, the implementation performed adequately in terms of
throughput. On the average, the connection recovery delays were tolerable, with an average
recovery time of about 8 seconds when roaming between networks. We also found that with
highly optimized VM synthesis methods, the recovery time of 8 seconds alone does not make
live migration favourable over synthesizing a new VM.

We found HIP to be an adequate protocol to support both client mobility and server
migration with Cloudlets. Our survey suggests that HIP avoids some of the limitations found
in competing protocols. We also found that the HIPL implementation could benefit from
architectural changes, for improving the performance of the LSI support.
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Liikkuvassa tietojenkäsittelyssä laskennan ulkoistaminen on menetelmä, jolla voidaan käyt-
tää ympäristössä olevien tietokoneiden resursseja keventämään mobiililaitteeseen kohdistuvaa
laskennallista rasitusta. Cloudletit ovat eräs ratkaisu mobiililaskennan ulkoistamiseen, jossa
laitteessa suoritettavia tehtäviä siirretään suoritettavaksi tietokoneessa ajettavaan virtuaali-
koneeseen. Mobiililaite ohjaa virtuaalikoneen luomista ja siinä tapahtuvaa laskentaa verkon
yli.

Mobiililaitteen taipumus liikkua käyttäjänsä mukana aiheuttaa haasteita nykyisen
TCP/IP protokollapinon joustavuudelle. Mobiililaitteen siirtyessä verkosta toiseen, on tyy-
pillistä että sen IP-osoite vaihtuu. Mikäli mobiililaite siirtyy lähelle Cloudlet-isäntäkonetta,
joka olisi resurssiensa ja tietoliikenneyhteyksiensä puolesta suotuisampi käyttäjän tarpeisiin,
voi käyttäjän Cloudlet-virtuaalikoneen siirtäminen olla toivottavaa. Tällöin kuitenkin myös
virtuaalikoneen osoite voi vaihtua. TCP/IP ratkaisee osoitteen vaihtumisen katkaisemalla yh-
teyden, mikä käyttäjien liikkuvuutta rajoittavana tekijänä tekee Cloudlet-ratkaisun käytöstä
vähemmän houkuttelevaa.

Tässä tutkielmassa tutustuimme joukkoon sopivaksi arvioimiamme liikkuvuutta tukevia
protokollia, ja valitsimme niistä HIP -protokollan lähempää tarkastelua varten. Teimme HIP
for Linux -protokollaohjelmistosta sovituksen Android-käyttöjärjestelmälle ja tutkimme sen
soveltuvuutta liikkuvuuden tukemiseen mittaamalla sen avulla muodostetuilla yhteyksillä saa-
vutettavia siirtonopeuksia sekä yhteyden palautumiseen kuluvaa aikaa osoitteenvaihdosten
yhteydessä.

Mikäli HIPL:in hipfw-moduuli, ja erityisesti sen LSI-tuki (IPv4-sovellusrajapinta) ei ol-
lut käytössä, mittaustemme mukaan protokollatoteutus suoriutui Cloudlet-käyttöön riittävän
hyvin siirtonopeuksien suhteen. Lisäksi yhteyksien palauttaminen osoitteenvaihdosten yhtey-
dessä sujui siedettävässä ajassa, keskimäärin noin kahdeksassa sekunnissa. Hyvin optimoitu-
jen Cloudlet-virtuaalikoneiden synteesimenetelmien vuoksi kahdeksan sekunnin toipumisaika
yksinään ei tarjoa virtuaalikoneen siirtämisestä merkittävää etua uuden luomiseen nähden.

HIP protokolla soveltuu yhteydenpitoon sekä mobiililaitteesta Cloudlet-isäntäkoneille,
että Cloudlet-virtuaalikoneeseen; pienehkön kirjallisuuskatsauksen perusteella muita oleelli-
sia protokollia hieman paremmin. Tunnistimme myös uudistamistarpeen HIPL-toteutuksen
arkkitehtuurissa LSI-tuen suorituskyvyn parantamiseksi.
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1 Introduction

Cloudlets [60] bring additional computational power close to the users, and
allow them to execute arbitrary applications inside a Virtual Machine (VM).
The closer the Cloudlets are to the users, the better the performance and
the user experience [9]. However, Cloudlets base their communications on
the TCP/IP networking stack, and hence, their support for mobility, i.e.,
roaming between different networks, is limited.

In Internet Protocol (IP) [54] based networking, devices identify them-
selves and others with an IP address. An address carries information about
where on the network the device is located, affecting how packets sent be-
tween devices should be routed. When an intermediate computer or router
receives a packet, it will compare the destination address to entries in a
routing table to make a decision about where to forward it.

In IP based networking, packets move independently from one another.
Transmission Control Protocol (TCP) [55] is the most commonly used proto-
col to create an abstraction of a point-to-point connection on such a network.
TCP is based on a concept of ports, and it ties address-port-pairs as the end-
points of a connection; a TCP connection is hence a quadruple consisting of
two IP addresses and two ports. TCP works perfectly on a static network,
but if a device suddenly moves from one network to another, the following
things will occur.

The device will be assigned a new address that is usually not known
in advance. As TCP does not have a secure mechanism for updating the
endpoints of a connection, connections that were established using the previ-
ous addresses are disconnected and need to be re-established. Updating the
endpoints using an insecure protocol would enable hijacking the connection.
Most applications have no way to know if the new address really belongs to
the same device; its requests need to be authenticated in some other way.
During this process, some program state may be lost. Packets sent to the
old address will not reach the intended device, and might even reach an
incorrect device that has now been assigned the address. If the communi-
cation is unencrypted that device may be able to read it, and perhaps even
respond to it.

One of the obvious characteristics of mobile devices is that they move.
Users carry their devices with them wherever they go and connect them
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to whatever network they have available when they need to connect to the
Internet. On cellular networks, their address might stay the same when
traveling from the vicinity of one base station to another because of handover
functionality built into the network [4], but the same is not true when moving
to other kinds of networks. The users might connect their devices to the
campus Wireless Local Area Network (WLAN) when they’re working, have
the device automatically switch to mobile broadband when they step out of
the door, and switch to WLAN again once they get home. The addresses
of these devices change quite often, and it is impossible to reliably predict
what the next address of the device will be.

The TCP/IP protocol stack is built of layers, which means there are
many points at which to address the problem. The depicted problems are
observed on the application layer because they are inherited from the trans-
port layer that fails to accommodate dynamism from the network layer.
Some programs, such as Mosh [66], address the problem on the application
layer. Mosh itself can tolerate disconnections and address changes, but this
doesn’t help other applications.

Multipath TCP [2, 13] addresses the problem at the transport layer.
Traffic can be spread across multiple paths, and as long as at least one path
is available at all times, migration between networks should work. Multipath
support for TCP would benefit the vast majority of applications, but not all
communication is carried over TCP. Online games, for example, have been
reported to suffer degraded network performance when using TCP, because
it is too sophisticated for what the games require [6]. A separate mobility
solution would hence be needed for other transport layer protocols as well.

Mobile IP [49] and Virtual Private Networking (VPN) address the issue
at the network layer. In both solutions, the client can have a public IP
address that always remains the same. Both solutions rely on a server, a
gateway, or a home agent to hold a static public IP address, and forward
the received packets over a tunnel to the target host. Typically the packets
need to traverse triangularly through the gateway or home agent, despite
more direct route being available.
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Software Defined Networking (SDN) [11] and solutions such as Virtual
Private LAN Service (VPLS) [27] attempt to solve the issue at link layer.
They require sophisticated networking devices, such as programmable switches,
to become more commonplace. One example is SMOG [21], which provides
seamless VM migrations across data-centers without changes to software
that is accessing or running on the VM. SMOG uses VPLS to span a single
Layer 2 broadcast domain across multiple data-centers, and employs route
advertisements to divert traffic to use the most suitable paths, in order
to provide seamless migration of VMs across data-centers. While SMOG
doesn’t require changes to the applications, it only provides mobility to the
server side, and migrations across Autonomous System (AS) borders are still
an issue.

In this thesis, we focus on Host Identity Protocol (HIP) [42], which ad-
dresses the issue transparently to the applications, by adding a shim layer be-
tween the transport and network layers. The key idea is that the shim layer
provides the upper layers a location-independent identifier while perform-
ing transparent address translation between the identifier and a routable,
changeable address at the network layer. We discuss how HIP can sup-
port Cloudlets in computation offloading scenarios. One of the main the
challenges in this work was that no working implementation of HIP existed
that would run on current versions of Android. We chose to work on HIP
for Linux (HIPL), because an earlier port for Android already existed, but
which had to be modernized and rewritten to a large extent.

We have structured this thesis as follows. In section two, we discuss
offloading and the use of surrogates in mobile computing in general, and
different approaches to offloading. In section three, we take a deeper look
at Cloudlets, starting with the general model, and then continuing with
specifics about the Cloudlet prototype Elijah. In section four, we examine
the HIP protocol in general. Then we discuss features that make it useful
to be used with Cloudlets in section five. In section six, we discuss the
process and changes of porting HIPL to the Android operating system, and,
in section seven, we present benchmarks and results. Finally, we discuss
some related work.
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2 Mobile offloading

Mobile offloading, or cyber foraging [59], refers to transferring computational
workloads from a mobile device to be executed on another nearby comput-
ing device, often called a surrogate. The motivation is typically to take
advantage of its available resources, such as computing power or electricity.
Figure 1 illustrates a generic division of responsibilities in offloading.

In this section, we examine characteristics and motivations related to
mobile offloading, and take a look at some of the programming frameworks
designed to support it.

2.1 Characteristics of mobile offloading

Porras et al. [53] divide cyber foraging into six steps: surrogate discovery,
application partitioning, placement decision and cost assessment, trust es-
tablishment, task execution, and environment monitoring.

Figure 1: A mobile device and a surrogate.

Surrogate discovery is the process of finding nearby computing devices.
This is usually done using a service discovery protocol. Many different kinds
of service discovery protocols have been designed, with different properties.
Some protocols rely on a central registry and are better suited for static
environments. In others, the registry may be distributed, or the protocol
may rely on the surrogates to broadcast advertisements of their services, or
quietly listening to broadcasts and replying in unicast. Some protocols also
combine these different approaches. The mobile devices employing discovery
protocols may treat surrogate availability as a generic service similar to
printing or web caching, or they may utilize details about the surrogates to
find the best suited ones.

4



Application partitioning is the step of identifying which parts of the
application can be offloaded. The application is partitioned into locally
executable code and remotely executable code. The partitioning can be
done manually by the programmer, or with the aid of a tool that helps with
or even automates the process. Partitioning of the application is subject to
certain restrictions. Generally, code that relies on local resources, such as
code that reads input from a touchscreen, or otherwise interacts with the
user, can not be offloaded because the input/output (I/O) devices it needs
are at the mobile device, and not at the surrogate [53, 57].

Placement decision and cost assessment are processes of determining
whether, and where, it makes sense to offload tasks that can be offloaded.
The goal here is to make a plan for offloading. Offloading some processing to
a surrogate imposes overhead on network and energy consumption. Before
offloading makes sense, the benefit gained by offloading must be larger than
the overhead. The planning step for offloading should take into account both
the available resources of the mobile device and those of the surrogate, and
the bandwidth and energy required to transfer the code, inputs and outputs.
This step may also need to take into account the monetary cost of offloading
and the user’s priorities, should the surrogates be available as a commercial
service.

Trust establishment means ensuring that the mobile device and the sur-
rogate can trust each other. If both parties blindly trust each other, a mali-
cious mobile device could consume all the surrogate’s resources, thus causing
a denial of service to other users, compromise other users’ computations or
subject the surrogate to other kinds of misuse. A malicious surrogate on
the other hand could alter offloaded computations, illicitly reveal them to
others, or hinder the tasks that the mobile user is trying to achieve by lying
about its resources.

Task execution is the step where the actual offloading takes place. Once
the application has been divided into locally and remotely executable parts,
trusted surrogates are available, and the plan for offloading exists, the appli-
cation needs to communicate the offloaded code and inputs to the surrogate,
and transfer the results back.

Environment monitoring and application adaptability are the processes
of an application adapting to changes in its environment. Whether it makes
sense to offload something to a surrogate depends on the situation, which
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can change over time even during the application’s execution. If a surro-
gate suddenly becomes unresponsive, the application needs to cope with the
changed situation and find a new surrogate, execute the code locally, or
change the application’s behavior.

2.2 Approaches to offloading

The offloading approach gravely affects the flexibility and resource utiliza-
tion of an offloading system, and the best approach may depend on the
application. The three most commonly used approaches are the RPC, the
mobile code, and the Virtual Machine (VM) based approaches [53]. Table 1
summarizes the three common approaches.

In the Remote Procedure Call (RPC) based approach, a server compo-
nent with implementations of the offloadable functions is running at the
surrogate. The clients send their calls to those functions to the surrogate,
and the surrogate executes the called functions and sends the results back. A
purely RPC based approach doesn’t support installing custom code from the
client on demand. Since the surrogate will be executing only predetermined
functions, their implementations can be precompiled and heavily optimized
in advance.

Approach Executes Language for offloaded code
RPC Predefined functions Language agnostic

Mobile code Arbitrary code written for
platform’s execution environment

Determined by framework,
typically must run on the same VES

Virtual machine Arbitrary code written for
arbitrary execution environment

Can be language agnostic, but
app or framework may restrict,

VM format determined by framework

Table 1: Offloading approaches

In the mobile code based approach, the surrogate provides a generic
execution environment, and the mobile client is allowed to send custom code
to the surrogate to be compiled and run. This approach is used especially
with code that runs in a Virtual Execution System (VES), such as code
written in Java or the Microsoft .NET languages, because such languages
are portable and architecture agnostic. Both the ARM architecture used
in mobile devices, and the x86 or AMD64 architectures typically used in
the surrogates can execute the same bytecode. Following this approach, a
surrogate may also delegate tasks to other surrogates to further increase
performance.
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In the VM based approach, the remote execution environment is isolated
in a virtual machine or container, and can be used to make any of the
other offloading approaches available on demand. The surrogate may have
a separate VM per application, or per user. The per-user VM may be
altered, or even completely constructed by the individual user. The VM
can host a different operating system than the surrogate, which makes this
approach more flexible than the other approaches. On the other hand, the
resource requirements for this approach are likely to exceed those of the other
approaches, because resources need to be allocated for a complete virtual
computer along with an operating system and the necessary applications.
Containers, such as Docker1, attempt to mitigate this requirement.

2.3 Motivations for mobile offloading

In the previous section, we discussed mobile offloading, and some different
ways to approach it. In this section, we discuss some of the different appli-
cations.

Traditionally the resources of mobile devices are rather restricted, at
least in comparison to off-the-shelf desktop or server computer hardware.
The server machines, that are used as surrogates, can offer a more powerful
processor and more memory to the applications than the mobile devices
themselves can. This can speed up tasks that were previously run on the
mobile device, and enable tasks that were previously not possible.

Another potential use case is offloading of network traffic. Running
e.g., a BitTorrent client on the mobile device stresses the wireless network,
and the performance may not be as good as that on a wired connection.
A surrogate could be used to participate in the BitTorrent content dissipa-
tion and the mobile device can just download the downloaded files from the
surrogate. Assuming that the surrogate itself is connected through a wired
connection, this would cause less traffic on the wireless links, resulting in
less congestion on the wireless links.

At locations where the Internet connection to the core network is slow
or unreliable, a surrogate could be used to help with bulk file transfers. For
example, backup software might benefit from the presence of a surrogate by
being able to quickly transfer the backup over to it using a fast and reliable

1Docker: http://docker.io
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WLAN link, and let the surrogate transfer the backup over to the remote
cloud when the network allows. This would free the mobile device to be able
to leave the network sooner without delaying the transmission.

Offloading can also be used to preserve battery life. Mobile devices are
battery powered, whereas surrogates draw their power from the main electric
outlets or possibly from green energy sources. Energy-wise, computation
and networking are usually more expensive to the mobile device than they
are to the surrogates. If the energy-cost of transferring the data over to the
surrogate is smaller than that of performing the computation locally, the
use of surrogates would result in a better battery life.

2.4 Offloading frameworks

A number of application development frameworks have been designed to
support cyber foraging. They follow different architectural approaches, but
most of them address all of the aforementioned tasks related to compu-
tational offloading. We next go through a number of the currently most
popular cyber foraging frameworks.

Framework Approach Hardware
platforms

Software
platforms Programmer involvement

MAUI Mobile code Any CLR Code annotation
Cuckoo Mobile code Any Java VM Separate implementations (optional)
Scavenger Mobile code + RPC -hybrid Any Python Separate implementation
ThinkAir Virtual machine x86 Java (Android) Code annotations
CloneCloud Mobile code Any Java VM None
Cloudlet Virtual machine x86 KVM Application design + overlay creation

Table 2: Comparison of offloading frameworks

MAUI [10] is a framework that follows the mobile code based approach
and offloads computation dynamically, at run-time, to a MAUI server. The
programmer can suggest parts of the program for offloading by annotating
methods in the source code, and a component called MAUI Solver decides
whether or not to actually offload the method. This design allows the soft-
ware to run completely locally when a MAUI server is not present, and enable
offloading when one becomes available. MAUI was designed to target the
Microsoft Common Language Runtime (CLR), because the platforms for
the server and the mobile device usually differ in the instruction set (x86 on
server, ARM on mobile device), and CLR can run the same compiled byte
code on both instruction sets.

Cuckoo [25] is an offloading framework targeted for the Android platform.
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It takes advantage of the activity/service separation that is prevalent in
Android application programming, where activities interact with the user
and services perform the computational tasks. Cuckoo intercepts requests to
services and opportunistically offloads the requests to a server. Like MAUI,
Cuckoo follows the mobile code based approach, but the programming model
for Cuckoo allows the methods to have different implementations for local
and offloaded execution, aiming to a more efficient use of resources (e.g.,
increased parallelism) when offloaded. Since Android’s Java code also runs
in a VES, the difference in platforms should cause no problems.

Scavenger [34] is a cyber foraging framework that targets all mobile
platforms. Its approach is something between the RPC based and mobile
code based approaches. Scavenger transmits Python source code and input
data as part of the RPC call, uses the surrogate to apply the code to the
data, and returns what the code returned as the result.

ThinkAir [30] follows the VM based approach and runs "clones" of an
x86-version of Android. The framework identifies the offloadable parts by
the programmer’s annotations in the source code. It also provides a cus-
tomized Native Development Kit that is used to compile native libraries
for both ARM- and x86-versions of Android. It supports an infrastructure
that allows the clone to scale out into more clones in order to provide im-
proved parallelism, and is able to cater to the needs of more than one user
simultaneously.

Using the above mentioned frameworks, the programmer still needs spe-
cial expertise on how to design their program to support offloading. Smart-
Diet [57] is a system designed by Saarinen et al. to help programmers with
this task. SmartDiet analyses method call trees during program execution
to find out which parts of the program consume most energy, to find where
non-offloadable features have been used, and then to provide the program-
mer with advice on how to change the program to make as many parts
offloadable as possible. It should be noted, that SmartDiet itself is a de-
sign aid utility and does not function as an offloading framework, but was
considered relevant for this chapter.

CloneCloud [7] follows the mobile code approach also, and aims to reduce
programmer involvement even further. It works with unmodified applica-
tions, analyzing them at run-time and opportunistically migrating threads
to be executed on a server. CloneCloud relies on a modified version of Dalvik,
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Android’s Java Virtual Machine.
Cloudlets [60] follow the VM based approach. Before the offloading can

start, the client provides the surrogate with an overlay image, which the
surrogate will then combine with a base image to construct a completely
customized virtual machine. This approach gives the programmer complete
liberty to decide what will be run in the VM. The Cloudlet model in itself
does not assist with designing the application, but it can in theory be used
in combination with any of the aforementioned frameworks.

More thorough surveys on these and other computation offloading from
mobile devices can be found in the works of Abolfazli et al. [1] and Kumar
et al. [35]. In the next section we take a closer look at Cloudlets, and
especially the Elijah Cloudlet system designed and developed at Carnegie
Mellon University.

10



3 Virtual machine based Cloudlets with Elijah

Cloudlets [60] are a system for virtual machine-based cyber foraging.2 The
most notable prototypes, Kimberley [67] and the more recent Elijah3, have
been designed and implemented by researchers at Carnegie Mellon Univer-
sity (CMU). In this section we discuss Cloudlets, with a focus on the Elijah
prototype. However, as Cloudlets are based on VM technology, we shall
begin by discussing some background.

3.1 Virtual machines, cloning and migration

A Virtual Machine [15] is essentially a piece of state that represents a com-
puter to a Virtual Machine Monitor (VMM), a program that manages virtual
machines. The state of a VM is called a VM image that can be stored in a
file like any other state from a computer program. Like any file, it can be
copied or transferred over a network. A typical VM image contains infor-
mation about the virtualized hardware, the contents of the VMs hard-drive,
and, in case it’s an image of a paused VM, also the contents of its main
memory and the state of its processors.

Copying a VM image is called cloning. Moving the image to another
host is called migration. Cloning can be used to make new VMs that share
a common base. e.g., clones of an image with a clean, freshly installed
operating system can be used to make a collection of different VMs that run
the same operating system. In migration, the image on the original host
is discarded, and the completely identical copy of it is resumed on the new
host, essentially meaning that the VM has moved from one host to another.

The two common types of migration are called offline migration and
live migration. In offline migration, the hypervisor pauses the VM, and
sends the specifications of the VM to the hypervisor on the receiving host,

2Actually the term ’Cloudlet’ is somewhat overloaded, even within the field of com-
puter science. Objects representing application services in CloudSim are called Cloudlets
[5]. S. Ibrahim et al. introduced a MapReduce-framework for virtual machines called
Cloudlet [20]. Koukoumidis et al. suggest a caching scheme or cloud service de-
sign model called Pocket Cloudlets [31]. Tao Lin and Shuhui Wang propose Cloudlet-
screen [39], a centralized multi-user computing system accessed through simple high-
resolution terminals. Belalem et al. describe a cloud resource management model where
Cloudlets are auctionable units of service [3]. Akamai holds a US trademark (USPTO
#85027916) for the name Cloudlet and NephoScale uses it to offer on-demand virtual
servers (http://nephoscale.com/cloud-servers/).

3http://elijah.cs.cmu.edu/

11

http://nephoscale.com/cloud-servers/
http://elijah.cs.cmu.edu/


which reserves resources for the VM. It then sends the image of the VM
to the receiving host. When the transfer is complete, the hypervisor at the
receiving host resumes the VMs execution and the migration is complete. In
some cases when the two hosts have access to shared storage, it is possible to
skip the transmission of the hard-drive contents. During an offline migration,
the VM is inaccessible.

In live migration [8], hypervisor does not freeze the original VM in the
beginning, but instead lets it continue operating. The hypervisor sends the
specifications of the VM to the receiving host, which reserves the required
resources. Then the original host starts sending the full image of the VM
over to the receiving host, and at the same time, starts tracking for changed
parts ("dirty pages") in the VM’s main memory and hard-drive. Once the
complete image has been transferred for the first time, the original host
starts a new tracking for dirty pages, and transfers the dirty pages from
the previous iteration. Collecting and sending of dirty pages is reiterated
until the number of dirty pages after an iteration is small enough, or until
another condition, such as a time limit for attempting live migrations, is met.
After the iterations, the original host freezes the VM, sends the remaining
dirty pages and the CPU state, and the new host resumes the VM. In live
migration, the VM remains accessible during the migration and its downtime
can be kept very short. Should the migration fail, e.g., due to the receiving
host not being able to resume the VM, it can still be kept running on the
original host.

Migration requires support from the hypervisor. For migration to be suc-
cessful, the abstraction of a computer provided to the VM must be similar
enough on both hosts. Successful migration depends on how much actual
hardware is exposed to the VM and how similar the host machines are. Vir-
tualization platforms account for hardware heterogeneity by abstracting and
hiding things such as special CPU instructions from the VMs. To the best
of our knowledge, no hypervisor readily supports migrations to or from dif-
ferent hypervisors, but many do support importing hard-drive images from
other hypervisors, allowing VMs to be started, but under a different set
of virtual hardware [32, 61]. As an external solution, Liu et al. propose an
inter-VMM shimming framework called Vagrant [40], which selectively recon-
structs state created under one VMM in the format used by another VMM,
and converts between the migration protocols used by different VMMs, en-
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abling live migrations between heterogeneous VMMs.
Elijah’s function can be thought of as a special case of offline VM mi-

gration. The base image is created on one host, and the paused full state is
copied to any host that acts as a Cloudlet server. The default configuration
in Elijah presents the VMs with a virtual processor called "qemu64". This
processor is one of QEMU’s standard options and is aimed as the greatest
common nominator amongst the x86-64/AMD64 family of processors, i.e.
to expose the largest common set of processor instructions found in such
processors. A Cloudlet VM should, hence, be migratable across different
hosts, whose processor is compatible with this virtual processor.

3.2 The Cloudlet model

The Cloudlet model consists of a Cloudlet host, a mobile device, Cloudlet
Virtual Machines and possibly a remote cloud. Figure 2 depicts the structure
of a general Cloudlet infrastructure.

The Cloudlet hosts are commercial off-the-shelf (COTS) servers that
are powerful and network-wise in close proximity of a network access point,
such as a wireless hotspot. They are equipped with hypervisor software for
running virtual machines, and Cloudlet management software to manage the
VM images, the synthesis process, interacting with mobile clients etc., and
possibly a collection of Cloudlet base images. The Cloudlet management
software can also advertise its presence so that clients can find it using a
service discovery mechanism.

The Cloudlet host provides its services to Cloudlet-aware software run-
ning on mobile devices, such as smartphones or laptop computers. As the
Cloudlet system is still experimental, actual client software exists yet only
for Linux and Android operating systems for the time being.

The mobile device accesses the resources of the Cloudlet host by starting
an instance of a customized virtual machine, a Cloudlet VM, and by con-
necting to it from some Cloudlet-aware application. The Cloudlet VMs are
tailored for each application. The image of the VM is constructed from a
shared base image, which can be standardized and typically comprises most
of the image, by applying an overlay image provided by the application.
In Cloudlet terminology, this construction process is called VM synthesis.
The base-overlay separation serves to answer one of the classic challenges of
Transient PCs, e.g., how to handle large parcels efficiently [62]. To further
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Figure 2: Overview of an example Cloudlet infrastructure.

reduce the size of the overlays, Ha et al. have implemented a number of
optimizations [18].

Finally, a remote cloud can exist in the background. The remote cloud
can be used as a Content Delivery Network (CDN) for distributing base-
images and overlay-images, for infrastructure management, to provide per-
sistent storage or other kinds of support.

While computation can be offloaded into a remote cloud, performing
computation in a local Cloudlet does provide some benefits. Cloudlets can
be thought of as extensions for clouds that bring the cloud closer to the
end-user.

They should be placed on the local network, ideally only a few hops
away from the network access point. Being located in the local network
offers lower latency and higher bandwidth than would be achievable over
the Internet. Low latency especially has been shown to have an essential
role when serving interactive applications [9].

Since Cloudlets reside on the local network, they can even be accessible
when the Internet is not. One of the things this implies is that the compu-
tational resources are usable in field conditions, e.g., when the Cloudlet is
placed on a locally connected support vehicle, or in situations where global
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connectivity is missing or unreliable [63].

3.3 Elijah

Elijah is a prototype implementation of a Cloudlet system. It consists of
several pieces of software for Linux, and a client application for Android. In
this section, we walk through the different components making up Elijah.

3.3.1 Linux applications

Elijah consists of a customized version of the QEMU virtualization software,
software for creating the VM images, client and server software for VM
synthesis, an extension for OpenStack4 to integrate Elijah with it, and a
service discoverability tool based on Avahi5.

3.3.2 Android client

The Android application for Elijah is a simple client to interact with the
Cloudlet synthesis server. It supports the simple synthesis server, and also
the OpenStack integration. Location of the Cloudlet server can be discov-
ered through Avahi, or entered manually. The application can send an over-
lay image to the synthesis server and shut down the synthesized VM when
it’s no longer needed.

3.4 Structure of a Cloudlet VM

A Cloudlet virtual machine image is constructed of two parts: a base image,
and an overlay image. The purpose of the base image is to set a generic foun-
dation, which is later refined into an application-specific image by applying
an overlay image.

The base image consists of a hard-drive image containing an operat-
ing system and common libraries, an image of the main memory, and the
CPU state, where the operating system is freshly started. The base image
usually accounts for most of the space consumed by the full image. Ideally
the base images would be standardized and shared among as many overlay-
images as possible to keep the number of existing base-images low. It should

4http://www.openstack.org
5http://avahi.org
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be noted, that the same base image can be shared by any number of overlay
images.

Figure 3: Base- and overlay-images.

The overlay image refines the base image and contains the application-
specific part. It also consists of a hard-drive image, a main memory image,
and CPU state, or more correctly their differences (or delta) to the ones
in the base image. It contains the information on how the contents of the
main memory and hard-drive have changed, starting from the base image,
ending in the application having been installed and started. When resuming
a Cloudlet VM, this delta is applied to the base image to reconstruct the
full state. Figure 3 depicts the division between base images and overlay
images in Cloudlets.

3.5 Image creation and virtual machine synthesis

In the previous section, we studied the structure of a Cloudlet VM. In this
section, we take a look at how a Cloudlet VM can be created and how to
run it.

3.5.1 Creating the images

The creation of both the base and overlay images is a relatively straight-
forward process. For the base image, start by creating a QEMU raw VM
hard-drive image, and install an operating system on it. Install also any
libraries that should be available to the overlays. This part can be done
without invoking the Elijah software.
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Figure 4: Creation of an overlay image.

When the installation is ready, start the VM in Elijah in the base image
creation mode. This will open a Virtual Network Computing (VNC) remote
desktop window where you can configure the VM into exactly the desired
state. When ready, close the VNC window. This causes Elijah to freeze the
VM, and store the full state (hard-drive, main memory, processor state) of
the VM into a file. This file is called the base image.

For the overlay image, start by launching a virtual machine from the base
image in Elijah’s overlay creation mode. Once the Elijah displays the VNC
window with the base image, use it to install and launch the desired appli-
cation. Once the application is ready, close the VNC window again. Elijah
freezes the virtual machine and computes the binary difference (or delta)
between the full states of the base image and the frozen VM, and stores
the delta in a file. This file is called an overlay image, and it can later be
used together with the base image to reconstruct the frozen VM. Figure 4
illustrates the creation of an overlay image.

3.5.2 VM Synthesis

When the Cloudlet VM exists as the base image and the overlay image,
they can be combined to reconstruct the full VM image. The overlay image
contains the information which base image it was derived from. Elijah uses
this base image as the starting point, decompresses the overlay image and
applies it over the base image as binary patch, resulting in the full VM
image. It then resumes the reconstructed VM, which is now in the state in
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Figure 5: Synthesis of a Cloudlet VM.

which it was at the end of the overlay creation, typically with the desired
application installed, launched and ready to serve the mobile application.
Figure 5 represents applying the overlay over the base image.

The larger the overlay is, the longer it takes to transfer it from the
mobile device, and also the longer it takes to apply it on the base image.
To minimize the size of the overlay image, keep the changes from the base
image as small as possible. Removing unneeded parts of the base image
in the overlay creation step may result in a larger overlay image, because
removing parts makes the image more different from the base image i.e.,
bigger delta.

3.6 Image distribution

In Elijah, base images are stored on Cloudlet hosts, and overlay images are
stored in mobile devices or in cloud. To synthesize a Cloudlet VM from the
images, the mobile device sends the application specific overlay image to the
Cloudlet. Alternatively, the mobile device can send a URL where the overlay
image can be downloaded, which reduces the work of the mobile device if
the Cloudlet has access to the Internet. Pointing the Universal Resource
Locator (URL) to a CDN with a good global presence can greatly improve
the performance of this approach. The Cloudlet can also cache the most
recently used overlay images, or pre-download images that are expected to
become popular. The mobile devices would not need to transfer such images
separately each time they are used.

Referring to the overlay image using a URL provides dynamism. The
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URL can be pointed to a location that always has the latest version of
the overlay image. This would make it possible to always use the latest
image when Internet access is available, and fall back to the image on the
mobile device when Internet is unavailable. It can also be used for content
that is tailored for the current location, where local support data e.g., for
an Augmented Reality (AR) application can be distributed in the overlay
image.

3.7 Applications

Cloudlets provide a customizable software environment in which to run vir-
tually any kinds of applications. As a Cloudlet VM is technically a complete
computer, it can be used to host any of the other frameworks discussed in
section 2.4. The traditional examples of offloadable applications remain rel-
evant with Cloudlets as well. Application examples discussed in literature
include speech and facial recognition [52, 17], live speech translation [17], ob-
ject recognition, body language interpretation and Augmented Reality [18].

In addition to the traditional cases, the VM-based approach of Cloudlets
allows a kind of portability use case as well. The offloaded code is written
for the hardware platform of the Cloudlet host, instead of the client. This
can be used, e.g., to play computer games that were never actually made
for the mobile device [24].

3.8 Mobility challenges

Building a complete mobility solution for Cloudlets remains outside the
scope of this thesis, but we find it a meaningful subject to discuss nonetheless.
In this section we identify challenges related to building a complete mobility
solution, and discuss more deeply the subset that we aim to solve.
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3.8.1 The complete mobility solution

Building a complete mobility solution for Cloudlets would require solving at
least the following challenges:

• Roaming
• Migration
• Host discovery
• Resource management
• Application lifecycle / context management
• Accounting
• Federation

By roaming, we mean the capability to maintain connections while one
of the parties, be it the client, the Cloudlet host, or the VM, is changing
networks. The solution should also be secure in the sense that outside parties
cannot hijack the connection. To this particular challenge, we propose HIP
as the solution.

By migration, we mean the capability of the hosting platform to perform
live migrations on the Cloudlet VM. The customized version of QEMU6 used
in Elijah did not support live migration of the VM. Should a Cloudlet VM
move by means other than re-instantiation, working support for migration
is needed.

Host discovery is the challenge of finding Cloudlet hosts, and by this we
mean finding viable targets for migration. They may or may not reside on
exactly the same network as the client, but a host found nearby may still be
better than the currently connected one that has become too distant due to
the client movement.

Resource management is the challenge of finding and enforcing policies
on how to allocate the resources on Cloudlet hosts. Context management
is the challenge of dealing with application, client, and contract based mat-
ters. A complete mobility management system would use information from
resource and context management systems to decide where to place the
Cloudlet VMs and whether, where, and when to migrate them.

Accounting deals with whoever uses the Cloudlet hosts, that how many
resources they can use and when can they use them. Accounting may also

6https://github.com/cmusatyalab/elijah-qemu
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deal with how many resources a specific client is allowed to use, and with
prioritization between different users or groups. It should be noted, that in
commercial use, accounting is typically also linked to billing.

We believe that a complete mobility management solution should also
take into account that the best Cloudlet host for the client could sometimes
belong to another operator. Infrastructure that enables the client of one
Cloudlet provider to use resources provided by other providers can bene-
fit all parties involved. Hosting of a Cloudlet infrastructure is analogous
to hosting Infrastructure as a Service (IaaS). Kim et al. have shown that
in cloud computing, small IaaS providers are a special group that can espe-
cially benefit from forming a federation [26]. Cloud brokerage and federation
solutions, e.g., the ones discussed by Fowley [14] have solved many of the
challenges related to this domain. From the Cloudlet perspective, we believe
that all of the above challenges should be solved before a truly acceptable
solution can be found to this one.

3.8.2 The roaming challenge

To us, an adequate roaming solution for Cloudlets should:

• Allow parties to resume the connection without disconnection.
• Allow parties to resume the connection without undue delay.
• Preserve the connections’ low delays and high bandwidths.
• Prevent others from hijacking connections.
• Preserve confidentiality and integrity when moving to hostile networks.
• Not depend on the Internet.

When a device roams from one network to another, the mobility solution
should make sure that any state coupled with the connection is preserved, so
that roaming is as seamless as possible. The delay involved with resuming
the connection should at least be short enough, so that the user will not
start looking for problems in their connection.

The roaming solution should not unreasonably degrade the performance
of available connections. Some of the key attributes in Cloudlets are reliable
and fast network connections between the user and the Cloudlet7. A roaming
solution that would sacrifice key design points of the basic solution would
obviously be unacceptable.

7Key attributes listed in: http://elijah.cs.cmu.edu/
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The mobile clients, the Cloudlet hosts, and the Cloudlet VMs should be
able to tell each other if they have moved. An outsider, however, should not.
A roaming protocol must be secure in a way that any claims of roaming
to other networks are not trusted before they are securely verified. Also, a
good roaming solution does not make the communications more susceptible
to eavesdropping even if the device is forced to switch to a network that
offers less safety.

Finally, Cloudlets are designed to work as long as the client has local
connectivity to the Cloudlet [63]. A roaming solution that would require ex-
ternal connectivity would also violate an important design point and should
be deemed unacceptable.

In the next chapter we have a look at one solution to the roaming chal-
lenge, called Host Identity Protocol.
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4 Host Identity Protocol (HIP)

Host Identity Protocol [42, 46] is a network layer (L3) overlay protocol for
creating secure end-to-end connections between two hosts. Hosts are iden-
tified by self-generated cryptographic identities called Host Identities (HIs).
The identities are referred to by specially formatted IPv6 addresses called
Host Identity Tags (HIT), which can be used directly or through local IPv4
mappings called Local Scope Identifier (LSI). HITs are globally statistically
unique IPv6 special purpose addresses8 that belong to the Overlay Routable
Cryptographic Hash Identifier (ORCHID) [45] address space.

The protocol is used to enhance security, and to support client-side and
server-side mobility.

Application
Transport

+
HIP IPsec

NAT Traversal (UDP)
+

Network
Link

Physical

Figure 6: Protocol stack with HIP and basic NAT traversal encapsulation.

4.1 Separation of identity and location

Traditionally the addresses in Internet Protocol (IP) have served both as
locators and as identifiers. The source and destination computers are iden-
tified by the IP addresses assigned to them. This has an inherent problem
that should a device be assigned a new address, its identity, from the proto-
col’s point of view, will also change. Domain Name System (DNS) provides
a kind of identity/address split, in the sense that domain name records can
be updated. When a host tries to connect with a host by name, it performs
a lookup for mapping the name to an IP address. That IP address is then
tied as a permanent endpoint for the connection and cannot be updated.

8http://www.iana.org/assignments/iana-ipv6-special-registry/
iana-ipv6-special-registry.xhtml
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An update to a domain name record is effective for lookups that hosts make
after the old record has expired from the caches of the DNS servers that are
used.

Host Identity Protocol (HIP) adds an additional shim layer between
the transport and network layers, as shown in Figure 6. An application
that wants to communicate with another one identifies the destination host
by its Host Identity Tag (HIT) or the corresponding LSI mapping. The
HIP layer then needs to know a routable address where the target host can
be reached, and it negotiates an end-to-end IPsec tunnel. The HIP layer
translates HITs and LSIs into routable locators and vice versa. The HIP
DNS Extension [44] supports attaching names to identities and locators.
The HITs or LSIs cannot be updated either, but their respective locators
can.

Many other protocols provide indirection through splitting the roles of
IP addresses. Komu et al. conducted a survey of such protocols [28].

4.2 Control plane

HIP is structurally divided into a control plane and a data plane. The control
plane is responsible for negotiating Security Associations (SAs), accommo-
dating locator changes, negotiating details about cipher suites and related
to HIP association state and IPsec.

4.2.1 Base exchange

RFC 7401 [41] specifies the details of the Host Identity Protocol. A HIP asso-
ciation is formed using a four-way handshake between an Initiator (a client)
and a Responder (a server). The messages exchanged as part of the hand-
shake are labeled I1, R1, I2 and R2. The Initiator sends the I-messages, to
which the Responder responds with the R-messages respectively. Figure 7
shows the essentials of the exchanged messages and state transitions of the
two hosts.

All the messages carry a numeric code for their type, the HITs for the
source and destination hosts, and a HIP envelope. The I1 message is used for
establishing initial contact. Its header carries the identifier of the message
type, the HIT of the initiator, and the HIT of the responder, and the HIP
envelope is empty. An all-zeroes value for the responder’s HIT is treated
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as an opportunistic initiation, and any HIP-aware host that receives the
message can respond to it.

The R1 message carries the responder’s HIT as the source, and the ini-
tiators HIT as the destination. Unless opportunistic mode was used, the
HITs must match those in the I1 message. If the initiator or the responder
uses an anonymous identity, the corresponding control bit must be set in
the header. An anonymous identity is one that is regenerated periodically
to thwart attempts on tracking of HIs. The HIP envelope of the R1 message
carries a computational puzzle, along with a generation counter, parame-
ters for Diffie-Hellman key agreement, details about supported encryption
and integrity algorithms, the host’s full identity and optionally a signed or
unsigned nonce. It should be noted, that a new set of puzzles is generated
periodically. The generation counter specifies the generation to which this
specific puzzle belongs. As the R1 message reveals the identity of the host,
the responder may instead choose to respond with an I1 message, effectively
switching places with the initiator [41, page 19]. If both hosts have a policy
to reply with an I1 message instead of an R1, the handshake between them
cannot complete. R1 messages and solutions to the puzzles can be precom-
puted, which makes responding to I1 messages computationally inexpensive.

The envelope in the I2 message carries the solution to the computational
puzzle presented in the R1 message, the initiators parameters for Diffie-
Hellman key agreement, and the chosen encryption and integrity algorithm
to be used for the Host Association (HA) and SA. The identity of the
initiator is also part of the I2 message, but it may be encrypted using the
chosen encryption algorithm, using keying material derived from the Diffie-
Hellman parameters. The signed nonce is included in the I2 message. The
initiator computes a Keyed-Hash Message Authentication Code (HMAC)
[33] over the envelope, signs the envelope, and if the R1 message contained an
unsigned nonce, appends it after the signature. Verifying the correctness of
the I2 package is also computationally relatively inexpensive. The responder
will only proceed with establishing the association if the I2 was verified
successfully.

The envelope in the R2 message contains only a HMAC over the envelope,
and the responder’s signature. After successfully validating this message, the
initiator considers the HA established. When application data starts flowing
through the connection, the responder will also consider it established.
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Figure 7: HIP base exchange

4.2.2 Update mechanism

A HA may need to be updated from time to time. Typically an update is
needed when a host is relocated in a network, or when the session key used
for encryption needs to be refreshed. HIP provides a three-step mechanism
for updating the SAs.

When the locator of a HIP host changes, it sends a signed UPDATE
message to the hosts to which it was connected. When a host receives an
UPDATE message, it performs a so called return routability test, i.e., it
verifies the update by sending back an echo request. If it then receives a
valid response for the echo request, the host updates the locator in the cor-
responding SA. The update may optionally also contain re-keying material
for the HA, initiated by either party.

HIP provides its services at the network layer, and is agnostic of any
roles for applications. The mobility features work the same way on both
clients and servers, meaning that HIP supports both client-side and server-
side mobility.

4.2.3 Rendezvous

The HIP update mechanism works only when one of the two associated
hosts moves at a time. Should both hosts move at the same time, they
would both end up sending update messages to addresses that no longer

26



Figure 8: HIP handshake using a Rendezvous server.

reach the correct host. To accommodate mobility for both hosts moving at
the same time, HIP Rendezvous (RVS) extension [38] exists.

The Rendezvous server relies on a stationary host that accepts requests
to relay the I1-messages used in the HIP handshake, and the UPDATE
messages used in the update mechanism. When a host moves, it updates
its locator with the Rendezvous server. When another host notices that
its messages are no longer reaching their destination, it reverts back to
sending an UPDATE message through the Rendezvous server. By this time,
the Rendezvous server should have the new locator for the target host. It
forwards the UPDATE message to the target host.

4.3 Data plane

The data plane in HIP is responsible for encrypting and encapsulating traffic
and transmitting it to the correct destination based on the SA set by the
control plane.

The control plane of HIP supports negotiation of any encapsulation for
the data plane. By default it uses IPsec in the Bound End-to-End Tunnel
(BEET) mode for Encapsulating Security Payload (ESP) [23]. BEET mode
is a lighter, but also a more restricted type of tunneling than the regular
tunnel mode. The data address associated with plane can be dynamically
reconfigured by the control plane, allowing for seamless handovers when
network topology changes.
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When a host sends a packet over a tunnel-mode IPsec tunnel, IPsec
adds an additional IP header (outer header) before the original header (in-
ner header), to identify the endpoints of the tunnel on a regular IP network.
When the packet reaches the other endpoint of the tunnel, the added header
is removed and the packet is routed to its destination using the original
header. The link’s Maximum Transmission Unit (MTU) limits the size of
packets sent over the link, and each additional header consumes part of the
MTU. Increased size of headers and decreased space for payload means
more overhead.

In BEET mode, each endpoint stores the inner and outer addresses of
the endpoints related to the SA. When a host sends a packet over a BEET-
mode IPsec tunnel, instead of adding a second header, IPsec substitutes the
original header with the outer header and sends the packet with only that
single header. When the packet arrives at the other end of the BEET tunnel,
IPsec maps it to a SA by its Security Parameter Index (SPI). IPSec then
reconstructs the original header using information attached to the SA, sub-
stitutes the received header with the reconstructed inner header, and routes
the packet to its destination. As the inner addresses are not communicated
along each packet, this model introduces less overhead. Since the only factor
mapping the packet to an inner address is the SPI of the tunnel itself, one
tunnel can only support one pair of network-layer endpoints [23].

As long as the hosts at the ends of the tunnel understand the addresses
in the inner headers, they do not need to make sense for other middleboxes
in the public IP network. HIP uses HITs as the inner addresses in the
tunnels. As the applications need to know only about the inner addresses,
the outer addresses can be changed without affecting the applications’ view
of the connection. As HIP SAs are designed to be end-to-end, the restrictions
imposed by BEET mode are acceptable, so HIP has the benefit of changeable
locators and smaller overhead.

4.4 Summary of security

We shall approach the security of HIP via the classic CIA-triad: Confiden-
tiality, Integrity, and Availability.

HIP protects confidentiality and integrity through the use of a secure key
exchange protocol, encryption, signatures, and checksums. Key material for
session keys is generated using a Diffie-Hellman key exchange. Because the
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key material is complete by the time that the I2 message is sent, the identity
of the other party to the communication can be concealed. HMAC codes
are used to quickly detect a message may have been altered on the way, and
signatures are used to verify the source and the integrity of messages.

HIP protects availability by including a puzzle as part of the 4-way hand-
shake. The answers to the puzzles can be precomputed at the responder so
that checking the correctness of an answer is computationally inexpensive.
With precomputed answers, the responder does not need to reserve resources
for establishing a state until after successfully validating that the answer to
a puzzle is correct. Attacking a host with a stream of I1 and bogus I2 mes-
sages causes the responder to effectively ignore the initiator, consuming a
very small amount of resources. Denial of Service (DoS) attacks, where the
attacker does solve the puzzles, are also impractical because the work to
compute the answer can be orders of magnitude larger than the work to ver-
ify it. Komu et al. evaluate the effectiveness of the HIP puzzle mechanism
as a spam mitigation method for email servers, and conclude, that forcing a
sender to solve a new puzzle each time that the server identifies a message
from the sender as spam efficiently lowers the load on the server [29].

4.5 Network Address Translation

Network Address Translation (NAT) systems introduce a whole new set of
challenges. Typically, a NAT device establishes a return route for responses
to outgoing packets. Whether the responses must come from the same IP
address or not depends on the NAT implementation. Nevertheless, this
usually means that a device behind a NAT device can initiate connections,
but being able to respond to initiations requires special configuration from
the NAT device.

Assuming an established HIP association, if one of the hosts moves to
a network that is behind a NAT device, it should be able to recover the
connection using the normal update mechanism. If the other host also moves
behind a NAT device, the successful recovery of the connection depends on
the how the NAT device with the first host is configured.

Since the RVS-service is client-initiated, hosts that are behind NAT de-
vices can be reached through their RVS-server locators. However, if the
initiator is behind a NAT device, sending an I1 message to the RVS-server
causes the NAT device to initiate a return path from the RVS-server instead
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of the destination host. Since the original host will send its response directly
to the initiator’s locator from its own address, their NAT device may refuse
to deliver it.

The RVS server may offer a relay service in which also the data-plane
travels through the RVS server, allowing the connection to succeed even
if both devices are behind NAT devices. This may have an impact on the
connection’s performance. There are also other NAT traversal solutions that
may be used with HIP, such as Teredo [19, 65] and Hi3 [16] (derived from
i3 [64]). Microsoft Windows, starting from Windows Vista, comes with an
integrated Teredo client9, and a client called Miredo10 is available for Linux
and BSD operating systems.

This has relevance to our work in providing a HIP implementation for
mobile devices, in that mobile network operators are in the process of moving
their consumer-grade Internet connections behind large NAT systems, so
called Carrier Grade NATs [22]. Should the users of such access technology
be allowed to communicate directly to each other, there is a demand for a
proper NAT traversal solution that would support HIP.

4.6 Multihoming

A host that is connected to multiple networks is said to be multi-homed.
Such a host usually has at least one address per network. It is possible for a
HIP node to communicate multiple IP addresses to its peer during the base
exchange or update. From the viewpoint of HIP, this means that multiple
locators can be associated with one identifier. The same identifier can be
used to address the host from any of its locators.

The benefits of associating multiple locators for an identifier are fault
tolerance and the capability to balance load. If the host becomes unavail-
able through one of its addresses, the hosts which do know about the other
locators can try reaching the host through the alternative locators. The
different locators for a host would typically come from a different network.
Addressing the host using the same identifier, but different locators balances
the traffic between the networks.

It should be noted that HIP for Linux (HIPL) provides an extension
9Teredo in Windows: https://msdn.microsoft.com/en-us/library/windows/

desktop/aa965905(v=vs.85).aspx
10Miredo: http://www.remlab.net/miredo/
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called shotgun mode11 that causes the initiating host to send the I1 or update
message to all known locators of a host when initiating a handshake or an
update.

4.7 HIP Implementations

Several implementations of the HIP protocol have existed over the years.
In this section, we take a look at some of the implementations that are
currently available. We found evidence of other implementations, such as
HIP for BSD (HIP4inter.net) and PyHIP as well, but at the time of writing
this thesis they did not seem to be publicly available.

4.7.1 OpenHIP

OpenHIP12 started as the Boeing HIP implementation, but it was renamed
in 2006. The latest release (OpenHIP 0.9) supports Linux, 32bit versions of
Windows, and OS X Tiger (10.4.6 - 10.4.10). OpenHIP consists of a daemon
called hip and a set of utilities for managing it.

The hip daemon is responsible for everything related to running the
protocol. It supports RVS, broadcasts to Local Area Network (LAN), and
a DNS extension using the Top-Level Domain (TLD) .hip to specifically
request HITs and LSIs. The hip daemon reads a configuration file called
known_host_identities.xml to learn about other hosts that support HIP,
and allows communicating with them using HITs or LSIs.

On Linux, previous versions of OpenHIP secured the traffic toward a
target host also when referenced by its regular IP address, if the daemon
was running in kernel mode on a patched kernel. The kernel mode support
was dropped in OpenHIP 0.9.

hitgen is used during OpenHIP’s installation process to generate a HI for
the host. It can be given a set of parameters such as the desired algorithm
and key length. hitgen is also used to generate the sample configuration file
for hip.

hipmon is a simple OpenHIP management utility for Windows. It pro-
vides an icon to the system tray that can be used as a shortcut to start and
stop hip, and to access logs and configuration files.

11HIPL Manual: http://infrahip.hiit.fi/hipl/manual/ch09s02.html
12OpenHIP: http://www.openhip.org/
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4.7.2 HIP for Linux

HIPL13 is an implementation of the HIP protocol for the Linux operating
system. It was originally created as part of the InfraHIP project. HIPL
consists of three parts: hipd, hipfw and hipdnsproxy.

hipd is a daemon that enables the host to communicate using the HIP
protocol. It provides basic features such as the base exchanges, the update
mechanism and manages IPsec. The hipd also supports the RVS and relay
services, keeping idle connections alive using so called heartbeat extension,
and certain locator discovery features such as DNS updates and broadcasts
to LAN. The hipd supports addressing of hosts by both HITs and LSIs, but
communication with LSIs requires hipfw.

The hipfw daemon provides basic firewall services around HIP, such as
filtering traffic based on HITs, packet types, or state in a protocol run. hipfw
also provides address translation and packet forwarding between LSIs and
HITs. Using LSIs for communication in HIPL requires hipfw to be running
with LSI support enabled.

hipdnsproxy places itself as the handler of DNS queries for the host,
forwarding queries and responses normally, but intercepting responses that
contain Host Identities. When hipdnsproxy encounters a DNS response
that contains a HI, it will insert a mapping between the HI and the received
locator to hipd and returns the HIT or the associated LSI to the requester.
Using DNS for transferring HIs reduces effort of setting up SAs but is subject
to the same vulnerabilities as DNS in general.

4.7.3 CuteHIP

CuteHIP [37]14 is an implementation of HIP by Dmitriy Kuptsov. It was
created as a part of developing a rapid protocol development and experimen-
tation framework for Java as the initial use case for the framework. CuteHIP
is written mostly in Java, but uses native libraries for interacting with raw
sockets and TUN/TAP-devices. A version of the native libraries is provided
for Linux, OS X and Windows, but, in their paper about CuteHIP [37], the
author only experiments on the Linux platform.

13Infrastructure for HIP project: http://infrahip.net
14https://code.google.com/p/cutehip/
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5 HIP as a mobility solution for Cloudlets

Cloudlets are designed for augmenting mobile devices, and mobile devices
tend to move. The usefulness of the augmenting solution can be increased
if the user is allowed to move even during an ongoing session. Traditional
networking is not adequate for this goal, and must be augmented with a
mobility management solution. In this chapter, we view some of the mo-
bility solutions available today, motivate our choice of HIP, and discuss the
application of HIP to Cloudlets.

5.1 Mobility solutions

There are several protocols that can accommodate Cloudlet mobility man-
agement. In HIP [42], hosts are assigned (statistically) universally unique
identifiers, which are mapped to locators that can be changed on demand
even during connections. Hosts inform other connected hosts about their
new locators directly, and non-connected hosts can find the new locators
through a rendezvous service if one is used. HIP is an application agnos-
tic solution, and supports mobility on all sides of the communication. In
addition, DNS can be used to deliver Host Identities.

Protocol Client-side
mobility

Server-side
mobility

Route
optimisations

Android
software

HIP Yes Yes Yes HIPL* (experimental)
Mobile IPv4 Yes Yes Proposed [51] N/A
Mobile IPv6 Yes Yes Yes UMIP*

IPOP Yes Yes Yes SocialVPN (experimental)
OpenVPN Yes Yes No Yes

Table 3: Comparison of mobility protocols. *) Needs custom kernel.

In Mobile IP [49], a host that is outside its home network is associated
with two addresses: a home address and a care-of address. The home address
is the host’s permanent address in its home network, and the one that other
hosts should use when contacting the host. The care-of address is the address
assigned to the host by the network that it’s visiting. When the host is
visiting another network, the home agent receives any packets sent to the
home address, and tunnels them to the host in its care-of address. The
host responds to packets ether by sending them directly, while using its
home address as the source address, or by reverse tunneling the responses
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through the home agent. The first approach constitutes a route optimization
technique called triangular routing, and will not work on networks that reject
spoofed source addresses in outgoing packets. Mobile IPv4 is interoperable
with standard IPv4.

Mobile IPv6 [50] is a related protocol that provides mobility for IPv6
hosts. Mobile IPv6 can work in two modes: bidirectional tunneling mode,
and route optimization mode. In bidirectional tunneling mode, Mobile IPv6
tunnels all traffic between two hosts, in both directions, through the home
agent. In route optimization mode, a host registers its care-of-address with
its peers that support route optimizations, and the hosts communicate using
their care-of-addresses directly. The bidirectional tunneling mode is compat-
ible with IPv6 enabled hosts that do not support Mobile IPv6, and is also
used where the route optimizations are unimplemented or prohibited.

An OpenVPN15 server can be used to provide a tunneled virtual L2
bridge or a routed IP subnet, where the server acts as a central point, i.e.,
as a gateway or relay between different hosts, which can act as clients or
servers, and potentially also as a gateway to the Internet. Addresses inside
such tunnels are called internal addresses and they can be assigned stati-
cally. Hosts connected to an OpenVPN network with static addressing can
always address each other using the same internal address regardless of their
physical address. OpenVPN, can route all or part of traffic from a host to
the virtual network, and such traffic always travels through the gateway.
An implicit limitation is that clients that need to access a server using its
static inner address need to have access to the virtual network produced by
OpenVPN. While this may be feasible for in-house solutions, it may be less
feasible to offer to the general public.

IPOP [12]16 is a new user-friendly system and protocol for constructing
Virtual Private Networking (VPN) connections for pairs or groups of devices.
IPOP uses the Extensible Messaging and Presence Protocol (XMPP) [58]
in determining which devices should be connected in the virtual networks,
and automates the task of forming secure tunnels between them. IPOP
works in two modes: SocialVPN and GroupVPN. In SocialVPN, pairings
are determined through friend-connections on a social network and each
user can connect only with the users they have indicated as friends. IPOP

15https://openvpn.net
16http://ipop-project.org
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provides each user with their own view of the network with mappings be-
tween addresses and friends, and performs address translation in cases where
addresses collide with those used by other friends. In GroupVPN, a single
flat address-space is built among all users who belong to a group, and all
members of the group can communicate with each other. GroupVPN also
supports a bridging mode, where a virtual Ethernet broadcast domain is
formed among the devices.

In table 3 we summarise our survey. By client-side mobility we mean
that the side usually initiating connections is allowed to move. By server-
side mobility we mean that the side usually responding to connections is
allowed to move. We make no claims of whether a rendezvous-point or a
home agent is allowed to move. With route optimizations we mean, that the
protocol readily supports a mode in which messages do not need to travel
through a central point. Komu et al. provide a more thorough survey on
mobility management protocols in their recent paper [28].

5.2 How HIP would solve challenges related to Cloudlets

In section 3.8.2, we identified challenges posed on a roaming solution for
Cloudlets. The update mechanism of HIP, as discussed in section 4.2.2
allows endpoints to change locators without a disconnection occurring at
the application layer.

The update is a three-way procedure involving cryptographic signatures.
An update can be run after the two hosts have been successfully authenti-
cated using the base exchange. Successfully running the update procedure
requires access to the cryptographic key used as HI. It can thus be said,
that HIP prevents hijacking of the connection.

HIP encrypts all traffic by default using IPsec and its secure crypto-
graphic algorithms. Thus, HIP preserves confidentiality and integrity.

Out of all the protocols included in our comparison in section 5.1, HIP
was the only one that supported mobility without the need to set up some
sort of static infrastructure. As long as the hosts learn about each others
locators somehow, HIP supports direct end-to-end connections. This means
both that optimal routes can easily be used, and that HIP is not dependent
on external infrastructure.

The two remaining challenges, recovering from mobility events without
undue delay, and the preserving of the underlying network’s bandwidth and
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delays, are related to performance. We found nothing in the design of the
protocol itself that would prevent it from achieving these goals. On the other
hand, performance is often a characteristic of a specific implementation. In
chapter 6 we discuss our process of porting the HIP implementation HIPL
to Android. In chapter 7 we perform experiments on our port to provide an
answer to these two remaining challenges.

5.3 Deploying HIP with Cloudlets

In a Cloudlet infrastructure, the mobile client, the Cloudlet host, and the
Cloudlet VM are all individual hosts with separate identities. In this section
we discuss the different strategies to deploy HIP.

5.3.1 HIP between a mobile client and a Cloudlet host

Between a mobile client and a Cloudlet host, a HIP connection can serve
various purposes. In section 2.1, we identified trust establishment as one
of the steps in cyber foraging. The cryptographic identities can provide a
means to trust establishment, since they provide a way to verify if the host we
are communicating with is the one with which we intended to communicate,
and as needed, block communications with other identities.

At least in Elijah, the client orchestrates the lifecycle of the Cloudlet
VM, and does this by issuing commands to the Cloudlet host. The mobil-
ity support of HIP ensures that the commands issued by the mobile client
are processed in the same session even when roaming between networks.
Encryption and integrity checks also prevent outsiders from injecting com-
mands through the same channel.

As HIP encrypts the communication, this also provides a means to pre-
vent eavesdroppers on the network to learn about which overlay image, or
which payload is being transferred over the network.

Should the Cloudlet VM be accessed through forwarded ports on the
Cloudlet host, using a HIP tunnel between the client and the Cloudlet host
would provide some security for such communication as well. However, if
the host is compromized, HIP does not help.
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5.3.2 HIP between a mobile client and a Cloudlet VM

HIP based connectivity provides the same kinds of advantages between the
client and the Cloudlet VM as between the client and the Cloudlet host. The
application benefits from the mobility features of HIP, should the mobile
client move between networks, or the Cloudlet VM be migrated on another
host.

When used between the client and the VM, HIP based connectivity as-
sures that the communication is taking place with the right VM, assuming
that opportunistic mode is not used, and that nobody is intercepting the
communications.

HIP preserves confidentiality of the data plane from the network, but
also from the operating system of the Cloudlet host. However, it may be
possible for the hypervisor to intercept messages after decryption or before
encryption, so HIP alone does not protect against all dangers.

5.3.3 HIP between two Cloudlet hosts

HIP enabled Cloudlet hosts can use HIP to securely address each other us-
ing HITs or LSIs. This way they can ensure that the source and destination
hosts for VM migration are the correct ones. The encryption and integrity
protection provided by IPsec ensure that the VM is not altered during mi-
gration and that potential eavesdroppers cannot learn about the contents,
or likely even about the owner of the VM. For multihomed hosts, HIP pro-
vides fault tolerance, since it can switch to using alternative locators if the
initially used connections fail.

5.3.4 HIP between a Cloudlet host and a cloud backend

HIP can also secure the transmission of a Cloudlet VM overlay image, when
the client has supplied an URL to a HIP enabled hosting site, instead of
supplying the image itself. HIP provides the same benefits to partial VM
image transfers as it does to transferring complete images during migration.

5.4 Challenges in deployment

The main challenges of deploying HIP are the availability of HIP implemen-
tations, and the distribution of host identities.
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5.4.1 Availability of implementations

We discussed the available HIP implementations in section 4.7. To the
best of our knowledge, the port we made of HIPL is the only available
implementation of HIP for Android today. We found no implementations
for iOS or Windows Phone. As we found in our survey in section 4.7, the
support for recent versions of desktop operating systems is also relatively
weak. In order for HIP to truly benefit Cloudlets, a modern implementation
of HIP is needed for all major operating systems.

5.4.2 Keys to Cloudlet VMs

The structure of Cloudlet VM images, as discussed in section 3.4, causes a
challenge for distribution of the Host Identities. If the keys are included in
a base image, all overlays that do not overwrite them will share the same
identity.

If the HIs are included in the overlay, all copies of the same overlay will
use the same identity. To use different HIs with different copies, we would
have to construct a copy of the overlay for each identity separately. This
is analogous to tagging and compiling purchased software for each client
separately. It would also diminish a lot of the benefit from caching overlay
images in the Cloudlet host.

Constructing both images without HIs, the VM’s can generate new iden-
tities as they are started. The VM’s would have unique identities, but we
would not readily know what they are. The VM can try to contact a spe-
cific identity once it has generated its own, but then again we would need a
separate copy of the overlay per identity to contact.

Another way is to have the VM construct its identity upon start, and
have the Cloudlet host report the IP and a port for the VM to the client.
The client would then contact the IP and port in opportunistic mode and
then it would likely be communicating with the correct VM. This would be
better if the Cloudlet host had a method of reporting the VM’s generated
identity to the client.

Another way to address this would be to modify the current Cloudlet host
software implementation to accept an ordered series of additional patches to
the image. The synthesis would need to be changed so that after applying
the overlay to the base image, but before launching the VM, it would apply
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the patches in order to the image. This way small changes, such as the HIs,
could be delivered separately from the images.

Probably the most suitable way that we found would be for the client
to generate the identity it wants the VM to use, and supply the HIs to the
Cloudlet host. The host would then inject the HI to the client, e.g., by
attaching an emulated storage device.
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6 Porting HIP for Linux to Android

HIP for Linux (HIPL) is an open source implementation of the Host Identity
Protocol (HIP), developed as part of the InfraHIP17 project and targeted
at the Linux operating system. Since Android is based on the Linux kernel,
we believed it was relatively straightforward to port HIPL to Android. In
this chapter, we describe our contribution to HIPL. The source code, along
with our changes, can be found in the project’s code repository18.

6.1 Preliminary setting

In the beginning of the work, HIPL was working well on Linux, at least when
compiled against the GNU compiler toolchain. HIPL has also been ported to
an earlier version of Android, and an emulator image was available to prove
this. The code, however, no longer compiled against the latest Android
version, which was 4.3 (Jellybean) at the beginning of this work.

HIPL used the ipqueue packet queue for passing IP packets between
kernel space and user space. ipqueue had been deprecated from the Linux
kernel in favor of the Netfilter framework, and it was finally removed in
kernel version 3.5. We changed HIPL to use nfnetlink_queue instead of the
deprecated ipqueue, to ensure that HIPL would work in Android, but also
to ensure it would continue working on desktop Linux distributions in the
future.

6.2 Changes

To make HIPL work on the latest Android version, we made other changes
as well. Android uses a Berkeley Software Distribution (BSD)-based C stan-
dard library called Bionic, that is different from the GNU C standard library
(GLibC) used in most Linux distributions. HIPL relied on some features that
were available in GLibC, but not in Bionic. Usually, however, we found an
alternative function or structure that was available in both libraries.

17Infrastructure for HIP project: http://infrahip.net
18HIPL on Launchpad: https://launchpad.net/hipl
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6.2.1 Re-definitions

Most of our changes involved defining or redefining macros, and could be
isolated in the android/android.h file. This file is included in all files that
use the definitions when compiling HIPL for Android.

1 # include " config .h"
2
3 #ifdef CONFIG_HIP_ANDROID
4 # ifndef HIPL_ANDROID_ANDROID_H
5 # define HIPL_ANDROID_ANDROID_H
6
7 # include <stdint .h>
8
9 /* Logging */

10 # define ALOGE printf
11
12 /* System properties */
13 # define PROPERTY_KEY_MAX 32
14
15 /* Networking */
16 # define ICMP6_FILTER 1
17 # define HOST_NAME_MAX 64
18 typedef uint16_t in_port_t ;
19
20 #endif /* HIPL_ANDROID_ANDROID_H */
21 #endif /* CONFIG_HIP_ANDROID */

Listing 1: Missing definitions for constants

6.2.2 NetLink

HIPL uses the NetLink Transform (XFRM) subsystem to manage the IPsec
SAs, and the relevant header file was not included in Bionic, so we borrowed
it from the Linux kernel headers. The borrowed header is currently included
with our source code and can be found under android/linux/xfrm.h.

HIPL also uses the getifaddrs() function, which is not included in Bionic.
We borrowed an implementation of the function from Ken MacKay19, who
had just recently made it available to the public. Because of coding stan-
dards set for the HIPL code base, we made slight modifications to the source
and shared back out changes with McKay. We modified the function to check

19https://github.com/kmackay/android-ifaddrs
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for memory allocation errors, to inform the calling function about the errors,
and changed the coding style to follow that of the rest of the HIPL source
code.

6.2.3 ICMP6 filters

The ICMP6 protocol filter macros in Bionic were targeted for a BSD kernel,
even though Android runs on the Linux kernel. We redefined the macros to
work with the Linux kernel.

1 #undef ICMP6_FILTER
2 #undef ICMP6_FILTER_SETBLOCK
3 #undef ICMP6_FILTER_SETBLOCKALL
4 #undef ICMP6_FILTER_SETPASS
5 #undef ICMP6_FILTER_SETPASSALL
6 #undef ICMP6_FILTER_WILLBLOCK
7 #undef ICMP6_FILTER_WILLPASS
8
9 # define ICMP6_FILTER 1

10 # define ICMP6_FILTER_SETBLOCK (type , filterp ) \
11 (((( filterp )->icmp6_filt [( type) >> 5]) \
12 |= (1 << (( type) & 31))))
13
14 # define ICMP6_FILTER_SETBLOCKALL ( filterp ) \
15 memset (filterp , 0xFF , \
16 sizeof ( struct icmp6_filter ));
17
18 # define ICMP6_FILTER_SETPASS (type , filterp ) \
19 (((( filterp )->icmp6_filt [( type) >> 5]) \
20 &= ~(1 << (( type) & 31))))
21
22 # define ICMP6_FILTER_SETPASSALL ( filterp ) \
23 memset (filterp , 0x00 , \
24 sizeof ( struct icmp6_filter ));
25
26 # define ICMP6_FILTER_WILLBLOCK (type , filterp ) \
27 (((( filterp )->icmp6_filt [( type) >> 5]) \
28 & (1 << (( type) & 31))) != 0)
29
30 # define ICMP6_FILTER_WILLPASS (type , filterp ) \
31 (((( filterp )->icmp6_filt [( type) >> 5]) \
32 & (1 << (( type) & 31))) == 0)

Listing 2: ICMP6 Filter redefinitions

42



The heartbeat extension in HIPL uses these filters to catch replies to
ICMP6 echo requests. The wrong definitions for the filters caused it to miss
the replies, to determine that the connection must have failed and finally to
tear down the SA related to the connection. This manifested in connections
being systematically torn down approximately one minute after they were
established, regardless of whether they were active or not. The definitions
for the filter macros seem to be corrected since then for newer versions of
Bionic20.

6.2.4 Unavailable functions

HIPL originally used the lockf function to obtain locks on files. lockf was not
available in Bionic, so we changed HIPL to use the flock function instead.
There is a semantic difference between these functions that makes lockf
preferable in most cases, but since we did not anticipate a need to store the
files on a network file system, we find that the semantics of flock will suffice.

The functions for byte order conversions, htons, htonl, ntohs and ntohl
are defined in GNU C as functions, but in Bionic as macros only. The
HIPL source code originally contained a part where these functions were
addressed in a selector function using function pointers. During compilation,
the C preprocessor removes calls to macros and replaces them with the
implementations defined in the macros. The macros will not have an address
in the same way that functions do, and hence cannot be referenced by a
pointer. We rewrote this part of HIPL into a form that no longer uses
function pointers.

Bionic does not have implementations for certain functions that HIPL
uses for lowering its privileges (or capabilities) when it no longer needs them.
To address this, we changed the compilation configuration scripts to only
compile the capability code if not compiling for Android.

6.2.5 Position Independent Executables

As of version 4.0, Android uses Address Space Layout Randomization (ASLR)21,
a mechanism for randomly choosing locations for objects in memory. Its pur-
pose is to defend against application exploits that rely on knowing where

20https://android.googlesource.com/platform/bionic/+/bfc6a59%5E!/
21PaX ASLR: http://pax.grsecurity.net/docs/aslr.txt
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something is located in memory. In version 4.1, support for Position Inde-
pendent Executable (PIE), an ASLR technique in which executables consist
only of position-independent code, was added to Android22, and since ver-
sion 5.0 Android has only accepted PIE executables23.

The Android NDK supports compiling code as PIE through an added
compiler flag -pie. Since PIE is the norm for new Android versions, we
changed the HIPL compilation configuration scripts to use the flag by default
when compiling for Android, and to accept a –disable-android-pie flag in case
we are compiling for an older version of Android.

6.2.6 OpenSSL deprecated functions

HIPL was using the RSA_generate_key function to generate RSA keys to
be used as Host Identities. The OpenSSL developers declared the function
deprecated in OpenSSL 1.0.224. We encountered that OpenSSL was com-
piled in Android with the no-deprecated flag enabled, resulting in a library
where this function was not available. Since this issue affects other platforms
as well, we changed HIPL to use the newer RSA_generate_key_ex function
in all builds.

6.2.7 HIP Firewall

With the above changes, we were successful at compiling hipd, the base
HIP protocol daemon. To compile hipfw, the daemon needed for firewall
functionality and LSI support, some further changes were necessary. We
made no changes to hipfw itself, but instead patched a number of changes
to the libraries it was compiled against.

Three of our patches targeted the Android NDK. We patched netinet/ip.h
to include definitions for addressing the Type of Service (TOS) field in IP
packets. This definition has previously been removed from Bionic.
We patched netinet/ip_icmp.h to include a definition for struct icmphdr,
the format of the ICMP header. Finally we patched linux/byteorder/swab.h
to include definitions for the 16, 32, and 64 bit versions of the fswab function,
that is used in byte order conversions.

22http://source.android.com/security/enhancements/enhancements41.html
23http://source.android.com/security/enhancements/enhancements50.html
24https://www.openssl.org/docs/man1.0.2/crypto/RSA_generate_key.html
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The Netfilter framework is used to transfer packets between user-space
and kernel-space. Bionic defines a type called tcp_word_hdr which is also
defined by libnetfilter queue. We addressed the collision of the types by
removing the definition from libnetfilter_queue before compilation.

After these changes, we were also able to compile hipfw, and communi-
cate with other hosts over LSIs. Porting of the third component, the HIPL
DNS Proxy, used for intercepting HIs from DNS replies, was left for future
work. The main reason for this was that the HIP DNS Proxy is implemented
in Python, and porting it would have required a very different approach.

6.3 Compiling and running

To make compiling HIPL for Android easier, and especially to spare others
from repeating our quest to find the right toolchain, we wrote a bash script
that downloads and prepares a working build environment. The script can
be found in the HIPL source code repository under the tools folder by the
name prepare_android_toolchain.sh.

Currently, HIPL relies on a number of kernel modules and needs supe-
ruser access to the device. To use our port of HIPL, we needed to compile
our own kernel. We included instructions on how to compile Android operat-
ing system, along with instructions for configuring and compiling a suitable
kernel, in Appendix A. Instructions for compiling HIPL for Android from
source code are included in Appendix B.
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7 Experiments with HIP

In addition to functionality, performance is also important for deciding
whether HIP makes for a suitable mobility solution for Cloudlets. High band-
width and low round-trip times are some of the core features in Cloudlets.
To support this, a good mobility solution would not sacrifice either, and
would help the system to recover from mobility events in a reliable and swift
manner. We designed a set of experiments to measure the performance of
the HIP for Linux implementation in scenarios that we believe to be typical
when using Cloudlets.

7.1 Experiment setup

Our experiment setup consisted of three servers, and two mobile devices.
Two of the servers, charlie and delta, are HP ProLiant rack-mounted servers
with a 1Gbps link to each other and to the Internet. The remote server
farnsworth is a custom built PC connected to a 1Gbps switch, a 802.11n
WiFi base-station, and a 100Mbps/10Mbps Internet connection. All the
servers are running Ubuntu 12.04 and have the necessary software for run-
ning Cloudlets installed. Further specifications can be found in Table 4.

Computers
Host Model CPU RAM Network

Charlie HP ProLiant BL280c 6G Intel Xeon E5640
4 cores, 2.66 GHz 8GB 1Gbps

Delta HP ProLiant BL280c 6G Intel Xeon E5640
4 cores, 2.66 GHz 8GB 1Gbps

Farnsworth Custom Intel Core i7-3770
4 cores, 3.40 GHz 32GB 1Gbps

(100/10Mbps)
Mobile devices

Host Model CPU RAM Network

Nexus LG Nexus 5 (hammerhead) Krait 400
4 cores, 2.26 GHz 2GB LTE / 802.11n

Laptop Acer Aspire One A110 Intel Atom N270
1 core, 1.60 GHz 1.5GB 802.11g

Table 4: Specifications of equipment

For the mobile device, we used a Google Nexus 5 smartphone developed
by LG, running CyanogenMod with a customized kernel. Detailed instruc-
tions for the customization can be found in the appendices. For the wired
tests, we connected an Apple USB Ethernet adapter (100Mbps) over a USB-
OTG adapter cable.
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7.2 Methodology

Our experiments focused on throughput and recovery from network migra-
tions. For the throughput measurements, we measured the throughput re-
ported by iperf or iperf3 over HIP connections with various configurations,
and compared them with iperf-measurement results over plain IPv4 connec-
tions.

For the migration tests, we exchanged ICMP6 echo -messages (ping6)
over the HIP connection while migrating the device at one end of the con-
nection between hosts or access points. We measured both the interval
between receiving replies, and the RTT on those replies.

For systematic results and to minimize human errors, we used bash-
scripts to drive the experiments. We commanded the devices through virsh,
SSH, D-Bus or ADB when needed.

7.3 Impact on throughput

Network traffic over a HIP connection is encrypted by the sender and de-
crypted by the receiver. This requires some additional computation com-
pared to non-encrypted connections. Also, since the HIPL daemon per-
forms its work in user space, this incurs some penalty in the form of copying
packets back and forth between the packet queues in kernel space, and the
memory of hipd and hipfw processes located in the user space. As with other
tunneling solutions, HIPL also takes the penalty of a decreased MTU due
to the use of additional headers.

We expect a slight penalty for throughput. Our expectation is supported
by similar results by Osmani et al. who performed a throughput and latency
comparison for a collection of tunnelling solutions, including HIP [48]. To
measure the extent of this penalty, we performed a series of benchmarks.

7.3.1 Throughput between two servers

We performed benchmarks to examine the effect of employing HIPL on
traffic throughput between the two identical servers charlie and delta. The
throughput was measured using iperf in TCP mode. We used iperf in its
default configuration, where the client uploads data and the server discards
it.
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We tested the throughput over various ways in which HIPL can be con-
figured and used plain IPv4 as the benchmark. The average throughput
between charlie and delta with plain IPv4 was 919 MBit/s, which we find
satisfactory for a one-gigabit link. Running just hipd at both servers and
performing the throughput test over the HITs reduced the average through-
put to 383 MBit/s. Starting hipfw in the sending end reduced the average
throughput even further down to just 93 MBit/s. Starting hipfw at the
receiving end also reduced the throughput even further down to around 58
Mbit/s and having LSI’s involved at either or both ends finally dropped the
performance down to an average of 29 Mbit/s25. On the servers, hipfw was
always started with the default flags, i.e. -blkpF.

Figure 9: Throughput from iperf tests over various configurations

The throughput with most configurations was relatively stable with small
standard deviations, but the throughput with HIP without hipfw seemed to
fluctuate. A slight increase occurs in the standard deviation in all HIP
configurations. Figure 9 illustrates the throughput the different experiment
configurations.

7.3.2 Throughput for mobile device

We benchmarked the Android port of HIPL by running iperf3 in both direc-
tions between a Nexus 5 and the host Farnsworth in multiple configurations.
For the WiFi measurements, the Nexus 5 was connected to the network over
an IEEE 802.11n wireless network and, for the wired setup, over an Apple
USB Ethernet connector specified for 100Mbps. Benchmarks for plain IPv4

25The poor throughput of the LSI implementation was further inspected during the final
stages of thesis. It appears that it can at least be doubled: https://bugs.launchpad.net/
hipl/+bug/1515296
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showed that throughput for the wireless network was better than for the
wired network, but also more irregular. Figures 10 and 11 illustrate the
throughput for wired and wireless measurements respectively.

Figure 10: Download and upload throughput between Nexus 5 and
Farnsworth respectively over Ethernet. The "Y:N" tells that hipfw was run-
ning on the Nexus, but not on Farnsworth.

Figure 11: Download and upload throughput between Nexus 5 and
Farnsworth respectively over WiFi.

As we expected, the throughput over HIP/IPsec was lower than over
plain IPv4. On WiFi, the addition of HIPL reduced the throughput to
roughly one quarter of the original, but this is still a tolerable rate for
many applications. The addition of firewall functionality and especially
LSI caused a grave degradation of performance. On wired connections, the
performance seems steadier all around, and the degradation in performance
before introducing firewall and LSI functionality was smaller. This may be
affected by other wireless traffic competing for airtime, possible packet loss,
or the fact that the link between our device and the WiFi access point is
encrypted (WPA2) as well, while the wired link is not.

In these measurements, we started hipfw at the server with the default
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flags -blkpF, and on the smartphone with the flags -blkF. The -p flag, for low-
ering privileges after iptables rules have been established, is not supported
on Android. This should not affect performance.

7.4 Recovery from migration

In addition to throughput, a good mobility solution for Cloudlets also needs
to be able to recover from mobility events, including migrations in a reason-
able time. We believe that migration of the Cloudlet VM, and a network
change by the mobile client are the most likely mobility events to occur, and
hence we measured HIPL’s performance in recovering from them. We have
collected results from all migration measurements into Figure 16.

7.4.1 VM Migration

In the first experiments we migrated a KVM virtual machine between the
hosts charlie and delta, and ping6 was executed between the host farnsworth
and the VM. We measured the time it takes for the VM to recognize that
it has been moved and to recover the connection using the locator update
procedure. Figure 12 shows the experiment setup. Our results can be seen
in figures 13 and 16. We used a regular KVM virtual machine instead of
a Cloudlet VM in Elijah because the modified QEMU used in Elijah did
not support migrations at the time, and regular KVM VMs were our closest
alternative.

Figure 12: Recovery from VM migration experiment setup.

KVM / libvirt does not update the guest VM with changes in network
topology. Hence, the time it takes to recover from a migration is largely
based on timeouts that trigger the update or reconnection process. With the
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current default configuration of HIPL, the average time it took to recover
the connection was 27.89 seconds. During the live migration, the traffic
included sending the VM image between the two servers, and this caused
some variation in latency. Irregular lattices can also affect the usability of
the Cloudlet VM, depending on the application. It is possible to mitigate
this variation by transferring the VM over separate network, which implies
more cost, or by setting a bandwidth limit for the migration, which would
imply longer migration times.

Figure 13: Recovery latency and RTTs during VM migrations.

7.4.2 Client Roaming - Laptop

In our second roaming experiment, we used a laptop computer to roam be-
tween two wireless networks while running ping6 over a HIP tunnel between
the laptop and the host charlie to see how long it takes to recover the con-
nection. The experiment setup is depicted in Figure 14. We experimented
with roaming between a WiFi network and a 3G hotspot, and with roam-
ing between two WiFi networks. In the WiFi - 3G case, one of the WiFi
networks was connected to a 100Mbps/10Mbps wired Internet connection,
while the other was a mobile 3G connection. In the WiFi - WiFi case, we
alternated between two visitor networks operated by University of Helsinki.
The results are in Figures 15 and 16.

In this scenario, hipd was running on the same logical host as the bottom-
most network stack, i.e. there was no VMM that would hide the address
change, like in the previous experiment. As the operating system could
learn about the address change right away, HIPL was able to start the up-
date procedure immediately after the locator change occurred. As Figure 16

51



Figure 14: Experiment setup for client roaming between networks.

indicates, recovery was much quicker when the operating system could in-
form hipd when to start the update process. For Cloudlet use, a modification
to some part of the Cloudlet software that would cause hipd to initiate the
update process immediately after a migration has completed would greatly
speed up connection recovery in the migrating VM scenario.

Roaming from 3G to WiFi was slightly quicker than the other way, with
an average of about one second shorter time before recovery. The recovery
time while roaming between the two WiFi networks was close to that of
roaming to the 3G network, with relatively high amount of variation. We
explain this by the networks not being exclusive to our experiment. Overall,
in all scenarios the connection was recovered in roughly eight seconds on
average.

7.4.3 Client Roaming - Smartphone

The experiments with the laptop provide a valuable reference point, but
since our work focused on porting HIP for Linux to Android, we repeated
the experiment on a Nexus 5 Android smartphone. We opened a HIP con-
nection between the Nexus 5 and the host Farnsworth, and executed ping
over the connection while periodically alternating between WiFi and LTE
data connections.

After issuing the command to switch networks, the required time to re-
cover the connection was typically between 5-12 seconds, averaging 8.19 sec-
onds. The connection recovery performance is on par with the performance
achieved on the laptop in the previous experiment. Figure 17 illustrates the
latency related to hopping.
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Figure 15: Latency when roaming a laptop between two WiFi networks.
Above are the intervals between received messages, and below are the RTTs
computed form the ping replies. The gaps in the intervals depict the recovery
latencies.

Figure 16: Recovery latency with different migrations.

With our experiment setup, while roaming from WiFi to LTE, the WiFi
connection became unavailable immediately, but when roaming from LTE
to WiFi, the LTE connection remained active until a WiFi association was
established. We have addressed this in our analysis by ignoring the ping
replies received between commanding the device to connect to WiFi and the
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short gap in receiving replies.

Figure 17: Recovery latency when migrating between WiFi and LTE

7.5 Migration vs reinstantiation

An interesting question is whether to migrate an existing Cloudlet VM or to
instantiate a new one. The time required for Cloudlet synthesis to complete
is largely dependent on the size of the overlay. The downtime at the end of
a live migration while the SA is being updated is not. We assume that a
production quality Cloudlet hosting platform would tell the Cloudlet VM of
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a network status change, and hence our average downtime would be roughly
eight seconds, following our results in section 7.4.

Ha et al. implemented a number of optimizations to Cloudlet synthesis,
compare their performance to a baseline synthesis performance [18]. They
evaluated five overlay images, of sizes between 0.5MB and 97.5MB. The
smallest image is so small, that even the baseline synthesis time stays at 7.3
seconds. With the other overlays, the synthesis time varied between 37.0
and 140.2 seconds. With their full range of optimizations, Ha et al. were
able to reduce the synthesis time of all but the largest overlay to between
5 and 10 seconds. The synthesis time of the largest overlay was reduced
to roughly 48 seconds. It should be noted that the results for the fully
optimized synthesis are the first-response times, i.e., only the most essential
parts have been transfered and the VM has been started early while the
synthesis process still continues in the background. It should also be noted
that a new Cloudlet VM starts from a clean state, i.e., any state from
the Cloudlet VM on the previous host is lost, if it’s not separately stored
somewhere. Live migration of a VM preserves the state of the VM, so the
application doesn’t need to start over.

The time it takes to synthesize a new Cloudlet VM can, in many cases,
through optimizations, be reduced to roughly equal the time that the Cloudlet
VM would be unavailable at the end of migration, thus rendering the down-
time comparison mute to a large extent. Thus the focus shifts to other
questions. How important is the preservation of state in the VM? Should
the VM be reinstantiated to make the app more responsive earlier? How
seamless can the instantiation of a new Cloudlet VM be made? Can the
traffic caused by migrating the full VM be justified? The answers to these
questions, we argue, largely depend on the specific application.
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8 Related work

The related work in this field roughly divides into mobile offloading, execu-
tion environment, and mobility management related work. We have already
discussed offloading frameworks in section 2. We also made a small survey
into available protocols that would support mobility in section 5.1. Some
execution environments are perhaps not specifically targeted at mobile com-
putation offloading, but we found them interesting nonetheless.

Docker26 is a system for creating and running Linux containers. Like
Cloudlet images, Docker containers also consist of a base image, and a col-
lection of patches similar to the overlay image. A Docker image consists
of a collection of UnionFS file system images and metadata that describes
what else is needed to use the image. A Docker container is not a full VM,
but shares the hosting operating system’s kernel, and is thus very resource
friendly when compared to hypervisor-based virtualization. The sharing of
kernel has meant that Docker is Linux-specific, and the OS X and Windows
clients for Docker are actually running a VirtualBox27 VM running Linux.
Microsoft and Docker have recently announced partnership, and Windows
Server 2016 will be shipped with a Docker-like feature called Windows Server
Containers, which will share a Docker compatible API [56].

Vagrant28 (not to be confused with Vagrant [40]) is a system for au-
tomating the construction of uniform VMs. Vagrant reads instructions from
a configuration file in order to download a VM image, and then using pro-
visioning tools such as Chef or Puppet, equips the VM with the desired set
of software and configuration. Vagrant supports configuring multiple VM’s
within the same configuration file, enabling easy configuration of complete
virtual infrastructures for various needs.

The distribution of resources in proximity of mobile devices in Cloudlets
pays resemblance to an edge computing solution called Liquid Applica-
tions [47]. In Liquid Applications, the base stations in a cellular mobile
network are equipped with computing elements, that can be used to pro-
cess workloads such as help with video streaming, or provide context aware
services, such as personalized advertisements on nearby billboards.

26Docker: http://docker.io
27Oracle VM VirtualBox: https://www.virtualbox.org/
28Vagrant: https://www.vagrantup.com/
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9 Future work

The Android port of HIPL still needs work to become compatible with the
default configurations of Android devices available on the market. Currently
it needs a rooted device with a customized kernel, despite everything HIP
needs being included in the vanilla Linux kernel. The current HIPL imple-
mentation would not work on the kernel that was distributed with any of
the Android devices that were used for testing, usually because one or more
of the following features was missing: a) IPsec BEET mode, b) Dummy net
driver, c) Null crypto algorithms.

The kernels didn’t include support for IPsec BEET mode tunnels, but
most of them seemed to support traditional IPsec tunnels. This dependency
could be solved in a couple of ways. IPsec in user space would remove the
need to alter the kernel, but would result in some performance degradation.
Convincing device vendors or Google to enable IPsec BEET mode in the
kernel by default, and this would ensure this feature for future devices, but
not for old devices. Aftermarket firmware projects like CyanogenMod29

could bring this to tech-savvy users of older devices as well. Finally, this
dependency could be removed by transitioning to some other data-plane
encapsulation but this would break compatibility with HIP standards30. The
approach that we would recommend is a combination of the first two; using
IPsec in the kernel if it’s found available, and falling back to user space IPsec
if it’s not.

Switching to the TUN/TAP virtual network adapter would release HIPL
from dependence on the dummy network driver. However, at least since
Android 4.0 (Ice Cream Sandwich) the TUN/TAP driver has been available,
because Android’s VPNService API depends on it. The switching would also
in a sense be a step toward better portability, due to the driver’s availability
on other platforms.

The null crypto algorithm effectively means disabling encryption. End-
users are unlikely to want this, and HIPL developers mostly use them for
experimentation. However support for this was required in RFC5201 [43].
Disabling null encryption by default and providing an option to enable it
during the HIPL build process would largely solve this dependency. Re-

29http://www.cyanogenmod.org/
30RFC7401 supports adding different transport protocols, but currently BEET ESP is

the default.
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searchers would still compile their own kernels, but others wouldn’t have
to.

To be successful, HIPL needs to be encapsulated into an Android-native
wrapper and packaged into an .apk installation package. Once the depen-
dencies on the kernel features have been solved, the daemon still requires
superuser access to the device. The new Android VPN Application Program-
ming Interface (API)31 can be used to configure a virtual network interface
without superuser access, but using the API would require a wrapper. Also,
instead of using the hipd by itself, it should probably be converted into a
native Android background process and access the HIP-related functions
through the Android Native Development Kit (NDK).

As with many other protocols where clients communicate directly with
each other, the plain HIP and IPsec are problematic with certain config-
urations of NAT. For instance, many cellular providers are moving their
consumer-grade data connections behind carrier-grade NAT devices. Re-
search on NAT traversal solutions has been done, but comparative studies
and a well supported implementation of a NAT traversal solution for mobile
devices may lower the threshold to adopt HIP.

Currently, if the base image for the overlay is not installed to the Cloudlet
when a mobile device requests VM synthesis, the request will not succeed.
However, it can be made possible to download the base image from a remote
cloud backend. For the time being, no serious infrastructure for distributing
the images has been deployed, and the simplest way to install a base image
to a Cloudlet is to copy it there manually, and issue the ’import-base’ com-
mand that registers it to the Elijah software. CMU provides Ubuntu-based
sample images that can be used as a basic starting point. Cloudlets could
be extended to use the same kind of a distribution infrastructure for base
images as the one used by Docker32. In Docker’s infrastructure, standard
base images are stored in a centrally managed CDN. Users who wish to
make Docker images start by declaring which base they use, and if their
computer doesn’t have it already, it will download the most appropriate im-
age from the CDN. An overlay image always knows the fingerprint of the
base image it was derived from and it can be used to identify which base
image to download and register from the CDN.

31http://developer.android.com/reference/android/net/VpnService.html
32https://docker.io
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It has been shown by others that the use of Cloudlets or other surrogates
can reduce the energy consumption of tasks on the mobile device [36, 35]. In
this thesis, we have studied the suitability of the HIP protocol for Cloudlets
in terms of functionality and performance. In performance, we have bench-
marked throughput and latency, yet omitted any study on HIPs effects on
energy consumption. The severe performance degradation when using LSI’s
suggests that there is very likely room for improvement on energy consump-
tion as well. In addition to simple comparative energy benchmarks, this area
offers challenges such as designing an energy- and network aware migration
planning and scheduling facility for the VMs.

For Cloudlets, we focused on the state where the Cloudlet system was
when we started. It has since been further developed into an extension
to OpenStack, with some improvements over the original design. Even
though OpenStack can provide many improvements on the management
of Cloudlets, the fundamental principles stay the same. In this thesis, we
focused on the suitability of Host Identity Protocol to support mobility, but
investigating the new OpenStack Cloudlet support would be a natural next
step for this work. In their recent work, Osmani et al. have already tested
HIP with scientific payloads in an OpenStack environment [48].
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10 Conclusion

We have identified the requirements for a roaming solution for Cloudlets.
We have also shown that HIP, by its features, fulfills all the qualitative
requirements. We have ported HIPL for the Android platform, and through
benchmarks, we have shown that our port mostly satisfies the quantitative
requirements as well.

We have compared our results with measurements in other works, and
conclude that whether to migrate a Cloudlet VM or instantiate a new one
cannot be decided solely based on the time that the VM would be unavailable.
With highly optimized Cloudlet VM synthesis, the synthesis time roughly
equals the connection recovery time.

The HIPL Android port performs relatively well as long as the HIPL
firewall, and especially the LSI support, is not used. HIPL would benefit
from certain architectural restructuring. Despite our misfortune with LSI
performance, it appears that HIP would serve as a roaming solution with
Cloudlets. The decreased throughput from using IPsec may be addressed
by using cryptographic acceleration hardware.

We have also identified some of the requirements for a more comprehen-
sive mobility management framework for Cloudlets, while delimiting their
further study outside of the scope of this thesis. Additionally, we have
surveyed a number of frameworks suitable for computation offloading, re-
searched different protocols with features close to what we were seeking for
the Cloudlets, and discussed some recent works that closely relate to our
topics at hand. We have also found some directions for future development
and paths for future research.
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TLD Top-Level Domain

TOS Type of Service

URL Universal Resource Locator

VES Virtual Execution System

VM Virtual Machine

VMM Virtual Machine Monitor

71



VNC Virtual Network Computing

VPLS Virtual Private LAN Service

VPN Virtual Private Networking

WLAN Wireless Local Area Network
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A The Android Open Source Project

A.1 Building your own AOSP

A.1.1 Repo

AOSP uses a tool called repo for source code management. We need to
download and install this tool first.

$ mkdir ~/bin
$ PATH=~/bin:${PATH}
$ curl \

http://commondatastorage.googleapis.com/git-repo-downloads/repo \
> ~/bin/repo

$ chmod a+x ~/bin/repo

A.1.2 Download AOSP

This will download the Android Open Source Project source code. It is quite
big and this step takes time. Consider heading to lunch after launching repo
sync.

$ mkdir aosp
$ cd aosp
~/aosp$ repo init -u \

https://android.googlesource.com/platform/manifest
~/aosp$ repo sync

A.1.3 Download and unpack driver binaries

Drivers for many devices are proprietary and are not distributed within
AOSP; We need to download them, unpack them and accept their licences.
AOSP build process will search for proprietary drivers under directory ven-
dor in the source root. For the Nexus device-series the right drivers can be
found at https://developers.google.com/android/nexus/drivers.

~/aosp$ mkdir temp
~/aosp$ cd temp

# Download the driver binaries
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~/aosp/temp$ for driver in \
broadcom-maguro-jwr66y-5fa7715b.tgz \
imgtec-maguro-jwr66y-b0a4a1ef.tgz \
invensense-maguro-jwr66y-e0d2e531.tgz \
nxp-maguro-jwr66y-d8ac2804.tgz \
samsung-maguro-jwr66y-fb8f93b6.tgz \
widevine-maguro-jwr66y-c49927ce.tgz;
do wget https://dl.google.com/dl/android/aosp/${driver};
done

# Unpack each package
~/aosp/temp$ for package in *.tgz;

do tar xf ${package};
done

# and run each script.
~/aosp/temp$ for script in *.sh;

do sh ${script};
done

~/aosp/temp$ mv vendor ../vendor
~/aosp/temp$ cd ..
~/aosp$ rm -rf temp

A.1.4 Configure

These scripts prepare your build environment. Launching lunch without
arguments will print a menu from which you can choose your build target.
The OUT environment variable that well use later comes from here.

~/aosp$ source build/envsetup.sh
~/aosp$ lunch full_maguro

A.1.5 Build

This will build the AOSP and put the result in OUT. Adjust the number
after -j (number of compile threads) to your liking, a good rule of thumb is
the number of cores +1. After this step it is possible to flash the phone with
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the default AOSP system by booting your phone to bootloader and running
fastboot -w flashall, but now is a bit early if we want the custom kernel.

~/aosp$ make -j4

At the time of writing, there were a couple of Makefiles that would
get upset if you had the environment variable NDK_ROOT set. If you
encounter this, simply ’unset NDK_ROOT’ and try again.

A.2 Custom kernel

For HIPD to work, we need certain features from the kernel. These fea-
tures are readily available but disabled by default in most Android kernels.
Therefore we need to compile our own kernel with these features enabled.

A.2.1 Download

We start by downloading the kernel sources. For the Nexus series you can
check which version you need from http://source.android.com/source/
building-kernels.html. After cloning you can check which brances are
available for checkout with git branch -a.

~/aosp$ mkdir ../kernel
~/aosp$ cd ../kernel
~/kernel$ git clone \

https://android.googlesource.com/kernel/omap.git
~/kernel$ cd omap
~/kernel/omap$ git checkout \

remotes/origin/android-omap-tuna-3.0-jb-mr2

A.2.2 Configure

We then tell the build-environment about the target architecture, add the
compilers to PATH, load the default kernel configuration for our device and
bring up a menu where we can do further configuration.

~/kernel/omap$ export ARCH=arm
~/kernel/omap$ export SUBARCH=arm
~/kernel/omap$ export CROSS_COMPILE=arm-eabi-
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~/kernel/omap$ export PATH=$(pwd)/../../aosp/prebuilts/linux-x86/arm/\
arm-eabi-4.6/bin:$PATH

~/kernel/omap$ make tuna_defconfig
~/kernel/omap$ make menuconfig

In the configuration menu, enable the following:

- Enable loadable module support
- Networking support > Networking options > IP: IPsec BEET mode
- Device drivers > Network device support > Dummy net driver support
- Cryptographic API > Null algorithms

A.2.3 Build

Once the kernel has been configured, its time to build it.

~/kernel/omap$ make

If there are problems with smc #0, you can try adding .arch_extension
sec to the offending files. (I used sed -e 1i.arch_extension sec -i filename, it
worked, but Im not sure if its the right way.)

If there is a missing elf.h, you can copy it from under the aosp directory
in external/elfutils/libelf/elf.h

A.2.4 Copy the kernel to AOSP

When the kernel has been compiled, we need a way to put it on the device.
We replace the original AOSP kernel and put its modules in place. Make
produces two symbolic links that we dont want present in the final image.

~/kernel/omap$ cp arch/arm/boot/zImage $OUT/kernel
~/kernel/omap$ make INSTALL_MOD_PATH=$OUT/system modules_install
~/kernel/omap$ rm $OUT/system/lib/modules/*/source
~/kernel/omap$ rm $OUT/system/lib/modules/*/build

A.2.5 Rebuild boot image

Now that our kernel is in place in the AOSP tree, we need to rebuild the
boot image with the new kernel.

~/kernel/omap$ cd ../../aosp
~/aosp$ make bootimage
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A.3 Installing the new AOSP on device

A.3.1 Flashing the OS

Once the new images are complete, its time to flash them on the device.
New images can be flashed from the bootloader (fastboot mode). You can
generally get there with adb, but there is a manual way too: for the Nexus
devices http://source.android.com/source/running.html. If the device
has a locked bootloader, it needs to be opened (usually fastboot oem unlock).
(this might prevent some DRM from working!) Some of the steps might
reboot the phone; the important part is that all the fastboot commands
need to be entered with the device in bootloader.

~/aosp$ adb reboot bootloader
~/aosp$ fastboot oem unlock
~/aosp$ fastboot reboot-bootloader
~/aosp$ fastboot -w flashall
~/aosp$ fastboot reboot

The -w in fastboot -w flashall is important. It clears caches and previous
user data that would confuse the new image and prevent it from booting all
the way. If the phone doesnt boot, this is the first thing you should check.

A.3.2 Google apps (optional)

Now you have a clear Android open source operating system with our cus-
tomised kernel. This means that proprietary apps and services like Google
Play and contacts sync are not there. The easiest way to get them there
is to install a custom recovery image, like the ClockworkMod recovery and
flash it to the device using fastboot.

$ wget http://download2.clockworkmod.com/recoveries/
recovery-clockwork-touch-6.0.4.3-maguro.img

$ adb reboot bootloader
$ fastboot flash recovery recovery-clockwork-touch-6.0.4.3-maguro.img

Once a recovery image is installed, you can boot into recovery mode
either straight from the bootloader menu or from normally booted Android
by adb reboot recovery.
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B HIPL Android port

HIPL currently has partial experimental support for the Android platform.
The parts that currently work are hipd, the HIP daemon; and hipconf, the
configuration tool. hipd does require root privileges, and your running kernel
must support the IPsec BEET mode, the dummy network driver and the
null crypto algorithm. Often one or more of these are not compiled into
your stock kernel, and it is likely that you need to compile and install your
own kernel. On our development devices we went ahead and compiled the
whole OS; this procedure is documented in another appendix of the work.

B.1 Compiling

Currently we only support compiling under Linux. We provide a script in
tools/prepare_android_toolchain.sh that downloads and extracts the toolchain
needed to compile hipd and hipconf and it has been confirmed to work at
least on Ubuntu 12.04.

After downloading the HIPL source code toolchain is installed, the steps
to compile for Android are almost similar to normal Linux builds. You start
with autoreconf –install; then run the configure script:

$ ./configure
--enable-android \
--disable-firewall \
--host=arm-linux \
--prefix=/usr \
--sysconfdir=/etc \
CC=${ANDROID_TOOLCHAIN}/bin/arm-linux-androideabi-gcc \
CFLAGS="-std=c99 -mbionic -fPIC -fno-exceptions \

--sysroot=${ANDROID_SYSROOT}" \
LDFLAGS="-Wl,-rpath-link=${ANDROID_SYSROOT}/usr/lib,-L\
${ANDROID_SYSROOT}/usr/lib" \
LIBS="-lc -lm -lgcc -lcrypto"

$ make
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B.2 Installing

After the build process completes, open a root privileged shell session on
your phone and set up the environment:

$ adb root
$ adb shell
# mount -o remount,rw /
# mount -o remount,rw /system
# mkdir -p /var/lock
# mkdir /etc/hip
# ln -s /system/lib/libcrypto.so /system/lib/libcrypto.so.1.0.0

Afterwards, you can return to your normal terminal and push hipd, hip-
conf and the configuration into the device:

$ adb push tools/hipconf /system/xbin
$ adb push hipd/hipd /system/xbin
$ adb push hipd/hipd.conf /etc/hip
$ adb push hipd/relay.conf /etc/hip

B.3 Launching

It should now be possible to launch hipd.

$ adb shell
# hipd -ab

Since at the time of writing this only hipd and hipconf from the HIPL
package has been successfully ported, LSIs and DNS based extensions are not
available. Hosts can be configured either in the /etc/hosts file or introduced
as added mappings in /etc/hip/hipd.conf.

On Android, hipd needs to be run with the ’-a’ parameter. Additionally
it supports the same parameters as the normal Linux version does, i.e. ’-k’
kills an already running instance and ’-b’ starts hipd in the background.

B.4 Reboots

As the root file system on Android typically resides on a ramdisk, the
/var/lock folder is removed every time the phone is restarted. For hipd
to run, it needs to be recreated by running:

79



$ adb root
$ adb shell mount -o remount,rw /
$ abd shell mkdir -p /var/lock

To not need to do this on every reboot, HIPL can be patched to use a
different file for locking on Android, or the initial ramdisk in Android can
be changed to include either a writable /var/lock or a script that runs the
commands on start.

/system and /etc typically reside in persistent storage, so the binaries
and configuration files are safe.
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