
Date of acceptance Grade

Instructor

Large-scale Multi-Label Text Classification for an Online News
Monitoring System

Matthew Pierce

Helsinki November 24, 2015

UNIVERSITY OF HELSINKI
Department of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/33739024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Department of Computer Science

Matthew Pierce

Large-scale Multi-Label Text Classification for an Online News Monitoring System

Computer Science

November 24, 2015 77 pages + 0 appendices

multi-label learning, text categorization, information extraction, NLP, online business news

This thesis provides a detailed exploration of numerous methods—some established and some
novel—considered in the construction of a text-categorization system, for use in a large-scale, on-
line news-monitoring system known as PULS. PULS is an information extraction (IE) system,
consisting of a number of tools for automatically collecting named-entities from text. The system
also has access to large training corpora in the business domain, where documents are annotated
with associated industry-sectors. These assets are leveraged in the construction of a multi-label
industry-sector classifier, the output of which is displayed on the web-based front-end of PULS, for
new articles.

Through review of background literature and direct experimentation with each stage of develop-
ment, we illuminate many major challenges of multi-label classification. These challenges include:
working effectively in a real-world scenario that poses time and memory restrictions; organizing
and processing semi-structured, pre-annotated text corpora; handling large-scale data sets and la-
bel sets with significant class imbalances; weighing the trade-offs of different learning algorithms and
feature-selection methods with respect to end-user performance; and finding meaningful evaluations
for each system component.

In addition to presenting the challenges associated with large-scale multi-label learning, this thesis
presents a number of experiments and evaluations to determine methods which enhance overall
performance. The major outcome of these experiments is a multi-stage, multi-label classifier that
combines IE-based rote classification—with features extracted by the PULS system—with an array
of balanced, statistical classifiers. Evaluation of this multi-stage system shows improvement over
a baseline classifier and, for certain evaluations, over state-of-the-art performance from literature,
when tested on a commonly-used corpus. Aspects of the classification method and their associated
experimental results have also been published for international conference proceedings.

ACM Computing Classification System (CCS):
G.3 [Probability and Statistics],
I.2.1 [Applications and Expert Systems],
I.2.7 [Natural Language Processing]

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

ii

Contents

1 Introduction 1

1.1 Natural Language Processing . 2

1.2 Machine Learning and Text Categorization 3

1.3 Business Sector Classification . 5

2 Related Work 6

3 The PULS IE System 9

4 Online Business News 11

5 Sector Labels 13

5.1 Mapping Sector Labels . 14

5.1.1 Training Error Analysis . 16

5.1.2 SVD, LSA, and Hierarchical Clustering 17

5.2 The Sector Hierarchy . 19

6 Data Representation and Feature Engineering 22

6.1 Feature Extraction . 22

6.2 Feature Selection . 25

6.2.1 Information Gain . 25

6.2.2 Bi-Normal Separation . 26

6.2.3 Entropy Filtering . 27

6.3 IE Features . 28

7 Automated Sector Classification 29

7.1 Baseline: Rote Classifier . 29

7.2 Supervised Learning . 32

7.2.1 Training Data Selection . 32

7.2.2 Statistical Classifiers . 35

iii

7.3 Multi-Stage Classification . 38

7.4 Implementation . 41

8 Experiments and Evaluations 42

8.1 Evaluation Measures . 42

8.2 Single-Stage Evaluations . 44

8.2.1 Rote Classifiers . 45

8.2.2 Balanced vs. Unbalanced Training 45

8.2.3 Supervised Learning Classifiers 49

8.3 Multi-Stage Evaluations . 52

8.4 Error Analysis . 59

9 Hierarchical Classification using PCA 61

10 Conclusions 66

11 Future Work 68

12 Acknowledgements 69

References 70

1

1 Introduction

Multi-label learning is a burgeoning topic in the computer science research field
of machine learning. Multi-label learning transforms the fundamental data clas-
sification task—predicting class membership of a data point for a single concept,
represented by a class label—to predicting multiple class associations over a set of
labels. Although conceptually simple, this transformation results in higher com-
plexity when training, evaluating, and deploying learning systems. In adapting to
the multi-label domain, novel methods have been developed and traditional methods
have been altered or combined in various ways, however numerous difficult problems
remain. While certain methods have produced encouraging results on specific prob-
lem sets, there are currently no optimal solutions in general. In particular, research
is sparse into methods with scalable performance for large, unbalanced label-sets.
Another drawback in current research is the specificity of problem settings, which
may or may not be applicable to real-world applications with noisy data drawn from
multiple sources.

This thesis tackles a number of problems in multi-label learning by exploring a va-
riety of methods used to build a classification system from a large and continuously
growing set of business news articles (∼1.8M documents as of this writing). The
articles are collected as part of an online information-extraction-based news moni-
toring system, known as PULS. The main classification task is to label new articles,
drawn from a number of sources, with likely industry sectors. These sectors are
displayed to PULS users for easy grouping and filtering.

Several experiments are outlined in this research that explore the myriad dimensions
of the classification process (e.g., learning algorithms, training and test data collec-
tion, feature-engineering, etc.) in an attempt to learn about the specific advantages
and drawbacks of each and, ultimately, to find configurations that perform opti-
mally, both for the specific PULS setting and in general. Optimality, however, takes
on different meaning depending on context, therefore a number of evaluation meth-
ods are also presented, both of the individual components and the overall system,
in order to justify design choices. Some of the algorithms, schemes, and evaluations
presented are based on standard approaches, while others are novel. The results
of the experiments—many of which have been published for international confer-
ence proceedings—illuminate important characteristics and key tradeoffs inherent
to multi-label classification, while also determining the best performing methods. A
comparison of results alongside prior work also shows improvement on state-of-the-

2

art methods, for certain measures, when the system is tested on a corpus of news
documents.

While the major focus of this thesis is on machine-learning methods and tools used
in the performance of various classification tasks, it is also necessary to briefly in-
troduce the field of natural language processing (NLP) in order to (a) outline the
target setting for which this research and its associated programs are intended, and
(b) define tasks that play key roles in the overall classification system, such as in-
formation extraction (specifically the sub-task of named-entity recognition), token
lemmatization, and part-of-speech filtering. An overview of the machine-learning
domain is also given in this introduction, with a focus on text-based classification.
The problem setting, business-sector classification, is then described at the end of
the introduction. The rest of the thesis is structured as follows: Section 2 discusses
background research that this work starts from and attempts to expand on; Sec-
tion 3 describes the PULS online news system, as well as the business news data
used in PULS; Section 5 outlines methods used to organize the raw set of industry
labels provided for the main data set, including statistical methods that aid in map-
ping them to a different label space, and the construction of a two-level hierarchy for
improved classification; in Section 6, various ways of extracting, selecting, and repre-
senting lexical features of the data are explored; the entire multi-label classification
process is described in Section 7, and the results of the system evaluations detailed
in Section 8; finally, conclusions about the most important aspects of this research
and where it should direct future work are provided in Section 10 and Section 11.

1.1 Natural Language Processing

NLP has been a major field of study within computer science for decades, tracing
its history as far back as the 1940’s, with the fundamental research on topics such
as automata and information-theoretic modeling [JM00]. A wide-ranging discipline,
main sub-topics include language and speech detection, information extraction, and
machine translation. Some standard elements of NLP include syntax trees, a con-
venient data structure for parsing and storing natural language sentences; part-
of-speech taggers, which attempt to find correct grammatical categories for each
element of a sentence; and word-sense disambiguation tools, which return the most
probable reading(s) for a word with multiple meanings, based on context [JM00].
More recently, machine-learning techniques have also been added to the NLP toolkit.
For example, statistical classifiers may be used to automatically determine the rel-

3

evance of a text document to a specific domain, or clustering methods may be used
to automatically learn semantic relationships between words. The machine-learning
methods discussed in this thesis are similarly employed in an NLP setting, such as
the industry sector classifiers outlined in Section 7.

The Stanford Natural Language Processing Group is a major researcher in NLP and
provide a state-of-the-art toolkit for working on NLP problems [KM03]. Their Java
toolkit is utilized in this research, in particular for part-of-speech tagging, which is
essential to the lexical-feature engineering methods described in Section 6.

The main NLP task that will be discussed in this thesis is information extraction
(IE). The goal of IE is to automatically obtain facts that conform to a pre-determined
structure (or template), from machine-readable documents, such as natural language
texts [CL96] [GW98]. Beginning from the late 1980’s, research in IE was advanced
through a series of seven Message Understanding Conferences (MUC), funded by
the Defense Advanced Research Projects Agency (DARPA) [GS96] in the US. Each
conference was structured as a competition to evaluate methods for extracting struc-
tured information from textual documents. For example, in MUC-3 attendees were
required to fill out a template with facts regarding time, place, event type, partici-
pating agents, etc. (for a total of 18 slots) from a collection of reports about terrorist
events in Central and South America [GS96].

Named-Entity recognition is a sub-task of IE, which was borne out of the MUC con-
ferences. Initially conceived for the purpose of having a highly practical, accurate,
and portable task for evaluating IE systems, the goal is to find names of all people,
organizations (i.e., company names), geographic locations, and any other nominal
items in a text [GS96]. The type of data extracted in the named-entity task plays a
significant role in both the training and testing of the classification system described
in Section 7.

1.2 Machine Learning and Text Categorization

A closely-related field to artificial intelligence, machine learning has a similarly long
history, dating back to the 1960s and the invention of the first learning machines,
such as F. Rosenblatt’s Perceptron [Vap00]. The past two decades have seen an
increase in interest and progress in the field. The result is the recent emergence of
numerous standard algorithms and tools, which are now being applied in diverse
domains, such as natural language processing, computer graphics, and biology.

4

Machine learning concerns the use of statistical models in attempting to replicate
and automate cognitive learning processes. Although these statistical methods are
currently not, and may never be, as advanced as human learning, a computer is able
to efficiently process information on a much greater scale than is possible for any
human, or collection of humans. Because of this, much work in machine learning
focuses on the use of large, high-dimensional data for building sophisticated pro-
grams that automatically solve complex, dynamic problems. Most commonly, these
programs work by applying statistical decision-making algorithms trained on large
data sets, to previously unseen data from a similar domain [CMM83]. This task,
known as classification, is one of the central tasks in machine learning and the main
focus of this thesis.

There are several sub-categories of machine learning, with supervised learning, unsu-
pervised learning, and reinforcement learning being principal among them [MRT12].
In this thesis, the focus is on supervised learning: the collection of algorithms and
methods that use pre-existing knowledge of the data as input to the learning algo-
rithms [MRT12]. This prior knowledge usually refers to the membership of a data
instance to a specific, differentiable group within the data. Such a group is known as
a class and instances belonging to a class are said to have that class’s label. Exam-
ples of supervised learning algorithms that can predict class labels include support
vector machines (SVMs) [SC08] and Bayesian inference [BT11].

A natural application for classifiers is text categorization, since digital texts are both
abundant and easy to process and store. They are also categorizable by humans, and
although this can be an expensive process, numerous sets of pre-labeled text data
are readily available. Commonly, text classifiers are trained using properties of the
words contained in the data. Statistical information about the occurrence of specific
terms within a single document, a class of documents, or a data set’s entire lexicon
can all aid the classifier in discriminating between members and non-members of a
class. In general, any item that is used by a classifier to help discriminate between
classes is known as a feature, and in text categorization such words are known as
lexical features. Characteristics of language such as synonymy and word ambiguity
can confound what may be otherwise useful lexical features. For example, the word
’lead’ may be a good descriptor, if it refers to the noun (i.e., the metal), but not if it
refers to the verb. For this reason, more advanced techniques, such as lemmatization
and feature selection have been developed to improve the reliability of the feature
set. These techniques will be described further in Section 6.

5

Because text categorization is a common task, there are many software packages
available for building and implementing classifiers. One package is the data-mining
and machine-learning toolkit, Weka [HFH+09], which is used for building and run-
ning classifiers for the experiments in this thesis.

Early research in supervised learning focused on predicting class membership of a
single label for a given data point. In many domains, however, an instance may
belong to numerous classes. For example, the design of a system responsible for cat-
egorizing technical documents may require that a report on the harmful effects of
smoking should belong to a class labeled “healthcare” and another class labeled “to-
bacco products.” This type of problem is known as multi-label classification [ZZ07].
The problem of multi-label learning is becoming increasingly important, due to
both the rapid rise of large, cheap, and efficient data storage and the ingress of
machine-learning into domains that use multi-faceted taxonomies. Business is one
such domain, and the classification of business texts into a set of industry sector
labels comprises the main goal of this thesis.

1.3 Business Sector Classification

The primary motivation of the work presented in this thesis is to develop a high-
performance multi-label classification system for augmenting the PULS online news-
monitoring service (described in detail in Section 3) by supplying business sector
tags to all incoming articles. Since PULS is a user-oriented service that operates
in real-time, performance considerations must be given to the requirements of the
customers. Imprecise classification will result in spurious articles being presented
to users when filtering by sector label. On the other hand a classification system
that returns few or no labels for most articles will cause users to miss important
news for their sector(s) of interest. Additionally, time efficiency is important for
classification, as new documents should be labelled as soon as possible.

Training for the PULS classification system is done using a data set consisting of ar-
ticles which were annotated by our partners during an earlier joint project. This data
set is referred to in this thesis as the PULS data set, and consists of approximately
1.8 million business news articles. The articles cover a range of news events such as
company investments, corporate position nominations, product releases, bankruptcy
filings, and political and environmental issues surrounding business dealings. The
range of industries covered in the articles is even broader, consisting of over 700
unique labels.

6

Given the size and scope of the data and label set, building an accurate and efficient
system for PULS is no trivial task. The data set used has significant imbalance
with respect to the distribution of labels, which can lead to overfitting. The similar-
ity of certain labels may create class ambiguity or completely unseparable classes.
Furthermore, a large label set increases the chances of human annotation (labeling)
errors, which results in inconsistent evaluation. Finally, the size presents significant
efficiency challenges, both in terms of computation time and memory usage.

In addition, for meaningful comparison with other, prior work, we use a second
data set that allows us to compare our methods against state-of-the-art methods on
specific evaluations. The Reuters RCV1 data set [LYRL04] is used, as it is similar
to the PULS data set, both in terms of content and size—specifically, label set
size. Using the industry sector codes (as opposed to the more commonly used topic
codes), a set of approximately 350,000 data instances, covering approximately 250
sector labels, can be used for training and testing purposes.

While the two aforementioned data sets are the only ones used in the experiments
of Section 8, it is important to note that the data to be classified in the online PULS
system is drawn from a range of sources, such as online collections, and RSS feeds.
This means that the problem of overfitting to a specific corpus is a pertinent issue.

In general, the methods explored in the following sections and in the experiments
are chosen with an eye towards use in a real-world setting, such as PULS, where
realistic limitations must be taken into consideration.

2 Related Work

Prior research in multi-label learning is quite broad, with surveys found in [TKV10]
and [Sor10]. This thesis focuses on the most closely-related research aspects, namely:
supervised multi-label text categorization, hierarchical learning, feature selection,
data imbalance, and work with large textual data sets.

Much work in supervised multi-label learning regards adapting single-label algo-
rithms to multi-label tasks. Research provides two principal approaches: problem
transformation and algorithm adaptation [TK07]. Problem transformation converts
multi-label classification into a series of single-label sub-tasks while algorithm adap-
tation extends the underlying algorithms of traditional methods to work directly
with multi-label data. A common problem-transformation method that has con-

7

sistently shown competitive performance is binary relevance (BR), where a single
binary classifier is trained for each label [MKGD12]. Learning BR classifiers is often
done by cross-training (also known as one-vs-rest) [BLSB04], in which each classifier
uses instances tagged with the given label as positive examples, and all remaining
instances as negative. This method assumes label independence, which is often un-
true in practice. Correlation among labels may pose difficulties when combining
binary classifiers [dCF09]. Another disadvantage of BR is that may exacerbate data
imbalance, as the number of negative examples will likely significantly outweigh the
positive [DK10].

In multi-label learning it is possible to leverage a hierarchical label structure, either
natural or imposed, to improve classifier performance. Classification with labels
organized in this way is referred to as multi-label hierarchical classification [GZ13,
MKGD12, GCR09, CM07]. This thesis explores the use of a two-level hierarchy for
both classification and evaluation.

A common data representation in text categorization is the “bag of words” (BOW)
model, which ignores document structure and assumes word independence [KS97].
The BOW model can be extended by integrating n-grams [DVW+12, ZYT11]. Ex-
periments in this thesis use the BOW model with a combination of unigrams and
bigrams.

In text data, the number of distinct word types often exceeds the number of training
documents by an order of magnitude [For03]. This generally complicates learning
and requires the use of dimensionality reduction in most approaches. While di-
mensionality reduction accelerates processing, it has also been shown to improve
categorization performance [TB03, KS97] through avoidance of over-fitting [LLS09].
Reduction can be done either by selection of highly-relevant features or grouping
(i.e., clustering) features [KS97]. This thesis explores feature selection based on
comparing the discriminative power of a given word, relative to all other words in
the feature set. Comparative studies of various feature selection methods can be
found in [For03, YP97]. After comparing twelve feature selection methods, [For03]
claims that, for highly-skewed data, Bi-Normal Separation (BNS) gives the best
performance.

Feature selection can be done globally or locally [LLS09]. Local feature selection
measures the usefulness of features with respect to one particular category, whereas
global feature selection takes into account the feature distribution across all cat-
egories. In this thesis global and local feature-selection processes are combined.

8

Moreover, for global feature selection a novel measure is introduced, which, as far
as the author is aware, has never been used before (see Section 6.2.3).

Information Extraction (IE) can be used to obtain additional features for classifica-
tion [HR13, HVDY12]. As far as the author is aware, using features obtained via
IE in multi-label text categorization has not been reported to date. In this thesis
company names and descriptors, extracted from the text by the PULS named-entity
recognition system, are used in building a baseline, Rote classifier (Section 7.1).

Text data sets are typically “naturally skewed,” [LLS09], since topics differ both in
frequency and importance, depending on their origin. Skew may also be introduced
by annotator bias. Such imbalances pose a challenge for categorization, especially
when the classes have a high degree of overlap [PBM04]. In the case of multi-label
classification this means that for smaller classes (by positive-data size), classifiers
usually perform worse than for larger classes [For04, Seb02] and, as a consequence,
the macro-average results are usually lower than micro-average [DS05, LLS09]. This
problem may be tackled on the data level or the algorithmic level [KKP+06]. The
data-level approach is based on various re-sampling techniques [CBHK02]. Some
re-sampling techniques for use in text classification are described in [EA13, DK10,
Sta08]. Two approaches to re-sampling are oversampling, which puts more instances
of the minor classes into the training set, and under-sampling, which reduces the
number of instances of the major classes from training [JS02]. Over- and under-
sampling can be either random or focused (i.e., informed). This thesis describes a
random under-sampling approach that is used to build general classifiers, having
good performance on data drawn from sources outside of the training source.

System performance will differ, depending on the data set. In general, the more
skewed the data, the harder the classification task. A good example is seen in [DS05],
who experiment with three of the most frequently used subsets of the Reuters-21578 1

corpus: R(10), the set of 10 categories with the most positive training examples;
R(90), the 90 categories with at least one positive training example and one test
example; and R(115), the set of 115 categories with at least a single positive example.
Their work demonstrates that the difficulty of text-classification increases as the
number of categories grows. From their experiments, the mean difference in system
performance between R(10) and R(90) was 25%, with respect to the macro-averaged
F1 (72% for R(10) and 47% for R(90)).

A number of large-scale corpora are available for use in classification. One, the
1http://www.daviddlewis.com/resources/testcollections/reuters21578/

9

DMOZ Open Directory (www.dmoz.org) is an on-line catalogue of more than 4.5 mil-
lion Web pages, labeled with approximately 700,000 hierarchical categories [Hen09].
The Reuters RCV1 (about.reuters.com/researchandstandards/corpus/) corpus con-
tains over 800,000 news stories published by Reuters between 1996-1997, labeled
semi-automatically with 103 Topic, 350 Industry and 296 Region codes.

3 The PULS IE System

The Pattern-Based Understanding and Learning System (PULS), is a document-
retrieval and information-extraction system for collecting, processing, storing, and
displaying news data from around the world [GHY03, YS09]. Currently, the sys-
tem has three distinct domains: business, where we extract company activities such
as bankruptcies, mergers, and product releases; security, where news about cross-
border illegal activity, like smuggling and illegal entry is tracked [APvdGY11]; and
medical, which follows the outbreak of infectious-disease epidemics [HNA+13]. Gen-
erally speaking, system functionality is the same, regardless of domain, and the
major differences lie in the content of the retrieved data. This thesis will focus
solely on the business domain. Business data for PULS is collected from multiple
sources. One of the sources also includes industry sector labels, which allows for the
use of supervised learning methods. This data set is described further in Section 4.

News articles are provided to PULS via a number of domain-relevant RSS feeds. Ar-
ticles arrive in real-time as html documents, which are automatically downloaded to
the system at regular intervals. The core of PULS is an IE system that automatically
extracts useful information from the plaintext data. This is accomplished through
a number of modules that, together, comprise the IE system. These modules are
responsible for tasks such as text preprocessing, sentence parsing, semantic interpre-
tation, word-sense disambiguation, and co-reference resolution. The output of the
IE process is a template file that contains slots for each type of expected output, and
corresponding facts for every slot that could be filled with a value [HYG02]. Some
of these slots are filled using strings found in and extracted directly from the text,
while others take values inferred by other methods such as supervised learning—as
in the case of industry sectors—or cross-document aggregation, where values are
drawn from similar and related documents [Yan06].

One of the IE modules is the Named-Entity Recognition (NER) module. The NER
module is built from a cascade of low-level patterns, which find noun groups within

10

Figure 1: PULS table view

a text. This means that the module finds not only named entities, but also their
descriptors (i.e., noun and adjective modifiers of a given name). For example, Apple
can be described in the text as “computer maker” or “software giant”. As seen in
this example, a descriptor may consist of up to two main components (although one,
the other, or both may be missing): domain, an area in which the company works
(i.e., “computer”, “software”), and type, a word that is synonymous with “company”
(i.e., “maker”, “giant”). A descriptor may also contain other components, such as
a geographic marker (i.e., “English company”, “Swedish company”) or some addi-
tional information, (i.e., “big company”, “local company”, etc.). A descriptor may
contain all of these components, or only some of them. PULS uses a short list of
approximately 20 company words—such as “corporation”, “firm”, “manufacturer”—
to determine the company type. When obtaining company domain, highly general
words, such as “business,” are filtered out. The company names and descriptors ex-
tracted by the NER module can be used in further tasks, such as sector classification
(see Section 7).

The PULS front-end is a website (PULS-Web) that provides tools for sorting, filter-
ing, and displaying news articles and various graphical views for visualizing related
information. These views include: a table view, shown in Figure 1, which presents
the newest articles along with advanced search options; a document view, seen in

11

Figure 2: PULS document view

Figure 2, which allows the user to read the article and view the extracted elements;
and a list view, which groups together stories concerning similar events. PULS-Web
is also used to display auxiliary data related to articles, such as statistical informa-
tion, document relevance, and relationships between extracted entities. It is also
used to display the industry sectors for a business document, as shown in Figure 3.
These sectors may be manually assigned, if the document was annotated manually,
or it may be the output of the industry sector classification system that will be
described in Section 7.

4 Online Business News

The two data sets used in the experiments and evaluations section of this thesis
(Section 8) are the PULS business news corpus [HVDY12] and the RCV1 news
corpus from Reuters [LYRL04].

The first set was compiled and annotated during a previous project, by our partners,
and consists of approximately 1.8 million business news documents, collected daily
from around the world, over the course of more than 7 years (2008-present). The
documents have been manually tagged by domain experts from a set of over 700

12

Figure 3: List of industry sectors in document view

distinct industry-sector labels, such as Energy, Gas and Finance, Banking. The
documents are multiply-labelled, with no restriction on the number of labels per
document. Due to various problems and inconsistencies in the original label set,
these labels have been mapped to a smaller label set for use in the experiments
of this thesis. Section 5 describes the motivation and procedure for mapping the
original labels to this new set.

The second data set, RCV1, is a collection of Reuters news articles from 1996-1997.
The data set has been used extensively in other research, however, these studies
most commonly make use of the 103 topic labels with which the articles have been
annotated. The experiments of this thesis instead make use of the data set’s 245
(after some minor pre-processing) industry labels, as it corresponds much more
directly to the given problem domain, both in terms of content, and size of label set.
Industry labels in Reuters have the form of 5- or 7-digit codes; sectors having the
same prefix are intended to be children of the same top-level sector. Others have
used the first 3 digits as upper-level labels, however, these top-level labels are highly
uneven: e.g., 170 distinct 3-digit codes appear in RCV1, but most of them (126)
have only one child in the data. Thus classifying on the 5-digit and the 3-digit level
is almost the same task.

Table 1 shows a comparison of the two original data sets. In addition to total num-
ber of instances and labels, the table includes the following measures as described
in [Sor10]:

13

Table 1: Data and label set statistics for PULS and Reuters data sets

Data Set # Instances # Labels LCard LDen DL PDL

PULS 1815252 704 1.576 0.002 136443 0.075
RCV1 351810 245 1.395 0.006 16653 0.047

• Label Cardinality (LCard), the average number of labels per document;

• Label Density (LDen), the number of labels-per-document, divided by the total
number of labels, averaged over all documents;

• Distinct Label Set (DL), the number of distinct label combinations found in
the data set; and

• Proportion of Distinct Label Set (PDL), the DL measure normalized by the
number of documents.

Working with so many distinct labels results in an increased likelihood of class
imbalance in the data. The class imbalance problem has been explored in single-
label classification, for example in [BPM04, LWZ09, DH+03], however it poses an
even greater challenge in multi-label learning, for instance in generating a set of
training data that isn’t dominated by frequenly occurring classes, since this will
likely result in overfitting.

5 Sector Labels

In classification, a label is the representation of a specific concept, whose character-
istic range of categories comprises the predictable class values for which a classifier
may be trained. A good label should be a concise but accurate representation of
the corresponding concept and its respective category range. For example, a binary
classifier used to detect the presence of a beach scene in an image could be repre-
sented by the label Beach, whereas a multi-class classifier used for categorizing scene
images into various natural environments (e.g., beach, mountain, forest, etc.) could
use the broader label Environment Type.

In multi-label classification, label naming inherits an additional level of complexity,
owing to the possibility of conceptual overlap. Consider the two industry sector
labels: Retailing and Jewelry. The first label deals with the selling of items—any

14

items—in stores, while the other deals with one specific retail item. Though the
two labels cover obviously distinct categories, there is also some content overlap.
Nevertheless, a good multi-label classifier should treat the two as separate topics,
and in the event that a text discusses a retail store that sells jewelry, hopefully
predict both labels. On the other hand, the presence of a third label such as Jewelry
Stores would be redundant and only serve to add unnecessary complexity to the
classification. For this reason, the label set should, whenever possible, be carefully
constructed to provide maximum coverage of pertinent concepts, while minimizing
redundancy.

In many cases, however, it may be preferable or necessary to work with a data set
annotated with a pre-existing set of labels that may or may not be optimized in
the aforementioned way. In addition, pre-labeled data instances may be erroneously
labeled, or have incomplete annotations. In these cases, preprocessing can be used
to help organize the labels into a more manageable size and structure, to limit
classification error later on.

The following subsections discuss two methods for preprocessing label sets, that have
been applied to the original set of sector labels in the PULS domain. 2 Section 5.1
discusses the mapping of the original labels to a new label space, whose design
is aided by both class-specific training-error analysis and by applying clustering
techniques on positive-class data. Section 5.2 discusses the creation of a two-level
sector-label hierarchy, that provides structure to the label set, and also allows for
simple hierarchical classification.

5.1 Mapping Sector Labels

One of the biggest bottlenecks in constructing a supervised multi-label classification
system is the process of manually annotating training instances. Given an (opti-
mistic) projection that at least 100 document instances would be required to learn
a predictive model with good performance, a domain with over 200 distinct labels,
such as the ones described in this thesis, would still require on the order of 200,000
manually-labelled instances. 3 Furthermore, the content of each document must be
considered with respect to not only one, but all possible labels, further extending

2Reuters labels are already concisely organized, and do not require extra preprocessing.
3With multiply-labelled data the actual number required may, of course, be smaller than this

estimate, due to label-overlap. However, typical label-assignment statistics suggest that average
label overlap is not usually high, so that this estimate remains appropriate.

15

the already tedious process.

Pre-annotated data may also present a number of challenges, however. One issue is
whether the set of labels in the training data fully encompasses all concepts present
in the data to be classified. Conversely, the range of labels provided by an external
source may be too broad for one’s own classification task. Similarly, label names
may be too specific, too general, or too ambiguous for the intended audience. The
most difficult issues, however, have to do with the problems of annotator bias and
annotation error.

Annotator bias refers to characteristics of data annotation—e.g. the level of label-
coverage across instances, the amount of skew in the distribution of labels, the
amount of label overlap, etc.—introduced by the specific habits of the person(s)
who annotated the data [AP05]. Annotator bias is a well-known issue in NLP
that has been studied, for example, in [CS13] and [WBPB10]. One of the major
drawbacks is the introduction of unwanted or hard-to-guess dependencies among the
labels, or, conversely, the lack of a relationship between seemingly similar labels. As
an example, consider a business news article that details the drilling of fossil fuels
by a company that also provides residential heating services. This document could
be labeled with an Oil Drilling label, a Fossil-Fuel Energy Services label, or both,
depending on the annotator (or neither, although if no label is applied relating to
fossil fuel, this should be considered annotation error). If the annotator’s tendency
is to label such documents with both tags, it may introduce hidden dependencies
between labels that frequently occur with this kind of relationship, within the data.
On the other hand, if the tendency is to only annotate with one or the other label,
the learning model may be missing useful feature input.

Annotation error is another major concern when working with a pre-annotated data
set, since it can significantly affect proper training and evaluation of learners. Anno-
tation error refers to both erroneous application of a label to a document as well as
the absence of labels that would cover a significant portion of the content contained
in that document. As an example of the negative training effects of annotation
error, consider the cross-training method (employed in the experiments of this the-
sis) in which all non-positive data instances are treated as negative by the learner.
In this case, the learner for a label that reasonably should have been applied to
the document will now use the instance as a negative exemplar instead, thus treat-
ing possibly useful positive features as negative. Evaluation will also impacted in
a negative way due to spurious false-positives and false-negatives, leading to false

16

Table 2: Data and label set statistics for original vs. mapped PULS data sets

Data Set # Instances # Labels LCard LDen DL PDL

PULS (original labels) 1815252 704 1.576 0.002 136443 0.075
PULS (mapped) 1815252 454 1.54 0.003 116176 0.064

assumptions about the initial method.

In an effort to limit the negative performance-related aspects of the aforementioned
issues, the original label set may be mapped to a new label space by either com-
bining multiple labels into a single new label, or by splitting single labels into a
number of sub-labels. Merging labels may, for example, reduce annotator bias by
eliminating the possibly skewed distribution of conceptually similar labels. It may
also reduce the effect of annotation error by providing larger training pools for labels,
strengthening the impact of positive features. Two methods for label preprocess-
ing are outlined in this thesis, which focus on combining labels, thus generating
a smaller, more concise label set, with less overlap. The first method consists of
a simple analysis of the training error—specifically the false-positive results—of
original-label classifiers, while the second is a more complex analysis that explores
the latent space of positive-class data by utilizing a method from linear algebra,
single-value decomposition (SVD), in conjunction with hierarchical clustering.

Table 2 gives the statistical measures described for Table 1 for the mapped PULS
data set (compared to the original set).

5.1.1 Training Error Analysis

Hypothetically, a full manual analysis of a label set could be done that would find
natural pairs or groupings of labels whose conceptual overlap is high (i.e., so high
as to be redundant in the output domain). By merging these multiple labels into a
single label, not only would it remove ambiguity from the overall system, it would
boost the available training data for the new label’s class model. In a real-world
scenario, however, there may not be enough time or resources to do such an analysis,
especially given a label set with size greater than 200, such as those described in
Section 4.

One simple automated method for determining closely related class labels is to first
build classifiers for all original data labels, then analyze the training error rate of
the classifiers. By collecting the training instances that are classified as false positive

17

(i.e., negative-class instances predicted as positive) from each class, two sets of label
rankings can be determined for each label, m:

1. The ranking of labels that are most commonly mistaken as positive, by the
classifier of m

2. The ranking of labels whose classifiers most commonly mistake positive in-
stances of m as positive instances of their own class.

The scoring functions for producing the two rankings are therefore as follows:

r1(m, l) =
|FPm,l|
|FPm|

r2(m, l) =
|FPl,m|
|FPl|

(1)

where FPm is the set of false-positive training instances classified by the classifier
of label m and FPm,l is the subset of FPm that are also positive-class instances for
label l.

While the two measures have merit on their own, intuitively, it makes sense to
combine the scores, then compare all pairwise results, in order to find the most
easily confusable pairs, overall. Using the geometric mean, this combined score is
given by:

r(m, l) =
√
r1(m, l) · r2(m, l) (2)

and the complete set of pairwise false-positive scores is defined by:

FPS = {r(li, lj); i < j} (3)

Since scores are symmetrical, and order doesn’t matter, its only necessary to cal-
culate scores for pairs where i < j. Sorting this set will produce the ranking of
the most highly-confusable label pairs, which can be used as an aide for targeting
possible candidates for merging.

5.1.2 SVD, LSA, and Hierarchical Clustering

While the training-error analysis method for finding labels with highly-overlapping
conceptual information can be useful, it can also be time- and resource-consuming,
since it requires training classifiers for all original labels. Worse, reliability is compro-
mised by all the typical pitfalls of learning algorithms, such as insufficient training
data and overfitting.

18

One way to eliminate these drawbacks is to group labels based solely on their
positive-class instance vectors. For this, one can adapt an NLP technique known
as latent semantic analysis (LSA). LSA consists of two steps: 1) projecting data
vectors in a term-document matrix to a lower-dimensional latent feature space, and
2) calculating pairwise distances (e.g., cosine distance, Euclidean distance, etc.) be-
tween vectors in this new space to find the nearest elements. The new, latent feature
space is so-named because the projection of each feature in the new space is rep-
resentative of a collection of highly correlated features from the original space. In
other words, it finds the latent connections between the original features. For ex-
ample, this technique is commonly used to find semantically related words, such as
“tobacco” and “cigarette”, based on document co-occurrence both with each other
and with additional related terms, such as “nicotine.”

The dimensionality reduction phase of LSA is done with a method from linear al-
gebra, known as singular value decomposition (SVD). Briefly, SVD is a matrix fac-
torization of the form [GR70]:

A = UΣV T , where (4)

UTU = V TV = V V T = In and Σ = diag(σ1, ..., σn)

For latent-feature projection, the pertinent components of the above equation are
the columns of matrices U and V T , which hold n eigenvectors associated with the
eigenvalues of AAT and ATA, respectively, and the diagonal values in Σ, which
are the non-negative square roots of the eigenvalues—called the singular values of
A. Importantly, the diagonal values of Σ can be sorted in descending order, and
truncated below a certain threshold, as the original indices of these sorted values
correspond to the most significant correlations in the initial data matrix A. This
allows for a reconstruction of the data based only on the top k singular values,
producing the reduced feature space.

Although typically done on a term-document matrix, in order to illuminate semantically-
linked words or texts, SVD can easily be adapted to help group conceptually related
class labels. If each label is represented as a single large text, consisting of all
positive-class documents for that label, a term-label matrix can be constructed.
The remaining steps of LSA are then normally executed.

The task of grouping labels based on similarity can be accomplished through the
use of clustering techniques, such as k-means clustering, density-based methods, or
hierarchical clustering. For this thesis, agglomerative hierarchical clustering was

19

performed, as it provides more detail and directly produces pairs and triplets of the
most similar labels, making it easier to manually parse than, say, k-means clusters.

Agglomerative hierarchical clustering [DE84] is a bottom-up approach to clustering.
The algorithm begins by assigning each observation to its own cluster of size 1.
Every following step finds the two nearest clusters, according to a given distance
metric, and merges them into a new cluster. This continues until a single cluster,
containing all observations, has been formed. By retaining every cluster, along with
their corresponding distances, a dendrogram can be built, with each node of the tree
structure corresponding to a sub-cluster, and the final cluster serving as root node.

Common similarity metrics for determining cluster distances include Euclidean, city-
block, Chebychev, and cosine distances. In order to compare clusters of size greater
than 1, a method must also be specified to define the two items being compared.
These methods include single-linkage, which finds the minimum distance between
any two items in opposing clusters; centroid linkage, which computes the mean vec-
tor of all objects in each cluster and uses these centroids to determine the distance,
and Ward’s linkage, which finds the potential increase in the sum of squares of all
distances within the new, would-be cluster [Mil80].

Figure 4 shows a portion of the dendrogram produced for the PULS label set, using
agglomerative hierarchical clustering (with cosine distance, and the centroid linkage
method) on the 100-dimensional sector label representation output by LSA. From
the figure one can see several similar labels clustered together; many of which could
be merged into a single label. Merging of labels can either be done manually, or
automatically by, for example, setting a height threshold under which clustered
labels will be merged into a new label.

5.2 The Sector Hierarchy

One of the most problematic aspects of working with a large label set, collected
from an external source or sources, can be the lack of a cohesive structure amongst
the labels. As an example, consider the two sector labels Oil, Petroleum and En-
ergy, Fossil Fuels. Although seemingly similar, it is unclear without looking at the
positive-class data, the extent to which the two labels overlap, conceptually. Does
the first label concern oil drilling, refining, distribution, or all three? Which label, if
any, covers infrastructure and corporate management of the companies working with
fossil-fuel based energy? Furthermore, regardless the level of conceptual overlap be-

20

Figure 4: Portion of the sector-label dendrogram produced by LSA and agglomera-
tive hierarchical clustering

tween the labels, it is likely that bag-of-words representations will produce many
common features between the two, which could ultimately lead to misclassification
between the two labels’ classifiers.

Although there are advanced algorithmic approaches for predicting underlying hi-
erarchical structures in data and applying them to training and classification, these
methods require significant computation time and resources. A less-intensive method
for bringing a measure of order to a large set of class labels is to create a simple
two-level hierarchy by producing a set of general, super-class labels—referred to
here as level-I labels—which serve as parent classes for all original labels—referred
to in this context as level-II labels. Importantly, each level-II label would have
only one parent level-I label, thereby sharpening the boundary between topics at
this top level. This simple hierarchy can then be used in various ways in training,
classification, and evaluation, to help eliminate some of the uncertainty brought on
by closely-related or ambiguous labels in the original set. It is also a helpful tool
for analyzing the general distribution and topic coverage present in the data, for
example by comparing the number of child labels each level-I label is a parent of,
after constructing the hierarchy.

21

(a) Non-optimal Mapping (b) Preferable Mapping

Figure 5: Two possible level-I mappings given four closely-related level-II sector
labels

Methods such as latent semantic analysis, as discussed in Section 5.1.2, can also be
employed to aid the construction of the level-I label set, by producing initial clusters
of closely related topics. The most important aspect in the creation of upper-level
labels is to ensure that all labels are less specific, conceptually, than any sub-class
label, while at the same time on approximately the same level of generality as the
other level-I labels.

To visualize how one might construct such a hierarchy, consider the following subset
of original labels, that have been determined through their positive-class content
(e.g., using LSA) to be closely related to one another: Credit and Loans, Finance and
Banking, Corporate Mergers, and International Trade. Figure 5a shows a possible—
but likely not optimal—mapping from level-II to level-I labels. One issue with this
labeling is that the level-I label, Banking, Loans, and Trade, is too specific, as it is
at the same level of specificity as both Finance, Banking and International Trade. It
is also limiting, in the sense that it does not conceptually cover the label Corporate
Mergers. Finally, it is important to avoid producing labels that are merely topic lists,
since it is a somewhat unnatural representation to present for human consumption—
particularly if the topics are not related that closely, such as finance and trade.
Figure 5b shows a preferable mapping, consisting of two appropriately-general and
user-friendly level-I labels that capture all original label concepts without forcing
together any obviously distinct topics. Since constructing the hierarchy involves
a number of subjective decisions, however, it is difficult to determine exactly how
optimal a mapping is, and in this thesis the hierarchy is simply a best estimate,
designed using the above principles.

22

Once constructed, there are a number of ways such a hierarchy could be employed,
for example as a mapping for output labels or as additional feature data for training.
In the experiments presented in Section 8, the sector hierarchy is used in a multi-
stage classifier that leverages classifier models trained for both level-II and level-I
sector labels.

6 Data Representation and Feature Engineering

Before a sector-classification system can be built for categorization, the input text
must first be transformed into a meaningful representation. How informative, well-
structured, and succinct the input is will strongly affect both the efficiency and
accuracy of the classifiers. Different representations will afford different advantages.
Additionally there are a number of data transformations for improving text clas-
sification, ranging from simplistic filters to complex probabilistic models. The ex-
periments in this thesis explore various combinations of these representations and
methods, in addition to some novel methods both for text extraction and feature
selection.

6.1 Feature Extraction

To prepare articles for use in training, one must first map the raw text into an
appropriate format for statistical learning algorithms. The traditional bag of words
(BOW) representation transforms a text document into a feature vector of binary
values—1 if a word appears in the document, 0 if it does not—in the space of all
lexical features from a given data set (e.g., the training data). Word occurrence
may be used in place of binary values, however this may introduce unwanted skew
in data sets with highly variable document lengths. In the experiments presented
in Section 8, data is represented using extended BOW features, where certain filters
and transformations have been applied to enhance the quality of the input.

An important transformation to apply to BOW features is lemmatization. Lemmati-
zation refers to the grouping of all differently-inflected forms of a word into a single,
normalized form, known as a lemma [PLM+04]. For example, the words “run,”
“running,” “ran,” and “runs” are all reduced to the lemma “run.” This immediately
reduces dimensionality of the feature space, while also ensuring that all inflections
of a term are directly correlated during statistical processing.

23

Infrequent words in a data set may be removed simply because they will not have
a significant influence on the learning algorithms. The two common metrics to
look at are term frequency—how often a word appears in the entire corpus—and
term-document frequency—how many distinct documents a word occurs in. The
experiments presented in this thesis use commonly recommended values of 3 and 2
for minimum term frequency and term-document frequency, respectively.

Certain parts of speech (POS), such as conjunctions and pronouns, consist mostly of
words common to all texts; providing no discriminative value. These can be removed
for a more compact representation. In the experiments, only nouns (excluding most
proper nouns), adjectives, and verbs are retained in the feature set—as determined
by the Stanford NLP POS-tagger [KM03]. Although proper nouns don’t generalize
well as predictors and are thus also candidates for filtering, there are certain ex-
ceptions that may be pertinent to keep. For example, the company name “Delta
Airlines” would normally be filtered, even though “airlines” is a strong feature for a
sector label such as “Air Transport.” One method of ensuring this kind of proper
name is retained for training is to keep all proper names that are also dictionary
terms. This may be too lenient, however, as in the given example, this would also
retain “delta” as a feature. In the experiments, therefore, a pre-computed list of
common endings for company names—terms such as “Airline,” “Power,” “Financial
Institute,” etc.—is referenced when determining which parts of proper nouns to
retain and which to remove.

In addition to filtering by part-of-speech, it is also recommended to remove certain
words that may affect learning in undesirable ways. These stop words include tokens
such as locations, dates, numerals, and common verbs like “have” and “do”.

Traditional BOW features are limited by the fact that each feature represents a
single, independent token, and ignores positional information. Commonly occuring
word sequences may be more valuable indicators of a certain context than single
words, for example “mobile phone,” for telecommunications industry or “cable car”
for transportation. One method for overcoming this limitation is to generate n-
grams consisting of originally-extracted tokens that appear sequentially in the text.
In the experiments, bigrams are generated from all original lemmas, and added to
the feature space.

Figure 6 shows the lemmatization, filtering, and n-gram construction that is involved
in the extraction process, for an example sentence.

Another limitation of BOWs is that ambiguous words, such as “card” or “plant”, may

24

Figure 6: Lemmatization and feature extraction for a document sentence.

skew learning by appearing frequently in the training data of two or more unrelated
classes. Bigram features can also be used to help overcome this: when indexing
documents after feature selection (Section 6.2), a unigram is only kept as a feature if
it appears outside of any bigram features extracted from that document. For example
if the bigram “power plant” appears in a document, then “power” or “plant” are only
considered as independent features for that instance if they also appear elsewhere in
the document (and not in another extracted bigram). This helps resolve ambiguity
to some extent; for example, documents containing the feature “SIM card,” which
may be relevant for Telecommunications, can now be distinguished from documents
containing the feature “credit card,” which is relevant for Commercial Banking.

Once feature vectors have been extracted from the text, there are a number of other
transformation methods that may improve either the informativeness or efficiency
of the data representation. Normalizing vectors to unit length can be effective
when documents in the data set have highly variable length. Another common data
normalization method is to use the Term-Frequency Inverse-Document-Frequency
(TF-IDF) representation, where each feature is represented with the value given by:

tfidf(t, d,D) = ft,d · log
N

|d ∈ D : t ∈ d|
(5)

where ft,d is the occurrence of term t in document d (this is basic term-frequency,

25

however, various weighted scores have also been proposed for this value), N is the
total number of documents in the data set, and the denominator term is the number
of documents in the data set in which the term appears.

Finally, dimensionality reduction is a very powerful way to maximize the effective-
ness of textual features. One way to reduce dimensionality is feature selection, which
is discussed in-depth in Section 6.2.

For an example of the feature-space that is produced by the extraction method
outlined above, the training data collected from the RCV1 data set, consisting of
77,636 training instances (documents), generates 49,262 unique lexical features.

6.2 Feature Selection

The motivation of feature selection is two-fold: 1) to project the data to a lower-
dimensional feature space that is more compact and therefore promotes efficient
training and classification, and 2) to retain only those features that provide useful
discriminative information for a particular class. The informativeness of a feature
for a binary classifier may be either positive or negative depending on the class value
it promotes. For example, the learner for the sector label “Farming and Livestock”
may benefit highly from knowing the positive feature “cow” in determining if a data
point is a member of its class, but it may benefit equally from knowing the negative
feature “diamond,” which suggests the data point is a non-class member. Conversely,
a feature such as “profit” is too ambiguous to provide either positive or negative
information for that label’s learner, and should be discarded. The goal, then, of
feature selection is to somehow rank the discriminative power of each feature present
in the entire feature space, for a single class. There are a number of algorithms for
feature selection that have shown to improve performance. In the experiments, two
of these methods—Information Gain (IG) and Bi-Normal Separation (BNS)—are
explored, in addition to a novel method based on feature entropy, that is referred to
by the author as Entropy Filtering.

6.2.1 Information Gain

The information gain (IG) feature selection method [For03] is a rank-based method
that utilizes the information gain criterion defined by:

IG(Y |X) = H(Y)−H(Y |X) (6)

26

where H(Y) is the initial entropy of probability distribution Y and H(Y |X) is the
conditional entropy of Y given the known distribution X.

When applied to feature selection, H(Y) refers to the entropy of initial class distri-
bution, C, of a given label. H(Y |X), therefore, refers to the conditional entropy of
the class distribution given the distribution of the feature, F , among distinct class
values. The formula can therefore be rewritten as:

IG(C|F) = H(C)−H(C|F) (7)

Intuitively, the IG score can be seen as an indicator of “information gained” about
a class, when the value of a specific feature is known, regardless of the value of that
feature. If information gain is 0—the minimum possible value, since conditional
entropy can never be higher than initial entropy—then the natural distribution of
the class is completely independent of that feature, which means that the feature
provides no discriminative information about the value of that class.

For feature selection, the IG score for the given class is first determined for every
feature in the original feature space. Once these values are obtained, the feature se-
lection process is then concluded by ranking all features by their associated IG score
and retaining either the subset of N top features, or by throwing away all features
with a values below a tolerance threshold t. The optimal values for these parameters
may be determined either experimentally, by comparing the performance of a classi-
fier trained multiple times, over various values of N or t; or manually, by inspecting
the feature sets collected for a classifier (i.e., the “eye test”). Tuning parameters
such as these experimentally is always preferred, however, may be impractical or
infeasible in reality, depending on data size, model complexity, or the availability of
computing resources or time.

6.2.2 Bi-Normal Separation

Bi-Normal Separation (BNS) is another feature-ranking method, developed by For-
man [For03], that produces a single score for each lexical feature, given an associated
class. The general score function for BNS is given by:

BNS(f, C) = |Φ−1(tpr(f, C))− Φ−1(fpr(f, C))| (8)

where tpr and fpr are the true- and false-positive rates of feature f given class C,
respectively—here, true-positive means the feature occurs with the positive class

27

of C and false-positive means it occurs with the negative class of C—and Φ−1(x)

is the inverse cumulative probability distribution function of the standard Normal
distribution of a random variable described by x 4. When parameterized with tpr
the function returns the threshold for the quantile of the Normal distribution that is
described by tpr. The final score for a feature, given a class, therefore corresponds to
the distance on the Normal probability curve for the quantiles described by tpr and
fpr, given a single class. If the difference is small, there is little separation between
the expectation of a feature occurring in the positive class versus its expectation
in the negative class, and the feature has low discriminative power. Conversely, if
the difference is large, the feature is expected to occur more commonly in either the
positive or negative class, and should be considered a good feature.

6.2.3 Entropy Filtering

One challenge of using cross-training with binary-relevance classifiers is in selecting
those features that will be highly discriminative for a given class yet more unique
than other features, with respect to all classes. Most popular feature-selection
methods excel at solving the first problem, however, are unable to consider the
second case, as positive data from other classes are grouped into a single negative
class for training. The difficulty of ensuring unique terms as features is exacerbated
by the presence of ambiguous words. For example, the word “plant” may be a
strong indicator of the two sectors “Fruits and Vegetables” and “Electrical Power
Generation”, however, confusing these during training will have adverse effects on
performance.

The novel feature-selection method Entropy Filtering (EF) aims to solve this by
eliminating features that have high total entropy with respect to their frequency
distribution over all classes. This is given by:

H(f, C) = −
∑
c∈C

p(f, c) · log2(p(f, c)) (9)

where C is the set of all possible class values, and p(f, c) is the frequency of feature
f occuring in documents having class value c.

A high entropy indicates a word is distributed evenly between classes, therefore,
after removing all features having entropy greater than a threshold, t, the remaining

4Note that the value of Φ−1(0) is undefined, and therefore set to Φ−1(0.0005) to prevent algo-
rithmic errors.

28

set will contain only the most unique terms.

It is important to make a distinction between entropy filtering and the information
gain (IG) method described in Section 6.2.1, as both measures are based around
entropy scores. Whereas IG ranks features for a single class by taking its prior en-
tropy then subtracting its conditional entropy given a known feature value, EF finds,
separately, the individual entropy scores of the features, over all classes. Features
with high entropy across all positive class data for all labels are removed from the
feature space prior to training, thus any individual classes that may have previously
used those features (e.g., because of a high IG score) no longer have access to them.

EF can be used on its own or in conjunction with other feature selection methods.
When used with another method, such as IG—which produces the combined feature-
selection method IG+EF—the process works as follows:

1. Tabulate entropy scores for all features F across all classes C
2. Collect N features, Fi, for each class, ci, with an initial feature-selection method

(IG or BNS)
3. Remove all features from Fc, where H(f, C) > t

4. Train each classifier, ci, on its respective set of final features

The threshold value t may be manually or experimentally determined for a given
data set. As bigrams naturally occur more rarely than unigrams, their entropy scores
will be lower on average. Using a single threshold will filter out fewer bigrams, even
if the actual terms in the bigram feature are just as common (i.e., consider that the
unigrams ’sale’ and ’price’ will have a higher entropy than the bigram ’sale price’ but
if we don’t want the first two, we likely don’t want the third). Individual thresholds
could, therefore, be used for each. For example, in the experiments on PULS data,
thresholds of t1 = 5.0 for unigrams and t2 = 4.0 for bigrams are found by manually
appraising the quality of features from a sorted list and determining the point where
feature quality begins to degrade significantly.

6.3 IE Features

Although BOWs is a good general-purpose feature representation, in the sense that
it can be applied to any problem domain, one advantage of working with the PULS
system is having access to sophisticated IE tools that can pull meaningful features

29

directly from the text. These IE features can be seen as informative without re-
quiring the overhead of feature-selection, as they are a known entity at extraction
time. The two IE features collected by the PULS system that are leveraged for use
in industry-sector classification are company name and company descriptor. These
features are used in a rote classifier, described in Section 7.1.

To parse and extract these elements from text, PULS uses a Named-Entity Recog-
nition (NER) module. In brief, the NER module is a pipeline that first invokes a
part-of-speech (POS) tagger, before passing the annotated text to a hierarchy of
low-level patterns and dictionary terms for matching. Positive matches are then
analyzed by a set of high-level heuristics that try to guess the correct entity-type.
These entities are stored in a knowledge database alongside many other metadata,
including, in the case of documents from the PULS data set, the annotated sector
label. A more detailed description of this process, and the novel use of IE features
in sector classification, is found in our prior publication [DPPY15].

7 Automated Sector Classification

7.1 Baseline: Rote Classifier

The PULS IE system (described in Section 3) is used, amongst other tasks, to build
a knowledge base that contains sector distribution information for each company
mentioned in an existing business corpus (i.e., Reuters or PULS). Part of this re-
search investigates ways to use this information for text categorization, and one of
the main ways it is utilized is in the construction of a rote classifier [DPPY15].

Using the NER module described in Section 6.3, the IE system finds mentions of
companies in the corpus. It distinguishes company names from other proper nouns
in the text, such as persons or locations. The NER module also merges variants of
the same name that appear in the text, for example, “Apple,” “Apple Inc.,” “Apple
Computer, Inc.,” etc., would all be merged into a single entry in the knowledge base.

In short, the knowledge base contains the following many-to-many relations:

• Document ↔ Sector
• Document ↔ Company
• Document ↔ Descriptor
• Company ↔ Descriptor

30

Table 3: Sector distribution for company “Apple”

Sector Freq Prob
Computer Systems and Software 549 0.61
Electronic Active Components 61 0.07
Datacommunications and Networking 36 0.04
Telecommunications 19 0.02
Electrical and Electronic Engineering 13 0.01

Where Document is a single news article from one of the business corpora, Sector is
the manually-assigned industry label, Company is a proper noun that the IE system
recognizes as a corporate entity, and Descriptor is a noun or adjective that describes
or augments a company in the text (e.g., “manufacturer”). Various combinations
of these entity-relationships can be used to build the rote classifier.

The assumption of the rote classifier is that each company has its own sector pref-
erences: the set of industries in which it typically operates. Consequently, company
names in the corpus should only co-occur frequently with particular sectors. For
example, Table 3 shows the top sectors that co-occur with “Apple,” in both fre-
quency (number of co-occurring entries in the knowledge base) and proportion of
that relationship over the company’s entire sector distribution. It can be seen from
the table that in 60% of cases Apple is mentioned in documents labeled with the
Computer Systems and Software sector, thus it is natural to suggest that documents
mentioning Apple will typically belong to this sector. However, as each document
may belong to more than one sector, instead of only choosing the top-most frequent
sector the classifier returns the entire sector distribution, which is calculated us-
ing evidence from all companies mentioned in the text. Thus the probability that
document D belongs to sector S, in the simplest case, can be defined by the formula:

P (S|D)name =
1

|CD|
·
∑
c∈CD

P (S|c) (10)

where CD is the set of companies mentioned in the document, and P (S|c) is the
proportion of times c co-occurs with S in the knowledge base; e.g.:

P (Computer Systems and Software|Apple) = 0.61 (11)

(from Table 3). Note that although a company may be mentioned in a document
several times, it is only counted once in the knowledge base.

31

This method performs reliably as long as the knowledge base contains sufficient
evidence to associate the company with particular sectors. Therefore, it is important
only to use company names that appear in the corpus frequently enough and throw
away results for all companies below a so-called garbage threshold, for example, in
the experiments of this thesis a garbage threshold of 3 is used. The result of using a
garbage threshold is that if a document discusses a new (or little-known) company,
the rote classifier would be unable to find a sector for the document. In this case
descriptors could be used to label the document, as descriptors allow for the use
of evidence gained from other companies in the corpus. For example, if company
X is described in the text as “software company” one can assume that the sector
distribution for this company would be similar to the sector distribution for “Apple”.
In this case the probability that document D belongs to sector S can be described
by the formula:

P (S|D)name+desc =

∑
c∈CD

P (S|c) +
∑
d∈dD

P (S|d)

|CD|+ |dD|
(12)

where dD is the set of all descriptors mentioned in the document. Note that |CD| 6=
|dD| because descriptors may be used for multiple different companies (or may not
appear at all). Descriptors can also be used that do not co-occur with any particular
name; e.g., if the document mentions “IT companies,” but does not specify company
names, this mention can still be used to help classify the document.

This estimate of P (S|c) based on co-occurrence may be inaccurate: for rare com-
panies, some sectors may dominate the distribution by mere chance. Moreover,
sector overlap may lead to a situation where the company belonging to one sector
frequently co-occurs with another. Descriptors, therefore, may sometimes be more
reliable for predicting the sector. To check this assumption, a probability is defined
for a company belonging to a particular sector as follows:

P (S|c) =
∑
d∈dC

P (d|C) · P (S|d) (13)

where dC is the set of all descriptors associated with company c in the knowledge
base. We then use (13) in (10) to obtain the final sector distribution for the docu-
ment:

P (S|D)name ; desc =
1

|CD|
·
∑
c∈CD

∑
d∈dC

P (d|C) · P (S|d) (14)

Note that in this case the company name is substituted by a set of descriptors;
however it is possible to use the company name in combination with company de-

32

scriptors:

P (S|D)name+name ; desc =

∑
c∈CD

∑
d∈dC

P (d|C) · P (S|d) +
∑
c∈CD

P (S|c)

2 · |CD|
(15)

The performance of various combinations are evaluated and compared in Section 8.2.1.

7.2 Supervised Learning

Rote classification is useful in situations where the data set contains a strong corre-
lation between a single piece of prior knowledge and specific class labels, such as the
scenario described in Section 7.1 between company names (or descriptors) and sector
labels. In practice, however, there will commonly be either no strong correlate in a
data set or a large subset of data not containing an instance of the required knowl-
edge. The latter is the case with both the PULS and Reuters data set, where the
PULS IE system is unable to extract a company name or descriptor for a significant
number of documents and would be therefore unable to make predictions for them
using rote classification. In this case, more intelligent methods are required. This
section will explore the application of statistical modelling and supervised learning,
to the problem.

A method for performing multi-label classification with statistical classifiers, and the
method adopted in this thesis, is binary relevance: building a single binary classifier
for each unique label in the set and aggregating predictions from each to classify
a test instance. More advanced methods involve extending traditional single-label
methods to handle multiple labels, but require greater resources for learning and
classification and are therefore less suitable for the online PULS system.

7.2.1 Training Data Selection

Collecting training data for supervised multi-label classification poses unique chal-
lenges. One significant one is the problem of data balancing. Under the cross-
training scheme described in Section 2, if a particular sector S1 is dominant in the
training set, the negative features for other classifiers could become dominated by
features drawn from S1, which may hurt performance on some other sector, S∗, since
it won’t learn negative features from other, “minor” sectors (those having fewer doc-
uments in the corpus). If S1 is also over-represented in the test set, there is a risk of
over-fitting during evaluation. For these reasons one might want to keep the training

33

Table 4: Number of positive instances in the training pool, for the most frequent
sectors (RCV1 data)

Sector Instances Sector Instances
Diversified Holding Companies 3644 Electricity Production 1986
Commercial Banking 3153 Agriculture 1980
Petroleum and Natural Gas 2628 Computer Systems and Software 1805
Telecommunications 2145 Air Transport 1754
Metal Ore Extraction 2099 Passenger Cars 1713

data as balanced as possible across labels, and ensure that the test set will contain
a sufficient number of instances for every binary classifier in the array.

In various experiments presented and evaluated in Section 8, training and testing
data is generated both using traditional (random) data collection and a novel, spe-
cialized balancing procedure. This procedure, described here, is also explored in
our previously published work [DPPY14]. The motivation for the procedure is to
prevent learning skewed prior probabilities for the sector distribution based on the
training corpus, since these probabilities are likely to change over time.

In cross-training, a single set, or pool of data are shared amongst all binary-relevance
classifiers. In creating a balanced training pool, the aim is to provide all classifiers
with a sufficient number of positive examples for each label. Creating a balanced
test pool similarly ensures that there will be at least some data for which to test
each individual classifier with. Because of this, both the training and testing pools
can be generated simultaneously. Ranking the sectors by size, from 1 to N, data
is collected into the pools from the sector, SN , that has the smallest number of
instances in the corpus. 5 Up to k positively-labeled instances (e.g., k = 600) for
this smallest class are randomly selected and split into two subsets: 3/4 for the
training pool and 1/4 for test. If there are not enough documents (e.g., < 600) for
SN , all available instances are collected, with the same training/test proportion.

Once data for the smallest sector is collected, the procedure then moves to the
second smallest sector, SN−1, and repeats the collection process with one additional

5Otherwise there is no guarantee that each sector will have a sufficient number of instances
in the training and test pools. For example, if collection of the training and test data is done in
random order and happen to start with the largest sectors, then by the time the smallest sectors
are sampled all of their data may already be included in the training pool (due to multiple labeling
of documents), leaving none for testing.

34

 450

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

number of documents within a sector

original distribution
balanced

Figure 7: Document distribution among sectors in the original data (RCV1) versus
the balanced training pool: aiming for approximately 450 documents per sector
(horizontal line).

35

step: an initial check is made to determine how many documents labeled with SN−1
are already present in the training and test pools—which may happen due to label
overlap. The number of documents collected for SN−1 at this step is reduced by the
number already collected.

The collection process continues in this manner for all sector labels. Collection may
be skipped for a label if it already has more than 3

4
k documents in the training pool

and 1
4
k documents in the test pool (this happens for sectors with high label overlap).

It is also possible that some sectors will have fewer than the expected number of
documents for training, based on total availability. These are inherent limitations
of the skew in the original corpus, and cannot be avoided.

Figure 7 shows the comparison between the balanced training pool collected for the
experiments in this thesis, and the full corpus for the Reuters RCV1 collection. For
these experiments, the value for k was set to 600 (i.e., 450 training and 150 test
documents per label). The figure shows that although still skewed, the balanced
data is much more evenly distributed compared to the original label distribution.

Table 4 shows the most frequent sectors in the balanced training pool. Note that
although only 450 positive training instances were collected explicitly for the Diver-
sified Holding Companies label, the procedure still obtains 3644 positive instances
for the pool; the majority of which were picked up when collecting data for other
sectors.

7.2.2 Statistical Classifiers

Statistical classification algorithms have been studied extensively, and an exhaustive
survey is out of the scope of this thesis. Nevertheless, it is worthwhile to compare
the performance of a few well-known algorithms, within the sector-classification
framework, to gain insight into the relative merits and drawbacks of these methods.
Additionally, it allows for easier comparison to other works, as these algorithms are
the ones most commonly reported on.

Naive Bayes Naive Bayes classification is based on Bayes’ Theorem, which defines
the following conditional probability formula for random variables A and B:

P (A|B) =
P (B|A)P (A)

P (B)
(16)

36

where P (A) and P (B) are the prior probabilities of A and B, and P (B|A) is the
conditional probability of B given A.

This rule can be leveraged for class induction by setting the target variable A to be a
given class variable Ck—where k is the number of possible class values—and taking
the values of a given feature vector X as the evidence variable, B. The formula then
becomes:

P (Ck|X = [x1, x2, ..., xn]) =
P (X|Ck)P (Ck)

P (X)
(17)

Intuitively this induction step requires prior knowledge—specifically, a set of training
data for which the class values and feature vectors are known—in order to calculate
all right-hand values. The larger the training set, the more reliable the estimates;
provided the “true” labels are accurate and the feature representation is meaningful.

The term “naive” refers to the implicit assumption of the Bayes’ Theorem that a
probability can be fully described by completely independent observations of the
evidence variable. In reality, the dimensions of a data vector may have any number
of complex dependencies. An example from text categorization would be the pres-
ence of the words “coffee” and “tea” together within a document. Although these
terms likely occur together frequently throughout the training data, the Naive Bayes
classifier has no way of integrating this dependency information into it’s calculation
of a class value for a label such as “Food and Drinks.”

Despite the naive assumption, however, Naive Bayes classifiers have shown strong
performance in traditional classification settings [Ris01].

Support Vector Machine The Support Vector Machine (SVM) algorithm has
become one of the most popular linear classification algorithms in recent years, due
to its strong performance on traditional classification tasks, including text catego-
rization; its lightweight implementation and storage requirements; and its tunabil-
ity [ZZY+05].

SVM learners are built by finding the most appropriate (n− 1)-dimensional hyper-
plane between n-dimensional data points of a binary class distribution. For example,
given a set of 2-dimensional training data drawn from a random variable consisting
of two classes, the SVM might produce a prediction boundary such as the solid line
shown in Figure 8.

The hyperplane can be defined as the set of datapoints, X, that satisfy the equality:

w ·X − b = 0 (18)

37

Figure 8: SVM hyperplane separating 2-dimensional data (Produced by Scikit-
Learn [PVG+11]).

where w is the normal vector to the hyperplane and b determines the offset of the
hyperplane from the origin along w.

The hyperplane is generated from training data by performing distance calculations
between two other hyperplanes, constructed using opposing-class exemplars from
the data that lie close to the boundary between the classes (the dashed lines from
Figure 8). These exemplars are known as “support vectors,” and are the only training
data required by the algorithm, to build the hyperplane. The low space requirements
of an SVM learner during testing is owing to this reliance on a limited subset of the
training data.

Intuitively, the performance of the SVM classifier will depend on how well the margin
is constructed to fit the underlying class distribution. Given a training set:

{(xi, yi)}1 ≤ i ≤ n, xi ∈ IRd, yi ∈ {+1,−1} (19)

Constructing the best hyperplane is a quadratic programming optimization problem
of the form:

arg min
(w,b)

1

2
||w||2 s.t. yi(w · xi + b) ≥ 1 for i = 1, ..., N (20)

38

The SVM algorithm was made more flexible by the introduction of a “soft margin”
that allows data to be split as cleanly as possible in the event of linear inseparability.
This alters the form of the optimization function to:

arg min
(w,ξ,b)

{
1

2
||w||2 + C

n∑
i=1

ξi

}
s.t. yi(w · xi + b) ≥ 1− ξi; ξi ≥ 0 (21)

where the ξi values are non-negative variables that will measure the misclassification
error with the support vectors. The weight to which this factor affects the overall op-
timization is controlled by the complexity constant C, which can be experimentally
tuned in order to further improve the prediction boundary for a data set.

Although SVM requires less memory than methods such as Naive Bayes, the time
requirement of the traditional SVM learning algorithm is quadratic. One method
that was developed to counter this drawback is the Sequential Minimal Optimization
(SMO) algorithm [P+99a]. SMO divides the algorithm from a single large quadratic
programming (QP) optimization problem into a set of minimally-sized QP problems
that can be solved analytically—removing the need for an internal optimization loop
and significantly reducing runtime. SMO is the training method utilized for building
the SVM learners in the experiments of this thesis.

Finally, another drawback of the traditional SVM is its binary output, however,
methods have also been developed to map linear SVM predictions to probabilistic
confidence scores, allowing for further performance-based tuning. One method of
achieving this is to train the SVM as a kernel classifier—a learner whose input
includes both a data set and a transformation function to be applied to the data
during training—with a logit link function and a maximum likelihood score, to pro-
duce class-conditional probability distributions. Another method, which is adopted
in this thesis, is to fit logistic models to SVM outputs by first training the SVM, then
training the parameters of a sigmoid mapping function, using maximum likelihood
estimation on the training data [P+99b].

7.3 Multi-Stage Classification

Previous machine-learning research has shown that classification performance can
be significantly improved by combining simpler methods into a larger classification
system, as seen in techniques such as boosting and stacking [HE07]. Experiments
in this thesis explore the combination of results from multiple classification stages.
These stages may be totally independent classifications, such as rote classification

39

Figure 9: Pipeline Combined Classifier

and statistical classification, or be based on a multi-level hierarchy, like the two-level
hierarchy described in Section 5.2. Specifically, two methods have been developed
for combining the output labels of a multi-stage classification. These methods, and
associated results, are also described in our prior publications [DPPY14, DPPY15].

The pipeline combined classifier is shown in Figure 9. The example from the figure
shows how the system first returns any labels it can find using the rote classifier and,
if no labels are found above the prediction threshold, proceeds with classification
using an array of binary, statistical classifiers (e.g., binary-SVM classifiers). Predic-
tions are therefore produced by either rote classification or statistical classification,
but never both (and possibly neither). The idea behind the pipeline classifier is to
give the system a “second chance” at classifying documents, since each method has
different strengths that may allow it to classify documents the other cannot.

The two stages of the pipeline method can be reversed, so that statistical classifica-
tion occurs first, followed by rote classification. This ordering may change the final
predictions considerably if, for example, the rote classifier were to predict with high
precision but low recall, while the statistical classifiers predict with high recall but
low precision.

A variation on the example shown in the figure is to use the level-I statistical classi-
fiers, as described in Section 5.2, in place of the rote classifier stage, thus leveraging
the hierarchy structure. Depending on the order, this equates to either “backing
off” from potentially too-specific classification or “drilling down” from too-general

40

Figure 10: Union Combined Classifier

classification. Since this method involves classification directly at level-I it necessi-
tates that evaluation also be done at level I, since the mapping of level-II to level-I
labels is many-to-one, so it is impossible to evaluate predictions of level-I classifiers
at level-II.

The second multi-stage classifier, the union combined classifier shown in Figure 10,
is not dependent on the order of the classification stages, and simply returns—as
the name would suggest—the union of label predictions from each stage. This mode
of classification focuses on improving recall, with the hope that precision will not be
negatively affected by pooling all results. As with the pipeline combined classifier,
a “level-I” stage can be substituted for the rote stage, in an attempt to leverage the
hierarchy information.

Finally, the two combined classifiers outlined above are both extendable to handle
the general N -Stage case, given N distinct classification methods. Given the meth-
ods described in this thesis already, an obvious experiment would be to combine
rote classification, level-II classification, and level-I classification, in a three-stage
classifier.

The performance tradeoffs of each of the various permutations described here are
explored in-depth in the experiments of Section 8.3.

41

7.4 Implementation

As outlined previously, multi-label classification involves the coordination of several
distinct steps, each with different requirements that pose unique challenges. Using
state-of-the art algorithms and implementations at each step is highly recommended.
For this reason a number of publicly-available tools were utilized in the development
of the sector classification system.

The initial extraction of lexical features from news articles is aided by the Stanford
NLP group’s software toolkit [KM03]. In particular, the part-of-speech tagger is used
to identify and filter unnecessary tokens, thereby reducing initial data dimensionality
(see Section 6.1).

Many learning algorithms, such as SVM, have multiple implementations, which may
be better suited for particular scenarios. For example, some may trade off speed for
accuracy, while others may replace internal calculations with approximations to re-
duce complexity. Efficiency is of paramount importance as factors such as large data
sets, high data-dimensionality, large label sets, complex class dependencies, algorith-
mic complexity, and parameter tuning all increase the space and time requirements
of learning and prediction tasks. Therefore, well-optimized, well-tested statistical
software libraries are needed to improve the overall performance and speed of the
system and related experiments. The WEKA toolbox [HFH+09] is a specialized
data-mining and machine-learning library that contains optimized implementations
for a number of learning algorithms. In addition, it provides high-level tools for
data-handling, feature-selection, parameter-tuning, and evaluation techniques, such
as cross-validation. In this thesis, WEKA libraries are used for training and running
all statistical classifiers, as described in Section 7.2.2, for the experiments presented
in Section 8. It is used for information-gain feature selection as well as for directly
interfacing with the ARFF-format data files that represent the various data sets.

Additional statistics-based algorithms, such as bi-normal separation and entropy-
filtering feature selection methods, were implemented by the author, in Python,
with reliance on the SciPy math and stats toolkit [JOP+].

MathWorks’ MATLAB software [MAT13] was also used for certain data transfor-
mations, in addition to producing calculations and figures used for verifying results
and methodologies.

Beyond statistical algorithms, another important facet of optimizing the implemen-
tation is the use of distributed processes for parallel computing. In the majority of

42

the experiments presented, training-data size alone prohibits the handling of more
than a few learners at once on a single machine. Given that the statistical classi-
fication involves hundreds of classifier models per scenario, it would take weeks or
months to produce all results. Therefore, to expedite training and testing—allowing
for relatively fast comparisons between the numerous scenarios—a high-performance
cluster of approximately 200 nodes was used for concurrent processing, in a num-
ber of tasks. GNU Parallel [Tan11] is used to facilitate the distribution of these
tasks. An example is shown in Figure 11, which gives a high-level view of feature
extraction, done using distributed processing with GNU Parallel. Here, the master
process generates the initial list of hundreds of thousands of training document IDs
and splits it into k files of manageable length. GNU Parallel is then invoked to
distributed the processing of these files to k different cluster nodes, which return
their individual results to the master process, to be combined into the final feature
set. In addition to extracting lexical features, this model is used for constructing
data representations, performing feature selection, and building classifier models.

8 Experiments and Evaluations

8.1 Evaluation Measures

Common measures in text classification are accuracy, precision, recall, and F-measure.
For a given class c, accuracy is defined as:

Accc =
TPc + TNc

TPc + TNc + FPc + FNc

(22)

and precision, recall, and F-measure are given as:

Recc =
TPc

TPc + FNc
Precc =

TPc
TPc + FPc

F1c =
2 ·Rec · Prec
Rec+ Prec

(23)

where TPc, TNc, FPc and FNc are the number of true-positive, true-negative,
false-positive, and false-negative classified instances for the class, respectively. The
number of documents in the test pool labeled with the given class is referred to as
|c|.

As can be noted from the formulae, accuracy takes into account both true-negative
and true-positive instances, whereas F-measure focuses on true-positive instances
only. If the data is heavily unbalanced, accuracy won’t be too informative, since the
negative instances significantly outnumber the positive instances [IKT05, BPM04].
For this reason, accuracy is not reported in any evaluations.

43

Figure 11: Distributed feature extraction using GNU Parallel

44

In evaluating multi-label classification, macro-averages and micro-averages are com-
monly reported [Yan99]. Micro-averaging takes the counts of all true- and false-
positives, and true- and false-negatives for all instances in the test set, then uses the
following calculations for recall, precision, and F-measure:

Recµ =
Σi∈STPi

Σi∈S(TPi + FNi)
Precµ =

Σi∈STPi
Σi∈S(TPi + FPi)

µ-F1 =
2 ·Recµ · Precµ
Recµ + Precµ

(24)

where S is the set of all classes. The micro-average score is a per-instance evalu-
ation that does not penalize a multi-label system for bad performance on any one
particular class label.

In the macro-average evaluation scheme, the standard measures are first calculated
for each class separately, and then averaged across all classes:

RecM =
Σi∈SReci
|S|

PrecM =
Σi∈SPreci
|S|

M -F1 =
Σi∈SF1c
|S|

(25)

Macro-average is a per-class evaluation, therefore, for multi-label classification, in-
dividual classifiers that perform poorly will significantly influence the overall score.
Henceforth the macro-averaged F-measure will be denoted by M-F1, and micro-
averaged F-measure by µ-F1.

In this thesis both evaluation schemes will be reported, however, a particular focus
is put on the macro-average scores, since they are less dependent on the particular
distribution of labels in the training corpus. As the main goal is for the classifica-
tion system to work on data instances drawn over long periods of time and from
numerous sources, with varying label-distributions, macro-average should prove the
more useful metric.

8.2 Single-Stage Evaluations

The following sections look at the individual performance of the two distinct types
of multi-label classification explored in this thesis: rule-based rote classification,
and binary-relevance statistical classification. Rote classifier evaluation compares
the performance impact of using the different IE-generated descriptor types during
learning, in various ways. Statistical classifier evaluation is done in two parts: first,

45

an evaluation of classifiers trained on balanced training data vs. unbalanced training
data, and second, a comparison of the various learning algorithms and feature-
selection methods.

Most evaluations are done for both the PULS and RCV1 data sets. Two exceptions
are an evaluation that utilizes the two-level hierarchy, which can only be done using
the PULS data set, and the evaluation of balanced vs. unbalanced training, which
is only done on RCV1, for brevity.

8.2.1 Rote Classifiers

As outlined in Section 7.1, there are two different IE-based features that can be
used for learning with the rote classifier: company names and company descriptors.
These feature types can be used either on their own or combined in various ways.
The experiment is therefore a comparison of rote classifiers trained using different
descriptors and descriptor-combinations, from the knowledge base. As the simplis-
tic rote classifier does not have the same susceptibility to overfitting as statistical
learning methods do, the training data used in this experiment is the entire set of
available documents, minus the held out testing data.

Table 5a shows the results for all possible feature configurations for the rote classifier,
on Reuters data, while Table 5b shows the results for the PULS data set. The results
show that the rote classifier type name+desc gives the best M-F1 and µ-F1 scores
for Reuters data. The combination of two feature types boosts recall, making it
the top performer for both macro and micro-average recall. At the same time it
maintains a good precision rate, being the second-highest performer for that metric.
For PULS data, using only company name is slightly better than combining it with
the descriptor. At the other end of the spectrum, those classifiers that rely solely
on descriptor features for making predictions perform significantly worse than those
that use name features, showing name features to be much more reliable correlates.

8.2.2 Balanced vs. Unbalanced Training

Before completing the major evaluations of the statistical classification, an experi-
ment is performed in order to justify the use of the balancing procedure described
in Section 7.2.1—for generating training data with which to build the statistical
classifiers. Using the RCV1 data set, two sets of training data are collected: an un-
balanced training pool, which is simply half of the corpus, selected at random, and

46

Table 5: Comparison of different rote classifier types. Classifier names correspond
to the following formulae from Section 7.1: name – (10), name+desc – (12),
name;desc – (14), name+name;desc – (15)

(a) Reuters data set

M-average µ-average

Classifier Rec Pre F1 Rec Pre F1

Rote classifiers

name 36.8±0.8 65.2±1.0 44.5±0.7 45.9±0.5 60.5±0.4 52.2±0.5
descriptor 8.8±0.3 38.4±1.2 11.6±0.3 16.4±0.2 29.0±0.3 20.9±0.4
name+desc 39.4±0.8 63.3±0.7 46.2±0.7 48.5±0.5 57.8±0.5 52.8±0.4
name;desc 11.9±0.2 48.0±0.9 16.0±0.3 20.6±0.4 39.0±0.4 27.0±0.4
name+name;desc 39.2±0.8 60.0±0.8 44.8±0.6 48.5±0.5 54.5±0.4 51.3±0.4

(b) PULS data set

M-average µ-average

Classifier Rec Pre F1 Rec Pre F1

Rote classifiers

name 20.7±0.3 51.0±0.9 23.8±0.3 28.8±0.3 35.2±0.3 31.7±0.2
descriptor 4.6±0.2 60.0±1.1 7.1±0.2 7.3±0.2 31.4±0.5 11.8±0.2
name+desc 19.2±0.2 51.5±0.8 22.6±0.3 27.0±0.2 35.3±0.3 30.6±0.2
name;desc 10.4±0.2 58.7±0.9 12.6±0.2 17.2±0.2 31.3±0.3 22.2±0.2
name+name;desc 18.4±0.2 55.7±0.6 21.8±0.2 26.6±0.2 36.5±0.2 30.8±0.1

47

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200

nu
m

be
r

of
 in

st
an

ce
s

sector label

test set sampled from original distribution
permuted 1
permuted 2

Figure 12: Label distributions of 1 original test set, and 2 permuted test-sets.

a balanced training pool generated using the new procedure. For the experiment,
the procedure’s k value is set to 600, meaning it attempts to collect 450 training
documents per sector label. Distinct arrays of classifiers are generated using each
of the two sets of training data (see Section 7.2.2). Both SVM and Naive Bayes
classifiers are used in the comparison.

All data outside the balanced and unbalanced training pools—called the “test pool”—
are available for the construction of test sets. The first part of the experiment
attempts to evaluate how classifiers trained on each set of instances perform on data
drawn from the same domain as the training instances (i.e., as one would see in
a traditional machine-learning setting). 10 samples of 10,000 documents each are
drawn from the test pool, using the original distribution in the corpus (i.e., random
sampling).

One of these sample sets is used as a held-out development set for parameter tuning,
and the remaining nine as test sets.

In the second part of the experiment, to simulate the effect of changing trends in
news streams, 50 additional data sets are generated with random label distributions.
To build these sets, the individual proportions of sector labels in the original distri-
bution are calculated, then assigned to 50 random permutations of the sector labels.
Approximately 10,000 documents (depending on availability) are sampled from the
testing pool according to the new, permuted distributions. Each set among these 50
has its own label distribution, different from both the original and from each other.
The distributions of labels in these random test sets will appear “naturally skewed,”

48

Table 6: Results for SVM+IG classifiers trained on balanced vs. unbalanced training
sets, applied to originally-distributed and permuted test sets.

10 originally distributed test sets 50 permuted test sets
training Rec Pre F1 training Rec Pre F1

M-average M-average
balanced 32.2±0.6 66.2±1.4 40.3±0.7 balanced 32.6±0.8 71.0±1.4 41.9±0.9

unbalanced 24.3±0.9 73.6±1.3 31.8±0.9 unbalanced 23.5±0.9 74.0±1.5 31.4±0.8
µ-average µ-average

balanced 32.6±0.2 77.8±0.3 45.9±0.3 balanced 34.5±1.8 78.7±1.3 47.9±1.9
unbalanced 36.8±0.6 79.5±0.5 50.3±0.6 unbalanced 29.8±1.8 76.9±1.4 43.0± 2.1

however, since each one mimics the original shape.

Three example test sets are shown in Figure 12, one “original,” and two “permuted.”
As can be seen from the figure, the permuted distributions are still somewhat biased
toward the largest classes in the original corpus. This is expected because some
larger classes (such as Diversified Holding Companies) still have a high degree of
overlap, and because the smallest sectors may not have enough data to dominate
the permuted distribution. However, the distributions of the permuted test sets still
look substantially different from the original distribution and contain more instances
from small- and medium-sized sectors.

The averaged results obtained on both original and permuted test sets are presented
in Table 6. Although all combinations of algorithms and feature-selection methods
were evaluated, for brevity, only the top performer—SVM classifiers using Infogain
feature selection (SVM+IG)—are presented. Regardless of the overall score, re-
sults for all combinations follow the same pattern: classifiers trained on the original
distribution have higher µ-F1 on originally distributed test sets, but lower on the
permuted test sets; the classifiers trained on the balanced training set yield higher
M-F1 on all test sets, both original and permuted.

A comparison of balanced and unbalanced training is presented in Figure 13, where
macro- and micro-averaged F-measure obtained by classifiers trained on balanced
vs. unbalanced data for each permuted test set are plotted. As seen from the upper
plot, the classifier trained on balanced data has significantly and consistently higher
M-F1: for each test set, M-F1 is over 30% higher for the balanced classifiers. At the
same time, the lower plot shows that µ-F1 for the balanced classifiers is always at
least on par with (and often better than) µ-F1 results for unbalanced classifiers.

49

 25
 30
 35
 40
 45
 50
 55

M
-F

1

balanced
unbalanced

 25
 30
 35
 40
 45
 50
 55

µ
-F

1

test sets

Figure 13: F-measure obtained by SVM+IG classifiers trained on balanced vs. un-
balanced data, for all permuted test sets.

8.2.3 Supervised Learning Classifiers

The set of balanced training data collected using the procedure outlined in Sec-
tion 7.2.1 and evaluated in Section 8.2.2 is again used in the experiments comparing
statistical learning algorithms and feature-selection methods. For the experiments
presented here, arrays of classifiers are trained and evaluated on test sets compiled
in the same manner described in the previous section, averaging over 9 randomly-
generated sets, with a single development set used to optimize prediction thresholds.

The first experiment compares precision, recall, M-F1, and µ-F1 across possible
combinations of learning algorithms with feature-selection methods. The number of
selected features remains constant, at 500, which was found to be generally optimal
in terms of M-F1 by [For03], for both IG and BNS feature selection methods. Ta-
ble 7a shows the results for the Reuters data set, while Table 7b shows the results
for the PULS data set. From these we can see the best combination for the Reuters
data set, for both M-F1 and µ-F1 is SVM classifiers with infogain feature-selection
(SVM+IG). When testing on PULS data, however, SVM+BNS is the clear winner.
For Naive Bayes classifiers, the best feature selection method for both data sets is
the combined method that uses infogain with the novel entropy-filtering method
(IG+EF).

The final experiment compares the level-II classifiers, trained on the PULS data set,

50

Table 7: Results obtained with different classifier and feature-selection combina-
tions averaged among 9 random originally-distributed test sets. Optimal (M-F1)
prediction thresholds tuned on a held-out development set.

(a) Reuters data set

M-average

Classifier Features Rec Pre F1

NB IG 34.2±0.9 27.4±0.4 25.3±0.4
IG+EF 37.0±0.5 31.3±0.4 29.5±0.5
BNS 37.0±0.8 21.0±0.2 21.1±0.3

BNS+EF 37.7±0.7 30.4±0.6 28.7±0.6
SVM IG 32.2±0.6 66.2±1.4 40.3±0.7

IG+EF 29.9±0.5 66.4±0.9 38.1±0.5
BNS 32.6±0.5 62.0±0.8 39.4±0.5

BNS+EF 28.2±0.5 66.2±1.6 35.8±0.6

µ-average

Classifier Features Rec Pre F1

NB IG 36.1±0.4 30.4±0.3 33.0±0.3
IG+EF 38.5±0.4 39.8±0.3 39.1±0.3
BNS 38.1±0.4 19.0±0.3 25.4±0.3

BNS+EF 37.7±0.5 37.0±0.3 37.3±0.3
SVM IG 32.6±0.2 77.8±0.3 45.9±0.3

IG+EF 31.0±0.3 77.5±0.4 44.3±0.3
BNS 32.0±0.3 76.1±0.4 45.1±0.3

BNS+EF 28.7±0.3 76.7±0.4 41.8±0.4

51

(b) PULS data set

M-average

Classifier Features Rec Pre F1

NB IG 39.8±0.3 39.8±0.5 37.0±0.3
IG+EF 44.6±0.3 37.3±0.4 38.1±0.3
BNS 40.5±0.4 34.4±0.3 34.7±0.3

BNS+EF 39.9±0.4 37.7±0.4 36.1±0.3
SVM IG 35.8±0.4 47.2±0.3 39.8±0.3

IG+EF 38.1±0.2 47.3±0.3 40.7±0.2
BNS 38.9±0.4 51.4±0.4 42.4±0.3

BNS+EF 32.0±0.3 58.0±0.5 37.9±0.2

µ-average

Classifier Features Rec Pre F1

NB IG 41.3±0.3 36.9±0.2 39.0±0.2
IG+EF 47.8±0.3 34.6±0.2 40.2±0.2
BNS 40.7±0.2 32.7±0.2 36.2±0.2

BNS+EF 41.0±0.2 35.8±0.2 38.3±0.2
SVM IG 35.7±0.3 49.3±0.3 41.4±0.2

IG+EF 34.4±0.1 50.1±0.3 40.8±0.2
BNS 35.7±0.3 55.0±0.2 43.3±0.2

BNS+EF 28.5±0.2 61.4±0.3 38.9±0.2

52

against a set of specially trained level-I PULS classifiers. Using the same balanced
data collection procedure, a set of training data specifically targeting level-I labels
is generated. The array of 26 level-I classifiers is then trained and evaluated on
the same test data as prior experiments. This classification is necessarily evaluated
“at level-I,” meaning the confusion matrix is generated by using level-I labels both
for predicted and true sectors. These results are compared to the best level-II
predictions from before, after each prediction has been mapped to its level-I parent.
Table 8 shows the outcome of these evaluations. Interestingly, the dedicated level-I
classifiers are outperformed by the level-II classifiers, where the output has been
mapped to level I. A possible explanation is that the level-II classifiers benefit from
a more specific feature set (i.e., drawn from a more specialized set of instances)—
which is supported by the higher precision score—and that the mapping of labels
to level-I for evaluation gives an improved recall than evaluating at level-II, by not
penalizing “close misses”. Admittedly, however, we are unsure of the exact reason.

8.3 Multi-Stage Evaluations

After compiling results for both the baseline rote classifier and the statistical, binary-
relevance classifiers at each level of the two-level hierarchy, the next step is to eval-
uate performance when the outputs of these single-stage classifiers are combined in
a multi-stage, multi-label classifier.

The first experiment looks at various two-stage classifiers that utilize the two com-
bination methods, pipeline and union, described in Section 7.3. The individual
learners at each stage of the combined classifier are the exact same as those used
in the previous experiments (i.e., trained on the exact same data), however, new
prediction thresholds have been trained on the held out development set, which are
chosen to optimize the multi-stage M-F1, as opposed to optimizing F-measure for
the individual learners. Test data sets are also identical to those used for testing
individual learners. All possible algorithm/feature-selection combinations, and two-
stage orderings 6 of the two distinct learner types—rote and statistical—are tested,
for both multi-stage combination methods. Table 9a shows the scores for the vari-
ous combinations on the PULS data set. From this we see that [SVM+BNS→Rote]
is the best combination (and ordering) for the pipeline-combined classifier, while
[Rote ∪ SVM+BNS] is the best for the union-combined method, and best overall.
Table 9b shows the corresponding level-II results for the Reuters data set, which has

6Recall, however, that for the union-combined multi-stage method, ordering is unimportant.

53

Table 8: Level-I results for all classifier/feature-selection combinations for PULS
data set. Also compares the best level-II classifier combination evaluated at level-I.

M-average

Classifier Features Rec Pre F1

NB IG 53.8±0.9 46.3±0.3 48.4±0.3
IG+EF 55.9±0.9 47.2±0.3 50.2±0.4
BNS 51.0±0.7 44.3±0.2 45.9±0.3

BNS+EF 53.3±0.7 47.1±0.2 48.8±0.2
SVM IG 54.8±0.9 54.6±0.4 53.4±0.4

IG+EF 47.1±0.8 58.6±0.3 50.8±0.4
BNS 52.4±0.8 58.0±0.4 53.3±0.3

BNS+EF 47.9±0.5 59.4±0.2 51.0±0.2
SVM Level-II Mapped BNS 48.9±0.4 62.3±0.2 54.4±0.2

µ-average

Classifier Features Rec Pre F1

NB IG 56.5±0.4 52.0±0.3 54.1±0.3
IG+EF 59.2±0.3 52.1±0.2 55.4±0.3
BNS 52.9±0.4 50.2±0.3 51.5±0.3

BNS+EF 55.6±0.3 52.7±0.2 54.1±0.2
SVM IG 57.5±0.3 59.2±0.3 58.3±0.3

IG+EF 47.5±0.3 65.9±0.4 55.2±0.3
BNS 53.0±0.2 63.2±0.4 57.7±0.3

BNS+EF 48.9±0.2 65.0±0.2 55.8±0.2
SVM Level-II Mapped BNS 51.5±0.3 68.0±0.2 58.6±0.2

54

[Rote ∪ SVM+IG] as the top performer. 7

The next experiment looks at two-stage classification utilizing the sector hierarchy.
In this case one stage is the array of level-II statistical classifiers and the other stage is
the level-I classifiers of the same model. Table 10 shows the evaluations—necessarily
done at level-I— where the best combination and ordering (by M-F1) is [SVM+BNS-
II→SVM+BNS-I]. This beats out either of the level-II or level-I classifiers, on their
own, when evaluated at level-I.

The third experiment takes the next logical step for the combined classifier, given
that there are three distinct multi-label learner types, which is to build a three-stage
classifier. The output combination methods remain the same, there is simply an
additional stage for each method (level-I → level-II classification was not included,
because it always resulted in worse scores). As the level-I learners must be a part
of each multi-stage classifier, evaluations for this experiment can only be done at
level-I. Results on the PULS data set for the various configurations are shown in
Table 11 and compared against the best two-stage methods, also evaluated at level-I.
From this it can be seen that the best three-stage classifier is [SVM+BNS-II→Rote
→SVM+BNS-I], and that the addition of the third stage actually does improve
classification over the best two-stage performer. Therefore, three-stage classification
appears to be optimal for the PULS data set.

The final experiment compares the best two-stage performer on the Reuters data set
against state-of-the-art multi-label classifiers that have also been evaluated on the
RCV1 corpus. The opposing methods were chosen because they were the ones found
in the literature that have the same problem definition (i.e., multi-label industry-
sector classification) that have also been tested on the Reuters data set. These
experimenters used various learning algorithms, including SVM and Naive Bayes
algorithms, in addition to an undiscussed, computationally-expensive method that
utilizes Bloom Filters and class dependency information [CUAG13]. Table 12 shows
these results compared with the best combination method for the Reuters data set
from experiment 1, Rote∪SVM+IG, evaluated on a distinct 11th data set. From the
table it can be seen that the M-F1 score for the two-stage combined classifier is better
than any previously reported results, thus indicating it is a better general classifier,
fit for a real-world scenario like PULS. While the µ-F1 score for the combined
classifier is significantly lower than the highest performer, this can be attributed to
the fact that we are not attempting to model the exact distribution of the RCV1

7Recall that there are no level-I learners for the Reuters data set.

55

Table 9: Results from all two-stage classifiers and feature selection methods, aver-
aged across 9 test sets randomly sampled from original distribution; single classifiers
on top, combined classifiers on bottom. For each classifier, the best threshold is
trained on one random, originally-distributed development set; → and ∪ denote,
respectively, pipeline and union combining methods, described in Section 7.3.

(a) PULS data set

M-average µ-average
Classifier Rec Pre F1 Rec Pre F1

Rote→NB+BNS 41.9±0.4 32.1±0.3 34.1±0.3 42.5±0.3 30.6±0.2 35.7±0.1
NB+BNS→Rote 32.8±0.4 49.1±0.5 36.9±0.4 35.3±0.2 46.1±0.3 40.0±0.2
Rote ∪ NB+BNS 35.6±0.4 47.3±0.4 38.0±0.4 39.8±0.3 43.1±0.2 41.4±0.2
Rote→NB+BNSEF 38.5±0.4 37.8±0.5 35.6±0.3 39.9±0.2 36.1±0.3 37.9±0.2
NB+BNSEF→Rote 40.8±0.3 42.2±0.6 38.8±0.4 43.6±0.2 40.1±0.3 41.8±0.2
Rote ∪ NB+BNSEF 43.8±0.4 40.6±0.5 39.5±0.4 48.3±0.2 38.0±0.2 42.6±0.2
Rote→NB+IG 39.4±0.3 39.3±0.5 36.7±0.3 41.1±0.3 36.5±0.2 38.7±0.2
NB+IG→Rote 42.7±0.4 41.4±0.4 39.6±0.4 45.8±0.3 38.9±0.2 42.0±0.2
Rote ∪ NB+IG 43.8±0.4 42.9±0.4 40.9±0.4 48.6±0.3 39.2±0.2 43.4±0.2
Rote→NB+IGEF 40.9±0.4 39.3±0.5 37.5±0.4 44.0±0.3 36.6±0.2 40.0±0.2
NB+IGEF→Rote 42.4±0.4 44.0±0.5 40.4±0.4 46.4±0.2 40.9±0.2 43.5±0.2
Rote ∪ NB+IGEF 47.3±0.4 40.5±0.4 41.0±0.4 52.9±0.3 37.0±0.2 43.6±0.2

Rote→SVM+BNS 39.0±0.4 48.9±0.3 41.5±0.3 36.2±0.3 52.2±0.2 42.7±0.2
SVM+BNS→Rote 40.6±0.4 51.1±0.3 43.9±0.3 38.7±0.2 54.6±0.2 45.3±0.2
Rote ∪ SVM+BNS 45.6±0.4 47.0±0.3 45.3±0.3 47.2±0.2 47.3±0.2 47.2±0.2
Rote→SVM+BNSEF 30.3±0.3 58.5±0.6 37.0±0.3 27.3±0.2 62.1±0.3 37.9±0.2
SVM+BNSEF→Rote 35.3±0.4 56.3±0.5 40.9±0.3 33.9±0.2 57.6±0.2 42.7±0.1
Rote ∪ SVM+BNSEF 40.1±0.4 51.8±0.5 42.8±0.3 41.9±0.3 49.4±0.2 45.3±0.1
Rote→SVM+IG 30.1±0.4 52.5±0.2 37.5±0.3 30.1±0.2 55.9±0.3 39.1±0.2
SVM+IG→Rote 34.4±0.4 51.6±0.3 40.6±0.4 35.7±0.3 53.6±0.3 42.9±0.2
Rote ∪ SVM+IG 39.4±0.4 48.2±0.3 42.2±0.3 43.7±0.2 46.6±0.3 45.1±0.1
Rote→SVM+IGEF 35.8±0.3 48.6±0.3 39.9±0.2 32.7±0.2 51.7±0.3 40.0±0.2
SVM+IGEF→Rote 39.7±0.3 47.9±0.3 42.3±0.2 37.4±0.2 50.6±0.3 43.0±0.2
Rote ∪ SVM+IGEF 44.9±0.3 44.6±0.3 44.0±0.2 46.3±0.2 44.7±0.3 45.5±0.1

56

(b) Reuters data set

M-average µ-average
Classifier Rec Pre F1 Rec Pre F1

Rote→NB+BNS 51.5±0.9 33.6±0.4 36.1±0.4 57.6±0.6 39.1±0.4 46.6±0.4
NB+BNS→Rote 49.7±1.0 24.0±0.2 26.9±0.3 53.3±0.4 23.7±0.3 32.8±0.3
Rote ∪ NB+BNS 59.2±0.9 25.4±0.3 30.7±0.3 64.3±0.5 26.2±0.3 37.2±0.3
Rote→NB+BNSEF 47.5±0.9 54.8±0.7 48.2±0.8 54.2±0.6 60.0±0.3 57.0±0.4
NB+BNSEF→Rote 48.7±0.9 48.1±0.8 44.4±0.7 52.4±0.6 54.4±0.4 53.4±0.5
Rote ∪ NB+BNSEF 52.9±0.8 47.5±0.7 46.3±0.6 58.7±0.5 53.8±0.3 56.1±0.4
Rote→NB+IG 51.8±0.9 39.8±0.6 41.5±0.6 59.1±0.5 47.3±0.4 52.5±0.4
NB+IG→Rote 48.7±1.0 31.5±0.5 33.4±0.4 53.0±0.5 36.3±0.3 43.1±0.3
Rote ∪ NB+IG 57.2±0.9 32.7±0.4 37.3±0.4 63.2±0.5 38.1±0.3 47.5±0.4
Rote→NB+IGEF 47.5±0.9 54.4±0.7 48.2±0.8 54.6±0.5 60.3±0.3 57.3±0.4
NB+IGEF→Rote 48.8±1.1 47.6±0.8 44.5±0.8 53.0±0.5 54.8±0.4 53.9±0.4
Rote ∪ NB+IGEF 53.0±0.9 46.9±0.6 46.4±0.6 59.3±0.5 54.0±0.3 56.5±0.3

Rote→SVM+BNS 48.2±1.0 67.5±1.0 54.7±0.9 53.7±0.5 70.1±0.3 60.8±0.4
SVM+BNS→Rote 48.0±1.1 63.0±1.0 52.6±1.0 50.2±0.4 70.8±0.4 58.7±0.4
Rote ∪ SVM+BNS 54.0±0.9 62.0±0.8 56.1±0.8 58.5±0.4 68.2±0.3 63.0±0.3
Rote→SVM+BNSEF 47.5±1.0 66.6±1.0 53.8±0.9 54.2±0.5 66.7±0.3 59.8±0.4
SVM+BNSEF→Rote 45.7±1.1 65.6±0.8 52.1±0.9 48.9±0.4 69.2±0.5 57.3±0.4
Rote ∪ SVM+BNSEF 52.5±1.0 62.9±0.7 55.6±0.8 58.4±0.5 65.3±0.3 61.7±0.4
Rote→SVM+IG 46.2±1.0 73.7±0.8 55.1±0.8 52.5±0.5 75.9±0.4 62.0±0.4
SVM+IG→Rote 47.0±1.2 67.7±0.9 53.7±1.1 49.9±0.3 73.9±0.3 59.6±0.3
Rote ∪ SVM+IG 52.2±1.1 66.3±0.8 56.9±0.9 57.7±0.4 71.1±0.3 63.7±0.4
Rote→SVM+IGEF 48.1±1.0 66.8±0.9 54.3±0.8 55.1±0.5 67.0±0.3 60.5±0.3
SVM+IGEF→Rote 46.6±1.0 66.0±0.7 53.0±0.9 50.3±0.3 69.9±0.5 58.5±0.3
Rote ∪ SVM+IGEF 53.4±1.0 63.2±0.7 56.4±0.7 59.6±0.4 65.7±0.3 62.5±0.3

57

Table 10: Comparison of two-stage classifications using the two-level sector hierarchy
(PULS data set only). Level-II→Level-I pipeline classification denoted by→, reverse
order denoted by←, and union method denoted by ∪. Best single-stage results also
shown at bottom for comparison.

M-average µ-average
Classifier Method Rec Pre F1 Rec Pre F1

NB+BNS → 54.9±0.4 49.8±0.5 51.3±0.4 58.3±0.4 54.9±0.3 56.5±0.3
← 50.8±0.5 52.7±0.3 50.5±0.3 53.2±0.3 57.2±0.3 55.1±0.2
∪ 58.0±0.7 33.5±0.2 41.1±0.2 61.4±0.4 38.4±0.2 47.2±0.3

NB+BNSEF → 57.0±0.4 52.2±0.4 54.2±0.3 60.8±0.3 57.0±0.3 58.8±0.2
← 55.2±0.3 51.0±0.2 52.7±0.2 58.9±0.3 55.7±0.2 57.2±0.2
∪ 53.9±0.4 46.2±0.2 49.5±0.2 58.8±0.3 51.9±0.2 55.1±0.2

NB+IG → 57.1±0.4 52.1±0.4 53.8±0.4 61.1±0.4 56.8±0.3 58.9±0.3
← 55.6±0.6 51.8±0.3 52.7±0.4 58.9±0.4 56.0±0.2 57.4±0.3
∪ 58.6±0.7 37.0±0.3 44.2±0.4 62.6±0.4 42.6±0.4 50.7±0.4

NB+IGEF → 54.1±0.5 57.5±0.7 55.5±0.5 58.6±0.4 62.1±0.3 60.3±0.3
← 49.2±0.4 60.0±0.4 53.8±0.4 53.3±0.3 65.0±0.3 58.6±0.2
∪ 52.5±0.3 48.9±0.6 50.4±0.3 57.9±0.3 55.3±0.5 56.5±0.3

SVM+BNS → 51.6±0.3 63.9±0.3 56.4±0.2 53.7±0.2 70.0±0.3 60.7±0.2
← 51.5±0.3 61.6±0.3 54.8±0.3 52.4±0.3 67.9±0.4 59.1±0.3
∪ 53.3±0.6 50.1±0.6 51.0±0.5 56.9±0.4 56.1±0.5 56.5±0.4

SVM+BNSEF → 45.3±0.3 66.5±0.3 53.4±0.3 48.3±0.2 73.5±0.3 58.3±0.2
← 49.4±0.4 60.8±0.3 52.9±0.3 50.9±0.2 66.6±0.2 57.6±0.2
∪ 35.9±0.4 63.7±0.9 45.4±0.5 38.9±0.2 72.3±0.7 50.6±0.3

SVM+IG → 47.1±0.4 63.4±0.4 53.8±0.4 51.1±0.3 69.4±0.3 58.8±0.3
← 51.9±0.6 58.5±0.4 54.0±0.4 54.3±0.3 64.7±0.2 59.0±0.3
∪ 38.1±0.5 58.3±0.9 45.9±0.5 42.8±0.3 66.5±0.8 52.0±0.4

SVM+IGEF → 49.4±0.4 60.7±0.4 54.0±0.4 52.1±0.3 66.7±0.3 58.5±0.3
← 49.8±0.4 59.1±0.3 53.0±0.2 51.1±0.2 66.2±0.3 57.7±0.2
∪ 43.5±0.5 57.2±0.4 49.0±0.4 47.0±0.3 64.2±0.5 53.4±0.3

SVM+IG-I - - 54.8±0.9 54.6±0.4 53.4±0.4 57.5±0.3 59.2±0.3 58.3±0.3

SVM+BNS-II - - 48.9±0.4 62.3±0.2 54.4±0.2 51.5±0.3 68.0±0.2 58.6±0.2
(mapped)

58

Table 11: Comparison of three-stage classification results, evaluated at level-I. Best
two-stage results (mapped to level-I) are shown at the bottom for comparison.

M-average µ-average
Classifier Method Rec Pre F1 Rec Pre F1

Rote & Rote→II→I 53.6±0.6 50.3±0.5 51.0±0.5 57.1±0.4 55.4±0.3 56.3±0.3
NB+BNS II→Rote→I 56.6±0.4 51.3±0.4 53.0±0.4 60.9±0.3 56.5±0.3 58.6±0.2

∪ 58.4±0.6 33.4±0.2 41.2±0.2 62.2±0.4 38.4±0.2 47.5±0.3
Rote & Rote→II→I 55.5±0.5 52.5±0.5 53.6±0.4 59.5±0.3 57.3±0.3 58.4±0.2
NB+BNSEF II→Rote→I 54.7±0.3 56.7±0.5 55.5±0.3 59.8±0.2 62.2±0.4 60.9±0.3

∪ 54.5±0.4 46.0±0.2 49.6±0.2 59.9±0.3 51.6±0.2 55.5±0.2
Rote & Rote→II→I 55.6±0.6 52.5±0.5 53.3±0.4 59.8±0.4 57.3±0.3 58.5±0.3
NB+IG II→Rote→I 54.8±0.4 56.9±0.5 55.3±0.4 60.0±0.3 62.2±0.3 61.1±0.3

∪ 58.6±0.7 37.0±0.3 44.2±0.4 62.7±0.4 42.6±0.4 50.7±0.4
Rote & Rote→II→I 52.7±0.6 57.8±0.8 54.9±0.6 57.3±0.4 62.5±0.3 59.8±0.3
NB+IGEF II→Rote→I 56.4±0.4 57.7±0.6 56.8±0.4 61.9±0.3 62.3±0.3 62.1±0.2

∪ 53.3±0.3 48.4±0.6 50.5±0.4 59.5±0.3 54.4±0.5 56.8±0.3

Rote & Rote→II→I 49.2±0.4 65.4±0.3 55.5±0.3 51.4±0.2 71.6±0.2 59.8±0.2
SVM+BNS II→Rote→I 50.7±0.3 66.4±0.4 57.3±0.3 53.9±0.1 72.3±0.2 61.8±0.1

∪ 53.8±0.6 49.8±0.6 51.1±0.5 58.0±0.4 55.7±0.5 56.8±0.4
Rote & Rote→II→I 44.4±0.3 66.6±0.4 52.9±0.3 47.5±0.2 73.4±0.2 57.7±0.2
SVM+BNSEF II→Rote→I 47.0±0.2 66.0±0.3 54.6±0.2 51.7±0.1 72.8±0.2 60.5±0.1

∪ 37.6±0.4 62.5±0.9 46.3±0.5 42.2±0.3 69.2±0.7 52.4±0.3
Rote & Rote→II→I 46.1±0.5 63.4±0.4 53.1±0.4 50.2±0.3 69.4±0.3 58.3±0.3
SVM+IG II→Rote→I 48.3±0.4 63.2±0.4 54.6±0.4 53.5±0.3 69.0±0.3 60.3±0.2

∪ 39.4±0.5 57.3±0.9 46.2±0.5 45.2±0.2 64.1±0.7 53.0±0.4
Rote & Rote→II→I 48.2±0.4 60.9±0.4 53.5±0.4 51.1±0.3 66.9±0.3 58.0±0.3
SVM+IGEF II→Rote→I 51.1±0.4 60.5±0.4 55.1±0.4 54.9±0.3 66.5±0.3 60.1±0.3

∪ 44.8±0.5 56.3±0.5 49.4±0.4 49.6±0.3 62.4±0.5 55.3±0.3

Best Two-Stage SVM+BNS-II→I 51.6±0.3 63.9±0.3 56.4±0.2 53.7±0.2 70.0±0.3 60.7±0.2

59

Table 12: Classification results on RCV1 industry sectors, compared with state-of-
the-art.

Reference Algorithm M-F1 µ-F1

[LYRL04] SVM 29.7 51.3
[ZZY+05] SVM 30.1 52.0
[Puu12] Naive Bayes - 70.5
[CUAG13] Bloom Filters 47.8 72.4

Best two-stage results Rote ∪ SVM+IG 56.9 63.7

data set, as they did.

8.4 Error Analysis

The macro- and micro-average evaluation schemes described in Section 8.1 can be
considered as strict evaluations, due to classifiers being heavily penalized for return-
ing sectors which are not in the set of original labels, but that may, nevertheless, be
relevant to the document. Since there are a large number of sector labels and doc-
uments, there may be cases where correct labels were left out or extraneous labels
incorrectly applied, through annotator error. These are known issues in multi-label
learning and lead to uncertainty regarding to what extent a given evaluation method
provides a fair assessment of perfomance.

To illuminate the extent of this issue, two types of error analysis are done using a set
of labeled PULS documents: the first to determine the rate of documents that are
“misclassified” under the strict evaluation scheme, but could be considered relevant
based on document content; and the second, to determine the rate of originally-
assigned labels that should not actually be inferred from the text.

For the first scenario, after classification, each false-positive sector label, and the
text of the document it is applied to, is manually analyzed to determine whether
the given label is: a) highly relevant, meaning the sector is related to the main focus
of the article; b) partially relevant, meaning some details related to that sector are
present, but it is not the primary focus; or c) totally irrelevant.

An example text is shown in Figure 14 along with the labels it is assigned by the
multi-stage classifier. Strict evaluation for this document will return both precision

60

Figure 14: Misclassified analysis of false-positive labels.

and recall scores of 0, since none of the originally-assigned labels are present in the
output, however, if the returned labels that are considered to be highly relevant
are now assumed to be present in the set of original labels, the results change to:
pre = 50% and rec = 25%. Furthermore, if those labels that are considered partially
relevant are also included in the original labels, the results become: pre = 100%,
rec = 50%.

For 135 randomly selected test documents, classified by the best-performing two-
stage classification system (SVM-IG→Rote), there are 191 false-positive labels re-
turned. The error analysis shows that of these 191, 84 labels could be considered as
highly relevant, for a rate of 44.0%. An additional 46 false positive predictions were
partially relevant, which, when combined with the highly relevant labels, yields a
rate of 68.1%.

The second error analysis focuses only on the original labels for each document,
where each is adjudged to be either a) highly irrelevant or b) partially irrelevant,
which may occur if the label appears to be included due to a minor mention in
the article of some entity related to the sector (e.g., a company name). Using a
different set of 170 random test documents, which contain 525 original sector labels,
the analysis found that 75 labels (14.3%) were highly irrelevant to the documents
they were assigned to, and another 56 were partially irrelevant, for a combined rate
of 25.0%.

This simple analysis points to a large disparity between the evaluation results, and

61

what could be considered as the “true” performance of the classification system.
This highlights a major difficulty in supervised learning for multi-label data.

9 Hierarchical Classification using PCA

In attempting to improve accuracy and efficiency of industry-sector classification
we explore a method that leverages both the underlying structure of the training
data and dependency relationships between classes. Although no concrete improve-
ments have been found to date, the methods are worth discussing, as they highlight
some alternative approaches to multi-label learning than the ones explored in our
experiments, in addition to providing a promising base for future enhancements to
PULS.

The feature-selection methods described in Section 6.2 are useful both because they
improve performance and reduce model size. One drawback of those methods, how-
ever, is that they produce BOW representations, which do not take into account
any inherent correlations (e.g., semantic links) between terms. Principal component
analysis (PCA) is one method for projecting a feature vector to a lower-dimensional
space containing only the most salient features of a data set [Jol02]. In our case,
PCA is nearly identical to LSA, as described in Section 5.1.2; for example, both use
SVD to reduce dimensionality and both sort the largest eigenvalues, before trun-
cating and reconstructing the data. A main difference in methods is that PCA is
applied to a term-covariance matrix rather than the term-document matrix directly,
however, the output produced is again a projection of the data to N-dimensional
space, using the largest N eigenvalues (here called principal components). PCA
shows us the underlying structure of data by explaining in which dimensions data
points vary the most from each other. This is similar to our goal using other feature-
selection methods, only PCA operates at a conceptual level that BOWs is unable to
achieve. Since the method also allows for the reduction of dimensionality, it fulfills
both of our objectives.

The first idea involves replacing BOW features with PCA features in the binary-
relevance classifiers as described in Section 7.2.2. The same set of balanced training
data is used, and a projection to 50-dimensional space is produced. A visualization
of the training data in 3-dimensional space is shown in Figure 15 to give an ap-
proximate view of the resulting data set. This figure highlights the main problem
encountered with this method, which is that the data is densely clustered, with a

62

Figure 15: Visualization of all training data after applying PCA, in 3-dimensional
space. Various sector-label exemplars are highlighted.

large degree of overlap amongst topics (even in 50-dimensional space), so that sep-
arating individual classes based on the distribution is difficult. Deeper analysis is
required to understand the reason behind this noisy output.

Further experimentation finds that when the training data is reduced to include only
exemplars of a small number of classes, separation between classes becomes more
pronounced, implying classification may be possible by training on more-specific
data. Figure 16 shows good separation between training data collected for two
sectors related to fishing and two sectors related to insurance.

Importantly, separation also occurs if two or more of the retained class labels are
conceptually similar. Figure 17 shows the 3-dimensional representation of the train-
ing data drawn from five different sectors related to energy. In this figure we see
clustering starting to occur, even though there isn’t full separation between classes.
Going further, Figure 18 shows the projection of training data drawn from only two
similar class labels Beer and Wine, where we once again see good separation. Given
this, we could theoretically produce learners using pairs of class-label exemplars, to
perform binary classification. However, producing classifiers for all possible sector

63

Figure 16: 3D visualization of training data for two industry sectors related to fishing
vs. two related to insurance.

64

Figure 17: 3D visualization of training data for five sector labels related to energy.

pairs would require over 70,000 individual classifiers, and output would be hard to
parse, since each label would have many classifiers associated with it.

In order to train classifiers based on PCA, therefore, we turn to hierarchical classifi-
cation. Assuming we have a binary-tree hierarchy containing class labels at each leaf
node, we could train a single model for each internal node of the tree, using training
instances belonging to classes in the left subtree as positive-class instances and those
in the right-subtree as negative-class. 8 The classifier of the root node would, in this
case, use all training data, however, all sub-nodes would have progressively smaller
and more specific training sets. Classification works as follows, given a new instance
in the original feature space:

1. Project the instance to the reduced feature space of the root node’s model,
using the same eigenvector matrix produced during training.

2. Produce a probability distribution (i.e., positive-class/negative-class) for the
8If a data instance is an exemplar of class labels in both the left and right subtrees, either

remove it from training or reassign it, where reassignment can either be random, or based on its
distance from the positive- and negative-class centroids.

65

Figure 18: 3D visualization of training data for industry sectors ’Beer’ and ’Wine’

instance.

3. If both the positive- and negative-class score is below a pre-defined threshold
(e.g., 75%), continue classification on both the left and right subtrees, other-
wise only follow the predicted path (i.e., the one greater than the threshold).

4. Repeat steps 1→3 for the root of each subtree to be followed.

5. If a leaf node is reached, add its associated sector label to the set of predicted
labels.

6. Once the traversal is complete, return the full set of predicted labels.

Classifying in this way has the added benefit of reducing the total number of clas-
sifications required when a subtree is not followed. For this reason, however, it is
important to structure the hierarchy in an appropriate way, so that dissimilar labels
are further apart (e.g., we should be able to tell that an article about drilling for oil
is not similar to an article about a new type of yoghurt early on in our traversal).

66

Therefore, to generate an appropriate hierarchy, we can use agglomerative hierar-
chical clustering, in the same way as was used for merging original sector labels, as
described in Section 5.1.2.

Although this method has yet to be exhaustively tested, and no improvements have
been found, further experimentation to aspects such as the number of features,
hierarchical structure, and threshold values may still find it to be a superior method.

10 Conclusions

This thesis describes several possible approaches and techniques for tackling learning
on large, highly-skewed, multi-label data sets in a real-world scenario: the online
news-monitoring system, PULS. As the task is complex, the approach requires due
attention be paid to each of the steps involved in the construction, optimization,
and evaluation of the system. When broken down into these steps, one can compare
and contrast the variety of existing methodologies—in addition to exploring novel
techniques—to produce optimal results both for each individual component and for
the final working classification system. The process of constructing the industry-
sector classifier, as described here, highlights many of the major challenges involved
in multi-label learning. Through detailed experimentation, the most suitable meth-
ods for overcoming these challenges are found.

One of the initial major obstacles in building the multi-label classifier is working
with the large predefined label-set of the annotated PULS data. Overlapping la-
bel concepts, ambiguous naming conventions, and unclear hierarchical structure all
contribute to incorrect or poorly defined output. One way to counteract the issue of
ambiguity is to create a mapping of the original labels onto a smaller, more concise
label space. This is achieved by doing hierarchical clustering on labels that are se-
mantically linked—as determined through the use of latent semantic analysis—and
manually merging those that cover the same conceptual space. For handling the
disparity between the implicit hierarchical structure of label concepts and the flat
nature of the pre-defined PULS labels, a two-level hierarchy is created that maps
each level-II label to a single level-I label. By formulating the level-I labels to be at
the same level of generality, this hierarchy can be utilized both in classification and
evaluation to provide a “high-level” accuracy for difficult-to-classify test instances.
An experiment comparing the test scores of level-II label classifiers against the level-I
labels they map to shows that level-I performance and evaluation are more reliable,

67

thus even a simple hierarchy can improve system performance. While other methods
exist for leveraging hierarchical relationships between class labels, they are difficult
to implement in a real-world setting such as PULS.

In choosing how to build the multi-label learner itself, both performance and the
problem setting must be considered. Efficient and accurate classification methods
with low storage costs are necessary for the PULS sector classifier. A baseline
rote classifier based on pre-extracted IE features provides an efficient and relatively
accurate solution when PULS is able to extract the correct named-entities from
documents. This unreliability, however, may be overcome using binary-relevance
statistical classifiers, trained on extended bag-Of-word features, with part-of-speech-
filtered unigrams and bigrams. While the storage requirements for using all available
features would be prohibitive, dimensionality reduction via feature-selection provides
a succinct representation to improve both speed and performance. In addition to
concerns of efficiency, PULS must be able to handle data from numerous sources.
The distribution of industry sectors covered by one source will likely be different from
the distribution of others, thus overfitting to the training distribution is a major
concern. A data-balancing procedure is used for training more general classifiers
that can handle data from multiple sources and which might evolve and change
over long time periods. Comparisons between two classifier models, SVM and Naive
Bayes, and several feature-selection methods, including the novel Entropy-Filtering
method, show that SVM classifiers with information gain feature-selection performs
best on both the PULS and Reuters data sets. By also comparing macro-averaged
F-measures for an array of classifiers trained on balanced data against the same
classifiers trained on unbalanced data, it is shown that balanced training does indeed
produce better “general” classifiers.

While both the IE-based rote classifier and binary-relevance statistical classifiers
have their respective drawbacks, overall performance can be improved through the
combination of these simpler methods. A multi-stage system for combining the
output of each method is constructed, and operates in two distinct modes: pipeline-
combined, which gives the system a “second-chance” at predicting missed instances
from the first stage; and union-combined, which merges output from both sources.
Both allow for better performance, without greatly increasing overhead by introduc-
ing highly-complex methods. Experiments on PULS and RCV1 data sets find the
top performing two-stage classifier, Rote ∪ SVM+IG. When compared to other re-
search performing multi-label classification on RCV1, this method improves on the
state-of-the-art for macro-averaged F1 performance, indicating better performance

68

for a domain such as PULS. A three-stage classifier that integrates the two-level
hierarchy is also constructed to further performance for PULS data. It is currently
used in the PULS system.

In addition to producing a high-performance industry-sector classifier for use in
PULS, the research in this thesis also contributes to overall research in both NLP
and machine learning. The comparison of numerous techniques in IE and supervised
learning highlight the appropriateness of each method for various tasks, especially
with regards to real-world systems, which can guide future research in similar do-
mains. In directly utilizing sophisticated PULS tools to generate IE-based features,
such as company names and descriptors, the sector classifier successfully integrates
IE with multi-label learning in a novel way. This method has been published in
international conference proceedings [DPPY15]. A novel feature-selection method,
Entropy-Filtering is defined, and produces comparable or better results when ap-
plied on top of other methods. The class-data balancing procedure used in training
statistical learners provides improved performance over unbalanced training when
evaluated for macro-average, providing a simple technique that helps reduce class
overfitting for a specific domain, and can be useful in an environment where data
is drawn from numerous sources. This balancing procedure has also been pub-
lished [DPPY14]. Finally, as mentioned above, the multi-stage multi-label classifier
shows improved performance over state-of-the-art results when evaluated for macro-
average F-measure; another published result.

11 Future Work

The experiments outlined in this thesis are by no means comprehensive, and there
are many directions to be explored in future work:

Learning Algorithms Due to time and resource constraints, only a limited num-
ber of learning algorithms are evaluated in the experiments of this thesis. In the
future, a more comprehensive analysis should be done, including algorithms such
as logistic regression, Gaussian process classification, and neural networks. Each
algorithm should also be explored in greater depth by exhaustively comparing pa-
rameters settings and modalities of the different algorithms.

69

Feature Engineering Along with learning algorithms, feature-selection meth-
ods should also be expanded upon, to include, for example, filter methods, subset-
selection methods, and methods that account for imbalance between positive- and
negative-class features. Also, while features derived using principal component anal-
ysis (PCA) were discussed in the exploration of hierarchical classification (Section 9),
a comprehensive comparison of results for classifiers trained on these features should
be performed.

Threshold and Parameter Optimization Although the experiments make use
of a development set to produce optimal global prediction thresholds for various
classifiers, additional optimization can be done, for example to produce optimal local
thresholds for individual binary classifiers in an array. Other parameters could also
be optimized in future work, such as algorithm-specific parameters of classification
methods (for instance the margin constant in the SVM algorithm), or the number
of dimensions to use when reducing data for LSA-based sector clustering.

Multi-Label Schemes This thesis explores two main schemes for multi-label clas-
sification, namely binary-relevance and a simple rule-based multi-label classifier, in
the rote classifier. Other schemes such as Label Powerset, Pruned Sets, and Pruned
Problem Transformation (PPT) can also be applied to the problem setting. Future
work should also explore multi-label adaptations of statistical algorithms, such as
multi-label Naive Bayes.

Evaluation Metrics As outlined in Section 8.4, the current evaluation measures
are limited in their ability to accurately represent overall system performance. A new
evaluation scheme should be developed that accounts for annotator bias, conceptual
ambiguity between labels, and the presence of “wrong-but-relevant” predictions. Fu-
ture work could also incorporate results from additional measures such as Hamming
loss, zero-one loss, and Jaccard similarity, to produce a clearer overall picture.

12 Acknowledgements

I would like to acknowledge and express my sincere gratitude for the numerous
and significant contributions—both to this thesis in particular, and to our research
efforts in general—of the PULS team: Lidia Pivovarova, Mian Du, Peter Von Etter,

70

Natalia Ostapuk, and Dr. Roman Yangarber. Instrumental guidance from Dr.
Sotiris Tasoulis is also greatly appreciated. I would further like to recognize the
financial support received from the PULS project at the University of Helsinki, and
by the PULS/ARR Project of the Stockholm Environment Institute. Finally, I
would like to thank my closest family and friends for—at countless times and in
countless ways along the voyage—helping me to plug the leaks, bail out the water,
and man the life raft. I’ll sail with you lot any day.

References

AP05 Artstein, R. and Poesio, M., Bias decreases in proportion to the number
of annotators. Proceedings of FG-MoL, pages 141–150.

APvdGY11 Atkinson, M., Piskorski, J., van der Goot, E. and Yangarber, R., Multi-
lingual real-time event extraction for border security intelligence gath-
ering. In Counterterrorism and Open Source Intelligence, Wiil, U. K.,
editor, Springer Lecture Notes in Social Networks, Vol. 2, 2011, pages
355–390.

BLSB04 Boutell, M. R., Luo, J., Shen, X. and Brown, C. M., Learning multi-
label scene classification. Pattern Recognition, 37,9(2004).

BPM04 Batista, G. E., Prati, R. C. and Monard, M. C., A study of the behavior
of several methods for balancing machine learning training data. ACM
SIGKDD Explorations Newsletter, 6,1(2004), pages 20–29.

BT11 Box, G. E. and Tiao, G. C., Bayesian inference in statistical analysis,
volume 40. John Wiley & Sons, 2011.

CBHK02 Chawla, N. V., Bowyer, K. W., Hall, L. O. and Kegelmeyer, W. P.,
SMOTE: Synthetic minority over-sampling technique. Journal of Arti-
ficial Intelligence Research, 16,1(2002), pages 321–357.

CL96 Cowie, J. and Lehnert, W., Information extraction. Communications
of the ACM, 39,1(1996), pages 80–91.

CM07 Ceci, M. and Malerba, D., Classifying web documents in a hierarchy of
categories: a comprehensive study. Journal of Intelligent Information
Systems, 28,1(2007), pages 37–78.

71

CMM83 Carbonell, J. G., Michalski, R. S. and Mitchell, T. M., Machine learn-
ing: a historical and methodological analysis. AI Magazine, 4,3(1983),
page 69.

CS13 Cohn, T. and Specia, L., Modelling annotator bias with multi-task
Gaussian processes: An application to machine translation quality es-
timation. ACL (1). Citeseer, 2013, pages 32–42.

CUAG13 Cisse, M. M., Usunier, N., Arti, T. and Gallinari, P., Robust Bloom
filters for large multilabel classification tasks. Advances in Neural In-
formation Processing Systems, 2013, pages 1851–1859.

dCF09 de Carvalho, A. and Freitas, A., A tutorial on multi-label classification
techniques. In Foundations of Computational Intelligence Volume 5,
Springer, 2009, pages 177–195.

DE84 Day, W. H. and Edelsbrunner, H., Efficient algorithms for agglomerative
hierarchical clustering methods. Journal of classification, 1,1(1984),
pages 7–24.

DH+03 Drummond, C., Holte, R. C. et al., C4.5, class imbalance, and cost
sensitivity: why under-sampling beats over-sampling. Workshop on
learning from imbalanced datasets II, volume 11. Citeseer, 2003.

DK10 Dendamrongvit, S. and Kubat, M., Undersampling approach for imbal-
anced training sets and induction from multi-label text-categorization
domains. In New Frontiers in Applied Data Mining, Springer, 2010,
pages 40–52.

DPPY14 Du, M., Pierce, M., Pivovarova, L. and Yangarber, R., Supervised clas-
sification using balanced training. In Statistical Language and Speech
Processing, Springer, 2014, pages 147–158.

DPPY15 Du, M., Pierce, M., Pivovarova, L. and Yangarber, R., Improving super-
vised classification using information extraction. In Natural Language
Processing and Information Systems, Springer, 2015, pages 3–18.

DS05 Debole, F. and Sebastiani, F., An analysis of the relative hardness of
Reuters-21578 subsets. Journal of the American Society for Information
Science and technology, 56,6(2005), pages 584–596.

72

DVW+12 D’hondt, E., Verberne, S., Weber, N., Koster, C. and Boves, L., Us-
ing skipgrams and PoS-based feature selection for patent classification.
Computational Linguistics in the Netherlands.

EA13 Erenel, Z. and Altınçay, H., Improving the precision-recall trade-off in
undersampling-based binary text categorization using unanimity rule.
Neural Computing and Applications, 22,1(2013), pages 83–100.

For03 Forman, G., An extensive empirical study of feature selection metrics
for text classification. Journal of Machine Learning Research, 3, pages
1289–1305.

For04 Forman, G., A pitfall and solution in multi-class feature selection for
text classification. Proceedings of the twenty-first international confer-
ence on Machine learning, ICML ’04, New York, NY, USA, 2004, ACM,
pages 38–45.

GCR09 Gauch, S., Chandramouli, A. and Ranganathan, S., Training a hier-
archical classifier using inter-document relationships. Journal of the
American Society for Information Science and Technology, 60,1(2009),
pages 47–58.

GHY03 Grishman, R., Huttunen, S. and Yangarber, R., Information extraction
for enhanced access to disease outbreak reports. Journal of Biomedical
Informatics, 35,4(2003), pages 236–246.

GR70 Golub, G. H. and Reinsch, C., Singular value decomposition and least
squares solutions. Numerische Mathematik, 14,5(1970), pages 403–420.

GS96 Grishman, R. and Sundheim, B., Message Understanding Conference-6:
A brief history. COLING, volume 96, 1996, pages 466–471.

GW98 Gaizauskas, R. and Wilks, Y., Information extraction: Beyond docu-
ment retrieval, 1998.

GZ13 Gao, W. and Zhou, Z.-H., On the consistency of multi-label learning.
Artificial Intelligence, 199–200,0(2013), pages 22–44.

HE07 Hatami, N. and Ebrahimpour, R., Combining multiple classifiers: di-
versify with boosting and combining by stacking. Int. J. Comput. Sci.
Network Security, 7,1(2007), pages 127–31.

73

Hen09 Henderson, L., Automated text classification in the DMOZ hierarchy,
2009.

HFH+09 Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and
Witten, I. H., The WEKA data mining software: an update. ACM
SIGKDD explorations newsletter, 11,1(2009), pages 10–18.

HNA+13 Hartley, D. M., Nelson, N. P., Arthur, R., Barboza, P., Collier, N.,
Lightfoot, N., Linge, J., Goot, E., Mawudeku, A., Madoff, L. et al., An
overview of Internet biosurveillance. Clinical Microbiology and Infec-
tion, 19,11(2013), pages 1006–1013.

HR13 Huang, R. and Riloff, E., Classifying message board posts with an ex-
tracted lexicon of patient attributes. Proceedings of the 2013 Confer-
ence on Empirical Methods in Natural Language Processing, 2013, pages
1557–1562.

HTF09 Hastie, T., Tibshirani, R. and Friedman, J., The elements of statistical
learning, volume 2. Springer, 2009.

HVDY12 Huttunen, S., Vihavainen, A., Du, M. and Yangarber, R., Predicting
relevance of event extraction for the end user. In Multi-source, Multilin-
gual Information Extraction and Summarization, Poibeau, T., Saggion,
H., Piskorski, J. and Yangarber, R., editors, Theory and Applications
of Natural Language Processing, Springer Berlin, 2012, pages 163–176.

HYG02 Huttunen, S., Yangarber, R. and Grishman, R., Diversity of scenarios
in information extraction. LREC, 2002.

IKT05 Ikonomakis, M., Kotsiantis, S. and Tampakas, V., Text classification us-
ing machine learning techniques. WSEAS Transactions on Computers,
4,8(2005), pages 966–974.

JM00 Jurafsky, D. and Martin, J. H., Speech & Language Processing. Pearson
Education India, 2000.

Jol02 Jolliffe, I., Principal component analysis. Wiley Online Library, 2002.

JOP+ Jones, E., Oliphant, T., Peterson, P. et al., SciPy: Open source scien-
tific tools for Python, 2001–. URL http://www.scipy.org/. [Online;
accessed 2015-03-04].

74

JS02 Japkowicz, N. and Stephen, S., The class imbalance problem: A sys-
tematic study. Intelligent data analysis, 6,5(2002), pages 429–449.

KKP+06 Kotsiantis, S., Kanellopoulos, D., Pintelas, P. et al., Handling imbal-
anced datasets: A review. GESTS International Transactions on Com-
puter Science and Engineering, 30,1(2006), pages 25–36.

KM03 Klein, D. and Manning, C. D., Accurate unlexicalized parsing. Pro-
ceedings of the 41st Annual Meeting on Association for Computational
Linguistics-Volume 1. Association for Computational Linguistics, 2003,
pages 423–430.

KS97 Koller, D. and Sahami, M., Hierarchically classifying documents using
very few words. Technical Report 1997–75, Stanford InfoLab, February
1997.

LLS09 Liu, Y., Loh, H. T. and Sun, A., Imbalanced text classification: a
term weighting approach. Expert Systems with Applications, 36,1(2009),
pages 690–701.

LWZ09 Liu, X.-Y., Wu, J. and Zhou, Z.-H., Exploratory undersampling for
class-imbalance learning. Systems, Man, and Cybernetics, Part B: Cy-
bernetics, IEEE Transactions on, 39,2(2009), pages 539–550.

LYRL04 Lewis, D. D., Yang, Y., Rose, T. G. and Li, F., RCV1: A new bench-
mark collection for text categorization research. The Journal of Ma-
chine Learning Research, 5, pages 361–397.

MAT13 MATLAB, version 8.2 (R2013b). The MathWorks Inc., Natick, Mas-
sachusetts, 2013.

Mil80 Milligan, G. W., An examination of the effect of six types of error per-
turbation on fifteen clustering algorithms. Psychometrika, 45,3(1980),
pages 325–342.

MKGD12 Madjarov, G., Kocev, D., Gjorgjevikj, D. and Dz̆eroski, S., An extensive
experimental comparison of methods for multi-label learning. Pattern
Recognition, 45,9(2012), pages 3084–3104. Best Papers of Iberian Con-
ference on Pattern Recognition and Image Analysis (IbPRIA’2011).

75

MRT12 Mohri, M., Rostamizadeh, A. and Talwalkar, A., Foundations of ma-
chine learning. MIT Press, 2012.

P+99a Platt, J. et al., Fast training of Support Vector Machines using sequen-
tial minimal optimization. Advances in kernel methods–support vector
learning, 3.

P+99b Platt, J. et al., Probabilistic outputs for Support Vector Machines and
comparisons to regularized likelihood methods. Advances in large mar-
gin classifiers, 10,3(1999), pages 61–74.

PBM04 Prati, R. C., Batista, G. E. and Monard, M. C., Class imbalances versus
class overlapping: An analysis of a learning system behavior. MICAI
2004: Advances in Artificial Intelligence: Third Mexican International
Conference on Artificial Intelligence, Mexico City, Mexico, April 26-30,
2004, Proceedings, volume 3. Springer, 2004, pages 312–321.

PLM+04 Plisson, J., Lavrac, N., Mladenic, D. et al., A rule based approach to
word lemmatization. Proceedings of IS-2004, pages 83–86.

Puu12 Puurula, A., Scalable text classification with sparse generative model-
ing. In PRICAI 2012: Trends in Artificial Intelligence, Anthony, P.,
Ishizuka, M. and Lukose, D., editors, volume 7458 of Lecture Notes in
Computer Science, Springer Berlin Heidelberg, 2012, pages 458–469.

PVG+11 Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Van-
derplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and
Duchesnay, E., Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12, pages 2825–2830.

Ris01 Rish, I., An empirical study of the Naive Bayes classifier. IJCAI 2001
workshop on empirical methods in artificial intelligence, volume 3. IBM
New York, 2001, pages 41–46.

RLC+09 Ren, J., Lee, S. D., Chen, X., Kao, B., Cheng, R. and Cheung, D., Naive
Bayes classification of uncertain data. Data Mining, 2009. ICDM’09.
Ninth IEEE International Conference on. IEEE, 2009, pages 944–949.

SC08 Steinwart, I. and Christmann, A., Support Vector Machines. Springer,
2008.

76

Seb02 Sebastiani, F., Machine learning in automated text categorization.
ACM computing surveys, 34,1(2002), pages 1–47.

Sor10 Sorower, M. S., A literature survey on algorithms for multi-label learn-
ing. Technical Report, Oregon State University, Corvallis, OR, USA
(December 2010), 2010.

Sta08 Stamatatos, E., Author identification: Using text sampling to handle
the class imbalance problem. Information Processing & Management,
44,2(2008), pages 790–799.

Tan11 Tange, O., Gnu parallel - the command-line power tool. ;login: The
USENIX Magazine, 36,1(2011), pages 42–47. URL http://www.gnu.

org/s/parallel.

TB03 Tikk, D. and Biró, G., Experiments with multi-label text classifier on
the Reuters collection. Proceedings of the International Conference on
Computational Cybernetics (ICCC 03), 2003, pages 33–38.

TK07 Tsoumakas, G. and Katakis, I., Multi-label classification: an overview.
International Journal of Data Warehousing and Mining (IJDWM),
3,3(2007), pages 1–13.

TKV10 Tsoumakas, G., Katakis, I. and Vlahavas, I., Mining multi-label data. In
Data mining and knowledge discovery handbook, Springer, 2010, pages
667–685.

Vap00 Vapnik, V., The nature of statistical learning theory. springer, 2000.

WBPB10 Welinder, P., Branson, S., Perona, P. and Belongie, S. J., The multidi-
mensional wisdom of crowds. Advances in neural information processing
systems, 2010, pages 2424–2432.

Yan99 Yang, Y., An evaluation of statistical approaches to text categorization.
Information retrieval, 1,1-2(1999), pages 69–90.

Yan06 Yangarber, R., Verification of facts across document boundaries. Proc.
International Workshop on Intelligent Information Access, 2006, pages
6–8.

YP97 Yang, Y. and Pedersen, J. O., A comparative study on feature selection
in text categorization. ICML, volume 97, 1997, pages 412–420.

77

YS09 Yangarber, R. and Steinberger, R., Automatic epidemiological surveil-
lance from on-line news in MedISys and PULS. Proceedings of IMED-
2009: International Meeting on Emerging Diseases and Surveillance,
Vienna, Austria, 2009.

ZYT11 Zhang, W., Yoshida, T. and Tang, X., A comparative study of TF*IDF,
LSI and multi-words for text classification. Expert Systems with Appli-
cations, 38,3(2011), pages 2758 – 2765.

ZZ07 Zhang, M.-L. and Zhou, Z.-H., Ml-knn: A lazy learning approach to
multi-label learning. Pattern recognition, 40,7(2007), pages 2038–2048.

ZZY+05 Zhuang, D., Zhang, B., Yang, Q., Yan, J., Chen, Z. and Chen, Y.,
Efficient text classification by weighted proximal SVM. Fifth IEEE
International Conference on Data Mining, 2005.

