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ABSTRACT 
 

Dynamic modifications of synaptic connectivity enables the brain to 

adequately respond to environmental challenges. This ability, known as 

synaptic plasticity, peaks during the early postnatal period, yet it is 

maintained throughout life. Interestingly, antidepressants (ADs) and AD-like 

drugs can promote neuronal plasticity in the adult brain, a phenomenon 

recently suggested to contribute to the mood-improving effects of ADs. 

However, the mechanisms underlying AD-induced neuronal network 

refinement are still poorly understood. 

The main goal of this thesis was to advance our understanding of the 

mechanisms associated with pharmacologically-enhanced plasticity in the 

adult brain. Two pharmacologically distinct compounds with AD-like actions, 

namely the selective serotonin reuptake inhibitor fluoxetine (Flx) and the 

volatile anesthetic isoflurane were used to enhance synaptic plasticity in the 

rodent cortex and hippocampus. After drug exposure, behavioral, molecular, 

histological and in vitro electrophysiological approaches were utilized to 

investigate the effects of Flx and ISO on synaptic function and plasticity. Using 

electrophysiological recordings in brain slices, we show that chronic Flx 

treatment results in increased short- and long-term plasticity as well as 

enhanced basal transmission in excitatory CA3-CA1 synapses in the 

hippocampus. These changes were paralleled by an activity-dependent 

enhancement in the expression of proteins related to vesicular trafficking and 

release, such as synaptophysin, synaptotagmin 1, mammalian uncoordinated 

protein 18 (Munc 18) and syntaxin 1. Moreover, Flx treatment reduced the 

percentage of parvalbumin-expressing GABAergic neurons, increased the 

expression of polysialylated-neural cell adhesion molecule (PSA-NCAM) and 

decreased the expression of the potassium-chloride co-transporter 2 (KCC2) 



in the basolateral amygdala and in the medial prefrontal cortex (mPFC). All 

the above findings are likely to be attributed to increased dynamic range of 

synaptic plasticity induced by Flx. Our behavioral findings demonstrate that 

long term Flx administration in combination with extinction training results 

in long-term loss of fearful memories while the Flx treatment alone failed to 

influence fear behavior. These data suggest that behavioral training is 

indispensable for the guidance of Flx-induced network plasticity.  

Exposure to isoflurane promotes long-term synaptic plasticity and enhances 

basal synaptic transmission in excitatory CA3-CA1 synapses in the mouse 

hippocampus. These changes were correlated with increased tropomyosin 

receptor kinase B (TrkB) signaling through the mammalian target of 

rapamycin (mTOR) pathway in the prefrontal cortex and hippocampus and 

led to rapid antidepressant-like behavioral effects in the forced swim test. 

Taken together, our findings highlight that Flx and isoflurane enhance 

synaptic plasticity in hippocampal and cortical excitatory synapses, however, 

the underlying molecular mechanisms as well as behavior improvements were 

different. In conclusion, the results described in this work provide a 

mechanistic background for adult brain plasticity and network tuning, with 

high practical significance to the design of clinical therapy.  
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1. REVIEW OF THE LITERATURE 
 

1.1 FEATURES OF NEURONAL TRANSMISSION 
 

Neurons in the mammalian brain communicate with each other mainly by 

using electrical and chemical signals, utilizing specialized compartments 

known as synapses. At electrical synapses, current flows through gap 

junctions, which are membrane channels that connect two cells. In contrast, 

chemical synapses enable communication via the secretion of specific 

molecules, neurotransmitters (NT), which are released into the synaptic cleft 

from the presynaptic terminal, triggered by an influx of calcium (Ca2+), usually 

as a consequence of an action potential (AP). NT bind to receptors at the 

postsynaptic membrane, which leads to depolarization (excitatory 

postsynaptic potential, EPSP) or hyperpolarization (inhibitory postsynaptic 

potentials, IPSP) of the target neuron and thus making them more or less 

likely to fire an AP. 

The major excitatory transmitter in the brain is glutamate, which exerts its 

postsynaptic actions via activation of both ionotropic (iGluRs) and G-protein-

coupled metabotropic (mGluRs) glutamate receptors (Scannevin & Huganir 

2000). Fast excitatory neurotransmission in the hippocampus is mediated by 

tetrameric glutamate-gated cation channels (iGluRs): N-methyl-D-aspartate 

(NMDA) receptors (GluNRs), a-amino-3-hydroxy-5-methyl-4-

isozazolepropionic acid (AMPA) receptors (GluARs) and kainate receptors 

(KARs) (Scheme 1). All glutamate receptors are mostly permeable to sodium 

(Na+) and potassium (K+), while NMDARs are also permeable to Ca2+. The 

Ca2+ permeability of other iGluRs depends on their subunit composition and 

mRNA editing. 
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Scheme 1. Classification of glutamate receptors 

 

Transmission efficacy and dynamics at glutamatergic synapses can easily be 

altered by ongoing neuronal activity in a process called synaptic plasticity. By 

virtue of this property, the glutamatergic synapse can thus act as a ‘cellular 

memory device’ containing information about the previous activity history of 

the neuronal circuitry (Malinow & Malenka 2002; Malenka & Bear 2004; 

Markram et al. 1997).  

Whilst glutamatergic synapses convey information in long projective neuronal 

pathways, GABAergic networks (operated mainly by gamma-aminobutyric 

acid (GABA)) control excitability and coordinate spatiotemporal integration 

properties of principal neurons. Inhibitory GABAergic transmission is 

mediated via ionotropic GABAA receptors (GABAARs) and metabotropic 

GABAB receptors (GABABRs). GABAARs are ion channels permeable to 

chloride (Cl-) and bicarbonate ions (HCO3-) and mediate both fast and tonic 

inhibition (Farrant & Nusser 2005; Capogna & Pearce 2011). Inhibitory 

GABAergic neurons (interneurons) perform several types of inhibition (Fig. 

1). In feedforward inhibition a principal cell and an interneuron receive 

excitatory inputs from the same presynaptic source (Sik et al. 1994). The 

interneuron then outputs its inhibitory signal to the principal cell. Thus, upon 

activation, the principal cell receives two types of input, one excitatory and 
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one inhibitory, separated by a brief delay due to interneuron integration. In 

the feedback mechanism, the principal cell receives excitatory input first and 

then outputs back to the interneuron (Anderen et al. 1964). Feed-back 

inhibition is mediated primarily by the perisomatic inhibition of pyramidal 

neurons. An extension of feedback inhibition is lateral inhibition (Freund & 

Buzsáki 1996). This occurs when the activation of a principal cell recruits an 

interneuron, which, in turn, suppresses the activity of surrounding principal 

cells. 

 

 

Figure 1. Types of inhibition in central nervous system. I-inhibitory neuron, P-principal 

cell. 

 

1.2  SYNAPTIC PLASTICITY 
 

In the brain, all neurons are structured in a complex system of neuronal 

networks. They consist of assemblies of excitatory and inhibitory neurons 

whose work is delicately synchronized and aimed at efficient processing of 

information coming from inside and outside of the brain. Effectiveness of 

information processing in the nervous system is very much dependent on the 

ability of the nervous system to reorganize its connections functionally and 
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structurally in response to changes in environmental experience, which is 

referred to as neuronal plasticity (Baroncelli et al. 2011).  

One of the most intriguing questions in neuroscience concerns the manner in 

which the nervous system can modify its organization and ultimately its 

function throughout lifetime. Synaptic plasticity for over a century has been 

proposed to play a central role in the capacity of the brain to incorporate 

transient experiences into persistent memory traces (Citri & Malenka 2008). 

Nowadays, many different forms of synaptic plasticity have been described; 

below the well-characterized plasticity principles will be elucidated. 

 

1.2.1   HEBBIAN SYNAPTIC PLASTICITY 
The plasticity rule proposed by Canadian psychologist Donald Hebb states 

that when one neuron drives the activity of another neuron, the connection 

between these neurons is potentiated (Hebb 1949). Nowadays, modifiable 

neuronal circuits are called “Hebbian” and the basic mechanism for synaptic 

plasticity, where an increase in synaptic efficacy arises from the presynaptic 

cell's repeated and persistent stimulation of the postsynaptic cell, is called 

“Hebbian plasticity” 

 

1.2.1.1   SHORT-TERM SYNAPTIC PLASTICITY 
Short-term plasticity (STP) refers to a phenomenon in which synaptic efficacy 

changes over time in a way that reflects the history of presynaptic activity. 

When two stimuli are delivered within a short interval, the response to the 

second stimulus can be either enhanced or depressed relative to the response 

to the first stimulus. If the second stimulus response is enhanced then the 

phenomenon is called paired pulse facilitation (PPF) and if depressed, paired 

pulse depression (PPD) (Katz & Miledi 1968; Zucker & Regehr 2002). Most 
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forms of STP are triggered by short bursts of activity causing a transient 

accumulation of Ca2+ in presynaptic nerve terminals. This increase in 

presynaptic calcium, in turn, causes changes in the probability of NT release 

(Pr) by directly modifying the biochemical processes that underlie the 

exocytosis of synaptic vesicles. 

Short term plasticity depends on the initial Pr. Synapses with a high initial Pr 

tend to depress, whereas those with a low initial probability of release usually 

facilitate. Indeed, most synapses can show either facilitation or depression 

depending on the initial Pr. Several models have been proposed to account for 

short-term plasticity, including summation of residual Ca2+ with repetitive 

stimulation, and local saturation of calcium buffers. It has also been suggested 

that short-term changes in synaptic function is associated with the specific 

release sensor (Zucker & Regehr 2002). 

Even if every synapse, examined in organisms ranging from invertebrates to 

mammals, exhibits numerous forms of short-term synaptic plasticity, the 

physiological meaning of STP still hasn’t been fully recognized (Zucker & 

Regehr 2002), however, a few assumptions exist. Short term synaptic 

plasticity in mammalian brain may serve as high and low-pass filters 

influencing on function of information processing. For example, synapses 

with a low initial Pr function as high-pass filters, since they will facilitate 

during high-frequency action potential bursts while low-frequency bursts will 

not be transmitted with the same efficacy. In contrast, synapses with a high 

initial Pr function as low-pass filters, since they will depress during high-

frequency bursts but will reliably relay low-frequency activity (Abbott & 

Regehr 2004). 
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1.2.1.2   LONG TERM SYNAPTIC PLASTICITY 
Approximately two decades after Hebb published his postulate, Terje Lømo 

and Tim Bliss in 1968 showed that high-frequency electrical stimulation in the 

dentate gyrus of the rabbit hippocampus cause persistent growth of response 

amplitude and called this phenomenon long term potentiation (LTP) (Bliss & 

Lomo 1973). Over the past 40 years, long-lasting synaptic enhancement has 

been an object of intense investigation because it has been proposed that long 

term potentiation provides an important key for understanding the cellular 

and molecular mechanisms by which memories are formed and stored. 

Investigation of the mechanism of this phenomenon forced the study of LTP 

into the field of synaptic plasticity, in particular to in vitro studies of living 

hippocampal slices.  

The hippocampal formation consists of different sections: subiculum, dentate 

gyrus (DG) and cornu ammonis (CA) and in rodents brain presented as folded 

structure of excitatory/principal and inhibitory/interneuron cells. The CA 

divides further into three different regions CA3, CA2 and CA1. A very 

important feature of the hippocampus is the relay organisation of synaptic 

transmission, the so called trisynaptic loop (Fig. 2), which starts in the 

entorhinal cortex where through granule cell fibers - perforant path - 

information is processed to DG. DG granule cells project to CA3 pyramidal 

cells synapses (mossy cell fibers). And then CA3 pyramidal cells form synapses 

on CA1 pyramidal cells, which cell bodies are organized in the thick band 

(striatum radiatum). Afferent fibers that connect CA3 and CA1 areas of 

hippocampus are called Schaffer collateral (SC). Pyramidal neurons in the CA1 

area then synapse in the subiculum and and project to the entorhinal cortex. 

Collectively the DG, CA3 and CA1 areas of the hippocampus compose the 

trisynaptic loop. 
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Figure 2. Schematic representation of the synaptic connectivity in the transverse 

hippocampal slice. Hippocampal trisynaptic loop consist of DG-CA3-CA1 synaptic 

pathways there entorhinal cortex-DG pathways called perforant fiber pathway, DG-CA3 - 

mossy fibers, CA3-CA1 – Shaffer collateral. 

 

The classical way to observe LTP is via tetanic stimulation and recording of 

field postsynaptic potentials (fEPSPs) in hippocampal slices. However, there 

are other protocols for LTP induction. For example, the coupling of low 

frequency presynaptic stimulation with postsynaptic depolarization is one 

effective method used to induce LTP that can last for several hours 

(Gustafsson & Wigström 1988; Liao et al. 1995; Chen et al. 1999). Theta burst 

stimulation is another method of LTP induction, resembling the physiological 

events underlying the LTP. It takes its name from the theta rhythm observed 

on electroencephalogram (about 5 Hz) in living hippocampus. For instance, 

10 trains consisting of 4 pulses at 100 Hz with 200 msec interval, effectively 

induces LTP in CA1 area of hippocampus (Larson et al. 1986; Staubli & Lynch 

1987). It is important to notice that LTP occurs not only at excitatory synapses 
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of the hippocampus, but at many other synapses in a variety of brain regions 

(Yaniv et al. 2000; Grossman et al. 2002; Berretta et al. 2008; Caruana et al. 

2012). Moreover, several properties of LTP match the properties of some 

forms of memory, suggesting that LTP may underlie cognitive functions. First, 

LTP is input-specific, which means that when it is generated in one synapse it 

doesn’t normally occur in another. LTP is associative - weak stimulation of a 

pathway will not by itself trigger LTP. However, if one pathway is weakly 

activated at the same time that a neighboring pathway onto the same cell is 

strongly activated, both synaptic pathways undergo LTP. Although LTP is 

triggered rapidly, it last for hours in vitro and days in vivo and the late phase 

of LTP requires gene transcription and protein synthesis. Clearly, LTP reflects 

a mechanism that most likely contributes to memory formation by triggering 

long lasting, perhaps permanent changes in neuronal circuitry. 

NMDA-dependent long term potentiation 
In the CA1 region of hippocampus, as well as many other areas of the central 

nervous system (CNS), LTP induction requires a rise in postsynaptic Ca2+ via 

activation of NMDA receptors (Fig. 3). In order for the NMDA receptor 

channel to conduct, glutamate must bind to the receptor and the postsynaptic 

membrane must be depolarized. The basis for this is a voltage-dependent 

block of the ion channel by extracellular magnesium (Mg2+). However when 

the postsynaptic cell is depolarized during induction of LTP, Mg2+ dissociates 

from its binding site within the NMDA receptor channel, allowing Ca2+ as well 

as Na+ to enter. It is now well accepted that trafficking of other glutamate 

receptors (AMPA receptors) to and away from synaptic plasma membrane 

plays an essential role in LTP induction, expression and maintenance. AMPA 

receptors are composed of four types of subunits GluA (1-4). Most AMPA 

receptors are heteromeric, consisting of symmetric 'dimer of dimers' 

complexes of GluA2 and either GluA1, GluA3 or GluA4 and, depending on 
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subunit composition of receptor; they may play distinct roles in neural 

communication. There are two general models explaining how the synapses 

acquire AMPA receptors during LTP. In the first model, glutamate receptors 

are freely moving via lateral diffusion into and out of the synapse (Opazo et al. 

2012). In the second model, neuronal activity triggers exocytosis, which leads 

to insertion of GluARs into the synapse from an intracellular pool (Park et al. 

2004). There are strong evidential data supporting both models, however 

further experiments are needed to clarify this issue. 

 

Figure 3. Schematic representation of NMDA-dependent LTP. Robust stimulation of 

presynaptic terminal (or other protocols of stimulation) causes release of glutamate and 

consequent activation of AMPA and NMDA receptors. Depolarization induced CA2+ enter 

results in activation of downstream signaling molecules, transcription factors and 

internalization of AMPA receptors. 
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Activation of AMPA and NMDA receptors, except NMDA-independent forms, 

seems essential for the induction of long term synaptic plasticity, but 

insufficient to elicit a stable form of LTP. Calcium/calmodulin dependent 

protein kinase II (CaMKII) is essential as a mediator for NMDA-dependent 

LTP. CaMKII is found in high concentrations in the postsynaptic density: the 

postsynaptic component of the dendritic spine that also contains glutamate 

receptors. Loading of cells with a constitutively active form of CaMKII 

enhances EPSCs, whereas genetic deletion of a critical CaMKII subunit blocks 

the ability to generate LTP (Gustafsson & Wigström 1988; Malenka et al. 

1989). Several other protein kinases, including protein kinase C (PKC), cyclic 

adenosine-monophosphate (cAMP)–dependent protein kinase (PKA), the 

tyrosine kinase Src, and mitogen-activated protein kinase (MAPK), have also 

been suggested to contribute to LTP (Teyler & DiScenna 1987; Gustafsson & 

Wigström 1988; Larkman & Jack 1995; Wikström et al. 2003). 

Neurotrophins, specifically brain derived neurotrophic factor (BDNF), are of 

particular interest to synaptic plasticity because of the possibility that BDNF 

may serve as a mediator rather than simply as a modulator of LTP. The idea 

that BDNF might be involved in synaptic plasticity came from the observation 

that the expression of BDNF in the hippocampus can be induced by high 

frequency stimulation and that endogenous BDNF is required for LTP 

induction in hippocampal CA1 pyramidal neurons (Castrén et al. 1993; 

Patterson et al. 1996). Importantly, BDNF acts on synaptic transmission from 

both pre and post synaptic sites. Presynaptically, BDNF enhances glutamate 

release and increases the frequency of miniature EPSCs (mEPSCs) in 

hippocampus (Takei et al. 1998; Lessmann & Heumann 1998; Waterhouse & 

Xu 2009). On the postsynaptic site, BDNF increases NMDA single-channel 

open probability (Levine et al. 1998; Levine & Kolb 2000) presumably through 

tyrosine phosphorylation of the NMDA receptor subunits (Suen et al. 1997; 
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Lin et al. 1998) and regulate its expression by transcription dependent 

mechanisms (Caldeira et al. 2007; Carvalho et al. 2008). 

The later stages of LTP are dependent upon both protein translation and gene 

transcription, which similarly involves the participation of multiple signaling 

pathways. During LTP, protein synthesis is required to supply functional and 

structural changes. In this regard, the mammalian target of rapamycin 

(mTOR) pathway was found to be important for LTP expression (Tang et al. 

2001). mTOR is known to regulate both dendritic and somatic protein 

synthesis in neurons (Hoeffer & Klann 2010). Examples of mTOR translation 

targets include CaMKII, PSD-95 and GluR1 (Slipczuk et al. 2009). Another 

well studied transcription factor involved in LTP is cAMP response element-

binding protein (CREB) (Bengtson & Bading 2012). CREB targets genes 

including Bdnf and its cognate receptor tropomyosin receptor kinase B (TrkB) 

(Deogracias et al. 2004), Wnt2 (Wayman et al. 2006) and different glutamate 

receptor subunits (Wayman et al. 2006; Traynelis et al. 2010). 

NMDA- nondependent long term potentiation 

In most of the synapses, LTP requires the activation of NMDA receptors which 

are generally considered to be expressed postsynaptically. However, there are 

regions in the brain which undergo long term synaptic plasticity but the origin 

and basis of synaptic strengthening in those synapses are fundamentally 

different. Synaptic transmission and plasticity at the hippocampal mossy fiber 

synapse is unusual for several reasons, including low basal Pr, pronounced 

frequency facilitation and a lack of NMDARs involvement in LTP. 

Experimental evidence suggest that mossy fiber LTP does not need any 

postsynaptic activation but is triggered by an activity-dependent increase of 

Ca2+ in the presynaptic terminal (Katsuki et al. 1991; Maccaferri et al. 1998). 

Another set of findings suggest an important role of presynaptic kainate 

receptors in induction and maintenance of mossy fiber LTP. Thus, application 
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of a selective kainate receptor antagonist, which did not affect mossy fibre 

synaptic transmission, completely blocks the induction of mossy fibre LTP in 

a fully reversible manner (Bortolotto et al. 1999). Additionally, kainate 

receptors are found in higher levels in the CA3 region of the hippocampus.  

Another non-conventional example of NMDA-independent form of long term 

synaptic plasticity is LTP in glycinergic synapses. Glycine receptors (GlyRs) 

are structurally related to GABAARs and have a similar inhibitory role. In the 

superficial dorsal horn of the spinal cord, glycinergic synapses on inhibitory 

GABAergic neurons exhibit LTP (GlyRs LTP), which occurs rapidly after 

exposure to the inflammatory cytokine interleukin-1 beta. Notably, formalin-

induced peripheral inflammation in vivo potentiates glycinergic synapses on 

dorsal horn neurons, suggesting that GlyR LTP is triggered during 

inflammatory peripheral injury (Chirila et al. 2014) 

 

1.2.1.3   SPIKE TIMING DEPENDENT PLASTICITY 
Another form of Hebbian long-term synaptic plasticity, spike-timing-

dependent plasticity (STDP), depends on the relative timing of pre- and 

postsynaptic action potentials. A pioneering study by W. Levy and O. Steward 

(1983) demonstrated that stimulation of inputs from entorhinal cortex to the 

DG produced potentiation when the weak input preceded the strong input by 

less than 20 ms, and reversing the order led to depression (Levy & Steward 

1983). Later on H. Markram and colleagues (1997), controlling pre- and 

postsynaptic spike timing, discovered that order and timing of pre- and 

postsynaptic spikes was critical for direction and magnitude of postsynaptic 

response (Markram et al. 1997) Although STDP describes new synaptic 

plasticity principles in neuronal network, the mechanisms underlying this 

phenomenon seems to be allied to classical Hebbian synaptic plasticity.  
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1.2.2  HOMEOSTATIC SYNAPTIC PLASTICITY 
Homeostatic synaptic plasticity is a form of synaptic plasticity that acts to 

stabilize the activity of a neuron or neuronal circuit in the face of perturbations 

and complements Hebbian forms of plasticity where activity-dependent 

refinement of synaptic connectivity occurs. One of the most studied forms of 

homeostatic plasticity is synaptic scaling. In pioneering experiments by G. 

Turrigiano and colleagues (Turrigiano et al. 1998), it was demonstrated that 

chronic blockade of cortical culture activity increased the amplitude of 

miniature EPSCs (mEPSCs) without changing their kinetics. Conversely, 

blocking GABA - mediated inhibition initially raised firing rates, but over a 

48-hour period mESPC amplitude decreased and firing rates reconciled to 

control values. This study demonstrates that, at least in vitro, homeostatic 

plasticity mechanisms are in place that function to keep activity relatively 

constant in the face of even major perturbations.  

The major expression mechanism underlying homeostatic plasticity is 

through bidirectional accumulation of AMPA receptors. In spinal and 

neocortical neurons there are proportional changes in GluA1 and GluA2 

subunits of AMPA receptors, after tetrodotoxin (TTX) blockade of neuronal 

activities (O’Brien et al. 1998; Wierenga et al. 2005), where studies on 

hippocampal neurons have reported enhanced GluA1 accumulation with 

smaller or absent changes in GluA2 (Thiagarajan et al. 2005; Sutton et al. 

2006). Several studies have demonstrated the role of BDNF in synaptic 

scaling. BDNF is thought to be released by cortical pyramidal neurons in an 

activity dependent manner, and exogenous BDNF can prevent the effects of 

activity deprivation. Further, preventing activation of endogenous BDNF 

receptors mimics the effects of activity blockade (Rutherford et al. 1998; Copi 

et al. 2005). Evidently, there are likely multiple forms of synaptic homeostasis, 
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mediated by distinct signalling pathways and with distinct expression 

mechanisms (Ramakers et al. 1990; Corner & Ramakers 1992; Rutherford et 

al. 1998; Trasande & Ramirez 2007). And since the field of homeostatic 

synaptic plasticity is still relatively young it is expected that the cast of 

molecular players thought to be involved will rapidly accumulate over the 

time. Altogether, homeostatic synaptic plasticity serves as mechanisms to 

stabilize firing rates in the face of developmental or learning-induced changes 

in drive, and this contributes to the ability of central neuronal networks to 

maintain stable function and enables networks to maintain the specificity of 

synaptic changes that encode information. 

 

1.3 NEURONAL PLASTICITY 
 

1.3.1  TIMELINE OF PLASTICITY 
Major challenges for the field of synaptic plasticity now include understanding 

when and why different forms of plasticity are present in real neuronal 

networks, and how these mechanisms interact with each other to generate 

flexible yet stable brain function.  

Even though plasticity is an obvious phenomena in the brain, it is not present 

constantly throughout lifetime (scheme 2). During prenatal development and 

short time after a birth it is impractical for the genome to specify the 

connectivity of every connection in the brain. Later, connections are sculpted 

in response to internal and external events. During maturational stages in the 

lifespan of an organism nervous system is especially sensitive to certain 

environmental stimuli and these periods, which are called critical periods, are 

characterized with heightened plasticity. In the early 1960s David H. Hubel 

and Torsten Wiesel clearly demonstrated that sensory experience shapes 
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neuronal networks and that the degree to which the brain is changed by 

experience is variable and age dependent (Wiesel & Hubel 1963).  

In primates and cats, visual inputs from each eye segregate into eye-specific 

regions in the primary visual cortex, called ocular dominance columns, where 

most of the neurons in columns are activated to some degree by both eyes, and 

about a quarter are more activated by either the contralateral or ipsilateral eye 

(Hubel & Wiesel 1963; Blakemore & Vital-Durand 1986). This segregation 

process takes place during a critical period of early postnatal development and 

requires the balanced use of both eyes (Wiesel 1982). However, if one eye is 

closed during the critical period, very few cells could be driven from the 

deprived eye and ocular dominance distribution is shifted such that all cells 

are driven by the eye that remained open. Such changes lead to development 

of poor vision or amblyopia. Importantly, if the patch is removed during the 

critical period and the use of the weaker eye is encouraged by patching the 

better eye, the vision of the amblyopic eye can be recovered. However, after 

the closure of this critical period, amblyopia becomes permanent and cannot 

be revised by patching of the better eye (Hubel & Wiesel 1963; Wiesel & Hubel 

1965). Nowadays, it is widely accepted that similar processes govern the 

development and tuning of neuronal networks not only in visual system but 

in other brain regions. During normal development sensitive periods for the 

elaboration of sensory pathways (vision, hearing) and higher cognitive 

function elapse in humans to around 7 years of age and in rodents to day 21 of 

postnatal development. Important, timing of critical periods for different 

systems may significantly vary (Hensch 2003). 

Use-dependent plasticity, plasticity which is sensitive to experience, continues 

to take place in adulthood. Adult brain plasticity is much more restricted in 

scope but still possible. Normal or naïve adult brain plasticity underlies our 

ability to form memories, learn and cope with changing environment (Kolb et 
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al. 2003; Robinson & Kolb 2004). Recent studies have shown, using 

mammalian visual cortex as an experimental model (Hensch 2005), that it is 

possible to reinstate much greater levels of plasticity in the adult visual cortex 

than previously suspected, employing various environmental and 

pharmacological strategies (Sale et al. 2007; Hensch 2003; Hensch 2005). 

This type of plasticity does not present in normal adult brain but can be 

induced by various interventions. It characterized with features similar to 

critical periods and thus is usually called reopened critical period or juvenile-

like plasticity. We propose to use the term iPlasticity, which means induced 

plasticity, to describe structural and functional reorganizations of mature 

neuronal networks stimulated by intense environmental or/and 

pharmacological influence. 

Scheme 2. Timeline of plasticity. 

 

 

1.3.2  TOOLS TO TRIGGER IPLASTICITY 
 

1.3.2.1   ENVIRONMENTAL ENRICHMENT 
Exposure to complex environment, rich with sensory stimuli, so-called 

environmental enrichment (EE) – has been shown to induce plasticity. In 

neuroscience, EE refers to housing conditions of laboratory animals, where a 

combination of complex inanimate and social stimulation facilitates sensory, 

cognitive and motor function (Rozenzwieg et al. 1962). Enriched animals are 
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reared in large groups and maintained for at least three weeks in an 

environment where a variety of objects (e.g. toys, tunnels, nesting material 

and stairs) are present and change frequently. 

It was demonstrated that EE restores plasticity of the visual cortex in 

adulthood (Sale et al., 2007).Exposure of adult rats to EE completely rescued 

the visual deficits associated with amblyopia (Sale et al., 2007). Consistent 

with this finding, it has been demonstrated that EE affected structural 

plasticity: increased dendritic branching and length, the number of dendritic 

spines, the size of synapses on some neuronal populations (Rosenzweig et al. 

1964; Beaulieu & Colonnier 1987; Greenough et al. 1987) and synaptic 

plasticity: increased basal synaptic transmission and long term potentiation 

in hippocampus (Foster et al. 1996). At the level of behavior, environmental 

complexity enhanced learning and memory (Moser et al. 1997; Rampon et al. 

2000; Tang et al. 2001; Lee et al. 2003), reduced memory decline in aged 

animals (Bennett et al. 2006), decreased anxiety and increased exploratory 

activity (Chapillon et al. 1999; Friske & Gammie 2005). Clearly, exposure to 

EE reinstates critical period plasticity and can be used as a tool to study 

iPlasticity. 

 

1.3.2.2   FLUOXETINE 
Fluoxetine (Flx, also known as Prozac) is an antidepressant of the selective 

serotonin reuptake inhibitor (SSRI) class, which was discovered and 

developed by scientists from Eli Lilly and Company in 1974 (Wong et al. 1974). 

It is frequently used to treat major depressive disorder, obsessive-compulsive 

disorder, post-traumatic stress disorder, bulimia nervosa, panic disorder, 

premenstrual dysphoric disorder, trichotillomania etc. For a long time it was 

thought that mechanism of Flx action on the nervous system was associated 

with increasing serotonin levels by serotonin uptake blockade, which was very 
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much in line with the action of other antidepressants on monoamines balance 

in the brain. At the time it formed the basis for the monoamine theory of 

depression, which proposed that this condition was caused by a deficiency in 

monoaminergic neuromodulators and antidepressant drugs acted by 

replenishing them (Schildkraut 1995). 

Recent studies showed that chronic treatment with Flx induced a plastic state 

in the visual cortex which closely resembles that observed at the peak of the 

critical period (Maya Vetencourt et al. 2008). When adult rats were treated 

with Flx, closing of one eye produced a dramatic shift in the sensitivity of 

visual cortical neurons in favor of the open eye, a response normally seen only 

during the early postnatal critical period (Maya Vetencourt et al., 2008). 

Furthermore, visual acuity of the amblyopic eye could be fully restored in 

adulthood when the eye was opened during Flx treatment and the previously 

open eye was simultaneously closed to encourage the use of the weak eye 

(Maya Vetencourt et al. 2008). Flx induced neuronal network changes that 

were also associated with reduced inhibition and enhanced expression of 

BDNF and TrkB (Saarelainen et al. 2003; Rantamäki et al. 2007; Maya 

Vetencourt et al. 2008). Importantly, only long term Flx administration 

enhances neuronal plasticity (Wang et al. 2008). Together these findings 

suggest that Flx action on neuronal networks may differ from its conventional 

role as an AD and may be associated with iPlasticity.  

 

1.3.2.3   KETAMINE AND ISOFLURANE 
Isoflurane is a halogenated ether used for inhalational anesthesia. Its use in 

human medicine is now starting to decline, however it is still frequently used 

for veterinary anesthesia. A pioneering study by Langer and colleagues (1985) 

revealed a rapid antidepressant effect of isoflurane on depressed patients 

(Langer et al. 1985). In their study treatment-resistant depressed patients who 
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primarily have been subjected to electroconvulsive therapy (ECT) were given 

a series of anesthesias with isoflurane and then tested for symptoms of 

depression. The authors hypothesized that a brief period of electrocerebral 

silence, which can be observed shortly after the grand mal seizure in ECT, may 

be, in itself, a crucial for the therapeutic effects of ECT. In this study, they 

clearly demonstrated rapid relief in depressive symptoms after isoflurane 

administration, which persist for several weeks. A study with another 

anesthetic, ketamine, in a placebo-controlled, double-blinded trial in humans 

demonstrated that a single ketamine administration significantly improves 

depressive symptoms within 72 hours after drug infusion (Berman et al. 

2000).  

While the mechanisms underlying isoflurane and ketamine rapid 

antidepressant action remain unclear, several lines of evidence suggest that 

treatment with ketamine also depends on plasticity. Thus ketamine produces 

a rapid antidepressant-like behavioral response in rodents subjected to 

chronic stress (Maeng et al. 2008; Li et al. 2010; Autry et al. 2011). However, 

because of its psychotomimetic properties, clinical use of ketamine is limited 

by abuse potentials (Machado-Vieira et al. 2009) and the lack of clinical 

studies of isoflurane action means it is currently not allowed to replace 

conventional ADs with fast acting anesthetics, but it is evidently possible to 

use these chemicals to study iPlasticity. 

 

1.3.3  FEATURES OF IPLASTICITY 
 

1.3.3.1   ROLE OF BDNF AND TRKB 
The first member of the neurotrophin family, nerve growth factor (NGF) 

(Cohen & Levi-Montalcini 1956), was discovered in the early 1950s as a target-

derived protein that promotes the survival and growth of sympathetic and 
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sensory neurons during development. The establishment of the neurotrophins 

family came with the purification and characterization of BDNF from pig 

brain by H. Thoenen laboratory (Barde et al. 1982). Since then, two other 

neurotrophins have been identified in the mammalian brain: neurotrophin 3 

and 4 (NT3, NT4) (Lewin & Barde 1996). Neurotrophins are small proteins 

(molecular weight about 13 kDa) and like other secreted proteins, arise from 

precursors, proneurotrophins (30–35 kDa), which are proteolytically cleaved 

to produce mature proteins. Several studies showed that trophic factors are 

secreted in both mature (cleaved) and immature (non cleaved) forms (Mowla 

et al. 1999; Zhou et al. 2004). Two types of receptors for neurotrophins have 

been identified: p75NTR (Reichardt 2006), which belongs to the family of 

tumor necrosis factor (TNF) receptors and binds proneurotrophins; and one 

of the three tropomyosin-related kinase (Trk) receptors — NGF binds to 

TRKA, BDNF and NT4 bind to TRKB, and NT3 binds to TRKC. Through the 

differential expression and cellular localization of their receptors, 

neurotrophins can elicit diverse cellular responses in different types of 

neurons and at different cellular loci (Chao 2003; Reichardt 2006). But in 

general, interaction of mature trophic factors with Trk receptors leads to cell 

survival, whereas binding of neurotrophins precursors (proNGF and 

proBDNF) to p75NTR leads to apoptosis (Reichardt 2006; Chao 2003).  

A solid body of data firmly established the role of BDNF and TrkB signaling in 

iPlasticity. Original observations from Ronald Dumans laboratory 

demonstrated that different classes of ADs significantly increased the 

expression of BDNF in the major subfields of the hippocampus (Nibuya et al. 

1995). ADs have also been shown to increase BDNF protein levels not only in 

the hippocampus but in other brain regions (Altar et al. 2003; Calabrese et al. 

2007; Balu et al. 2008; Maya Vetencourt et al. 2008). Phosphorylation of 

TrkB receptors have been also associated with iPlasticity. Different chemical 



26 
 

classes of ADs increased TrkB phosphorylation, resulted in an associated rise 

in phospholipase γ (PLCγ) and CREB acutely (within 30 min) and persist for 

at least 3 week of continuous treatment (Saarelainen et al. 2003; Rantamäki 

et al. 2007). Interestingly, it was found that increased TrkB phosphorylation 

by ADs is independent of BDNF (Rantamäki et al. 2011) and behavior effects 

induced by ADs are blunted in mice with reduced level of BDNF and inhibited 

TrkB signaling (Saarelainen et al. 2003; Guiard et al. 2007; Deltheil et al. 

2008; Li et al. 2008). 

 

1.3.3.2   ROLE OF EXTRACELLULAR MATRIX  
Chondroitin sulfate proteoglycans (CSPGs) are components of the 

extracellular matrix (ECM) that inhibit axonal sprouting and growth. Their 

adult pattern of expression is very high. CSPGs condense around the soma and 

dendrites of a subset of neurons in the form of perineuronal nets (PNNs) 

(Köppe et al. 1997). The absence of PNNs is considered to be a key permissive 

factor that allows the induction of ocular dominance plasticity during the 

critical period (Pizzorusso et al. 2002a). The assembly of PNNs around 

parvalbumin (PV)-expressing inhibitory interneurons is thought to contribute 

to critical-period closure (Pizzorusso et al. 2002). PNNs preferentially 

surround cell bodies and proximal neurites of mature fast spiking PV-positive 

interneurons, which was suggested to limit PV cell plasticity by controlling the 

concentration of extracellular ions that surround these cells or by sequestering 

molecular factors which regulate plasticity (Härtig et al. 2001; Hensch 2003; 

Inoue et al. 2007). Consistent with this notion, the degradation of PNNs with 

chondroitinease ABC in adults allow the induction of ocular dominance 

plasticity in visual cortex (Pizzorusso et al. 2002a; Gogolla et al. 2009). 

Altogether, it is possible to conclude that iPlasticity is associated with 
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modified extracellular environment which is primarily, in the adult brain, 

directed to stabilize neuronal connections. 

 

1.3.3.3   DISINHIBITION AS A MECHANISM OF IPLASTICITY 
Inhibition plays a crucial role in shaping neuronal networks in response to 

changing environment. As it was described previously, the ocular dominance 

shift induced by Flx and EE was associated with an altered intracortical 

inhibitory-excitatory balance due to reduced GABAergic inhibition - 

disinhibition. Sale and co-authors revealed that three weeks exposure of 

amblyopic rats to EE promoted a complete recovery of both visual acuity and 

ocular dominance and this striking effect was associated with a threefold 

reduction in the basal level of GABA detected by in vivo brain microdialysis in 

the visual cortex (Sale et al. 2007). Reduced cortical inhibition was also found 

in synaptic plasticity levels, since the visual cortical slices of EE animals 

displayed full reinstatement of white matter-LTP, a phenomenon that is 

usually absent in the adults (Artola & Singer 1987; Sale et al. 2007; Maya 

Vetencourt et al. 2008). Moreover local and transient suppression of 

inhibition in adult brain restore critical period-like plasticity and promote 

ocular dominance plasticity in adult brain (Hensch 2003; Harauzov et al. 

2010).  

Recent studies elucidated the role of PV-positive inhibitory cells in 

mechanisms underlying iPlasticity. It was proposed that a transient 

suppression of PV cells may gate cortical plasticity. Mimicking a transient (24 

h) reduction of inhibition upon eyelid suture by selective activation of 

designed receptors exclusively activated by designed drugs (DREADDs) 

within PV cells enables plasticity beyond the critical period (Kuhlman et al. 

2013). Another study revealed that chronic Flx administration lead to reduced 

GABA release from PV positive basket cells (Méndez et al. 2012). All together, 
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these findings clearly demonstrate an important role of neuronal networks 

disinhibition as a mechanism of iPlasticity where PV positive inhibitory cells 

are a central hub.  

 

1.3.3.4   ROLE OF NEUROGENESIS 
The environment has a striking influence on the rate of adult neurogenesis 

(Kempermann et al. 1997; Young et al. 1999; Uda et al. 2006). The iPlasticity 

has been associated with reinforced neurogenesis in DG. Chronic treatment 

with Flx and exposure to complex environment enhance neurogenesis and 

affect the maturation and functional integration of newborn neurons into 

hippocampal networks (Malberg et al. 2000; Olson et al. 2006; Kobayashi et 

al. 2010; Klomp et al. 2014). Flx induced plasticity enhances neurogenesis-

dependent LTP in the DG and ablation of neurogenesis with x-irradiation 

completely block the effects of chronic Flx on synaptic function (Wang et al. 

2008). Interestingly, it was also demonstrated that disruption of Flx-induced 

neurogenesis blocks behavioral responses to antidepressants (Santarelli 

2003).  

 

1.3.3.5   IPLASTICITY AND BEHAVIOR 
Changes in the structural and functional properties of the brain reflect 

changes in behavior. Thus, enhanced neuronal plasticity not only improves 

learning and memory (Rampon et al. 2000; Lee et al. 2003; Bennett et al. 

2006), reduces memory decline in aged animals, decreases anxiety-like 

behavior and increases exploratory activity (Chapillon et al. 1999; Friske & 

Gammie 2005), but also leads to better recovery following diverse 

pathological conditions. In order to study iPlasticity and behavior, a few 

common stress based models of depression-like behavior can be used. 
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The forced swim test (FST) is a model of “behavioral despair” used to study 

depression-like and antidepressant-like behavioral responses in rodents 

(Slattery & Cryan 2012). In FST, after the placement of rodents to beaker with 

water, despair behavior is analyzed as proportion of active response to 

immobility, where more animal spends in immobile state versus active the 

more depression it express. The novelty suppressed feeding (NSF) test can be 

used to measures anxiety-like behavior and study response to antidepressant 

treatment (Bodnoff et al. 1988; Santarelli 2003). In this paradigm latency to 

eat, for a food deprived animals, which were obliged to move into bright area 

in open field , is considered as anxiety-related behavior, and chronic, but not 

acute, antidepressant administration decreases the latency (Bodnoff et al. 

1988; Santarelli 2003). 

Another behavior paradigm, which can be implemented to study plasticity, is 

fear conditioning (FC) (Pavlov I, 1927). It recruits ability of animals to learn 

by experience that some stimuli precede danger. This in turn leads to 

formation of a life-long memory, which has made Pavlovian fear conditioning 

such a widely used and most intensively studied paradigm in translational 

neuroscience (Milad & Quirk 2012). In animal models, FC is mainly 

recognized as an associative learning task in which an aversive stimulus 

(unconditioned stimulus, US) is paired with a particular neutral context or 

stimulus (conditional stimulus, CS) resulting in the expression of fear 

responses to the originally neutral stimulus or context. During fear 

acquisition, the neutral stimulus alone starts to elicit the fear reaction, which 

can be measured as a freezing of an experimental animal. If the animal is after 

successful acquisition is repeatedly exposed to the CS alone without the US, 

freezing response gradually decreases, a process known as fear extinction 

(Milad & Quirk 2012). Extinction is regarded as a new type of learning in 

which extinction networks inhibit fear networks (Myers & Davis 2007). 
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However, extinction learning is not very effective: freezing response typically 

reappears after a few days (known as spontaneous recovery), especially if the 

animal is exposed to the environment where the pairing between the US and 

CS took place (fear renewal) (Milad & Quirk 2012). 

It is important to recognize that fear memories do not reside in a single 

anatomical locus but rather arise from interactions among a number of 

structures that compose a neural circuit. Anatomical, behavioral and 

electrophysiological evidence indicates that complex networks are involved in 

learning and expressing fear responses. These include, but are not limited to, 

the amygdala, the medial prefrontal cortex (mPFC) and the hippocampus 

(Duvarci & Pare 2014). The amygdala nuclei involved in fear learning can be 

divided into two main sub-areas that fundamentally differ in their anatomical 

and functional organization: the basolateral complex and the central 

amygdala. The basolateral complex consist of approximately 80% of 

glutamatergic spiny projection neurons and 20% GABAergic neurons and 

receives inputs from both subcortical and cortical sensory regions including 

thalamus, cortex and hippocampus (McDonald 1998; Swanson & Petrovich 

1998). By contrast, the central amygdala is mainly composed of GABAergic 

neurons, many of which project to brain areas that are important for 

mediating defensive behaviors (Swanson & Petrovich 1998; Sah et al. 2003). 

Emerging literature suggests a role for the hippocampus and mPFC in the 

regulation of fear memories. It was demonstrated that ventral (infralimbic, 

IL) and dorsal (prelimbic, PL) mPFC play opposing roles in fear (Ji & 

Neugebauer 2012; Do-Monte et al. 2015). For example, activation of 

projections from the IL to the basomedial amygdala with channelrhodopsin-

2 and light decreases the anxiety and promotes fear extinction (Adhikari et al. 

2015). In contrast, activation of the PL increases fear responses and impairs 

extinction (Vidal-Gonzalez et al.). Finally, hippocampus has been shown to be 
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involved in indexing those associations to the contexts in which they occurred. 

Ventral hippocampus projects both to the mPFC and the basolateral amygdala 

and, depending on the experimental condition, may either enhance or inhibit 

fear extinction (Milad & Quirk 2012). For example, pharmacological 

inactivation of the ventral hippocampus prevents context-dependent fear 

renewal and interferes with context-dependent changes in extinction (Sparta 

et al. 2014).  
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2. AIMS OF STUDY 
 

The major aim of this thesis was to advance our understanding of the 

mechanisms associated with plasticity induced in the adult brain. More 

specifically, the aims were: 

 

1. To study Flx iPlasticity in pathology via examination of behavior and 

structural changes associated with Flx treatment after exposure to fear. 

 

2. To study the mechanisms of iPlasticity in naïve mice induced by 

chronic Flx administration and single exposure to isoflurane. 

 

3. To study hippocampal synaptic plasticity underlying long term Flx 

administration and single isoflurane exposure. 
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3. MATERIALS AND METHODS 
 

3.1  EXPERIMENTAL ANIMALS 
Adult male mice C57Bl/6JRcc.Hsd (Harlan, Netherlands) at 8-16 weeks old 

age were housed individually or in groups. Animals were kept under 12 h 

light/dark cycle (light on at 6 am). Food and water were available ad libitum. 

All animal procedures were done according to Animal Ethical Committee of 

Southern Finland and covered by ESAVI/7551/04.10.07/2013 license. 

 

3.2  DRUG TREATMENT 
Fluoxetine (study I, II, III) 

Mice received Flx (Orion Pharma, Helsinki, Finland) via drinking water in 

light-protected tubes. Solutions were prepared fresh every day. Flx was 

dissolved in tap water at concentration of 0.08 or 0.016 mg/ml to achieve 

approximately 10-20 mg/kg per day dosing unless otherwise stated. The 

treatment was continued through all behavioral sessions until sacrifice (study 

I) or continued until the final day of experiments (study III). 

Isoflurane (study IV) 

Isoflurane (Vetflurane, Virbac) treatment was induced in a chamber with 4% 

isoflurane for 2 minutes, after which the mouse freely inhaled isoflurane via a 

mask (3.0 % for 1 min, then 2 % for maximum 30 minutes; airflow: 0.3-0.5 

l/min). Body temperature was maintained by a heat pad throughout the 

treatment. Sham mice were kept in the induction chamber for 2 minutes 

without isoflurane.  
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3.3  BEHAVIOR 
Marble burying (study III) 

On day 20-21 of Flx or vehicle treatment mice were subjected to the marble 

burying test adapted from K. Njung’E and S. Handley (1991). Animals were 

placed individually into test cages (21×38×14cm) with 5 cm height of bedding. 

Twelve small marbles (15 mm diameter) were arranged on bedding in the form 

of an array. Mice were then exposed to marbles individually for 30 min and 

unburied marbles were counted. A marble was considered to be ‘buried’ if it 

was covered with bedding material more than 67% (i.e. two-third size). 

Behavior was then rated by counting the number of marbles buried and data 

was presented as % of buried marbles to control (before treatment) level. 

Fear conditioning and extinction (study I, II) 

Fear conditioning took place in context A (a transparent Plexiglas chamber 

with metal grids that was cleaned before each session with 70% ethanol). 

Freezing behavior was measured with an automatic infrared beam detection 

system which was placed on the sides of the fear conditioning chamber (TSE 

Systems GmbH, Germany). The mouse was considered to be frozen only if it 

was not moving for at least 3s, and this measure was expressed as percentage 

of time spent freezing. Every mouse was handled in the experimental room for 

5–10 min during each of the 3 days prior to fear conditioning. On the day of 

acquisition, mice were exposed to context A for 2 min and conditioned using 

5 pairings of the CS (Conditioned Stimulus; total duration 30s, 1Hz, white 

noise, 80dB) with the US (Unconditioned Stimulus; 1sf foot-shock 0.6mA, 

inter-trial interval: 20–120 s). The US was co-terminated with the CS. The 

freezing level during the first CS, preceding the first US, was taken as the 

baseline freezing during CS. Mice were then divided into four groups (two 

extinction (water and Flx drinking) and two no-extinction (water and Flx 

drinking) groups) with equal levels of freezing, two receiving Flx in their 
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drinking water until the end of the experiment and the other two receiving tap 

water. For the control group CTRL, mice were subjected to the same fear 

conditioning experimental protocol except that the CS was not followed by the 

US (non-conditioned, only context+ CS exposure group); then, the CTRL mice 

received tap water. Two weeks after the fear conditioning day, the mice from 

the CTRL and both no-extinction groups (n=6 per group) were sacrificed for 

subsequent immunohistochemical analysis. Fear extinction training, 

spontaneous recovery and fear renewal Two-day fear extinction training took 

place 2 weeks after fear conditioning in the context B (a black non-transparent 

Plexiglas chamber with a planar floor that was leaned before each session with 

70% 2-propanol). Freezing behavior was measured as described above. On the 

first and second extinction days, conditioned mice received 12 presentations 

of the CS (total duration 30s, 1 Hz, white noise, 80dB, inter-trial interval: 20–

60 s). One week after extinction, extinguished mice (n=6 per group) were 

sacrificed for subsequent immunohistochemical analysis. In parallel, 

additional mice (n=25 per each extinction group) were tested 7 days after 

extinction in context B and context A, respectively, using 4 presentations of 

the CS (inter-trial interval: 20–60 s) and were further used for Pearson's 

correlation analysis of context-dependent spontaneous recovery and fear 

renewal. 

3.4  LENTIVIRUS PRODUCTION (STUDY I) 
Time-specific BDNF overexpression in the basolateral amygdala was achieved 

using injection of lentivirus regulatable by doxycycline Tet-off system (33). To 

produce viral particles, the vector plasmid pTK431-BDNF, the packaging 

plasmid p∆NR and the envelope plasmid pMDG-VSV-G (ratio 4:3:1) were 

cotransfected into HEK293T cells as described previously (33). The viral 

particles were collected by ultracentrifugation and resuspended in MEM. 
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Virus titer was determined using p24 antigen ELISA as 0.21 mg/ml of p24 and 

viral solution was kept at -80°C in small aliquots.  

3.5  STEREOTACTIC INJECTIONS (STUDY I) 
Pilot experiments were performed to determine the stereotaxic coordinates of 

the basolateral amygdala: bregma -1.7, lateral ±3.6 and ventral -4.0 according 

to the Allen atlas (http://www.brain-map.org/). Mice were anesthetized with 

isoflurane and placed in a stereotaxic frame. Bilateral injection into the 

basolateral amygdala was performed using a 10 µl syringe with a stainless steel 

needle. On each brain side, 500 nl of the virus were infused at a speed of 3 

nl/s. The needle was kept in place for 8 minutes after the infusion to improve 

the penetration of the viral solution into the tissue. As a control for the 

infection, additional mice were injected with the viral diluent solution (Sham) 

using the same protocol. The analgesic carprofen (5 mg/kg) was administered 

subcutaneously. After the surgery, mice were returned to their home cages and 

left to recover for 2 weeks. 

3.6  WESTERN BLOTTING (STUDY III) 
Following electrophysiological experiments hippocampal slices were 

homogenized in NP buffer (137mM NaCl, 20mM Tris, 1% NP-40, 10% 

glycerol, 48mM NaF, H2O, complete inhibitor mix (Roche), 2mM Na3VO4. 

After at least 15-minute incubation on ice, samples were centrifuged (16000g, 

15 min, +4°C) and supernatant collected for further analysis. Protein 

concentrations were measured using Bio-Rad DC protein assay (Bio-Rad 

Laboratories, Hercules, CA). Samples (25 μg protein) were separated with 

NuPAGe 4-12% Bis-Tris gel (Novex, life technologies, USA) and blotted to a 

polyvinylidene fluoride membrane (300mA, 1 hour, 4°C). Membranes were 

incubated with the following primary antibodies (Table 1): Synaptophysin 

(Sigma, USA, 1/200), Synaptotagmin (Sigma, USA, 1/1000), phospho-

Synaptotagmin (Sigma, USA, 1/1000), CaMKII (Millipore, USA, 1/1000), 
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phospho-CaMKII (Millipore, USA, 1/1000), Syntaxin 1A (Cell Signaling, USA, 

1/1000), CREB (Cell Signaling, USA, 1/1000), MUNC18 (Cell Signaling, USA, 

1/1000) diluted in 5% BSA on TBS/0.1% Tween (TBST). Further, the 

membranes were washed with TBST and incubated with horseradish 

peroxidase conjugated secondary antibodies (1:10000 in non-fat dry milk, 1 

hour at room temperature; Bio-Rad). After subsequent washes, secondary 

antibodies were visualized using enhanced chemiluminescence (ECL Plus, 

ThermoScientific, Vantaa, Finland) for detection by Fuji LAS-3000 camera 

(Tamro Medlabs, Vantaa, Finland). 

Table 1. Summary of all proteins analyzed in study III. 

Full name Short 

name 

Function related to LTP 

Synaptophysin SYP 

 

vesicular membrane protein 

(Mullany & Lynch 1998) 

Synaptotagmin 1 Sptg1 Ca2+-sensor for synaptic vesicle 

exocytosis (Ahmad et al. 2012) 

MUNC 18 MUNC 18 precede and/or regulate the 

formation of vesicles priming 

(Barclay 2008; Jurado et al. 2013) 

Syntaxin 1 Stx1 membrane component of SNARE 

complex (Mishima et al. 2014; Davis 

et al. 2000) 

Ca2+/calmodulin-

dependent protein kinase 

II 

CaMKII protein kinase, initiates LTP-

dependent Ca2+ cascade (Lisman 

1994) 

cAMP response element-

binding protein 

CREB transcription factor, control memory 

consolidation and late LTP phase 

(Kida 2012) 
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3.7  IMUNOHISTOCHEMISTRY (STUDY I, II) 
Immunostaining was performed using free-floating brain sections. After 

washing with PBS to remove the cryoprotective solution, the sections were 

incubated in a blocking reagent consisting of 5% goat serum (Vector 

Laboratories, UK), 3% bovine serum albumin (Sigma-Aldrich, Finland) and 

0.4% Triton X-100 (Sigma-Aldrich, Finland) in PBS to prevent nonspecific 

binding of antibodies. Before blocking, an antigen retrieval step including an 

incubation in 0.1% pepsin (Sigma-Aldrich, Finland) in 5 mM HCl for 10 min 

at room temperature, was performed to increase the binding of the primary 

antibodies for GABAARα1, GABAARα2 and VGLUT1. Sections were incubated 

with one of the primary antibodies (Table 2) in PBS containing 0.4% Triton 

X-100 (PBST) overnight at +4 °C. Then, sections were washed in PBST and 

incubated with the appropriate secondary antibodies (Molecular probes, 

Invitrogen, Espoo, Finland) for 1 h at room temperature. Finally, sections were 

mounted on slides and covered with Prolong®Gold anti-fade reagent with 

DAPI (Molecular Probes, Invitrogen, Espoo, Finland).  

 

Table 2. Summary of all proteins analyzed in study II. 

Protein Short 

name 

Function 

Synaptophysin SYP vesicular membrane protein 

GABA Transporter 1 Gat1 GABA plasma membrane transporter 

(Heldt & Ressler 2007) 

Glutamate receptor 1 GluA1 Ca2+-permeable AMPA receptor subunit 

(Clem & Huganir 2010) 

Glutamate receptor GluA2 Ca2+-impermeable AMPA receptor 

subunit (Kim et al. 2007) 
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Vesicular Glutamate 

Transporter 1 

VGLUT1 vesicle-bound, sodium- phosphate 

dependent glutamate transporter (Wojcik 

et al. 2004) 

Vesicular GABA and 

glycine transporter 

VGAT 

 

sodium- and chloride-dependent GABA 

transporter (Schoenfeld et al. 2013) 

GABA A Receptor 

alpha 1 

GABAARα1 subunit of GABAR which agonist produce 

sedative effect (B Luscher et al. 2011) 

GABA A Receptor 

alpha 2 

GABAARα2 subunit of GABAR which agonist produce 

anxiolytic effect (Bernhard Luscher et al. 

2011) 

NMDA receptor 2A GluN2A subunit of NMDARs abundantly 

expressed in adult brain (Walker et al. 

2002) 

Postsynaptic density 

protein 95 

PSD95 major scaffolding protein of the 

excitatory 

post-synaptic density (Fitzgerald et al. 

2015) 

3.8  ELECTROPHYSIOLOGY (STUDY III, IV) 
On the last day (21) of the Flx treatment or 24h after isoflurane exposurev mice 

were anaesthetized with pentobarbital (50mg/kg), decapitated and sagittal 

slices were cut from the hippocampi as described previously (Bortolotto et al. 

1999). The slices were allowed to recover for 1-4 hours before the recordings 

were started. All recordings were done in an interface-type chamber (+32C°) 

which was constantly perfused with artificial cerebrospinal fluid (ACSF) 

containing (in mM): NaCl 124, KCl 3, NaH2PO4 1,25, MgSO4 4, NaHCO3 26, 

D-glucose 15, CaCl2 2, and gassed with 5% CO2/95% O2. Field excitatory 

postsynaptic potentials (fEPSP) were evoked with bipolar stimulating 

electrode placed within the Schaffer collateral pathway and the responses 

were recorded from CA1 stratum radiatum using ACSF-filled glass 

microelectrodes (2–5 MΩ). For baseline recordings square pulse (0.05 
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Hz/0.1) ms stimulation protocol was used. Input/output (I/O) curves were 

constructed using gradually increased stimulation intensities until the fEPSP 

reached plateau or visible population spike was seen. After I/O data were 

collected, the stimulus intensity was adjusted to evoke half-maximal (40-

60%) fEPSP response. Long-term potentiation (LTP) was induced 10-15 

minutes after baseline recording by 100Hz/1s tetanic stimulation. Post-

induction responses were normalized to the final 10 min of the baseline 

recordings. The level of LTP was measured as a percentage increase of the 

fEPSP slope, averaged at a 1-min interval 50-60 min after the tetanus, and 

compared to the averaged baseline fEPSP slope recorded before tetanus. To 

examine short term plasticity we performed paired-pulse- (PPF) and 

frequency facilitation (FF) experiments. In PPF experiments interpulse 

intervals of 20, 60, 100, 150 and 200 ms were used. In FF experiments 100 

pulses with either 1 or 100 Hz were applied.  

 

3.9  DATA ACQUISITION AND STATISTICAL ANALYSIS 
Behavioral study  

Statistical analyses of the behavioral tests were performed using repeated-

measures ANOVA followed by Student’s paired or unpaired two tailed t-test. 

For the post-hoc matching analysis, the subjects with exactly matching the 

freezing levels at the “Acquisition” time point in control and Flx groups were 

selected. The bivariate Pearson's correlation and linear regression analyses 

were performed using Origin (OriginLab, Northampton, MA). A P-value < 

0.05 was considered statistically significant. 

Immunohistological study 

Quantitative evaluation of immunostainings was performed by an investigator 

blind to the treatment groups; all slides were coded until the analyses were 
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finished. The images were obtained by the Imager M.1 fluorescent microscope 

(Zeiss, Germany) using AxioVision software. A minimum of 5 sections per 

brain area/per animal, as well as control sections “No primary antibody”, were 

imaged using the same microscope and camera settings for all slides within 

each immunostaining experiment. Image processing was performed with 

ImageJ software. To estimate the difference in expression of proteins, brain 

regions were delineated and mean optical densities were measured. The mean 

optical densities of the controls “No primary antibody” were subtracted from 

obtained values for every brain area in all immunostaining experiments. All 

the values present as mean ± SEM and as percentage of control. Statistical 

analyses of protein levels were performed in Origin (OriginLab, Northampton, 

MA) using a two-way ANOVA with a post hoc Fisher's PLSD test. A p-

value<0.05 was considered statistically significant. 

Electrophysiological study 

WinLTP (www.winltp.com) program was used for electrophysiological data 

acquisition and analysis. All the data are expressed as mean ± SEM and as 

percentage of control. For statistical analysis of I/O, PPF, LTP and FF two-

way ANOVA for repeated measures were implemented. All statistical analyses 

were done using Origin (OriginLab, Northampton, MA). A p-value<0.05 was 

considered statistically significant. 

Molecular biological study 

Immunoblot bands were quantified using NIH ImageJ. All the data are 

expressed as mean ± SEM and as percentage of control. Statistical analyses 

were performed using Origin (OriginLab, Northampton, MA). For comparison 

between groups two-way ANOVA was used. The criterion for significance was 

set to p<0.05. 
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4. RESULTS 
 

4.1 IPLASTICITY IN PATHOLOGY (STUDY I, II) 
 

In order to study how plasticity induced by Flx account for successful recovery 

from fearful memories, we subjected mice to fear conditioning and then 

applied chronic Flx treatment. We analyzed how Flx administration 

influenced fear erasure and affected spontaneous fear renewal and recovery. 

After successful fear acquisition, the mice were given either Flx or water for 

two weeks. Thereafter, both groups were subjected to extinction training and 

seven days later, the mice were tested for spontaneous recovery and fear 

renewal (study I, fig 2). This paradigm was utilized to explore whether fear 

reduction was permanent. Although fear extinction was seen in both control 

and Flx-treated animals, Flx-treated mice showed significantly faster 

extinction. However, whilst the control mice showed clear fear renewal and a 

tendency to spontaneous recovery, the Flx-treated mice showed no signs of 

renewal or spontaneous recovery. Moreover, mice not exposed to extinction 

training showed enhanced freezing regardless of their treatment group. Next, 

we examined the effect of Flx on fear reinstatement (study I, fig. 2). After 

successful extinction in the fear-conditioning context, mice were exposed to a 

foot shock five times without a CS and tested for freezing after a tone 24 hours 

later. Control mice showed a robust fear reinstatement whereas freezing in 

mice receiving Flx was significantly reduced. Our results highlight a previously 

undescribed principle of AD-treatment whereby long-term loss of fearful 

memories can be induced only by combined chronic Flx administration and 

extinction training.  
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In addition to the behavior study, we investigated whether Flx, extinction or 

their combination produced long-lasting changes in the expression of synaptic 

proteins in the well-studied fear networks: amygdala, hippocampus and 

mPFC (study II) (Quirk et al. 2010). We found extinction dependent and 

independent changes in the expression profile of pre- and postsynaptic 

proteins involved in glutamatergic and GABAergic synaptic transmission 

(study II, table I). 

We found that fear conditioning significantly downregulated VGLUT1 and 

GABAARα1 expression induced by fear conditioning in the hippocampus and 

mPFC, and that chronic Flx-treatment accentuated these effects (study II, fig. 

3). However, if combined with extinction training, Flx enhanced the 

expression of SYP in all investigated brain areas (study II, fig. 3). 

Concomitantly, the expression of VGLUT1, PSD95, GluN2A and GluA2 was 

increased in the amygdala and hippocampus (study II, fig. 3). Moreover, Flx 

increased the expression of both investigated GABAARs subunits in the mPFC 

and amygdala (study II, fig. 3). Thus, we demonstrated that combination of 

Flx and extinction treatments form a specific synaptic landscape permissive 

for long-term fear extinction facilitation and fear erasure in adult mice. 

 

4.1.1  FEAR ERASURE DEPENDS ON BDNF IN AMYGDALA (STUDY I) 
Chronic Flx treatment alone increased BDNF expression in many brain areas 

and after fear conditioning significantly increased BDNF mRNA level in the 

basolateral amygdala (BLA) (study I, fig 4A). To test whether overexpression 

of BDNF in the basolateral amygdala mimics Flx exposure, we used 

doxycycline regulated lentiviral infection to overexpress BDNF locally in the 

BLA from the end of extinction onward (study I, figs. S8 and S9). We showed 

that BDNF-overexpressing mice did not show fear renewal, induced through 

conditioned CS presentations in extinction and conditioning contexts, 
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whereas control mice showed robust freezing behavior following fear renewal 

(study I, fig. 4C). Thus, successful fear erasure depends on BDNF expression 

in amygdala. 

 

4.2 IPLASTICITY IN HEALTH (STUDY I, III, IV) 
 

4.2.1  FLX INDUCES IPLASTICITY IN NAÏVE MICE (STUDY I, III) 
In order to investigate the mechanism of Flx induced neuronal network 

tuning, we performed experiments on naïve/healthy mice. In study I, in 

addition to the clinically relevant administration after exposure to fear, we 

tested an alternative paradigm of chronic Flx administration which precedes 

fear induction. Interestingly, we found that pre-treatment with Flx, as 

observed when Flx was applied after exposure to fear, did result in faster fear 

extinction (study I, fig. 2). In order to examine behavior sensitivity to chronic 

Flx in naïve mice, we tested mice digging activities using the marble burying 

test (study III). It was previously shown that mice digging behavior is sensitive 

to a variety of treatments, including anxiolytic drugs and serotonin-active 

compounds (Deacon 2006). We found that mice subjected to FLX 

administration exhibited significantly less burying activities compared to 

control animals (fig. 3). These results suggest that Flx not only promote 

recovery after pathological cues but apparently predisposes neuronal 

networks to cope with forthcoming pathological events.  
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Figure 3. Fluoxetine treatment 

reduced marble burying behavior. 

Black bars-water treated animals, 

white bars-Flx treated animals 

 

To evaluate the effect of Flx on naïve mice, we investigated the expression of 

histological neuroplasticity markers in hippocampal CA1 area, BLA, prelimbic 

and infralimbic mPFC (PL, IL). We found that chronic Flx did not change the 

absolute numbers of PNN-positive neurons in the BLA, hippocampal CA1 

area, and IL (study I, fig. 3A, B and table S1). However, Flx treatment reduced 

the percentage of PNN neurons expressing parvalbumin in both the BLA and 

CA1 area of hippocampus (study I, fig. 3A, B), whereas no differences were 

found in PNN-positive interneurons containing calbindin or calretinin (study 

I, fig. S5 and table S1). Expression of PSA-NCAM, which is expressed in 

immature cortical cells and reduced with maturation, was increased by Flx 

treatment in the BLA (study I, fig. 3C). Concomitantly, Flx treatment reduced 

the expression of the K-Cl cotransporter KCC2 (study I, fig. 3D), which 

increases during postnatal development. All together, these data suggest that 

Flx induces plasticity in naïve mice, which can contribute to/explain the 

robust Flx effects on neuronal network reinstatement under pathological 

conditions (study I, II).  

4.2.2  FLX FACILITATES SYNAPTIC PLASTICITY (STUDY III) 
The results from studies I and II strongly suggested that Flx may affect the 

synaptic machinery involved in use-dependent synaptic plasticity in limbic 

areas. Therefore, we next studied the effects of Flx on neuronal transmission 

and plasticity at glutamatergic synapses in the area CA1 of the hippocampus. 
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Here, fEPSPs, evoked by Schaffer collateral stimulation, were recorded in the 

CA1 area of hippocampus. We found that chronic Flx treatment shifted the 

input-output curve to the left (study III, fig. 1A) thus implicating enhanced 

basal glutamatergic transmission. Moreover, LTP induced by tetanic 

stimulation (100st/1sec) was more prominent in hippocampal slices from Flx-

treated mice (study III, fig. 2A). In parallel, PPF at 20ms and 50ms intervals 

as well as frequency facilitation (FF) by 1Hz/100 pulse and 100Hz/100 pulse 

stimulation protocols were both increased after Flx-treatment (study III, fig. 

3, B and fig. 2.D).  

We next investigated whether changes in the expression of synaptic proteins 

paralleled changes in synaptic function. To determine the molecular basis of 

activity dependent alterations in synaptic plasticity induced by Flx, we 

measured the expression levels of proteins related to vesicular trafficking and 

release and important mediators of LTP. Expression of investigated proteins 

was estimated with Western blotting in hippocampal slices where LTP was 

induced and maintained for 60 min; as a control, slices with 0.05Hz 

stimulation maintained under the same conditions were used. 

We demonstrated that phosphorylation of CaMKII was enhanced in vehicle 

and Flx treated animals after LTP induction (study III, fig. 3A), while levels of 

CREB phosphorylation was increased by Flx treatment in control slices and 

after LTP in vehicle treated animals (study III, fig. 3B). Moreover, Flx 

accentuated expression of SYP, Sptg1, Stx 1 and MUNC 18 and also enhanced 

expression of SYP and Sptg1 in an activity-dependent manner (only after LTP) 

(study III, fig. 5). Thus, Flx administration predisposes hippocampal networks 

to activity-dependent plasticity, which is associated with accentuated 

presynaptic function and enhanced expression level of proteins related to 

vesicles trafficking and release. 
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4.2.3  ISOFLURANE IPLASTICITY (STUDY IV) 
We found that brief isoflurane anesthesia induced rapid antidepressant-like 

effects: increased TrkB phosphorylation in the mouse mPFC, hippocampus 

and somatosensory cortex (study IV, fig. 1A-B, supplementary fig. 1-4). 

Isoflurane also rapidly activated the downstream signaling cascade of TrkB: 

induced the phosphorylation of CREB, Akt, mTOR and its downstream kinase 

p70S6K in the mouse mPFC (study IV, fig. 1C-F; supplementary fig. 5). 

Phosphorylation of CREB and p70S6K, but not Akt or mTOR, was also 

observed in the hippocampus (study IV, supplementary fig. 1). However, 

isoflurane had no rapid effects on BDNF mRNA or protein levels (study IV, 

supplementary fig. 6). Our molecular findings concerning isoflurane-induced 

neuronal plasticity was associated with changes in behavior. Thus, mice 

anesthetized with isoflurane for 30 min and tested 15 minutes later showed 

reduced immobility and increased latency to immobility (study IV, fig. 2A; 

supplementary fig. 7A) in the FST. Strikingly, when the isoflurane-treated 

mice were retested two weeks later, an antidepressant-like phenotype was still 

observed (study IV, fig. 2B; supplementary fig. 7B).  

We also demonstrated that the rapid antidepressant actions of isoflurane were 

associated with changes in synaptic plasticity. Tetanic stimulation (100Hz/1s) 

of the Schaffer collateral produced significantly higher levels of long-term 

potentiation of fEPSPs in slices prepared from mice treated with isoflurane 24 

hours before experiments than in the control slices (study IV, fig. 3A). 

Recordings of the input–output relationship showed that isoflurane exposure 

24 hours before accentuated basal synaptic transmission in the hippocampus 

(study IV, fig. 3B). PPF was not affected by isoflurane indicating unaltered 

presynaptic function. Thus, our results demonstrate that single brief 

isoflurane anesthesia results in iPlasticity-type tuning of neuronal networks 



48 
 

which, in turn, may explain the antidepressant-like action and efficacy of 

isoflurane. 
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5. DISCUSSION 
 

The aim of this thesis was at advance our understanding of the mechanisms 

associated with iPlasticity. Employing a wide range of techniques, we 

attempted to demonstrate how different pharmacological agents enhance 

synaptic plasticity and lead to behavior improvements in normal and 

pathological states in mice. 

 

5.1 FLX AS AN ANTIDEPRESSANT 
 

The clinical efficacy of Flx as antidepressant was demonstrated in many 

studies (Gaynes et al. 2009; Fournier et al. 2010). Initially, understanding of 

the underlying mechanism of action was associated with the reinstatement of 

monoamine deficit induced by pathological conditions. However, he plasticity 

hypothesis currently dominates explanations of the mode of Flx action.  

Extinction training during a critical period in juvenile mice leads to 

permanent fear erasure (Gogolla et al. 2009; Kim & Richardson 2010). Since 

the antidepressant Flx induced plasticity in the visual cortex (Maya 

Vetencourt et al. 2008), we attempted to investigate whether reactivation of 

iPlasticity by Flx will lead to long term fear erasure if treatment alone is 

introduced or in combination with extinction treatment. We showed that 

chronic Flx treatment, given three weeks before or after exposure to FC, did 

cause faster extinction. Moreover, we demonstrated that these changes were 

permanent, because recovery, renewal and reinstatement of fear were 

attenuated in mice treated with Flx. In a pre-clinical investigation in mice by 

I. Branchi and colleagues, Flx administration, given in the enriched 

environment after exposure to chronic unpredictable stress (CUS), increased 
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saccharin preference, BDNF levels and decreased corticosterone which would 

account for the reduction of stress-induced symptoms observed. However, if 

Flx is given in a stressful environment, it lead to worse behavior outcomes 

(Branchi et al. 2013). Together with our findings, it is evident that the effect of 

Flx is not determined by drug per se but induced by the drug and driven by 

environment. 

In parallel with the behavioral assessments of fear-conditioned mice, we 

demonstrated that the combination of Flx and extinction treatments formed a 

specific synaptic landscape permissive for long-term fear extinction 

facilitation and fear erasure in adult mice. We found that stress induced by 

fear conditioning had a long-lasting inhibitory effect on the expression of 

proteins related to excitatory transmissions: SYP and GluA2 in the 

hippocampal CA1 pyramidal layer and VGLUT1 in the whole hippocampus of 

both water-and Flx-treated animals. Previously it was demonstrated that 

exercise induces a switch from GluA2-containing to GluA2-lacking AMPA 

receptors (Park et al. 2014; Middei et al. 2014; Gan et al. 2015), which are 

commonly referred to as calcium-permeable (CP-AMPA receptors). Thus, 

transient CP-AMPAR expression may provide an important Ca2+ entry 

mechanism during synapse maturation and impart distinct short/long-term 

plastic properties to neuronal networks (Rozov & Burnashev 1999; Liu & Cull-

Candy 2000). 

We demonstrated that fear conditioning affected GABAergic transmission: 

reduced VGAT and sedation-associated GABAAR α1 expression in water 

drinking mice and down-regulated expression of anxiolytic GABAAR α2 in Flx 

treated animals. These data are very much in line with the finding where 

reduced glutamate function, due to VGLUT1 deficiency (Wojcik et al. 2004) or 

decreased GABA-receptor function was specifically implicated in anxiety and 
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fear-related disorders and depression- like behaviors (Tordera et al. 2005; 

Luscher et al. 2011). 

Surprisingly, we could not detect robust changes in the expression profile of 

investigated proteins if Flx treatment alone was introduced after fear 

conditioning, whereas extinction affected the levels of synaptic protein 

expression much stronger then Flx treatment alone. Whilst Flx treatment, 

given after FC downregulated expression of GABAARα2 in PFC and further 

reduced expression of VGLUT1 in the hippocampus, extinction alone 

enhanced expression of PSD 95 in BLA, VGAT in all investigated brain areas, 

GAT and GABAARα1 in PFC and downregulated the expression of GABAARα2 

and GluA1:GluA2 ratio in amygdala. 

We hypothesize that Flx iPlasticity promotes the effects of behavioral 

experience, such as extinction training. This, in turn, helps to reshape 

maladapted networks to better adjust to the environment. Therefore, our 

results provide a putative neurobiological basis for the enhanced effect of 

combining drug and psychological treatments and support the hypothesis that 

the chemical effect produced by administering antidepressants alone will not 

give full clinical benefit (Moncrieff & Kirsch 2005; Turner et al. 2008; Kirsch 

et al. 2008). Instead, drug treatments need to be combined with 

psychotherapy or other kinds of rehabilitation to optimize their mood-

elevating effects.  

In contrast, we found that combination of chronic Flx with extinction therapy 

resulted in a unique long-lasting remodeling of synaptic proteins expression. 

The synergic effect of Flx and extinction treatment was associated with 

enhanced GluN2A expression which is in agreement with a previous study, 

where D-cycloserine, an NMDA-receptor partial agonist, administration 

facilitated GluN2A expression and lead to successful fear erasure after FC 
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(Walker et al. 2002; Lin et al. 2010). Another important finding, associated 

with the formation of unique synaptic protein profiles, is accentuated 

expression of proteins related to glutamatergic transmission (VGLUT1, 

PSD95, GluN2A, and GluA1) and a mild change in inhibitory component of 

synaptic transmission, when compared to the effect of extinction alone. To 

address this question we further tested influence of Flx action on neuronal 

networks in naïve mode. 

 

5.2 MECHANISMS OF FLX IPLASTICITY 
 

5.2.1  FLX AND STRUCTURAL PLASTICITY 
To understand the properties of Flx iPlasticity we investigated the effect of Flx 

administration on structural plasticity in the healthy state. Different 

molecules may mediate structural plasticity of neurons, particularly those 

involved in cell adhesion. Polysialated neuronal cell-adhesion molecule (PSA-

NCAM) is expressed in immature cortical cells and reduced with maturation. 

PSA-NCAM-expressing neurons receive less synaptic contacts than those 

lacking this molecule and have reduced dendritic arborization and spine 

density (Nacher et al. 2002; Guirado et al. 2014), suggesting that PSA-NCAM 

plays a role in the developmental regulation of neuronal structure and 

function. In our study we observed that Flx administration increased PSA-

NCAM expression in the basolateral amygdala (Fig. 3C, study I) In line with 

this findings, we demonstrated that Flx treatment reduced the expression of 

the K-Cl cotransporter KCC2 (Fig. 3D, study I), which is a key molecule 

responsible for the developmental switch from GABAA receptor -mediated 

depolarising to hyperpolarising action and whose expression dramatically 

increases with maturation of inhibitory systems (Rivera et al. 1999). 

Previously, it was demonstrated that disruption of PNNs with chondroitinease 
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ABC in the adult basolateral amygdala before, but not after, fear conditioning 

leads to fear erasure after extinction (Gogolla et al. 2009). In our study we 

assessed whether Flx treatment might disrupt PNNs and thereby facilitate 

extinction. Control and Flx-treated mice had similar numbers of PNN-positive 

neurons in all investigated brain areas. However, Flx treatment reduced the 

percentage of PNNs neurons expressing PV in the BLA and CA1 area of 

hippocampus. Previously, it was proposed that the developmental increase in 

PNNs may limit PV cells plasticity to allow these cells to strongly coordinate 

neuronal network through intense firing (Roux & Buzsáki 2015). These data 

suggest that Flx treatment selectively shifts the parvalbumin- and PNNs-

containing neurons toward an immature state. Taken together we conclude 

that Flx iPlasticity induced a structural reorganisation of investigated 

neuronal networks which may form the basis for behavior improvements. 

 

5.2.2  FLX AND SYNAPTIC PLASTICITY  
Long-term plasticity can be bi-directionally modified by various cues. For 

example, enhanced LTP is observed after exposure to enriched environment 

and is associated with improved learning and memory. Other exposures, like 

chronic unpredictable stress, in turn suppress or block long term potentiation 

(Alfarez et al. 2003). In spite of having only two possible directions of change, 

the basis of such LTP regulation could vary greatly. We demonstrated in our 

study that chronic antidepressant Flx administration enhances basal synaptic 

transmission and long term plasticity in hippocampal CA3-CA1 synapses. 

Moreover we showed that LTP changes were accompanied with alterations in 

short term synaptic plasticity and dynamics in CA1 hippocampal synapses. To 

investigate short term synaptic plasticity, we measured paired pulse 

facilitation and frequency facilitation, which are frequently used to assess 

changes in underlying. We found that Flx alter Pr and frequency facilitation. 
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Flx action on presynaptic function was previously reported. Thus it was 

demonstrated that Flx restores depolarization-evoked glutamate release in 

hippocampus in animals exposed to prenatal stress (Marrocco et al. 2014), 

and increases the frequency of spontaneous EPSCs in the locus coeruleus. We 

hypothesize that altered by Flx Pr might give the synapses considerable leeway 

so the property of synaptic transmission can be carefully regulated. All 

together, these findings demonstrate that Flx enhance synaptic plasticity and 

one of the possible sources of such modulations could be altered presynaptic 

function.  

We reported in our study that NMDA-dependent LTP (Kauer et al. 1988; 

Malenka et al. 1989) was enhanced after Flx in CA3-CA1 hippocampal 

synapses. However, there is considerable controversy regarding the effects of 

Flx on long-term synaptic plasticity. (Stewart & Reid 2000; Kobayashi et al. 

2010; Rubio et al. 2013). The studies by Stewart and Reid, and Rubio and co-

authors demonstrated that chronic Flx down-regulated long term synaptic 

plasticity in perforant path – DG synapses and CA3-CA1 hippocampal 

synapses, respectively. In the above experiments almost 20-fold lower dose of 

Flx treatment was employed, whereas in our study clinically relevant 

20mg/kg/day dose of Flx treatment was used in order to reach same level of 

plasma Flx level as patients taking 20–80 mg Flx (Prozac) per day (Dulawa et 

al. 2004). In line with our data, several studies (Wang et al. 2008; Sale et al. 

2007; Maya Vetencourt et al. 2008; Karpova et al. 2011) show that long term 

Flx administration enhances LTP in cerebral cortex, hippocampal perforant 

path and BLA and these findings were accompanied by altered maturation and 

survival of immature neurons in DG and enhanced expression of several 

plasticity-related markers. 
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Figure 4. Molecular protein complex that organize the secretory machinery at the 

presynaptic active zone.  

 

To investigate possible mechanism underlying altered synaptic plasticity, we 

measured expression of key downstream signaling molecules related to LTP: 

CaMKII/pCaMKII and CREB/pCREB and proteins associated with vesicular 

trafficking and release: synaptophysin, synaptotagmin 1, MUNC18 and 

Syntaxin1 (Fig.4). We also probed whether its expression depends on network 

activity by performing western blotting on slices from vehicle (water) and Flx 

treated animals where LTP was induced and maintained for 60min, (with 

control slices subjected to basal (0.05 Hz) stimulation only). CaMKII and 

CREB are involved in synaptic plasticity and have been previously shown to 

be targets of antidepressants (Celano et al. 2003; Tiraboschi et al. 2004; 

Bonanno et al. 2005; Barbiero et al. 2007). We found no difference in the 

expression of total CaMKII and CREB. Even though phosphorylation of both 

proteins was enhanced by LTP, the levels of phosphorylation were 
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unexpectedly lower in Flx treated animals than in vehicle treated ones. We 

conclude that synaptic plasticity enhanced by Flx is not associated with 

enhanced expression of downstream signaling molecules responsible for LTP. 

There are two possible explanations for these results, Flx: 1) recruits other 

downstream signaling proteins or 2) modulates synaptic plasticity in 

alternative way. Since our electrophysiological experiments identified changes 

in presynaptic function by Flx treatment, we probed a second hypothesis and 

measured expression of proteins related to vesicular trafficking and release. 

We choose synaptophysin, synaptotagmin, MUNC 18 and synatxin 1 because 

their roles in distinct stages of vesicles priming and fusion with the plasma 

membrane (fig. 4, table 2). SYP marks most of the vesicles in the brain. 

Synaptotagmin 1 acts as a Ca2+-sensor for synaptic vesicle exocytosis. MUNC 

18 regulates vesicle priming and Syntaxin 1, as part of membrane SNARE 

complex, reflects the overall amount of active zones. Our experiments showed 

that levels of expression of all investigated proteins were significantly higher 

in Flx treated mice then in controls. Interestingly, enhanced expression of SYP 

and Sptg1 was activity dependent and was enhanced only on slices from Flx 

treated animals where LTP was induced.  

Even though we cannot exclude other possible explanations to account for 

LTP enhancement, we have indirect evidence that suggests the changes 

observed in synaptic plasticity following chronic Flx administration: 1) are 

associated with accentuated presynaptic function 2) partially emerged in an 

activity-dependent manner. In study I we showed that only a combination of 

Flx treatment with extinction therapy (but not treatment alone) produces 

behavior outcomes. Moreover, in study II we demonstrated that Flx in 

combination with extinction treatment resulted in enhanced expression of 

SYP, VGLUT1, PSD 95 and GluN2A. Thus, we propose thatlong-term Flx 

administration might predispose hippocampal networks to activity-
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dependent plasticity, which is associated with accentuated long term synaptic 

plasticity and altered presynaptic function. 

It is not clear why Flx, with its pronounced acute effect on neuronal networks 

(Rantamäki et al. 2007; Sung et al. 2008; Kim et al. 2013; Jung et al. 2014), 

induces iPlasticity only following chronic administration and, thereby, 

offering potential therapeutic outcomes to a variety of mental disorders. It is 

well known that the CA1 area of hippocampus is highly innervated by 

serotonergic inputs. Direct stimulation of raphe nuclei or local serotonin 

application (Otmakhova et al. 2005) results in suppressed excitatory synaptic 

transmission in CA1 pyramidal cells. Flx applied acutely to slices suppresses 

synaptic transmission and blocks LTP induction (Shakesby et al. 2002). 

However, chronic Flx administration not only enhances basal synaptic 

transmission, short and long-term synaptic plasticity, but also stimulates 

maturation and synaptic plasticity of adult born hippocampal granule cells 

(Wang et al. 2008), alters specific inhibitory circuits of hippocampus (Méndez 

et al. 2012) and restores juvenile-like plasticity in the visual cortex and BLA 

(Maya Vetencourt et al. 2008; Karpova et al. 2011) . Such adaptive responses 

support the idea of homeostatic synaptic scaling (Turrigiano et al. 1998) 

induced by long term elevation through blockade of serotonin reuptake by Flx. 

Prolonged shunting of excitatory synaptic transmission may cause adaptive 

homeostatic responses aimed at balancing changed properties of synaptic 

transmission by inducing plasticity in the brain. So enhanced long and short 

term synaptic plasticity induced by Flx may be nothing but adaptive tuning of 

the hippocampal network oriented to the reinstatement of 

inhibitory/excitatory balance after long-term serotonin augmentation and the 

so-called plasticity changes that we observe appear to be a consequence of an 

underlying homeostatic regulation induced by chronic Flx administration. 
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5.3 ISOFLURANE IPLASTICITY 
 

In study IV, we assessed the role of another frequently used pharmacological 

compound, the volatile anesthetic Isoflurane, in iPlasticity. We found that 

brief isoflurane anesthesia induced a rapid and transient phosphorylation of 

TrkB and activation of CREB, Act and mTOR in different brain areas that have 

been linked to the antidepressant-like behavior in rodents. To elucidate the 

mechanisms underlying the rapid antidepressant actions of isoflurane, we 

examined synaptic plasticity and found that a single isoflurane 

administration, 24 hours before electrophysiological recordings, enhanced 

LTP and accentuated basal synaptic transmission in the CA3-CA1 

hippocampal synapses (Fig. 3B, study 4). PPF was not affected by isoflurane 

indicating unaltered Pr and presynaptic function (Supplementary Fig. 10, 

study 4). These effects of isoflurane on synaptic strength resemble those of the 

antidepressant Flx: 1) antidepressant effects on behavior, 2) dependent on 

TrkB signalling, 3) enhanced basal synaptic transmission and long term 

synaptic plasticity. But to achieve all the indicated changes, long term Flx 

treatment is needed, whereas for isoflurane induced plasticity only a single 

exposure is required. Therefore, isoflurane action on neuronal networks more 

closely resembles the action of another compound with fast-acting properties 

on the nervous system - ketamine. Together with ketamine (Autry et al. 2011), 

isoflurane induced iPlasticity following a single administration, activates 

mTOR and lead to synaptic plasticity. However there are concerns that 

ketamine’s addictive and psychotomimetic properties will hinder it from 

reaching its potential to treat human depression, while use of isoflurane in 

clinics is promising. It was already reported previously, that isoflurane 

produce rapid antidepressant effects in treatment-resistant depressed 

patients (Langer et al. 1985). We believe that isoflurane, with its ability to 
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quickly induce synaptic plasticity and antidepressant-like action will become 

a good substitute for a) ketamine as it is devoid of its psychotomimetic side 

effects and b) Flx with its time consuming action. Moreover this opens new 

potentials for clinical research in the field of human neuropsychiatric 

disorders where application of fast-acting antidepressants, alone or in 

combination with psychotherapy, might emerge as a therapeutic strategy in 

the near future. 

 

5.4 SPECIFIC VS COMMON FEATURES OF FLX AND 

ISOFLURANE IPLASTICITY 
 

As demonstrated, the investigated compounds, Flx and isoflurane, affected 

many aspects of neuronal plasticity and both induced synaptic plasticity. We 

showed that chronic Flx and single isoflurane exposure activated TrkB 

receptor and enhanced LTP. Moreover based on our results, we conclude that 

these compounds resulted in iPlasticity and can be used as tools to study it. 

However, not all the features of Flx and isoflurane iPlasticity are similar. First 

of all, to achieve behavior benefits, long term Flx administration is required. 

However for isoflurane action, only a single brief exposure is needed. A large 

number of studies into the action of Flx on the nervous system allow us to 

speculate that plasticity induced by Flx may be associated with homeostatic 

tuning of neuronal networks oriented to reinstate the inhibitory/excitatory 

balance caused by long-term serotonin augmentation. The poor knowledge 

concerning the action of isoflurane on the nervous system and relatively young 

field of fast acting antidepressants provides little insight into its role in rapid 

plasticity stimulation. More diversity arises from the effect of investigated 

drugs on BDNF expression. It is very well known that long term 

administration of Flx increases levels of BDNF and some of its action on 
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neuronal networks are BDNF dependent. Isoflurane, in turn, does not change 

BDNF levels. Taking into account that both investigated chemical compounds 

induce TrkB phosphorylation, the key receptor of BDNF, our findings propose 

different plasticity mechanisms underlie iPlasticity. In accordance with this 

hypothesis, our results may be dependent on the difference in effect of Flx and 

isoflurane on GABA function. As previously reported, isoflurane and Flx exert 

persistent effects on GABAergic transmission (Harauzov et al. 2010; Méndez 

et al. 2012; Guirado et al. 2014; Zurek et al. 2014). In our experiments 

(unpublished, fig. 5) designed to explore the origin of LTP changes and probe 

whether synaptic plasticity induced by Flx and isoflurane depends on 

GABAergic function, we measured LTP in presence of the GABAAR antagonist, 

picrotoxin (PiX). Surprisingly, we observed that whilst Flx induced LTP 

enhancement remained unchanged, isoflurane induced alterations in LTP 

were diminished in CA1 area of hippocampus. 

 

Figure 5. LTP induced by tetanic stimulation (100 Hz) in CA3-CA1 hippocampal synapses 
in presence of picrotoxin, study on Flx treated mice (A) and isoflurane treated mice (B). 
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6. CONCLUSIONS 
 

In the present thesis, we described and analyzed a novel type of neuronal 

plasticity (iPlasticity), which, according to it features, resembles critical period 

plasticity but originates in the adult brain and required intense environmental 

or/and pharmacological guidance. To stimulate iPlasticity in our research we 

applied chronic treatment with antidepressant Flx and single brief exposure 

with volatile anesthetic isoflurane. We investigated the influence of this 

chemical compounds in pathology and health in mice. 

1. Using parallel behavior and immunohistochemical approaches in fear 

conditioning paradigm, we demonstrated that for successful fear erasure, 

combination of chronic Flx administration with extinction treatment is 

required. Our findings resemble the principles of neuronal network tuning 

during critical periods, where establishing of proper network function is 

driven by environment. Thus we affirmed that Flx iPlasticity resembles critical 

period plasticity and manifested as juvenile-like plasticity or reopened critical 

periods. 

2. We demonstrated that both investigated chemical compounds induced 

iPlasticity in naïve mice. Our immunohistochemical and molecular biological 

studies showed that Flx induced structural plasticity and stimulated BDNF-

TrkB interaction and signaling, whereas isoflurane also stimulated TrkB and 

other plasticity related signaling but didn’t influence BDNF expression. All 

findings were not restricted to certain brain region but were detected in 

different brain areas. 

3. Enhanced synaptic plasticity was observed after Flx and isoflurane 

administration. Both drugs facilitated synaptic transmission and long term 

plasticity in CA3-CA1 hippocampal synapses, however differently affected 
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short term synaptic plasticity. Moreover in experiments with picrotoxin we 

detected GABA dependent (isoflurane) and independent (Flx) drugs action on 

synaptic plasticity. 

In summary, in our studies we highlighted the principles and attempted to 

elucidate the mechanisms of iPlasticity. We demonstrated that iPlasticity 

induced by the investigated compounds underlie successful recovery from 

pathological cues and, in naïve animals, results in structural and functional 

reorganizations of neuronal networks suggesting that iPlasticity predisposes 

neurons to activity dependent changes. We also demonstrated that features of 

iPlasticity induced by Flx and isoflurane were not identical. Since both drugs 

are of particular use in humans, we expect our results will promote 

development and improve clinical strategies and practice in the use of these 

drugs.  
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