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Abstract

Remote sensing provides land-cover information on a variety of temporal and spatial scales. The 

increasing availability of remote sensing data is now a major factor in land-change analysis and in 

understanding its impact on ecosystem services and biodiversity. This wider accessibility is also 

leading to improvements in the methods used to integrate these data into land-cover modelling and 

change analysis. Despite these developments in current technology and data availability however, 

there are still questions to be addressed regarding the dynamics of land cover and its impact, 

particularly in areas such as Ethiopia where the human population is expanding and there is a need 

for improvement in the management of natural resources.

Multi-scale approaches (from the national to the local) were used in this thesis to assess change in 

land cover and ecosystem services in Ethiopia, specifically in terms of provisioning (the 

production of food, i.e. cash crops) and regulating (climate control for vegetation cover). These 

assessments were based on multi-scale remote sensing (very high spatial resolution remote aerial 

sensing, high-resolution SPOT 5 satellite imaging and products of medium-resolution satellite 

remote sensing) and climate data (e.g., precipitation, temperature).

The main focus in this thesis is on mapping and modelling the spatial distribution of vegetation. 

This includes: (i) forest mapping (indigenous and exotic forests), (ii) modelling the probabilistic 

presence of understory coffee, (iii) Coffea arabica species distribution modelling and mapping and 

(iv) simulating pre-agricultural-expansion vegetation cover in Ethiopia.

The results of the applied predictive modelling were robust in terms of: (i) identifying and mapping 

past vegetation cover and (ii) mapping understory shrubs such as coffee plants that grow as 

understory. I present a reconstruction of earlier vegetation cover that mainly comprised 

broadleaved evergreen and deciduous forest but was replaced in the course of agricultural 

expansion. Given the spatial scale of the latter, the environmental modelling was complemented 

with high spatial resolution satellite (2.5m) and aerial images (0.5m). The results of the Object 

Based Image Analysis show that indigenous forests were separated from exotic forests. Current 

and future suitable locations that are environmentally favourable for the growth of understory 

coffee were identified and mapped in the coffee-growing areas of Ethiopia.

In conclusion, the information presented in this thesis, based on the multi-scale assessment of land 

changes, should lead to the better-informed management of natural resources and conservation, 

and the restoration of major areas affected by human population growth.

Keywords: remote sensing, multi-scale, predictive modelling, human population, vegetation, 

Coffea arabica, Ethiopia. 
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1. Introduction 

1.1. Background 

Land-use and land-cover mapping and analysis determine the structure, functions and dynamics 

of most landscapes throughout the world (Wu and Hobbs, 2002). On the general level, land use 

land cover (LULC) change, also called land change, refers to the modification of the Earth's 

terrestrial surface by humans. Although humans have been modifying land for thousands of years 

to obtain food and other essentials, the rate, extent and intensity are far greater now than ever 

before, driving extraordinary modifications in ecosystems and environmental processes on global, 

regional and local scales. These changes encompass the greatest environmental concerns of human 

populations today, including climate variability, biodiversity loss and the pollution of water, soils 

and the air. It is essential to understand the distribution and dynamics of land cover to be better 

able to conceptualise the earth’s fundamental characteristics and processes, including the 

productivity of land and the diversity of plant species. For example, assessing and monitoring the 

distribution and dynamics of vegetation cover are top priorities in studies on different scales of 

environmental change as well as in planning and management. Thus, information on land cover 

and its change is needed in order to manage natural resources and monitor all scales of 

environmental change and its consequences (Loveland and Belward, 1997b).

Remote-sensing data play an increasingly important role in LULC modelling. Remote sensing 

provides the information needed for the effective and sustainable future management of the Earth, 

and it has become essential. One reason for this is the rapid and continuing increase in the global 

population and the depletion of natural resources, as the world is experiencing the possible 

consequences of human-induced climate change (Liang et al., 2012). For instance, satellite remote 

sensing provides ideal data for monitoring changes in land-surface characteristics on a range of 

scales, with sufficient spatial and temporal resolution. Therefore, LULC models need remote-

sensing data such as (i) current/historical remote-sensing images and ii) environmental and 

scenario data derived from them (Heistermann et al., 2006). 

Africa’s mainland constitutes 20 per cent of the earth’s surface with its unique eco-regions and 

biologically rich landscapes including tropical forests, montane forests, woodland, and grass 

savannas. According to FAOSTAT (2014), 16 per cent of the world’s population, increasing by 

2.5 per cent annually on average since the year 2000, which is the highest known rate of increase, 

live in this continent. Of those, 60 per cent live in rural areas, and 52 per cent of the economically 

active population depend on agriculture. The economy of the continent is based mainly on natural 

resources, which are primary products. The utilisation of these resources tends to relate to the 

degradation and loss of forests and woodlands, the loss of animal and plant species, the degradation 

of land, an increase in water shortage and a decline in water quality (Geri, 2012). The effects of 
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land change on natural vegetation and biodiversity may also have a long-term impact on natural 

resources such as forests and sustainable food production (Foley et al., 2005). As a result, given 

the rapidly increasing population in Africa, a number of countries in the continent may face a 

potentially challenging food-security scenario. Hence, assessing and modelling the land cover and 

its dynamics to enhance understanding of the underlying causes is acknowledged as a key area of 

research on regional and global environmental change.

The Eastern Afromontane Biodiversity Hotspot (EABH) in East Africa needs special attention in 

terms of the management of natural resources for ecosystem services: it is one of 35 biodiversity 

hotspots, the most biologically rich yet threatened areas around the globe (CEPF, 2012). It 

encompasses scattered but bio-geographically similar mountain ranges in eastern Africa, 

stretching from Ethiopia to Zimbabwe. The region is unique in its biological attributes, being of 

major economic and cultural importance. Moreover, it has strong ecosystem service value: food 

production from major crops such as maize, cabbages, and cash crops such as coffee. The high 

human population density has resulted in resource competition in areas such as agriculture, 

forestry, biodiversity conservation, water provision and carbon sequestration. Given the changes 

in climate and land use, aggravated by the high population increase, the EABH is at risk of extreme 

climatic change, and the goods and services its ecosystems provide are under significant threat. 

The area is therefore considered worthy of special scientific attention, specifically in this thesis on 

the southwest highlands of Ethiopia. The fact that it is the most prolific coffee-producing region 

in Ethiopia makes it an ideal research object.

Coffee is a very important cash crop for the country's economy, accounting for 41 per cent of the 

total exports, and is the main contributor to community livelihood (IMF, 2006). There is also an 

urgent need for scientific geospatial tools and information to facilitate the sustainable management 

of natural resources and food production from major cash crops. I address these issues in Papers I, 

II and IV, which discuss the importance of remote-sensing technology with its integrated climate 

data for mapping and modelling the distribution and geospatial extent of coffee plantations, which 

is the understory in the indigenous forest (Figure 1). 

The other side of the rapid-population-growth problem observed in the East African highlands 

during the past century concerns the implications for land use and the subsequent impact on natural 

vegetation cover and biodiversity (Brink & Eva, 2009). Africa currently has the highest rate of 

deforestation in the world on account of overdependence on primary resources (Ademiluyi et al., 

2008; Johnson & Chenje, 2008). Forest cover in the tropics continues to decrease, mainly because 

of conversion to agricultural land (Ahrends et al., 2010; DeFries et al., 2010; Hundera et al., 2013). 

These changes in the natural landscape were established long before the advent of remote-sensing 

technologies. As a consequence, the exact extent and spatial patterns of Ethiopia’s vegetation cover 

before agricultural expansion is uncertain. Uncertainties concerning the original land-cover 
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patterns in Ethiopia also hinder the identification of the biophysical and socio-economic factors 

that contributed to defining current landscape patterns. Effective conservation actions are critically 

compromised in the absence of general knowledge of historical landscape patterns in that the 

identification of areas at risk of land degradation would be largely subjective. Furthermore, the 

full biodiversity loss caused by the expansion of agricultural lands is unknown, causing logistical 

and implementation problems for projects aimed at rehabilitating degraded areas of natural 

vegetation. Therefore, in Paper III I present a simulation of natural vegetation cover in Ethiopia 

during the past century, and estimate the extent to which it has been affected by agricultural 

expansion.

Figure 1. Understory coffee plants in the indigenous forest, southwest highlands of Ethiopia 

(Papers I, II, and IV and Photo: Binyam T. Hailu, May 5, 2012). 

1.2. The objectives of the thesis 

The main objective is to enhance understanding of the impact of human activities on ecosystem 

services in Ethiopia through the assessment of land changes from the local to the national level, 

by means of remote sensing and modelling.
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This research objective is addressed in the four individual papers.

The aim in Paper I is to discriminate between indigenous and exotic forests in a coffee-growing 

area of Ethiopia given that these coffee shrubs only grow in indigenous forests. A multi-scale 

approach is adopted, based on satellite imagery: field data and aerial imagery are analysed using 

advanced image-processing techniques. First, pre-processing served the purpose of satellite image 

correction and fusion. Next, the pre-processed satellite image was subjected to Object Based Image 

Analysis (OBIA). Finally, the results were validated using field data and aerial imagery.

Paper II presents an approach to mapping potential areas of understory coffee in Ethiopia’s 

southwest highlands using predictive modelling. Indigenous forests typically associated with 

understory coffee shrubs were mapped using remote sensing analysis, which is described in detail 

in Paper I (PI). A probabilistic predictive model was then built to link the understory coffee to 

forest and environmental variables. Finally, potential changes in coffee suitability maps were 

evaluated against projections of climate change for the year 2050. 

Paper III simulates the 20th-century natural vegetation cover of Ethiopia with a view to estimating 

the extent to which it was affected by agricultural expansion. First, the natural vegetation was 

separated from the agricultural areas and its net primary productivity (NPP) was assessed based 

on climatic productivity constraints. Second, multivariate regression was used to assess the 

relationship between NPP and the climatic variables (water availability, solar radiation and 

minimum temperature), which were the main productivity constraints. The model was then used 

to simulate NPP over the agricultural lands of Ethiopia, the aim being to provide a proxy for 

identifying the original natural vegetation in this area.

Paper IV determines the distribution and extent of the Coffea arabica L. species in the southwest 

highlands of Ethiopia by means of Species Distribution Models (SDMs) such as the Super Vector 

Model (SVM), Artificial Neural Networks (ANN), MaxEnt and the Generalized Linear Model 

(GLM). Building on Paper II (PII), it also assesses the predictive capacity of SDMs (SVM, ANN, 

MaxEnt and GLM) for estimating the presence/absence of the Coffea arabica species. The analysis 

is based on climatic variables (Precipitation, Minimum Temperature, Maximum Temperature, 

Evapotranspiration), remote-sensing variables (Normalized Difference Vegetation Index (NDVI), 

Simple Ratio (SR), Shadow Fraction (SF)), and landscape variables (distance to roads, distance to 

rivers, Digital Elevation Model (DEM) and slope).

2. Conceptual framework 

This chapter introduces the main topics that are covered in this thesis, which comprises a multi-

disciplinary study with Remote Sensing as the focal discipline, and Geography (PI, PII, PIII, PIV), 

Forestry (PI), Ecology (PII, PIV), and Environmental (PII, PIII, PIV) and Climate (PII, PIII, PIV) 
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studies as umbrella disciplines (Figure 2): remote sensing in earth resource analysis can be applied 

in the physical, natural and social sciences (Jensen, 2000). The aim is to show how remote sensing 

is applied in different disciplines, especially those concentrating on the management of natural 

resources and ecosystem services and using multi-stage and multispectral sensing systems. In other 

words, data about a site are collected from multiple altitudes in multistage sensing, and are 

obtained simultaneously in several spectral bands via multispectral sensing (Lillesand et al., 2007).  

Figure 2. Multidisciplinary applications of remote sensing. 

2.1. Characteristics of remote sensing data 

There are two types of remote sensors, analogue and digital. Remote sensing could be defined as 

the science and art of obtaining information about an object, area or phenomenon, which is the 

earth's surface in this dissertation, through the analysis of data acquired by a device or sensor that 

is mounted on an aircraft or satellite and is not physically in contact with the phenomenon under 

investigation (Lintz & Simonett, 1976; Lillesand et al., 2007). Aerial photographs, as an example 
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of analogue images although some are digital, have the clear advantage of recording extremely 

fine spatial details. Satellite images, which are digital, tend to be of a higher quality in terms of 

spectral, radiometric and temporal resolution (Lillesand et al., 2007; Wang and Weng, 2013). 

According to Wang and Weng (2013), the trend over the past 40 years has been towards improving 

the resolution of both image types. Resolution in remote sensing falls into four categories: spatial, 

spectral, radiometric and temporal. 

Spatial resolution refers to the area covered on the ground by a single pixel, often expressed as 

ground sampling distance (GSD) (Navulur, 2007; Lillesand et al., 2007; Wang and Weng, 2013). 

The resolution could be low if a pixel refers to a large area of ground and high when it refers to a 

small area. Spectral resolution depicts the number of spectral bands (Electromagnetic Radiation 

(EMR) wavelength ranges) on a given sensor that could be mounted on the satellite or aircraft. 

Most aerial and satellite sensors capture images in the visible and infrared regions of the EMR 

spectrum (Navulur, 2007; Lillesand et al., 2007; Wang and Weng, 2013). High (e.g., 0.5m in aerial 

photographs and 2.5m in processed satellite images) and low (e.g., 1 km in Moderate Resolution 

Imaging Spectroradiometer (MODIS) products) spatial-resolution data were used in all the papers 

included in this thesis (PI, PII, PIII and PIV). The spectral resolution also differed. For example, 

the SPOT 5 satellite image is a multi-spectral image that covers visible and infrared regions of 

EMR (PI, PII, PIV). Radiometric resolution is defined as the number of grey levels that can be 

recorded for a given pixel. In other words, the reflected signal is captured as an analogue signal 

and then converted to a digital number (DN) or a grey-level value, which is expressed as 

radiometric resolution for a given image. For example, SPOT 5 imagery (PI, PII, PIV) has a 

radiometric resolution of eight bits that results in pixel values ranging from 0–255.

2.2. Remote sensing for mapping land cover

Remote sensing data have long been used for deriving land cover maps, even before the launch of 

the first Landsat platform in 1972. Aerial photography served as a primary source of information 

on land cover when satellite imagery was not available. It is still an important source of information 

(Akbari et al., 2003; Cots-Folch et al., 2007), and is used for analysing historical LULC change 

(Thomson et al., 2007; Gerard et al., 2010). Aerial photographs were acquired and processed for 

mapping land cover in relation to this thesis (PI), for example. With the advent of remote-sensing 

satellites, land-cover has been assessed from the local (PI) to the regional (PIII) scale.

Land cover refers to the physical and biological cover above the earth’s surface, including 

vegetation, bare soil, water and/or artificial structures (Comber et al., 2005; Ellis and Pontius 

2006). Land use, on the other hand, reflects the arrangements, activities and inputs instituted by 

people in a certain land-cover type to produce, change or maintain it (Comber et al., 2005; Liang 

et. al., 2012). Information on land cover is required to facilitate understanding of the environment 

and its management on a variety of spatial and temporal scales, and decision makers are 
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increasingly demanding detailed spatial coverage with high temporal frequency in order to 

evaluate changes in the extent and condition of species habitats, forests and vegetation, for 

example.

For the purposes of this thesis, land cover was mapped to identify indigenous forests (PI, PII, PIV) 

based on satellite images to facilitate the management of natural resources and ecosystem services, 

specifically provisional ecosystem services. In fact, indigenous forest management and 

conservation are of major importance in the provision of ecosystem services in the EABH. Wild 

coffee (Coffea arabica L.) shrubs constitute the understory in the indigenous forest in this region, 

specifically Ethiopia’s southwest highlands (Gole et al., 2008; Hernandez-Martinez et al., 2009).

Coffee is the world's most prolific commercial crop plant and the second most valuable commodity 

(Davis et al., 2012). Globally, about 20 million farming families depend on coffee for their 

livelihood. Coffea arabica L. originated in the highlands of Ethiopia (Teketay, 1999; Labouisse et 

al., 2008; Davis et al., 2012). It is one of the 100 species of the Coffea genus, which together with 

Coffea canephora (robusta coffee) dominates the world coffee trade with a 99-per-cent share, and 

accounts for 70 per cent of coffee consumed (Damatta & Ramalho, 2006). In 2014, coffee 

accounted for exports worth an estimated US$ 13.9 billion, some five billion kg being shipped, 

and the total number of people employed in the coffee sector was estimated to be about 26 million 

in 52 producing countries (ICO, 2015). Specifically, the most diverse varieties Coffea arabica L. 

grow in the southwest highlands of Ethiopia (Gole et al., 2008). Coffee is the backbone of the 

country’s economy, contributing 41 per cent of its total foreign exchange earnings in 2005 (IMF, 

2006). The coffee plants contribute to the ecosystem processes of these forests, which include 

habitat provisioning for a diverse wildlife community, soil conservation, and the regulation of 

climate and atmospheric fluxes in carbon dioxide. PI, PII, and PIV focus mainly on land-cover 

mapping, the modelling of potential Coffea arabica L. growing areas, and the estimation of its 

geographical extent by means of remote-sensing and climate data.

2.3. Geospatial predictive modelling 

A predictive model is a mathematical algorithm that predicts a target variable from a number of 

factor variables. Predictive modelling leverages statistics to predict outcomes. Most events to be 

predicted are in the future (PII), but predictive modelling can also be applied to any type of 

unknown event, regardless of when it occurred (e.g., predicting what was present in the past (PIII)). 

According to Beauvais et al. (2006), Geospatial Predictive Modelling (GPM) is theoretically 

embedded in the principle that the incidence of events being modelled is limited in distribution: 

incidences are neither consistent nor arbitrary. There are spatial environmental aspects such as 

sociocultural, infrastructure-related and topographical factors, for example, that restrict and 

influence the locations at which these events take place. The aim of GPM is to explain these 

influences and constraints by correlating occurrences of historical geospatial locations with 
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environmental factors that characterise the constraints and influences in spatial terms. GPM is a 

process of analysing events through a geographic filter to produce statements of likelihood for 

event emergence.

GPM falls into two categories, deductive and inductive modelling. The former depends on 

qualitative data (subjective information) to explain the relationship between event occurrences and 

factors that describe the environment. In other words, the modeller could impose limitations by 

specifying a number of factors. For example, highly suitable locations for a particular group of 

events are constrained and influenced by non-empirically calculated spatial ranges, and other 

locations would appear less suitable. The depth of the qualitative data included in a deductive 

model limit it in terms of accuracy and detail. Inductive modelling (PII, PIV), on the other hand, 

is based on the empirically calculated spatial relationship between known (historic) event-

occurrence locations and factors that frame the environment (e.g., topography and infrastructure). 

Each event occurrence is plotted in geo-space and a quantitative relationship is defined between 

the occurrence and the environmental factors. Then, the values obtained from these quantitative 

relationships are processed statistically to establish spatial patterns of high and low suitability for 

event occurrence. 

3. The study areas

This thesis comprises four case studies conducted in Ethiopia, in the Horn of Africa. The country 

is situated at 34o30'–45o30' E and 3o30'–15o N and covers an area of 1.1 million km2 in the northeast 

part of Africa (Figure 3). Even though the study was conducted in Ethiopia, three of the case 

studies were local in scale (PI, PII, PIV), and one covered the whole country (PIII).
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Figure 3. The geographical locations of the study areas: the whole of Ethiopia (Paper III) and the 

coffee-growing area in the southwest highlands in SPOT 5 false colour (R,G,B: NIR, R,G; 

Papers I, II and IV).



22

Morphologically, Ethiopia is divided into three major regions (PIII: Figure 1), the Main Ethiopian 

Rift (MER), the Afar Triangle and the Ethiopian Highlands (Skovitina et al., 2012). This altitude 

varies from about 110 m below sea level in the Afar depression to 4620 m above sea level on Mt. 

Ras Dashen in the northern part of the Ethiopian highlands. The country possesses 50 per cent of 

the land above 2000 m in Africa, which makes it one of the largest highland areas in the tropics. 

The area that covers 73 per cent of the region over 2000 m asl receives 1185 mm mean annual 

rainfall during the main rainy season, which is from June to September (Seleshi and Demaree, 

1995). The mean monthly rainfall is between 9 mm in the Afar rift and 185 mm in the highlands, 

and the mean annual temperature is between 3.9o C in the high peak of the highlands and 31.2oC

at the bottom of the Afar Triangle. 

According to Friis et al. (2011), the closeness of the Equator (the southern boundary of Ethiopia 

at approximately 3o30' N) and the complexity of the relief govern the climate. The altitudinal range 

also strongly influences the climate, with the formation of microclimates ranging from the cool 

highlands to the hot desert (Seleshi and Zanke, 2004). The traditional Ethiopian climate 

classification is based on altitude and differentiates three zones (Conway, 2000): i) Kolla, which 

is below 1800 m asl. with a mean annual temperature of 20 °C –28 °C; ii) Woina Dega, 1800–

2400 m asl with a mean annual temperature of 16–20°C; and iii) Dega above 2400 m asl with a 

mean annual temperature of 1 °C–6 °C.

The local-scale study area that was the main focus in PI, PII and PIV is located between latitudes 

7.95° and 8.08° North and longitudes 36.3° and 36.5° East upstream of the Didessa river basin. 

The Didessa river is a tributary of the Blue Nile River located in southwest Ethiopia. The study 

area was 19,100 ha (PIV: Figure 1), varying in altitude between 1400 m.asl. downstream of the 

Didessa River to 2400 m.asl. in the upstream section. The topography is rugged with slopes 

between 0 o –50o. The mean temperature ranges between 17.5 and 20.5 at the lowest and highest 

altitudes, respectively. Rainfall ranges from 144mm/month downstream of the Didessa River to 

161mm/month in the natural forest.

4. Material and methods 

4.1. Geospatial and field data 

The material consists of three main geospatial datasets encompassing remote-sensing, climate and 

landscape data (Figure 4). Nine of the 17 datasets that were used in this thesis comprised remote-

sensing data: namely, NDVI (Rouse et al., 1974), SR (Jordan, 1969), Principal Component 

Analysis (PCA), Reflectance's (Ref. B), Shadow Fraction (SF), Net Primary Productivity (NPP), 

Potential Evapotranspiration (PET), Topographic Wetness Index (TWI) and Solar Radiation 

(SRad). The climatic data covered Precipitation (PT), Minimum Temperature (Tmin), Maximum 
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Temperature (Tmax), and Evapotranspiration (ET), and the landscape data comprised the Digital 

Elevation Model (DEM), Slope, Distance to River, and Distance to Roads.

Figure 4. The geospatial data used in this thesis. 

4.1.1. Remote sensing data 

Remote sensing data basically comprises digital images captured remotely. According to 

Panigrahy and Ray (2006), the components of such data include: (i) the energy source / 

illumination (EMR provision); (ii) interaction with the target (atmosphere or object); (iii) the 

recording of energy; (iv) transmission, reception and processing (storage in digital format or as 

images); and (v) interpretation and analysis (PI, PII, PIII, PIV). These digital images are produced 

from airborne or space-borne platforms that transmit a wide variety of valuable data about the 

earth’s surface for global and detailed analysis such as mapping (e.g., land cover), environmental 

monitoring and natural resource management (Benz et al., 2003). 

(i) Satellite images and products 

The land use and land cover of the study areas on the local (detail mapping described in PI) and 

regional (GlobeCover 2009 product) scale were the major products of the remote-sensing data 
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used in this thesis. The local-scale LULC map was based on SPOT 5 satellite imaging. SPOT 5 is 

one of the ‘Satellites Pour l’Observation de la Terre’ (SPOT) series that have been providing high-

quality, consistent optical imaging of the Earth since 1986. Seven satellites have been launched to 

date, of which SPOT 5, SPOT 6 and SPOT 7 are currently in orbit and fully operational.

SPOT 5 was launched on 4 May 2002 and carries two High Resolution Geometric (HRG) 

instruments. These sensors are a further development of the High Resolution Visible Infrared 

(HRVIR) sensors on SPOT 4, which was launched on 24 March 1998 and stopped functioning in 

July 2013. The spatial resolution of the bands in the multispectral mode is 10 m, except for the 

Shortwave Infrared (SWIR) that is actually imaged at 20 m and is distributed after resampling to 

10 m to match the spatial resolution with others. The panchromatic band was a green-red 

bandwidth (0.48-0.71 m) with a spatial resolution of 5 m. Furthermore, each HRG sensor operates 

with two panchromatic images, which are super mode and are acquired simultaneously by two 

dedicated arrays of Charge Coupled Device (CCD) detectors. These CCDs are vertically and 

horizontally offset by half a pixel (2.5m) in the focal plane. In an original three-phase process, a 

2.5-metre resolution black and white image can then be generated from these 5m images. 

Moreover, 5m and 2.5m resolution colour imagery can be derived operationally by combining the 

panchromatic information with simultaneously acquired 10m multispectral data. 

The two satellite images captured simultaneously by SPOT 5’s HRG2 sensor (path 134 / row 334) 

on 17 December 2008 were utilised in this thesis (PI, PII, PIV): (i) in panchromatic mode at 2.5m 

spatial resolution with 0.48–0.71 m wavelengths, and (ii) in multispectral mode at 10m spatial 

resolution with four bands: 0.50–0.59 m (green), 0.61–0.68 m (red), 0.78–0.89 m (near 

infrared) and 1.58–1.75 m (short-wave infrared). ERDAS Imagine®2011 software was used in 

the pre-processing of the satellite images (e.g., orthorectification, atmospheric correction and 

topographic normalization). Atmospheric correction was achieved in accordance with the 

empirical and image-based Dark Object Subtraction (DOS3) method (Chavez, 1996), and 

topographically normalized by means of c-correction methodology (Teillet et al., 1982). The 

corrected image was then fused with the panchromatic band to obtain a 2.5m multi-spectral image 

using the pan-sharpening, high-pass-filtering (HPF) resolution-merging method (Gangkofner, 

2008).

The processed SPOT 5 satellite image discussed in Paper I was further enhanced (Band ratio) to 

identify the variables (e.g., NDVI, SR) that were used in Papers II and IV. The satellite-image 

products that were used included spectral vegetation indices and land cover data such as NDVI 

(PI, PII, PIV), SR (PII, PV), TWI (PIV), SF (PII, PIV) and GlobCover land cover (PIII), as shown 

in Figure 4. The NDVI is a standardised spectral vegetation index that allows the generation of an 

image displaying the greenness of vegetation that takes advantage of the contrasting characteristics 
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of two bands from a multispectral raster dataset: chlorophyll pigment absorptions in the red band 

(R) and the high reflectivity of plants in the near infrared band (NIR). This is given as:

(1)

SR (equation 2) is among the simplest measures of the general quantity, dynamism and 

characteristics of green vegetation (McDonald et al., 1998; Xavier et al., 2004), and is calculated 

from the ratio of near infrared reflectance and red reflectance.

(2)

Gruninger et al. (2004) developed a method for creating a shadow fraction they called the 

Sequential Maximum Angle Convex Cone (SMACC) method using ENVI software. This method 

was applied in Paper II as one of the remote-sensing variables in the model. Coffea arabica L. 

grows in the shade of indigenous forest in the southwest highlands of Ethiopia, preventing drought 

stress and facilitating higher yields (Van Der Vossen, 1985). A shadow fraction was calculated to 

show the degree of shade within the study area (Paper II), and further used in the model after 

obtaining endmember abundances.

The Topographic Wetness Index 'equation (3)', developed by Beven and Kirkby (1979) within the 

runoff model TOP-MODEL, was used in Paper IV to determine the distribution of Coffea arabica

L.

(3),

where  is the local upslope area draining through a certain point per unit contour length and tan 

 is the local slope.

MODIS NPP (PIII), the Meteosat First Generation/METEOSAT Visible and Infrared Imager 

(MFG/MVIRI) solar radiation (PIII), MODIS cloudiness (PIII) and GlobCover 2009 (PIII), all of 

which yield low-resolution data, were used in addition to the remote-sensing products obtained 

from the SPOT 5 image in gathering the national-scale data for this thesis. NPP was the main 

remote-sensing data used in the predictive modelling reported in Paper III. This is a measure of 

vegetation growth, representing the carbon flux from the atmosphere to the biosphere (Churikina 

and Running, 1998). Annual NPP was obtained from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) NPP (kg C day-1) product (Zhao et al., 2005), which is a global 

product of 1km spatial resolution (Running et al., 2004) and provides a reliable measure of 

terrestrial vegetation growth and productivity (Turner et al., 2006). Meteosat First 

Generation/METEOSAT Visible and Infrared Imager (MFG/MVIRI) data were used in Paper III 

to measure solar radiation in terms of Surface Incoming Direct (SID) radiation (Wm-2). MODIS 

cloudiness (MOD06) was also taken into consideration in estimating the solar radiation for the 

unavailable years: cloudiness is the most important factor determining the amount of solar 
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radiation reaching the Earth’s surface, and the intensity of direct radiation decreases as the sun is 

covered partially or fully by cloud (Matuszko, 2012).

The FAO Land Cover of Ethiopia map (post-processed vector version of the GlobCover product) 

was used to obtain data on land cover (PIII). This data was obtained from the original raster-based 

GlobCover regional (Africa) archive (FAO, 2009) and was first produced in 2009 from the 

Medium Resolution Imaging Spectrometer Instrument Fine Resolution (MERIS FR) surface 

reflectance mosaics (Rast et al., 1999). It has been post-processed to generate a national-level 

vector version of the Land Cover Classification System (LCCS) regional legend that has 46 classes 

for the whole of Africa. There are 14 classes for Ethiopia (PIII: Figure 2). The classes of natural 

vegetation are open broadleaved deciduous forest, broadleaved evergreen or semi-deciduous 

forest, closed to open shrubland, mosaic forest shrubland/grassland, mosaic grassland/forest-

shrubland and closed to open grassland (PIII: Figure 2). According to the GlobCover map, the area 

covered by forest (broadleaved evergreen or semi-deciduous forest and open broadleaved 

deciduous forest) accounts for 6.6 per cent of the country’s land, whereas agricultural land cover 

accounts for 33.4 per cent.

(ii) Aerial photographs 

Aerial photographs, like satellite images, are digital images or analogue (film) photographs taken 

from a plane using a camera, and provide a bird's-eye view of the earth's surface. For the purpose 

of this thesis, true-colour aerial photographs were taken on a series of flights in October 2012 using 

a NIKON D3X camera and the EnsoMOSAIC aerial imaging system (MosaicMill, 2013). The 

flight altitude was 1000 m with 50% and 60% overlap between lines and image overlap lines, 

respectively. During the flight campaign, 705 aerial images were photographed for Didessa block 

and 888 images for Kofele blocks. Didessa block images were used for this research and the final 

spatial resolution of the aerial image mosaic was 0.5m after pre-processing and aerial triangulation.  

4.1.2. Climate data

Climate refers to long-term weather patterns in particular areas (Thornthwaite, 1948). It is 

measured in accordance with patterns of variation in meteorological variables such as temperature 

and precipitation in a given region over a period of time. Climate data comprises long-term patterns 

of weather information captured and stored in a system for the purpose of solving complex 

problems affecting the earth and the atmosphere. Given the long-term implications and complexity 

of the decision-making concerning the climate and how it is changing, it is very important that the 

decisions are based on the best available data (i.e., an understanding of the quality and provenance 

of the evidence, and of any assumptions made in generating it). 

The climate data included in this thesis, specifically for modelling purposes, are precipitation (PII, 

PIII, PIV), minimum temperature (PII, PIII, PIV) and maximum temperature (PII, PIII, PIV). 
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These data were obtained from WorldClim data (Hijmans et al., 2005) and a subset covering the 

specific area of interest on the national (PIII) and local (PII, PIV) scale. The coordinate system 

was projected onto the Adindan / UTM zone 37N and the data were resampled to 20 m (PII: Figure 

4, PIV: Figure 2). The objective of the resampling procedure is not to add to the spatial information 

in the climate datasets, but simply to match the spatial resolution of the climate variable raster with 

the other input dataset for the model.

Future climate scenarios were also used in Paper II to evaluate how changes in precipitation and 

temperature are likely to affect the presence of understory coffee by the year 2050. These data 

comprise a downscaled global climate model (GCM) from the Coupled Model Intercomparison 

Project Phase 5 (CMIP5). The models used in PII were the Community Climate System Model 

version 4 (CCSM4) (Gent et al., 2011), the Geophysical Fluid Dynamics Laboratory Earth System 

Model 2 (GFDL ESM2) (Dunne et al., 2012) and the Hadley Centre Global Environmental Model, 

Version 2 (HadGEM2-AO) (Baek et al., 2013). According to Jury (2014), the above climate 

models have the best performance over the Ethiopian highlands. Next, the average of the three 

models was used for analysing the effect of climate change. Following the selection of the climate 

models, two representative concentration pathways (RCPs) (VanVuuren et al., 2011) were used 

for the analysis: (i) RCP2.6, which was developed by the Integrated Model to Assess the Global 

Environment (IMAGE) modelling team of the PBL, Netherlands Environment Assessment 

Agency (Van Vuuren et al., 2007a) and (ii) RCP6, which was developed by the AIM modelling 

team at the National Institute for environmental studies (NIES) in Japan (Fujino et al., 2006, 

Hijioka et al., 2008).

Precipitation, minimum temperature and potential evapotranspiration (PET) data for the whole of 

Ethiopia were used in the modelling in Paper III, given that they are limiting factors for plant 

growth (Nemani et al., 2003; Mu et al., 2007b). PET refers to the evapotranspiration that occurs 

when the ground is completely covered by actively growing vegetation and there is no limitation 

in the soil moisture (PIII). PET data was obtained from the MODIS evapotranspiration product 

(MOD16) (Mu et al., 2011). The annual MODIS PET for 2001 to 2010 was used to compute the 

mean PET in mm/yr. Although precipitation is traditionally considered a major climatic driver of 

vegetation productivity, evapotranspiration primarily determines plant growth (Churkina and 

Running, 1998). Water from precipitation is never completely available to vegetation, but 

represents the maximum possible amount of accessible water. PET was used in Paper III to 

normalise the precipitation to get the maximum possible amount that is eventually used for plant 

growth because this ratio indicates the water-limiting condition (Nemani et al., 2003). 
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4.1.3. Landscape data 

The landscape variables were distance to roads (DTRo), distance to river (DTRi), Digital Elevation 

Model (DEM) and slope (Figure 4). The roads and rivers were digitised from the SPOT 5 satellite 

image acquired in 2011, and the Euclidian distance from these features was calculated in the GIS 

environment. A digital elevation model (DEM) was built as follows: 1:50,000 scale topographic 

paper map sheets provided by the Ethiopian Mapping Agency (EMA) were digitally scanned and 

utilised in the generation of DEM and its derivate (PI, PII, PIV). The scanned map sheets were 

then geo-referenced and the 20m interval contour lines digitised on-screen from the respective 

areas in ArcGIS software. The TOPOGRID function in ArcGIS was used to interpolate a 20-m 

planimetric resolution raster DEM for the study area. The outcome of this process was a raster 

DEM in a UTM Zone 37 projection with Adindan / UTM zone 37N Spheroid. The digital elevation 

model (DEM) was also used for the topographic correction and orthorectification of the SPOT 5 

satellite imagery used in this thesis (PI). A slope calculated from 20m DEM describes the steepest 

downhill slope for a location on a surface (PIV), in other words the maximum rate of change in 

elevation over each cell and its eight neighbours. Therefore, the lower the slope value the flatter 

the terrain, and the higher the slope value the steeper the terrain.

4.1.4. Field data 

The field work was conducted in May 2012 and December 2013 for 9 and 7 days, respectively. 

These two time periods are dry seasons in Ethiopia which are in the same season of the flight 

campaign. It was mainly to collect ground control points (GCPs) for the purpose of preprocessing 

the SPOT satellite image, training areas for land use land cover classification and validation points 

for modelling. Training samples, which were randomly collected from field data using GPS and 

aerial photographs, were overlayed with the segmented objects in ArcGIS. These samples 

(segmented objects) were used only for LULC mapping of the area. However, for the modelling, 

I used the sample points that was collected using GPS device. This device was handheld GPS 

Oregon 550 with ±3 m accuracy. The points were collected from indigenous forest cover that have 

coffee trees as understory, which covers more than 100 m2.

4.2. Methods 

Three main methods were used to achieve the objectives set for this thesis: remote-sensing data 

processing (PI, PII), land-cover mapping (PI) and modelling (PII, PIII, PIV).

4.2.1. Remote sensing data processing (Paper I, II, and III) 

The imageries were pre-processed and processed for land-cover mapping. ERDAS Imagine® 2011 

software was used in the pre-processing of the satellite images (e.g., orthorectification, 

atmospheric correction and topographic normalisation). The SPOT 5 Orbital Push broom sensor 

model with a Root Mean Square Error (RMSE) of 0.678 and 0.261 for the panchromatic and 

multispectral bands, respectively, was used for the purpose of orthorectification. Atmospheric 
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correction followed the empirical and image-based Dark Object Subtraction (DOS3) method 

(Chavez 1996), topographically normalised by means of c-correction (Teillet et al., 1982). The 

corrected image was then fused with the panchromatic band to obtain a 2.5m multi-spectral image 

using the pan-sharpening, high pass filtering (HPF) resolution-merging method (Gangkofner, 

2008).

4.2.2. Object-based land cover mapping (Paper I) 

The land-cover mapping was based on Object Based Image Analysis (OBIA) as applied in 

eCognition 8.7 software using the SPOT5 fusion image with image segmentation and classification 

(PI). The former includes multi-resolution segmentation (MRS), spectral-difference segmentation 

(SDS) and contrast-splitting segmentation (CSS). The classification was applied on two levels: (i) 

major classification for distinguishing forest cover from other targets (e.g., urban and agricultural 

areas) and (ii) the separation of indigenous and exotic forests from the forest cover. The Nearest 

Neighbor (NN) supervised classification (Land Cover Classification System (LCCS)) method was 

used to categorise the segmented image objects. Training samples were collected based on field 

data and aerial photographs. ArcGIS software was used for the sampling was done in by overlaying 

the two with the segmented vector file. K fold cross-validation (Efron and Tibshirani, 1993) was 

used for assessing the classification accuracy. Thus, two-fold and four-fold cross-validations were 

applied for the first- and second-level classifications, respectively. 

4.2.3. Modelling (Paper II, III, and IV) 

The modelling methods used in this research included predictive modelling of the potential 

presence of understory coffee (PII), predictive modelling of past natural vegetation converted to 

agricultural land (PIII), and Coffea arabica L. species-distribution and spatial-extent modelling 

(PIV).

Predictive modelling of understory coffee occurrence

The probability of understory coffee-plantation occurrence was modelled combining GIS, remote-

sensing data and statistical methods (Figure 5). The modelling platform was the DinamicaEGO 

(Soares-Filho et al., 2007), which was developed at the Centre for Remote Sensing of the Federal 

University of Minas Gerais, Brazil (CSR-UFMG) and has been widely applied in a large range of 

studies on land change. It has been used, for instance, to explore agriculture-expansion scenarios 

in Kenya (Maeda et al., 2010), and to delineate deforestation scenarios in the Amazon (Soares-

Filho et al., 2002, Maeda et al., 2011).

Input data for the model included landscape maps and additional explanatory variables. Two Land 

Use Land Cover (LULC) maps with LCCS (PI) were used to represent the landscape patterns in 

the study area and to identify indigenous forests that are currently used for coffee production. The 

location of understory coffee is unknown on the first map (LULC-NC), whereas its presence was 
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identified on the second by means of field observation and aerial imagery (LULC-C). The maps 

comprise nine classes: Closed Herbaceous Vegetation, Indigenous Forest-NC (No-Coffee), Small 

Sized Field of Graminoid Crop(s), Closed to Open Woody Vegetation, Rivers, Roads, Extraction 

Sites, Urban Areas and Exotic Forest. Initially, some objects from the Indigenous Forest-NC class 

with the presence of understory coffee were identified from field observation and aerial 

photographs, and then converted to Indigenous Forest-C (with coffee) as an additional class in the 

final landscape within the model. 

The Dinamica-EGO platform and the Weights of Evidence (WoE) method were used to calculate 

the probability of the presence of understory coffee in each cell. The WoE is a Bayesian method 

developed to facilitate the combining of evidence to support a hypothesis: in this case the effect of 

each landscape variable on a transition was calculated independently of any combined solution 

(Soares-Filho et al., 2002). In other words, the WoE was used to combine a set of geospatial 

attributes in order to identify the factors responsible for defining the landscape patterns (PII: 

equations 8-9). The understory coffee shrubs identified from field surveys and aerial imagery were 

divided in two groups: training and validation. The training group was used to create the LULC-C 

map, and subsequently used in the WoE method. The validation group was used to test the 

reliability of the model output. Namely, the resulting understory coffee-probability map was 

validated by creating a histogram showing the proportion of known sites falling into which portion 

of the map that was predicted as being a probable area for the presence of understory coffee. The 

model was calibrated and validated in accordance with current climate conditions, then future 

climate scenarios were used to evaluate how changes in precipitation and temperature were likely 

to affect the presence of understory coffee by the year 2050.

Coffea arabica L., species distribution and spatial extent modelling

The modelling comprised four processing and analytical steps.

1) Collecting presence/absence data for Coffea arabica L.: two methods were used to collect 

data on 112 Coffea arabica L. presence points. First, coffee presence places were identified 

by means of field surveys. Second, to avoid sampling bias aerial photographs were used to 

collect Coffea arabica presence data covering the whole study area.

2) Land cover mapping (PI)

3) Factor importance analysis: this was used in selecting the variables that determined the 

presence or absence of the species in a given pixel. In other words, the input explanatory 

variables were tested for spatial independence. Pearson's correlation coefficients were used 

to test for spatial dependence between pairs of variables (PIV: Table 1). Factors with 

coefficients greater than |±0.50| were considered to be auto-correlated and were thus 

excluded from the explanatory variables.
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4) Species distribution modelling: Four predictive models (GLM, ANN, MaxEnt and SVM) 

were evaluated. ModEco (Guo and Liu, 2010) was used as a model environment for 

pseudo-absence-based and background-based models. MaxEnt, SVM, GLM and ANN 

were implemented as background-based models and pseudo-absence-based models. The 

difference between the two is that the former sample the “pseudo-absence data” from the 

whole study area, which results in certain types of conditional probability depending on 

the models used (Phillips and Dud k, 2008). Of the 112 random presence points identified 

during the field survey and from 0.5m-resolution aerial photographs, 84 were used for the 

training model and 28 for validation. In order to apply all the models, 168 absence points, 

which was twice the number of training-data points, were created randomly from 

background-based and pseudo-absence data.

5) Geospatial analysis: the modelling results were used to analyse and map the areal extent of 

Coffea arabica L. distribution.
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Figure 5. Methods used to identify potential areas suitable for understory coffee (Paper II). 

Predictive modelling of past natural vegetation that was lost due to agricultural expansion 

Net primary productivity (NPP) was modelled based on the climatic constraints of natural 

vegetation growth derived from the remote-sensing and climate data. This model was used to 

simulate the productivity of the agricultural area and thus to identify the original extent of natural 

vegetation cover. The modelling proceeded in four main stages.
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1) Areas of natural vegetation were separated from agricultural areas and their net primary 

productivity (NPP) was calculated based on climatic productivity constraints. These 

constraints include minimum temperature, solar radiation based on cloudiness, and 

water availability (Nemani et al., 2003). Water availability was computed as the ratio of 

precipitation to potential evapotranspiration (P/PET), indicating water-limiting 

conditions for plant growth. The range of minimum temperatures, water availability and 

solar radiation variables (-5–5 oC, 0–0.75 and 0.1–1, respectively) were rescaled to 0–1 

to show the degree of productivity limits (Nemani et al., 2003).

2) Three thousand random points of natural vegetation cover were created to tabulate the 

three constraints and NPP in PIII. The points were separated at a minimum distance of 

five kilometres to avoid spatial autocorrelation. Of these samples, 75 per cent were used 

for the NPP training model and 25 per cent were used for validation.

3) Multivariate regression was used to assess the relationship between NPP and the 

climatic variables (water availability, solar radiation and minimum temperature). The 

regression model was also used to identify the environmental variables that have more 

influence on natural vegetation NPP. The relative impact of these variables on the NPP 

of each type of vegetation cover was determined by means of standardised coefficients 

(beta). These coefficients are measured as standard deviations, unlike the regression 

coefficients that are expressed in the units of the variables.

4) The model was used for simulating NPP over the agricultural lands of Ethiopia, the aim 

being to provide a proxy for identifying the original natural vegetation in this area. The 

simulated productivity map classified based on threshold function in order to show how 

agricultural expansion affected the natural vegetation.

5. Results

5.1. Assessment of local-scale patterns of land use and land cover

Distinguishing between indigenous and exotic forests and mapping their extent (Paper I) 

The 2.5m SPOT 5 image of the study area was split into four major categories by means of NN 

classification to obtain a second-level classification of forest cover (Figure 6). The first-level 

categories were: (i) Small Sized Field(s) Of Graminoid Crop(s) (C); (ii) Closed Herbaceous 

Vegetation (H); (iii) Closed Trees and Scattered Trees (T); and (iv) Closed to Open Woody 

Vegetation (W) (Figure 6). The land-cover map shows that most of the area (67.6%) is covered 

with Closed Trees and Scattered Trees, and generally encompasses a mixture of indigenous and 

scattered exotic forests. The overall accuracy of this first-level classification was 87.8 per cent, 
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with a kappa coefficient of 0.78 based on two-fold cross-validation (Table 1a.). User and producer 

accuracy for the class were 96.9 and 93.3 per cent, respectively, with a kappa coefficient of 0.92.

On the second level the Closed Trees and Scattered Trees (T) category was reclassified as 

indigenous (I) and exotic (E) forest to capture data on indigenous forest for the modelling in PII 

and PIV. The resulting image shows how the indigenous and exotic forests were classified (Figure 

6c). A total of 234 samples (160 and 74 for indigenous and exotic forests, respectively) were used 

for the NN classification and integrated into the knowledge-based threshold-function classification 

('see PI'). A four-fold cross-validation showed that indigenous and exotic forests were classified 

at an overall accuracy of 84.3 per cent with a kappa coefficient 0.605 (Table 1b). 

Table 1. Cross-validation of the Object Based Classification: (a) first-level classification (b) second-level 

classification.

Identifying the spatial distribution of understory coffee plantations in Ethiopia’s highlands 

(Paper II and IV) 

The association between the understory coffee probability transition (UCPT) and a certain remote 

sensing or climatic attribute that was obtained during the model calibration (Figure 7) shows the 

most relevant W+ values in determining the probabilistic presence of understory coffee in the area. 

In other words, the transition is from indigenous forests without understory coffee (IFWOUC) to 

indigenous forests with understory coffee (IFWUC). The significant attributes with regard to 

UCPT probability were PT, Tmax, SR, NDVI and the shadow fraction.

(a)
Accuracy % Kappa  overall

Acc. %

Overall

Producer User  per class Kappa

1

C 78.5 78.3 0.757 

88.9 0.790
H 89.8 79.0 0.874 

T 97.9 94.3 0.939 

W 26.4 86.8 0.246 

2

C 63.4 95.6 0.568 

86.7 0.769
H 87.4 75.2 0.840 

T 95.9 92.2 0.895 

W 80.0 57.1 0.798 

Avg.

C 71.0 87.0 0.663 

87.8 0.780H 88.6 77.1 0.857 

T 96.9 93.3 0.917 

W 53.2 72.0 0.522 

(b)
Accuracy % Kappa Overall

Acc. %

Overall

Producer User  per class Kappa

1
I 96.1 77.8 0.863 

81.7 0.613
E 62.6 98.5 0.480 

2
I 94.7 84.9 0.768 

84.2 0.610
E 60.8 93.4 0.509 

3
I 95.1 90.0 0.701 

87.2 0.586
E 57.6 80.0 0.501 

4
I 91.8 85.9 0.693 

83.9 0.612
E 66.6 79.7 0.548 

Avg. I 94.4 84.7 0.756 
84.3 0.605

E 61.9 87.9 0.510 
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Figure 6. Land use/Land cover map of the coffee-production area (OBIA). 

The map showing the probabilistic presence of understory coffee (Figure 8) was produced 

following application of the W+ values derived in Paper II, equation 8. It indicates that the presence 

of understory coffee is higher in indigenous forests close to rivers and the darkest (dark blue) area 

in the map shows the highest presence probability, for example. Conversely, lowest in the dense 

indigenous forests, which is light yellow colour in the map. This result was validated based on the 

known understory coffee areas. The probability of the presence of understory coffee ranges from 

0.1 to 1 for the known forest area, as described in Paper II, Figure 8. The validation result shows 

a probability of between 0.50 and 1 in 72 per cent of the known understory coffee pixels, and a 

probability of between 0.75 and 1 in 55 per cent of the same area. This implies that 72 per cent of 

the known understory coffee pixels fall in the darkest (dark blue) areas of the probability map. 

Analyses of the descriptive statistics of the probability values also confirmed the goodness of fit. 



36

For example, the mean probability value of the known understory coffee areas was 0.67 within 20 

square metres of indigenous forest, which is the pixel size.

Figure 7. Weights of Evidence (W+) values for the variables: a) annual mean precipitation, b) 

annual mean maximum temperature, c) Simple Ratio, d) Normalised Difference Vegetation 

Index and e) Shadow fraction. 



37

Figure 8. The probabilistic presence of understory coffee.

As a result of climate change (precipitation and temperature) there is an increasing probability of 

understory coffee at higher altitudes (PII: Figure 11), and a shifting of optimal growing zones of 

Coffea arabica L. in the area.

Determination of the geospatial extent of Coffea arabica L. in the coffee-growing area in Paper 

IV was based on four species-distribution-modelling methods. Figure 9 depicts the results of the 

four methods with pseudo absence and background absence. The grey and red colours represent 

indigenous forest and the predicted presence of understory coffee, respectively. MaxEnt with 

pseudo absence data and SVM with background absence revealed the highest levels of understory 

coffee presence prediction with 12.2 and 23.1 per-cent of indigenous-forest coverage, respectively 

(PIV: Table 3), whereas the lowest levels of eight and 6.4 per cent were based on ANN with pseudo 

absence and background absence data, respectively.   

The model’s performance was tested using the confusion matrices' of GLM, ANN, MaxEnt and 

SVM (PIV: Table 4). According to the results, the true positive rates of GLM, ANN, MaxEnt and 

SVM were 0.821, 0.548, 0.810 and 0.821, respectively. In other words, both the GLM and the 

SVM models performed better (TPR=0.821) whereas the ANN model showed the lowest 

performance (TPR=0.548). On the other hand, the TPRs of GLM, ANN, MaxEnt and SVM based 

on background absence were 0.821, 0.679, 0.964 and 0.964, respectively. This indicates that 

MaxEnt and SVM were the most robust modelling methods (TPR=0.964) and ANN was the least 

robust (TPR=0.679).
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Figure 9. Model results based on the pseudo absence of GLM, ANN, MaxEnt, SVM and a 

background absence of GLM (B-GLM), ANN (B-ANN), MaxEnt (B-MaxEnt), SVM (B-SVM).
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5.2. Assessment of regional-scale patterns of land use and land cover

The natural vegetation cover across Ethiopia before the agricultural expansion (Paper III) 

The three main results reported in Paper III are referred to in this thesis as small-scale findings.

i) Mapping the constraints of vegetation growth for Ethiopia: The main constraint on productivity 

on the lowlands of Ethiopia is water availability, whereas the minimum temperature is a limitation 

on the highest mountain peaks such as the northern part of the Ethiopian highlands and the 

southeast part of the country. Given that these peaks are very small in area, the main constraint on 

productivity in the highlands is solar radiation.

ii) The results of the multivariate regression concerning the productivity of existing natural 

vegetation (Globcover) and the climatic constraints: The productivity of natural vegetation cover 

was significantly related (p<0.001, R2=0.77) to water availability, which is one of the climatic 

constraints on productivity (PIII: Figure 3). However, it was not significantly limited by solar 

radiation or minimum temperature. Moreover, class-level analysis of vegetation productivity 

showed a significant association with water availability (PIII: Figure 4): for example, there was a 

significant relationship with closed to open grassland, closed to open shrubland, open broadleaved 

deciduous forest, and broadleaved evergreen or semi-deciduous forest (p<0.001).

iii) Modelling previous vegetation cover on the current agricultural land based on the above 

model: The relative coefficients and intercepts were identified from the model in order to formulate 

the NPP model and simulate previous natural-vegetation productivity in the area covered by 

agriculture (PIII: Figure 5b). Model validation showed that the simulated and the original NPP 

were significantly related (p < 0.001 and R2 = 0.76). The simulated NPP map of agricultural land 

in Ethiopia was then classified based on threshold values, as shown in Paper III, Figure 6, in order 

to reconstruct the original extent of the classes of natural vegetation cover (PIII, Figure 7a).

In other words, the current agricultural landscape in Ethiopia was previously covered to a 

significant extent (38.9%) by broadleaved evergreen and deciduous forest, the two classes of forest 

(open broadleaved deciduous and broadleaved evergreen or semi-deciduous) covering 27.7 and 

11.2 per cent of the area, respectively. Sparse vegetation and grassland (5.7% of the area) were the 

least affected by the agricultural expansion. The rest of the agricultural areas were covered by 

closed to open shrubland and mosaic forest-shrubland/grassland (36.1% and 19.3%, respectively 

(PIII, Figure 7a). Construction of the map of potential natural vegetation cover in Ethiopia also 

entailed merging the classes of simulated NPP natural vegetation cover for the agricultural areas 

and the current natural vegetation cover from Globcover (PIII, Figure 7b). The respective 

percentages of broadleaved evergreen or semi-deciduous forest, open broadleaved deciduous 

forest, closed to open shrubland, mosaic forest-shrubland/grassland, sparse vegetation and 

grassland were 18.8, 12.4, 20.6, 31.5, and 16.8. 
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6. Discussion

6.1. Modelling and mapping land cover and the presence of understory coffee  

OBIA has been applied in a large variety of remote-sensing studies and the usage of this 

method has become particularly popular in recent years (Blaschke, 2010). In this thesis, 

Paper I in particular concerns the applicability of OBIA in separating land covers using high-

resolution images, and Paper II shows the probabilistic presence of understory coffee, 

integrating the land cover data with SVI. The combination of these approaches has so far 

been insufficiently explored in terms of improving spatial analysis in studies of coffee: most 

of the spatial research focuses on coffee that grows in an open canopy. For example, Fabio 

et al. (2012) report the recognition of coffee crops using SPOT imaging with the automatic 

fusion of region-based classifiers. OBIA classification is a robust method for ecological 

applications. Zanella et al. (2012), for instance, show the importance of choosing the right 

classification method in the context of landscape ecology based on SPOT 2.5-m-resolution 

satellite images, especially OBIA.

Although SPOT 5 satellite images are high in spatial resolution, they are limited in spectral 

resolution, which hinders the identification of both indigenous and exotic tree species. 

However, the tree species could be identified in the field. The major indigenous species are 

Albizia gummifera, Croton macrostachyus, Cordia africana, and Acasia abyssinica, and the 

main exotic species are Grevillea robusta, Eucalyptus globulus, Pinus patula, and Cupressus

lustitanica. Therefore, this thesis does not show in detail the tree species that are 

characteristic of coffee forests and further research is necessary, based on high-resolution 

hyperspectral imageries, for example.

High-resolution satellite images provide the kind of habitat information that helps in 

distinguishing suitable sites more efficiently. Remote-sensing variables such as SVIs and 

specifically NDVI showed good correlation with the presence of understory coffee 

plantations, with W+ values up to three, as shown in Paper II, Figure 6(d). The shadow 

fraction also proved to be a useful explanatory variable for identifying indigenous trees, 

given that coffee trees grow under the indigenous forest as understory. Other studies such as 

Roura-Pascual et al. (2006), Bino et al. (2008) and Shirly et al. (2013), rely on NDVI for 

species distribution modelling, as in Paper IV in this thesis. Specifically, Shirly et al. (2013) 

show the usefulness of unclassified spectral reflectance in Landsat TM satellite images 

(bands 1, 2, 3, 4, 5 and 7) for species-distribution modelling, in addition to the NDVI. Apart 

from their predictive performance, these high-resolution satellite images could give detailed 

information on individual canopy gaps, for example, which could be missed on the broad 

spatial scale that merely identifies the presence and distribution of species (Betts et al., 2006).  

Moreover, large-scale geospatial data is effective in predicting the accurate location of a 
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species and its association. For instance, the ‘Fine-Filter’ strategy for biodiversity 

conservation developed by Scott et al. (1993) calls for fine-scale site identification rather 

than the coarser remotely sensed MODIS data.

The probability of transition from forest without understory coffee (FWOUC) to forest with 

understory coffee (FWUC) is time independent, which is not reflected in the work of Maeda 

et al. (2010 and 2011), for example. That is, they applied change in land use and land cover 

based on temporal maps and simulation to agricultural expansion and forest conversion in 

their respective studies. However, such temporal variables were not utilized in the study area 

rather favourability change for specific plant species, for example, Coffea arabica L. (Paper 

II).

Less attention is given to the spatial distribution of production and suitable areas for coffee 

growing in Ethiopia even though Coffee arabica L. originated in the southwest highlands 

(Davis et al., 2012), and the country's economy is highly dependent on coffee (IMF, 2006). 

Paper II identifies the environmental and landscape conditions that favour Coffea arabica L. 

in the production area, and Paper IV shows, on the evidence of four SDMs (GLM, ANN, 

MaxEnt and SVM), the spatial distribution, specifically the area coverage, of the Coffea

arabica L. species in one of the major coffee-growing area in the southwest highlands of 

Ethiopia. Geographic-information-based multi-criteria analysis has been used in other 

developing countries such as Rwanda to produce maps showing the actual spatial distribution 

and potential production zones of Coffea arabica L., and to predict the productivity level and 

potential yield (Nzeyimana et al., 2014). However, the geospatial data were restricted to 

climatic and landscape data (weighted overlay analysis) on the national scale, unlike the 

study discussed in Papers II and IV, which was based on remote-sensing data and focused 

on a large-scale coffee-growing area. 

Although a niche-based model describes suitability in ecological space, it is typically 

projected into geographic space, yielding a geographic area of the predicted presence of the 

species (PIV: Table 3). As Figure 8 implies, the outputs of each model are spatially different 

in the same survey of the species and the associated explanatory variables. Different methods 

have different strengths and weaknesses. Further, the choice of method depends on the data, 

the assumptions and the goals of the exercise (Segurado & Araújo, 2004). However, different 

methods with the same data and goals are taken into consideration in Paper IV. As a 

consequence, GLM and SVM show the highest performance when background-absence data 

is used, and SVM and MaxEnt models perform well in the case of pseudo-absence data. In 

both cases, SVM was the most robust method in terms of predicting the presence of 

understory coffee in the area.

The combining of dynamic and static variables in SDM prediction remains poorly 

understood and controversial (Brook et al., 2009). Most studies only use bioclimatic data as 
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explanatory variables to predict species distribution (e.g., Hole et al., 2009; Carvalho et al., 

2010). Non-climatic variables such as elevation, slope and aspect are also incorporated in 

some studies, alongside precipitation and temperature (e.g., Peterson et al., 2002). It is shown 

in Paper IV that local-scale studies incorporating landscape variables (distance to roads, 

distance to river, elevation, slope) and remote-sensing variables (NDVI, SR, TWI and 

Shadow Fraction) other than bioclimatic explanatory variables define species presence 

simply in terms of climate, excluding other important variables. 

6.2. Reconstructing the natural vegetation cover of agricultural areas in Ethiopia 

Natural vegetation cover over the past century as reconstructed in Paper III gives valuable 

information regarding the extent of original land cover in Ethiopia, which thus far has not 

been available (Dessie and Christiansson, 2008). Although there are some studies on change 

in forest and land cover in the northern (Kebrom and Hedlund, 2000; Gete and Hurni, 2001; 

Belay, 2002; Woldeamlak, 2002) and south-central parts of Ethiopia (Dessie and Kleman 

2007), there is insufficient information on a national scale. The reconstructed map of natural 

vegetation cover in Ethiopia could therefore be useful to policy makers and those responsible 

for making decisions regarding the management of natural resources that are beneficial to 

the country. 

The reconstruction of the natural vegetation cover of agricultural areas presented in Paper 

III is potentially beneficial in many respects, such as in the design of national and landscape 

rehabilitation policies. Forest rehabilitation in Ethiopia incorporates different types of 

policies, strategies and actors: the Forestry Conservation, Development and Utilization 

Proclamation No. 94/1994, the National Action Program to Combat Desertification (NAP 

1997), Rural and Agricultural Development Policy Strategies (2002), the Productive Safety 

Net Program (PSNP) (2003), the Ethiopian Program of Adaptation on Climate Change 

(EPACC), the Sustainable Land Management Program (SLMP) (2008–2015), Climate-

Resilient Green Economy, Phase 1 (CRGE) (2011–2030). Teketay et al., (2010) describe the 

common restoration strategies observed today such as reforestation/afforestation, 

agroforestry, exclosure and woodlot development. According to Lemenih & Bongers (2010), 

the management approach has shifted in recent decades, from the cultivation of large 

industrial plantations in the 1960s and 1970s to the current small-scale forest plantations in 

the form of woodlots integrated into agricultural landscapes to restore the forest that 

agricultural expansion destroyed.

The finding reported in Paper III that 38.9 per cent of current agricultural land was covered 

by forest implies that there was extensive deforestation in Ethiopia, specifically related to 

agricultural activities. This happened because agriculture is the major source of livelihood 

and is being used by smallholders for subsistence. According to Hamza.and Iyela (2012), 
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almost 85 per cent of the population depend directly on the agricultural economy. Due to the 

rapid population growth and the absence of agricultural intensification, smallholders required 

more land to grow crops and thus to earn a living, which further resulted in deforestation and 

land-use conversion from other types of cover (e.g., forest) to cropland.

There have been many studies on deforestation as a result of agricultural activities. 

According to Reusing (1998) and Limenih et al., (2007), agricultural expansion was the most 

direct driver of deforestation and forest degradation in Ethiopia given the increase in 

population. However, although agricultural expansion is the main driver of change in land 

cover, specifically in the destruction of natural forest areas, factors such as logging, 

urbanisation, desertification, mining and fires also have an impact (Belachew, 1996; 

Reusing, 1998; Darbyshire et al., 2003; Nyssen et al., 2004; Limenih et al., 2007; Tadesse et 

al., 2014). As the population increases so does the need for farmland and wood for fuel and 

construction, which relates directly to logging and urbanisation. As Belachew (1996) 

showed, wood products are prominent materials used for house construction in Ethiopia. 

7. Conclusion 

The mapping of resources on the national and the local scale contributes to a country's economic 

development and the management of its natural assets. In the case of Ethiopia, for example, 

decision makers engaged in the management of coffee production and the conservation of natural 

resources, specifically indigenous forest (Papers I, II, and IV), could benefit from knowing the 

geographical extent of suitable land supporting Coffea arabica L. Furthermore, the map of 

reconstructed natural vegetation will be of use to those responsible for restoring and rehabilitating 

the major areas affected by agriculture (Paper III). As a new tool it should enhance understanding 

of the spatial patterns of the original vegetation and the identification of socio-economic factors 

that contributed to defining the current agricultural landscape in Ethiopia. 

Despite the importance of Coffea arabica L. to the country's economy and the community's 

livelihood, little is known about the extent and exact location of understory coffee plants in the 

Ethiopian highlands, which inhibits the proper management of coffee production and ecosystem 

services. This thesis demonstrates novel and robust modelling approaches for mapping potential 

areas of understory coffee using climatic and remote-sensing variables. The impact of climate 

change was assessed for the existence of Coffea arabica L. in the area by means of probabilistic 

presence modelling (Paper II): the various scenarios indicate that precipitation and maximum 

temperatures are likely to increase by 2050, affecting the dynamics of landscape patterns. There 

also seems to be a shifting of optimal growing areas for understory coffee to higher altitudes. 

Likewise, the mapping based on four different models of species distribution and geospatial 

analysis gives a description of the geographical distribution and extent of this species in an area of 

coffee growing and production (Paper IV).



44

References

Ademiluyi, I.A., Okude, A.S., Adanni, C.O. 

(2008). An appraisal of landuse and 

landcover mapping in Nigeria. Afican. 

Journal of Agicultural. Research, 3, 581–

596.

Ahrends, A., Burgess, N.D., Milledge, S.A.H., 

Bulling, M.T., Fisher, B., Smart J.C.R. 

(2010). Predictable waves of sequential 

forest degradation and biodiversity loss 

spreading from an African city. Proceding 

of National Academy Science USA 107, 

14556–14561.

Akbari, H., Shea Rose, L., Taha, H. (2003). 

Analyzing the land cover of an urban 

environment using high resolution 

orthophotos. Landscape and Urban 

Planning, 63, 1–14. 

Baek, H-J., Lee, J., Lee, H-S., Hyun, Y-K., 

Cho, C.H., Kwon, W-T., Marzin, C., Gan, 

S-Y., Kim, M-J., Choi, D-H., Lee, J., Lee, 

J., Boo. K-O., Kang, H-S., Byun, Y-H. 

(2013). Climate Change in the 21st 

Century Simulated by HadGEM2-AO 

under Representative Concentration 

Pathways. Asia-Pacific Journal of 

Atmospheric Sciences 49(5), pp. 603–618. 

Beauvais G. P., Keinath, D. A., Hernandez, P., 

Master, L., Thurston, R. (2006). Element 

Distribution Modeling: A Primer (Version 

2), Natureserve, Arlington, Virginia.

Belachew M. (1996). The Science of 

Geography and its Relationship with 

Environmental and Population Studies. In 

B. Woldesemait, & K. N. Singh (Eds.), 

Proceedings of the First Annual 

Conference of the Association of 

Ethiopian Geographers on Population, 

Sustainable Resources and Development 

in Ethiopia. Addis Ababa: June 6 & 7, 

1996.

Belay, T. (2002). Land-cover/land-use 

changes in the Derekolli Catchment of the 

south Welo Zone of Amhare Region, 

Ethiopia. Eastern African Social Science 

Research Review, 18(1), 1–20.

Benz U. C., Hofmann P., Willhauck G., 

Lingenfelder I., Heynen M. (2003). Multi-

resolution, object-oriented fuzzy analysis 

of remote sensing data for GIS-ready 

information. ISPRS Journal of 

Photogrammetry & Remote Sensing, 58, 

239– 258.

Betts, M.G., Diamond, A.W., Forbes, G.J., 

Villard, M.A. & Gunn, J.S. (2006). The 

importance of spatial autocorrelation, 

extent and resolution in predicting forest 

bird occurrence. Ecological Modelling, 

191, 197–224. 

Beven, K. J. Kirkby, M. J. (1979). A 

physically based, variable contributing 

area model of basin hydrology, 

Hydrolological Sciences Bulletin, 24, 43–

69.

Bino, G., Levin, N., Darawshi, S., Van Der 

Hal, N., Reich-Solomon, A., & Kark, S., 

(2008). Accurate prediction of bird species 

richness patterns in an urban environment 

using Landsat-derived NDVI and spectral 



45

unmixing. International Journal of remote 

Sensing, 29, 3675–3700.

Blaschke T. (2010). Object based image 

analysis for remote sensing. ISPRS 

Journal of Photogrammetry and Remote 

Sensing, 61 (1):2–16 

Brink, A.B., Eva. H.D. (2009). Monitoring 25 

years of land cover change dynamics in 

Africa: a sample based remote sensing 

approach. Applied Geography, 29, 501–

512.

Brook, B.W., Akçakaya, H.R., Keith, D.A., 

Mace, G.M., Pearson, R.G. & Araújo, 

M.B. (2009). Integrating bioclimate with 

population models to improve forecasts of 

species extinctions under climate change. 

Biology Letters, 5, 723 725.

Burrows, C. J. (1990). Processes of vegetation 

change. London: Unwin Hyman.

Carvalho, S.B., Brito, J.C., Crespo, E.J., 

Possingham, H.P. (2010) From climate 

change predictions to actions conserving 

vulnerable animal groups in hotspots at a 

regional scale. Global Change Biology, 

16, 3257 3270.

CEPF. (2012). Eastern Afromontagne 

Biodiversity Hotspot. Ecosystem Profile 

Summary, Available online 

http://www.cepf.net (accessed January 

2013).

Chavez, Jr. (1996). "Image-Based 

Atmospheric Corrections" Revisited and 

Improved Photogrammetric Engineering 

& Remote Sensing, 62(9):1025–1036. 

Churkina, G., Running, S.W. (1998). 

Contrasting climatic controls on the 

estimated productivity of global terrestrial 

biomes. Ecosystems, 1, 206–215. 

Conway, D. (2000). The climate and 

hydrology of the Upper Blue Nile river. 

Geographical Journal, 166 (1),  49–62. 

Cots-Folch, R., Aitkenhead, M.J., Martinez-

Casasnovas, J.A. (2007). Mapping land 

cover from detailed aerial photography 

data using textural and neural network 

analysis. International Journal of Remote 

Sensing, 28(7), 1625–1642. 

Comber A., Fisher P., Wadsworth R. (2005). 

"What is land cover?" Environment and 

Planning B: Planning and Design, 32(2) 

199 – 209 

Damatta, F. M., Ramalho, J. D. C. (2006). 

Impacts of drought and temperature stress 

on coffee physiology and production: a 

review. Brazilian Journal of Plant 

Physiology, 18, 55–81. 

Darbyshire, I., Lamb, H., Umer, M. (2003). 

Forest clearance and regrowth in Northern 

Ethiopia during the last 3000 years. The 

Holocene, 13(4), 537–546. 

Davis, A. P., Gole , T. W., Baena, S., Moat, J. 

(2012). The Impact of Climate Change on 

Indigenous Arabica Coffee (Coffea 

arabica): Predicting Future Trends and 

Identifying Priorities. PLoS ONE, 7(11), 

e47981.

doi:10.1371/journal.pone.0047981.

DeFries, R.S., Rudel, T., Uriarte, M., Hansen, 

M. (2010). Deforestation driven by urban 



46

population growth and agricultural trade 

in the twenty-first century. Nature 

Geoscience,  3, 178–181. 

Dessie, G., Christiansson, C., (2008). Forest 

decline and its causes in the south-central 

rift valley of Ethiopia: Human impact over 

a one hundred year perspective. AMBIO: 

A Journal of the Human Environment, 37, 

263–271.

 doi:10.1579/0044447(2008)37[263:FDAI

CI]2.0.CO;2

Dessie, G., Kleman, J., (2007). Pattern and 

magnitude of deforestation in the South 

Central Rift Valley of Ethiopia. Mountain 

Research and Development, 27, 162–168. 

Dunne, J.P., John, J.G., Adcroft, A.J., Griffies, 

S.M,, Hallberg, R.W., Shevliakova, E., 

Stouffer, R.J., Cooke, W., Dunne, K.A., 

Harrison, M.J., Krasting, J.P., Malyshev, 

S.L., Milly, P.C.D., Phillipps, P.J., 

Sentman, L.T., Samuels, B.L., Spelman, 

M.J., Winton, M., Wittenberg, A.T., 

Zadeh, N., (2012). GFDL’s ESM2 global 

coupled climate–carbon earth system 

models. Part I: physical formulation and 

baseline simulation characteristics. 

Journal of Climate 25, pp. 6646–6665. 

Efron, B., Tibshirani, R.. (1993). An 

introduction to the bootstrap (Chapman & 

Hall CRC Monographs on Statistics & 

Applied Probability). 1st Ed. Chapman 

and Hall/CRC London.

Ellis, E., Pontius Jr. R.G. (2006). Land-use 

and land-cover change—encyclopedia of 

earth. Available at: 

http://www.eoearth.org/article/land-

use_and_land-cover_change

FAO, (2009). Land cover of Ethiopia - 

Globcover Regional. Roma, Italy. 

http://data.fao.org/ accessed on July, 2014. 

FAOSTAT, (2014). 

http://faostat3.fao.org/home/E. Accessed 

on September 5, 2015.

Friis, I., Demissew, S., Van Breugel, P. 

(2010). Atlas of the potential Vegetation 

of Ethiopia. Biologiske Skrifter 

(Biol.Skr.Dan.Vid.Selsk.), 58, 307. 

Foley, J.A., Defries, R., Asner, G.P., Barford 

C., Bonan G., Carpenter S.R., Chapin F.S., 

Coe M.T., Daily G.C., Gibbs H.K., 

Helkowski J.H., Holloway T., Howard 

E.A., Kucharik C.J., Monfreda C., Patz 

J.A.., Prentice I.C., Ramankutty N., Snyde 

P.K., (2005). Global consequences of land 

use changes. Science, 309, 570–574. 

Fujino, J., Nair, R., Kainuma, M., Masui, T., 

Matsuoka, Y. (2006). Multi-gas mitigation 

analysis on stabilization scenarios using 

aim global model. The Energy Journal 

Special issue, 3, pp. 343–354. 

Gangkofner, U. and D. Holcomb. (2008). HP 

Resolution Merge: ERDAS IMAGINE 

help. Leica Geosystems Geospatial 

Imaging: LLC.

Gent, P.R, Danabasoglu, G., Donner, L.L., 

Holland, M.M., Hunke, E.C., Jayne, S.R., 

Lawrence, D.M., Neale, R.B, Rasch, P.J., 

Vertenstein, M., Worley, P.H., Yang, Z-

L., Zhang, M., (2011). The Community 



47

Climate System Model version 4. Journal 

of Climate, 24, pp. 4973–4991. 

Gerard, F., Petit, S., Smith, G., Thomson, A., 

Brown, N., Manchester, S., Wadsworth, 

R., et al., 2010. Land cover change in 

Europe between 1950 and 2000 

determined employing aerial photography. 

Progress in Physical Geography, 34(2), 

183–205.

Gete, Z., Hurni, H. (2001). Implications of 

land use and land cover dynamics for 

mountain resource degradation in the 

northwestern Ethiopian highlands. 

Mountain Research and Development, 

21(2),184–191.

Giri, (2012). Remote sensing of land use and 

land cover and applications. CRC Press, 

Taylor & Francis Group, New York. 

Gole, T. W., Borsch, T., Denich, M., Teketay, 

D. (2008). Floristic composition and 

environmental factors characterizing 

coffee forests in southwest Ethiopia. 

Forest Ecology and Management, 255, 

2138–2150.

Gruninger, J., RatkowskI A.J., Hoke, M. L., 

(2004). The sequential maximum angle 

convex cone (SMACC) endmember 

model. SPIE Proceeding, 5425-1. 

Guo, Q. Liu, Y. (2010). ModEco: an 

integrated software package for ecological 

niche modeling. Ecography, 33, 1–6. doi: 

10.1111/j.1600-0587.2010.06416.x

ICO (International Coffee Organization), 

(2015). Trade Statistics. Available: 

http://www.ico.org/trade_statistics.asp?

section=Statistics. Accessed 2015 Aug 13 

IMF, (2006). The Federal Democratic 

Republic of Ethiopia: Selected Issues and 

Statistical Appendix. International 

Monetary Fund Country Report 6/122. 

Washington: IMF. 

Hamza, I.A. Iyela A.(2012). Land use pattern, 

climate change, and its implication for 

food security in Ethiopia: A review.

Ethiopian Journal of Environmental 

Studies and Management, 5 (1).  DOI: 

http://dx.doi.org/10.4314/ejesm.v5i1.4

Heistermann, M., Muller, C., and 

Ronneberger, K. (2006). Land in sight? 

Achievements, deficits, and potentials of 

continental to global scale land-use 

modeling. Agriculture, Ecosystems, and 

Environment, 114, 141–158. 

Hernandez-Martinez, G., Manson, R.H., 

Hernandez, A.C. (2009). Quantitative 

classification of coffee agroecosystems 

spanning a range of production intensities 

in central Veracruz, Mexico. Agriculture, 

Ecosystems & Environment, 134, 89–98. 

http://dx.doi.org/10.1016/j.agee.2009.05.

020.

Hijioka, Y., Matsuoka, Y., Nishimoto, H., 

Masui, T., Kainuma, M., (2008). Global 

GHG emission scenarios under GHG 

concentration stabilization targets. Journal 

of Global Environment Engineering13, 

pp. 97–108. 

Hijmans , R. J., Cameron, S.E., Parra, J. L., 

Jones , P. G. & Jarvis, S. A. (2005). Very 



48

high resolution interpolated climate 

surfaces for global land areas, 

International Journal of Climatology. 25, 

1965–1978.

Hole,D.G., Willis, S.G., Pain, D.J., Fishpool, 

L.D., Butchart, S.H.M., & Collingham, 

Y.C., et al., (2009). Projected impacts of 

climate change on a continent-wide 

protected area network. Ecology Letters, 

12, 420 431.

Hundera, K., Aerts, R., Fontaine, A., Van 

Mechelen, M., Gijbels, P., Honnay, O., & 

Muys, B. (2013).  Effects of coffee 

management intensity on composition, 

structure, and regeneration status of 

Ethiopian moist evergreen afromontane 

forests. Environmental 

Management, 51(3), 801 809. doi: 

10.1007/s00267-012-9976-5.

Jensen, J. R., (2000). Remote Sensing of the 

Environment. An Earth Resource 

Perspective. Prentice-Hall, Englewood 

Cliffs, NJ. 

Johnson, R. L., & Chenje M. (eds.) (2008). 

Africa: Atlas of our Changing 

Environment (Nairobi, Kenya: United 

Nations Environment Programme 

(UNEP)); available at: 

http://www.unep.org/dewa/africa/AfricaA

tlas/PDF/en/Africa_Atlas_Full_en.pdf.

Jury, M.R., (2014). Statistical evaluation of 

CMIP5 climate change model simulations 

for the Ethiopian highlands. International 

Journal of Climatology, 35(1), 37 44. doi: 

10.1002/joc.3960.

Kebrom, T., Hedlund L. (2000). Land cover 

changes between 1958 and 1986 in Kalu 

district, southern Wello, Ethiopia. 

Mountain Research and Development, 

20(1), 42–51. 

Labouisse, J. P., Bellachew , B., Kotecha , S., 

Bertrand , B. (2008). Current status of 

coffee (Coffea arabica L.) genetic 

resources in Ethiopia: implications for 

conservation, Genetic Resources and Crop 

Evolution, 55, 1079–1093. 

doi: 10.1007/s10722-008-9361-7. 

Lemenih, M., Feleke, S., Tadesse, W., (2007). 

Factors constraining the production and 

marketing of frankincense by local people 

in Metema district, NorthWestern 

Ethiopia. Journal of Arid Environments, 

71, 393–403. 

Lemenih, M., Bongers F. (2010). The role of 

plantation forests in fostering ecological 

restoration: experiences from East Africa. 

In: F. Bongers, & T. Tennigkeit (Eds.), 

Degraded forests in Eastern Africa: 

management and restoration. London, 

UK: Earthscan Ltd. 

Liang S., Li X., Wang J., (2012). Advanced 

remote sensing 1st ed. The Boulevard, 

Langford Lane, Kidlington, Oxford OX5 

1GB, UK.

Lillesand T., Kiefer R.W. , Chipman J ,

(2007). Remote Sensing and Image 

Interpretation, 6th Edition, John Wiley & 

Sons, inc.-New Delhi, India. 



49

Lintz J and Simonett, D.S., (1976). Remote 

Sensing of Environment. 713 p. Addison-

Wesley, Reading, Massachusetts. 

Loveland, T.R., Belward, A.S., (1997b). The 

International Geosphere Biosphere 

Programme Data and Information System 

global land cover data set (DISCover). 

Acta Astronautica, 41, 681–689. 

Maeda, E. E., Almeida, C.M., Ximenes, A. C., 

Formaggio, A.R., Shimabukuro, Y.E., 

Pellikka, P., (2011). Dynamic modeling of 

forest conservation: Simulation of past 

and future scenarios of rural activities 

expansion in the fringes of the Xingu 

National Park, Brazilian Amazon. 

International Journal of Applied Earth 

Observation and Geoinformation, 13, 

435–446.

Maeda, E. E., Clark, B.J.F., Pellikka, P., 

Silijander, M., (2010). Modelling 

agriculture expansion in Kenya's Eastern 

Arc Mountains biodiversity hotspot. 

Agricultural Systems, 103, pp. 609–620

Marascuilo, L. A., (1977). Nonparametric and 

distribution-free methods for the social 

sciences. Brooks/Cole Publishing Co. 

Matuszko, D., (2012). Influence of the extent 

and genera of cloud cover on solar 

radiation intensity. International Journal 

of Climatology, 32, 2403–2414. 

MosaicMill. (2013). "EnsoMosaic aerial 

digital imaging and image processing 

system." http://www.ensomosaic.com/ 

Mu, Q., Zhao M., Heinsch, F. A., Liu, M., 

Tian, H., Running, S. W.. (2007b). 

Evaluating water stress controls on 

primary production in biogeochemical and 

remote sensing based models. Journal of 

Geophysical Research, 112, G01012. doi: 

10.1029/2006JG000179.

Mu, Q.Z., Zhao, M.S., Running, S.W., (2011).  

Improvements to a MODIS global 

terrestrial evapotranspiration algorithm. 

Remote Sensing of Environment, 115, 

1781–1800.

Nemani, R. R., Keeling, C. D., Hashimoto, H., 

Jolly, W. M., Piper, S. C., Tucker, C. 

J.,  Myneni, R. B., Running, S. W., (2003). 

Climate-driven increases in global 

terrestrial net primary production from 

1982 to 1999. Science, 300, 1560 1563.

Navulur K., (2007). Multispectral Image 

Analysis Using the Object-Oriented 

Paradigm. CRC Press, the Taylor & 

Francis Group, New York 

Nyssen, J., Poesen, J., Moeyersons, J., 

Deckers, J., Haile, M. & Lang, A. (2004). 

Human impact on the environment in the 

Ethiopian and Eritrean highlands - a state 

of the art. Earth- Science Reviews, 64, 

273–320.

Nzeyimana, I., Hartemink A.E., Geissen, V., 

(2014). GIS-Based Multi-Criteria Analyis 

for Arabica Coffee Expansionin Rwanda. 

PLoS ONE 9(10): e107449. 

doi:10.1371/journal.pone.0107449.

Panigrahy, S., Ray, S.S., (2006). Remote 

Sensing. In 'Environment and 

Agriculture'. (Ed. K.L. Chadha, M.S. 



50

Swamminathan). Malhotra Publishing 

House, New Delhi.

Peterson, A.T., Ortega-Huerta, M.A., Bartley, 

J., Sanchez-Cordero, V., Soberon, J., 

Buddemeier, R.H., et al., (2002).  Future 

projections for Mexican faunas under 

global climate change scenarios. Nature, 

416, 626 629.

Phillips, S., Dud k, M. (2008). Modeling of 

species distributions with Maxent: new 

extensions and a comprehensive 

evaluation, Ecography, 31, 161–175.

Rast, M., Bézy, J-L. and Delwart, S., (1999). 

The ESA Medium Resolution Imaging 

Spectrometer (MERIS) – A review of the 

instrument and its mission. International 

Journal of Remote Sensing, 20, 1681-

1702.

Reusing, M., (1998). Monitoring of Natural 

High Forests in Ethiopia. Internal Report, 

Ministry of Agriculture, Addis Ababa, 

Ethiopia.

Roura-Pascual, N., Suarez, A.V., McNyset, 

K., Gomez, C., Pons, P., Touyama, Y., 

Wild, A.L., Gascon, F. & Peterson, A.T. 

(2006). Niche differentiation and fine 

scale projections for Argentine ants based 

on remote sensing data. Ecological 

Applications, 16, 1832–1841.

Running, S. W., Nemani, R. R., Heinsch, F. 

A., Zhao, M., Reeves, M., Hashimoto, H. 

(2004). A continuous satellite-derived 

measure of global terrestrial production. 

BioScience, 54, 547 560.

Scott, J.M., Davis, F., Csuti, B., Noss, R., 

Butterfield, B., Groves, C., Anderson, H., 

Caicco, S., Derchia, F., Edwards, T.C., 

Ulliman, J., & Wright, R.G. (1993). Gap 

analysis-a geographic approach to 

protection of biological diversity. Wildlife 

Monographs, 123, 1 41.

Segurado P., Araújo , M. B. (2004). An 

evaluation of methods for modelling 

species distributions. Journal of 

Biogeography, 31, 1555–1568. 

Seleshi, Y., Demaree, G.R., (1995).  Rainfall 

variability in the Ethiopian and Eritrean 

highlands and its links with the Southern 

Oscillation Index. Journal of 

Biogeography, 22(4-5), 945 952.

Seleshi, Y., Zanke, U. (2004). Recent changes 

in rainfall and rainy days in Ethiopia 

International Journal of Climatology, 

24(8), 973 983.  doi: 10.1002/joc.1052. 

Sheskin, D. J., (2011). Handbook of 

Parametric and Nonparametric Statistical 

Procedures. Boca Raton, FL: CRC Press. 

p. 109. 

Shirley, S.M., Yang, Z., Hutchinson, R.A., 

Alexander J.D., McGarigal, K., and Betts, 

M.G., (2013).  Species distribution 

modelling for the people: unclassified 

landsat TM imagery predicts bird 

occurrence at fine resolutions. Diversity 

and Distributions, 1 12

DOI:10.1111/ddi.12093

Skovitina, T.M., Lebedeva, E.V., 

Shchetnikov, A.A., Selezneva, E.V., 

Angelelli, F., Mikhalev, D.V. (2012). 



51

Geography and Natural Resources,  33(3), 

153 160.

Soares-filho, B.S., Garcia, R.A., Rodrigues, 

H.O., Moro, S., Nepstad, D., (2007). 

Coupling socioeconomic and 

demographic dimensions to a spatial 

simulation model of deforestation for the 

Brazilian Amazon. In: LBA-ECO 11th 

Science Team Meeting. 

Soares-filho, B.S., Pennachin, C.L., 

Cerqueira, G., (2002).  DIANAMICA - a 

stochastic cellular automata model 

designed to simulate the landscape 

dynamics in an Amazonian coloniztion 

frontier. Ecological Modelling, 154(3), pp. 

217–235.

Tadesse, G., Zavaleta, E., Shennan, C., & 

FitzSimmons, M., (2014). Policy and 

demographic factors shape deforestation 

patterns and socio-ecological processes in 

southwest Ethiopian coffee 

agroecosystems. Applied Geography, 54, 

149 159.

doi:10.1016/j.apgeog.2014.08.001

Teillet, P.M., Guindon, B., Goodenough, D.G. 

(1982). On the slope and aspect correction 

of multispectral scanner data. Canadian 

Journal of Remote Sensing, 8(2), 84–106. 

Teketay, D. (1999). History, botany and 

ecological requirements of Coffee. Journal 

Ethiopian Wildlife and Natural History 

Society, 20, 28–50. 

Thomson, A.G., Manchester, S.J., Swetnam, 

R.D., Smith, G.M., Wadsworth, R.A., Pet 

it, S., Gerard, F.F., (2007). The use of 

digital aerial photography and CORINE-

derived methodology for monitoring 

recent and historic changes in land cover 

near UK Natura 2000 sites for the 

BIOPRESS project. International Journal 

of Remote Sensing, 28(23), 5397–5426. 

Thornthwaite C. W., (1948). An Approach 

Toward a Rational Classification of 

Climate. Geographical Review, 38 (1): 

55–94. doi:10.2307/210739.

JSTOR 210739 

Turner, D. P., Ritts,W. D., Cohen, W. B., 

Gower,S. T., Running, S. W., Zhao, M., 

Costa, M. H. Kirschbaum, Al A., Ham, 

J.M., Saleska, S. R., Ahl, D. E. (2006). 

Evaluation of MODIS NPP and GPP 

products across multiple biomes. Remote 

Sensing of Environment, 102, 282–292. 

Wang, G., Weng Q. (2013). Remote Sensing 

of Natural Resources. CRC Press, the 

Taylor & Francis Group, New York.

Woldeamlak, B. (2002). Land cover dynamics 

since the 1950s in Chemoga watershed, 

Blue Nile Basin, Ethiopia. Mountain 

Research and Development, 22(3), 263–

269.

Wu, J., Hobbs, R., (2002). Key issues and 

research priorities in landscape ecology: 

An idiosyncratic synthesis. Landscape 

Ecology, 17, 355–365. 

Rast, M., Bézy, J-L., Delwart, S., (1999). The 

ESA Medium Resolution Imaging 

Spectrometer (MERIS) – A review of the 

instrument and its mission. International 

Journal of Remote Sensing, 20, 1681–

1702.



52

Van Der Vossen, H. A. M., (1985). Coffee 

selection and breeding. In Coffee: Botany, 

Biochemistry and Production of Beans 

and Beverage. Clifford, M. N. and 

Willson, K. C. (Ed.), pp. 48–96 (London: 

Croom Helm). 

Van Vuuren, D.P., Den Elzen, M.G.J., Lucas, 

P.L., Eickhout, B., Strengers, B.J., Van 

Ruijven, B., Wonink, S., Van Houdt, R., 

(2007a). Stabilizing greenhouse gas 

concentrations at low levels: an 

assessment of reduction strategies and 

costs. Climate Change, 81, 119–159. 

Van Vuuren, D.P., Edmonds, J., Kainuma,M., 

Riahi, K., Thomson, A., Hibbard, K., 

Hurtt, G.C., Kram, T., Krey, V., 

Lamarque, J.F., Masui, T., Meinshausen, 

M., Nakicenovic, N., Smith, S.J., Rose, 

S.K., (2011). The representative 

concentration pathways: an overview. 

Climate Change, 109, 5–31. 

Xavier, A.C., Vettorazzi, C.A., (2004). 

Mapping leaf area index through spectral 

vegetation indices in a subtropical 

watershed. International Journal of 

Remote Sensing, 25(9), 1661–1672. 

Zanella, L., Sousa, C.H.R., Souza C.G., 

Carvalho, L.M.T., Borém, R.A.T. 2012. A 

comparision of visual interpretation and 

object base image analyis for driving 

landscape metrics. Proceeding of the 4th 

GEOBIA, Rio de Janeiro, Brazil p.509. 

Zhao, M., Heinsch, F.A., Nemani, R.R., 

Running, S.W. (2005). Improvements of 

the MODIS terrestrial gross and net 

primary production global data set. 

Remote Sensing of Environment, 95 (2), 

164–176.


