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Abstract
The IEEE 802.11 WPA2 protocol is widely used across the
globe to protect network connections. The protocol, which
is specified on more than three-thousand pages and has re-
ceived various patches over the years, is extremely complex
and therefore hard to analyze. In particular, it involves vari-
ous mechanisms that interact with each other in subtle ways,
which offers little hope for modular reasoning. Perhaps be-
cause of this, there exists no formal or cryptographic argument
that shows that the patches to the core protocol indeed pre-
vent the corresponding attacks, such as, e.g., the notorious
KRACK attacks from 2017.

In this work, we address this situation and present an ex-
tensive formal analysis of the WPA2 protocol design. Our
model is the first that is detailed enough to detect the KRACK
attacks; it includes mechanisms such as the four-way hand-
shake, the group-key handshake, WNM sleep mode, the data-
confidentiality protocol, and their complex interactions.

Our analysis provides the first security argument, in any
formalism, that the patched WPA2 protocol meets its claimed
security guarantees in the face of complex modern attacks.

1 Introduction

The vast majority of consumer internet connections take place
over WiFi. In practice, this means that they use the security
protocol WPA2 (short for WiFi Protected Access 2), which
is part of the IEEE 802.11 WiFi standard. While there exists
a newer WPA3 standard since late 2018, the lack of WPA3
support in existing routers and end devices means that a sub-
stantial part of all end-user internet traffic passes over WPA2
connections. For internet traffic that does not use alternative
layers of protection (such as TLS), WPA2 is then the only line
of defense against anyone in range of the wireless connection.

Over time, the security of the WiFi standards has been a cat-
and-mouse game, with attacks and fixes following each other
in sometimes rapid succession (e.g., [4, 8–10, 17, 20, 24–26,
28, 32]). Initial attacks exploited rather simple design errors,

but with the advent of WPA2 and a range of patches, many
protocol attacks were no longer possible. In 2005, researchers
published proof sketches of the core components of the WPA2
handshake protocol [18], deeming it secure. The main attack
vector that remained was a brute-force offline guessing attack,
which is inherent in the protocol’s design.

It came therefore as a substantial shock in 2017 when Van-
hoef and Piessens showed that it was possible to break the
WPA2 protocol entirely without guessing the password [29].
Their attacks exploit the combination of (i) WPA2’s use of
nonces (short for “numbers used once”) as initialization vec-
tors for its authenticated encryption schemes, (ii) the known
fact that the reuse of initialization vectors causes severe se-
curity issues, and (iii) the observation that the reinstalla-
tion of an encryption key in WPA2 updates its associated
nonce/initialization vector. The attacks force the reuse of
nonces by tricking a client into reinstalling a key. Hence, they
are called key-reinstallation attacks, or KRACKs in short.

While Vanhoef and Piessens proposed countermeasures
in [29], they argued only informally why these countermea-
sures would be effective. IEEE then implemented a slightly
different countermeasure. However, in 2018, Vanhoef and
Piessens showed new attack variants that circumvent their
previously suggested countermeasures as well as the one im-
plemented by IEEE [30]. In addition to proposing yet an-
other range of countermeasures, they state: “We conclude that
preventing key reinstallations is harder than expected, and
believe that (formally) modeling 802.11 would help to better
secure both implementations and the standard itself.” Their
work led to IEEE including new countermeasures in the draft
802.11 standard.

This brings us to the present: there still exists no security
analysis of the WPA2 protocol, in any methodology, that is
detailed enough to capture attacks such as the KRACK attacks.
Consequently, we still have no better confidence in the latest
WPA2 drafts than the hope that no one has found yet another
attack variant.

This may come as a surprise, given that other complex mod-
ern security protocols such as TLS 1.3, Signal, and 5G AKA
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have received substantial detailed analysis from the academic
community using a range of techniques, e.g., [2,3,5–7,11–13,
15]. So why haven’t we seen similar analyses for WPA2? We
conjecture that the underlying reason is that WPA2 uses a non-
standard combination of nonces and counters that are shared
across several mechanisms which interact in ways that are
hard to predict. In particular, this includes mechanisms that
might appear irrelevant for security, but actually turn out to be
a potential source of vulnerabilities (such as sleep frames, as
we will see later). These design choices complicate any anal-
ysis effort, and especially contrast with TLS 1.3’s relatively
analysis-friendly design. Perhaps because of this, no detailed
systematic analysis of WPA2 has been put forward, despite
its widespread global use.

In this work, we set out to rectify this situation, and develop
a detailed formal model of the WPA2 design that captures
intricate attacks, including the KRACK attacks and their vari-
ants. We perform an automated analysis on our model using
the Tamarin prover [23]. We show how our model exhibits the
KRACK attacks and their variants, and evaluate the proposed
countermeasures. While our work was originally motivated by
those attacks, our general attacker model and detailed model
of the standard capture many more subtle behaviors. Ulti-
mately, we find that some countermeasures are sufficient to
cover all attacks on our model, and hence show formally that
these patches indeed prevent the earlier attacks as well as a
much larger class of attacks.

Our main contributions are as follows:

• We present the first detailed security analysis of the
WPA2 protocol design, including the four-way hand-
shake, group-key handshake, WNM sleep mode, and the
data-confidentiality protocols used to protect messages.

• Our formal model generalizes traditional symbolic-
analysis approaches of symmetric encryption by allow-
ing the attacker to exploit the reuse of nonces in en-
crypted messages, thus loosening the assumption of per-
fect cryptography. This allows us to show that if we leave
out the countermeasures, our formal model exhibits the
key-reinstallation attacks.

• We prove that certain countermeasures, suggested by
Vanhoef and Piessens to prevent key-reinstallation at-
tacks, are indeed sufficient to guarantee secrecy of the
pairwise transient key, secrecy of the group transient
keys, and authentication of the four-way handshake.

All our models, proofs, and documentation to reproduce our
results are available on a dedicated website corresponding to
this paper [14].

Paper Organization The rest of this paper is structured
as follows: In Section 2, we discuss background required to
understand the rest of the paper. In particular, we give a high-
level overview of the WPA2 protocol, discuss the notorious
key-reinstallation attacks, and explain Tamarin—the prover
used in our formal analysis. After this, we outline our formal
model of WPA2 and discuss modeling decisions in Section 3.
As it is impossible to discuss our entire model on just a few
pages, we focus on the most important parts. In Section 4,
we present our formal analysis—this includes a discussion
of the security properties we proved and details on how we
proved them; Section 4 is thus particularly interesting for
readers with practical experience in the symbolic analysis of
protocols. In Section 5, we then present the main results of
our analysis before discussing related work in Section 6 and
concluding in Section 7.

2 Background

2.1 Overview of WPA2
WPA2 is a protocol used for securing communication over
wireless networks. Specified in the more-than-three-thousand
pages long IEEE 802.11 standard [1], it allows a client (e.g., a
laptop or a smartphone) to establish cryptographic keys with
an access point (e.g., a router) in order to encrypt messages
exchanged over a network. The IEEE standard refers to the
two protocol participants as supplicant (on the client side)
and authenticator (on the access-point side); for consistency,
we stick to the terms used in the standard in the rest of the
paper. The two most important cryptographic keys defined by
WPA2 are the so-called pairwise transient key (PTK) and the
group temporal key (GTK). In typical scenarios, the pairwise
transient key is used to secure a supplicant’s WiFi traffic. The
group temporal key is used to secure broadcast messages from
an authenticator to its supplicants, e.g., for IP-multicast traffic.

To establish these keys, the supplicant and the authenti-
cator exchange messages in a predefined manner known as
the four-way handshake. Over the course of this four-way
handshake, the supplicant and the authenticator derive their
pairwise transient key, starting out from a preshared secret,
which could, for instance, be the password you enter when
connecting to a wireless network for the first time. This pre-
shared secret is called the pairwise master key (PMK). As
part of the handshake, the authenticator also shares its current
group temporal key with the supplicant. Note here that the
pairwise transient key is derived from shared inputs by both
the authenticator and the supplicant whereas group temporal
keys are generated by the authenticator alone.

In a nutshell, an ideal execution of the four-way handshake
is as follows: The authenticator and the supplicant both gen-
erate a fresh nonce which they share with each other. Each
of them then combines the two nonces with the preshared
secret to derive their pairwise transient key. Once the authen-
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Figure 1: Overview of a Successful Four-Way Handshake.

ticator has derived the pairwise transient key, it shares the
group temporal key with the supplicant. Note that the stan-
dard distinguishes between the derivation and the installation
of a key: once a party has derived a key, it knows the key
but it might not yet be ready to encrypt messages with that
key; only when the party installs the key can it also encrypt
messages with that key. In particular, after receiving the group
temporal key, the supplicant then installs both keys and sends
a confirmation to the authenticator who, upon receipt of the
confirmation, also installs the pairwise transient key.

Figure 1 shows a more detailed view of an ideal four-way
handshake. As shown in the figure, the handshake involves
the exchange of four messages as follows:

(1) The authenticator generates a fresh nonce, called the
ANonce, and together with a replay counter (i.e., a counter
used to protect the receiver against replay attacks) sends
it to the supplicant.

(2) The supplicant generates its own fresh nonce, the SNonce,
and uses a key derivation function to derive the pairwise
transient key (PTK) from the preshared secret (PMK) and
the two nonces: PTK = KDF(PMK,ANonce,SNonce).
Then, the supplicant sends the SNonce and the replay
counter it received in message 1 to the authenticator. Ad-
ditionally, to allow the authenticator to verify the integrity
of the message, it appends a message integrity code (MIC)
computed with the PTK. In the context of the WPA2 pro-
tocol, message integrity code is just another term for the
more common message authentication code (MAC).

(3) After receiving message 2, the authenticator also derives
the PTK and checks its message integrity code. It then
encrypts the GTK and—together with an incremented
replay counter and a MIC (also computed with the PTK)—
sends it to the supplicant.

(4) When the supplicant receives message 3, it checks the
message integrity code. In case the check is successful,

Authenticator Supplicant

M1: encPTK(GTK, NonceGTK), counter, MICPTK 

M2: counter, MICPTK 
Install GTK

with NonceGTK

Install GTK
with NonceGTK

Figure 2: Overview of a Successful Group-Key Handshake.

it installs the GTK and the PTK, setting the PTK’s nonce
to 0; as we explain on the next page, this nonce functions
as an initialization vector in the encryption scheme. To
confirm to the authenticator that the installation was suc-
cessful, the supplicant uses the PTK to compute a MIC
for the replay counter of message 3 and sends both the
replay counter and the MIC back to the authenticator.

At this point, the authenticator also installs the pairwise
transient key and the handshake is complete. Unfortunately,
this “ideal” handshake tells only part of the story. In reality,
there are many more mechanisms and details that make WPA2
an immensely complex protocol with lots of room for trouble.

One mechanism, aimed at improving security, is the exe-
cution of periodic renewals of the keys, so-called rekeys. A
rekey of the pairwise transient key involves a new iteration
of the four-way handshake. A rekey of the group temporal
key can involve a new iteration of the four-way handshake
with one supplicant (the one who initiated the rekey) and so-
called group-key handshakes with the other supplicants ([1], p.
2021). The purpose of such a group-key handshake is simply
to distribute the new group temporal key to all supplicants.

An ideal group-key handshake is shown in Figure 2. The
authenticator just sends the current group temporal key to-
gether with the current nonce and a message integrity code
to the supplicant, who then installs the key and confirms the
installation to the authenticator. We discuss the group-key
handshake in more detail in Section 3.2.

Finally, there are other seemingly harmless mechanisms,
such as the possibility to send handshake messages multiple
times in order to deal with messages lost on the network, or
the so-called WNM sleep mode (WNM is short for wireless
network management), a mechanism that allows a supplicant
to reduce power consumption by temporarily shutting itself
off from certain traffic.

Ultimately, the purpose of the keys in WPA2 is to se-
cure WiFi traffic. This is achieved by using the keys as
encryption keys in so-called data-confidentiality protocols
that protect messages exchanged over the network. These
data-confidentiality protocols utilize authenticated encryption
schemes based on nonces, and the wrong use (in particular
the reuse) of these nonces can be exploited by attackers.
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Authenticated Encryption and Nonce Reuse WPA2 al-
lows to choose from three different data-confidentiality proto-
cols that enable authenticated encryption ([1], p. 1953):

• TKIP (Temporal Key Integrity Protocol),

• CCMP (Counter Mode with CBC-MAC Protocol),

• GCMP (Galois Counter Mode Protocol).

All three use a key together with a nonce for encryption; the
nonces are analogous to initialization vectors in counter-mode
encryption: they are initialized with a certain value and then
incremented for every encrypted message. On the receiver
side, the nonces are also used to protect against replay attacks.

A problem that arises in this context is that the reuse of a
nonce for a particular key can have negative consequences
whose impact varies for the data-confidentiality protocols.
However, what holds for all of them is that if a nonce is
reused, then this allows an attacker to decrypt messages sent
over the network as well as to replay messages. Additionally,
for TKIP, nonce reuse allows an attacker to forge messages in
one direction [27], and for GCMP it even allows an attacker
to forge messages in both directions [19]. As we will see in
the following, the reuse of nonces can, for instance, be caused
by the reinstallation of a key.

2.2 Key-Reinstallation Attacks
In 2017, Vanhoef and Piessens demonstrated subtle attacks on
WPA2 that trick a supplicant into reinstalling a key [29, 30].
Such reinstallations can seriously harm the security of WPA2
because whenever a supplicant reinstalls a key, it updates cor-
responding data, in particular, the nonce used for encryption.

Attacks and Countermeasures The key-reinstallation at-
tacks by Vanhoef and Piessens are person-in-the-middle at-
tacks that force a party into reusing a nonce by making clever
use of WPA2 mechanisms such as message retransmissions.
The most critical of these attacks is on the four-way handshake
itself. As discussed earlier, in an ideal four-way handshake,
the authenticator and the supplicant first exchange nonces
before the authenticator transmits the group temporal key to
the supplicant. The supplicant then installs both the pairwise
transient key and the group temporal key and confirms the
installation to the authenticator, who in turn also installs the
pairwise transient key.

A problem arises, however, if the authenticator does not
receive an installation confirmation from the supplicant, and
this is where the retransmission of messages comes into play:
If the authenticator does not receive an installation confir-
mation within a certain period of time, it assumes that the
supplicant did not receive its previous message and therefore
retransmits this message (M3) to the supplicant. But what if
the supplicant did actually receive the previous message and

Authenticator Supplicant

Install Keys

Encrypt data with PTK and nonce 0

Reinstall Keys

M1 (counter1) M1 (counter1)

M2 (counter1)M2 (counter1)

M3 (counter2) M3 (counter2)

M4 (counter2)

Attacker

...
Encrypt data with PTK and nonce n

Encrypt data with PTK and nonce 0
...

Nonce Reuse!

M3 (counter3) M3 (counter3)

Figure 3: KRACK Attack on the Four-Way Handshake

thus installed the keys already? In that case, the supplicant
would, upon receiving M3 again, reinstall the two keys and
thus reset the nonce of the pairwise transient key to 0. Now,
if the supplicant sent encrypted messages with the pairwise
transient key before reinstalling it, the nonce reset will lead to
the reuse of nonces when encrypting further messages after
the second installation.

So all it takes for a person-in-the-middle attacker is to trick
the authenticator into believing that the supplicant didn’t in-
stall the keys. But this is easy: The attacker can simply prevent
the supplicant’s installation confirmation from reaching the
authenticator. When the authenticator then retransmits mes-
sage 3, the attacker forwards it to the supplicant, who will in
turn reinstall the keys and that’s it. Figure 3 illustrates an exe-
cution of this attack. In practice, the attack might not be that
straightforward. This is because some implementations of the
supplicant only accept encrypted messages after they installed
a PTK, and the message (M3) the attacker intercepted is still
unencrypted. Even in this case, Vanhoef and Piessens showed
later [30] how to achieve a key-reinstallation by abusing the
so-called sleep-flag of WPA2.

To prevent key-reinstallation attacks, Vanhoef and
Piessens [29, 30] suggested possible countermeasures, which
we discuss later in Section 5.2. Before we move on to
presenting our formal model of WPA2, we give a short
overview of Tamarin—the tool used for our analysis.

2.3 The Tamarin Prover

The Tamarin prover [23] is an automated-reasoning tool for
the analysis of complex security protocols. Tamarin operates
on the symbolic level, meaning that bit strings are abstracted
to algebraic terms. Tamarin is particularly well suited for
modeling complex state machines with loops and evolving
state, and is therefore a natural choice for WPA2.
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To formalize a security protocol in Tamarin, we encode the
protocol as a collection of multiset-rewriting rules, such as:[

State(userID,key, ’READY’)
]

—
[
SendsReadyMsg(userID)

]
→[

Out(senc(key,userID))
]

Intuitively, this rule says that if a user with a given ID and a
given key is in state ‘READY’, it can encrypt its ID with its
key and send the resulting ciphertext to the network.

Terms such as the above State(userID,key, ’READY’),
SendsReadyMsg(userID), and Out(senc(key,userID)) are
called facts. Moreover, senc is a built-in function symbol for
symmetric encryption. Tamarin also allows to define custom
function symbols and to specify their semantics via equations,
a feature we use in Section 3.4 to model the use of nonces in
authenticated encryption schemes.

In general, the multiset-rewriting rules used with Tamarin
consist of a left-hand side (the part with the fact
State(userID,key, ’READY’) in the above example), a right-
hand side (the part with Out(senc(key,userID))), and so-
called action facts (SendsReadyMsg(userID)).

Once we have encoded a protocol by a set of such rules, we
can specify desired properties in a guarded fragment of many-
sorted first-order logic (guarded here means that the use of
quantifiers is syntactically restricted, for details see [22]). For
example, such a property could look as follows:

∀ user key t1. Installed(user,key)@t1 ⇒¬∃ t2. K(key)@t2

This rule intuitively says that if a user has installed a certain
key at time t1, then there does not exist a time t2 at which the
attacker knows that key, or, in short: installed keys are secure.

The specification of security properties is also where the
above-mentioned action facts come into play: logical formulas
in Tamarin can refer to action facts and the knowledge of
the attacker (denoted by the fact K as in the example) but
not to facts occurring on the left-hand side or on the right-
hand side of a rule. For the rule stated earlier, this means
that when we write a formula, we are allowed to use the fact
SendsReadyMsg but not the facts State or Out.

As underlying threat model and as a core-part of its reason-
ing mechanism, Tamarin assumes a Dolev-Yao attacker, i.e.,
a person in the middle that controls the whole network. When
messages are sent to the network (with the fact Out), the at-
tacker can learn these messages and send arbitrary messages
to the nodes in the network. All this is formalized in terms
of reasoning techniques in Tamarin’s proof system as well as
via specific rewriting rules that model the capabilities of the
attacker.

Tamarin models traditionally assumed perfect cryptogra-
phy, meaning that the attacker can only encrypt or decrypt
messages (or, similarly, compute signatures, MACs, etc.) if it
knows the corresponding keys. As we will discuss later (Sec-
tion 3.6), we loosened the assumption of perfect cryptography
in our model to allow the attacker to exploit nonce reuse in

authenticated encryption schemes. Moreover, we allow the
attacker to compromise certain pairwise master keys.

Once a security protocol and a security property are speci-
fied, Tamarin tries to prove the property by refuting its nega-
tion. In case Tamarin terminates, it either outputs a proof (if
the statement is true) or a counter example (if the statement is
false). A proof is provided in the form of a proof tree whereas
a counter example is provided in the form of a trace, i.e., a
sequence of steps that corresponds to a possible execution of
the protocol. Proofs and counter-examples can be inspected
in the graphical user interface of Tamarin.

An additional feature of Tamarin that we used heavily in
our formalization of WPA2 is the possibility to specify so-
called restrictions. A restriction is a logical formula (exactly
like the formulas used to specify security properties) that
must hold in every valid execution of the protocol. For exam-
ple, the following formula intuitively says that a sender must
increment replay counters for every message it sends:

∀ senderID counter1 counter2 t1 t2. (t1 < t2 ∧
SendsWithCounter(senderID,counter1)@t1 ∧
SendsWithCounter(senderID,counter2)@t2)

⇒∃ x. counter2 = counter1 + x

Restrictions allow to further define the semantics of a pro-
tocol in an intuitive way, often more succinctly than with only
multiset-rewriting rules.

3 Formal Model of WPA2

Our goal is to model the crucial components of WPA2 in a
faithful way, to capture a large class of possible attacks and
thus provide reliable security guarantees. In the following,
we explain the core of our formal model and further details
of the IEEE 802.11 standard together with notes on how we
modeled them. The core mechanisms of WPA2 are specified
in the standard in terms of state machines that interact with
each other. In particular, the standard defines:

• two state machines for the four-way handshake (one for
the supplicant and one for the authenticator),

• two state machines for the group-key handshake (again,
one for the supplicant and one for the authenticator),

• one state machine that specifies how an authenticator
generates new group keys.

Moreover, when a supplicant intends to enter the previously-
mentioned WNM sleep mode, it has to ask the authenticator
for permission. Likewise, when the supplicant wants to exit
WNM sleep mode again, it has to inform the authenticator.
The corresponding message exchange can be specified by two
state machines, which leaves us with a total of seven state
machine types, which we all capture in our formal model.
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Figure 4: Simplified Four-Way Handshake State Machines

In our setting, authenticators and supplicants are modeled
as devices that can start arbitrarily many concurrent threads.
Thereby, a particular authenticator thread can be associated
with a particular supplicant thread to establish a connection.
This means that an authenticator can communicate with ar-
bitrarily many supplicants in parallel (and vice versa), and
that one and the same authenticator can start arbitrarily many
sessions with one and the same supplicant. Moreover, we not
only allow multiple threads per supplicant or authenticator
but also multiple authenticators or supplicants as such.

To obtain strong security guarantees, we model a worst-
case scenario where possible. For example, in places where
the standard prescribes the use of a key that was derived
from the PTK, we actually use the PTK itself. This gives
the attacker more power as it can learn the full PTK in cases
where nonce reuse would usually only allow it to learn a (less
general) derived key; and any proofs we obtain give stronger
guarantees for a worst-case scenario. As a beneficial side
effect, this also keeps our model simpler because it contains
fewer keys.

Our full formal model of WPA2 together with all proofs and
extensive documentation can be downloaded from the website
corresponding to this paper [14]. Due to space reasons, we do
not discuss every detail of our model here. Instead, we give
an overview of its critical components and how we modeled
them. In particular, we focus on (1) the four-way handshake,
(2) the group-key handshake, (3) WNM sleep mode, (4) the en-
cryption layer, (5) the replay-counter mechanisms, and (6) our
model of nonce reuse.

3.1 Four-Way Handshake
In Figure 4a, we show a simplified version of the suppli-
cant state machine for the four-way handshake (defined on
page 2121 of the 802.11 standard [1]). Notice that the suppli-
cant can transition from state FT-PTK-INIT-DONE (where
the keys are installed) back to the state FT-PTK-CALC-
NEGOTIATING if it receives message 3. This can lead to key
reinstallations.

In our formal model, we encode the state machines using
multiset-rewriting rules that essentially encode the transition
relation between different states. For example, to encode that
the supplicant transitions from state FT-PTK-START to state
FT-PTK-CALC-NEGOTIATING when it receives message 3,
we use the following rule (see below what the facts used in
the rule stand for):[

SuppState(~suppThreadID, ’PTK_START’,

〈~suppID,~PMK,newPTK, . . .〉),
InEnc(〈m3,mic_m3〉,suppThreadID,oldPTK,Supp)

]
—
[
SuppRcvM3(~suppThreadID, . . .),

SuppSeesCtr(~suppThreadID,~PMK,ctr_m3),

Eq(mic_m3,MIC(newPTK,m3))
]
→[

SuppState(~suppThreadID, ’PTK_CALC_NEGOTIATING’,

〈~suppID,~PMK,newPTK, . . .〉)
]

In this rule, we have a fact SuppState that represents the
current state of a thread started by the supplicant. The
first parameter, suppThreadID, uniquely identifies the sup-
plicant and its thread. The “~” symbol is a type annota-
tion that restricts the variable to values that were previ-
ously freshly generated (by the protocol or the attacker). The
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Figure 5: Group-Key-Related State Machines

second parameter (’PTK_START’ before the transition and
’PTK_CALC_NEGOTIATING’ after the transition) is the
name of the state, and the final tuple contains the (data items
in the) current state, including the PMK, the newly derived
PTK, and other data items.

The fact InEnc is used to receive messages from the net-
work. Usually, in Tamarin you would model incoming mes-
sages from the network with the fact In, but in our case we
have to ensure that in the initial four-way handshake, mes-
sages are not encrypted whereas in later handshakes (rekeys)
they are actually encrypted. To do so, we modeled a dedi-
cated message queue that handles the encryption mechanism.
The InEnc fact is an important component of this mechanism.
Later on, in Section 3.4, we explain in detail how we modeled
the encryption layer.

Finally, there are the three action facts, SuppRcvM3,
SuppSeesCtr, and Eq. We need the first one to prove lem-
mas that are required for verifying our model. The second
one, SuppSeesCtr, is used to model the semantics of the re-
play counter mechanism via restrictions; we explain details
of the replay-counter mechanism in Section 3.5. Finally, the
third one, Eq, is required for making sure that the message
integrity code appended to a message is valid.

Overall, we used six multiset-rewriting rules to encode the
state machine of the supplicant, not including mechanisms
such as key installation. The six rules correspond to the tran-
sitions in Figure 4a. The corresponding state machine for the
authenticator is given in Figure 4b ([1] p. 2116).

3.2 Group-Key Handshake

As already mentioned earlier, a group-key handshake is used
to distribute a group temporal key together with its nonce
(and an index, which we do not discuss here for the sake of
simplicity) to the supplicants. It involves three different state
machines: two state machines (one for the supplicant and one

for the authenticator) specify how messages are exchanged
during a handshake whereas one other state machine on the
side of the authenticator specifies how new group keys are
generated and then sent to all the supplicants. We refer to this
third state machine as the global state machine ([1] p. 2067);
it is depicted in Figure 5a.

After initialization (‘GTK_INIT’), the authenticator enters
the state ‘SETKEYSDONE’. From this state, it can transi-
tion to the state ‘SETKEYS’, which triggers group-key hand-
shakes with all supplicants and thus leads to the execution
of the two other state machines, depicted in Figure 5b ([1],
specified implicitly on p. 2041) and Figure 5c ([1] p. 2066).

The standard specifies two ways in which the creation and
distribution of a new group temporal key can be triggered:

(1) “The Supplicant may trigger a group key handshake by
sending an EAPOL-Key frame with the Request bit set to
1 and the type of the Group Key bit." ([1] p. 2040), or

(2) “The Authenticator may initiate the exchange when a
Supplicant is disassociated or deauthenticated." ([1] p.
2040)

We cover both cases in our model by allowing an authenticator
to non-deterministically start group-key handshakes whenever
it is in the ‘SETKEYSDONE’ state.

In our model, the state machines for the group-key hand-
shake and the state machines for the four-way handshake can
only be performed sequentially, i.e., we encode the state in a
group-key handshake with the same fact symbol as the state
in a four-way handshake: the fact symbol AuthState on the
side of the authenticator and the state symbol SuppState on
the side of the supplicant. Then, we encode transitions that
lead from the ‘FT-PTK-INIT-DONE’ state (the state after a
successful execution of the four-way handshake) to the start
of a group-key handshake. The following rule shows a simpli-
fied encoding of such a transition for the authenticator, who
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can transition from the state ‘FT-PTK-INIT-DONE’ to the
state ’REKEYNEGOTIATING’ in our model:[

AuthState(~authThreadID, ’PTK_INIT_DONE’, . . .)
]

—
[ ]

→[
AuthState(~authThreadID, ’REKEYNEGOTIATING’, . . .)

]
According to the group-key state machine, the authentica-
tor would usually enter the state ‘REKEYNEGOTIATING’
from the state ‘IDLE’. Thus, the ‘FT-PTK-INIT-DONE’ state
basically takes on the role of the ‘IDLE’ state here. The con-
sequence of this is that in our model group-key handshakes
and four-way handshakes cannot be performed in parallel. We
believe that this is in line with the standard, which says that,
“an Authenticator shall do a 4-way handshake before a group
key handshake if both are required to be done.” ([1] p. 2040);
moreover, the replay counters used in handshake messages are
specified relative to the replay counter of the first message of
the respective handshake ([1], e.g., on p. 2030), which serves
as another indication that group-key handshakes and four-way
handshakes should not be performed in parallel.

3.3 WNM Sleep Mode
The WNM sleep mode allows a supplicant to save energy
by going to sleep and thus excluding itself from group-key
handshakes. If a supplicant wants to enter WNM sleep mode,
it has to send a request to the authenticator. The authenticator
can then, in a second message, accept the request, after which
the supplicant finally goes to sleep. If the supplicant later
decides it’s time to wake up again, it first sends a message
to the authenticator, asking for permission to wake up. If the
authenticator accepts the request, it forwards the current group
key and the corresponding nonce to the supplicant. This is
necessary because the supplicant didn’t participate in group-
key handshakes while asleep. Figure 6 depicts the message
exchange that happens when a supplicant goes to sleep and
wakes up again.

In our formal model, we have dedicated state machines for
the supplicant and the authenticator that allow them to per-
form this message exchange. In particular, we start these state

Authenticator Supplicant

Sleep Request

Uninstall GTK

Sleep

Wake-Up Request

Sleep Accept

Wake-Up Accept + GTK + NonceGTK 

Install GTK with 

NonceGTK

Wake    Up

Figure 6: WNM Sleep Mode: Typical Message Exchange.

machines (both on the supplicant side and on the authentica-
tor side) as soon as the supplicant and the authenticator have
established a pairwise transient key (before, it wouldn’t make
sense since WNM-related messages have to be encrypted).

To make our model as general as possible, we also decided
to allow WNM-related communication to be performed in
parallel to the state machines for the four-way handshake and
the group-key handshake.

3.4 Encryption Layer / Message Queue
As already mentioned, messages of the first four-way hand-
shake between an authenticator and a supplicant are not en-
crypted, but later handshakes—after the first installation of
the pairwise transient key—are. Moreover, while the state-
machines in the standard suggest that messages are sent in-
stantly, in reality, they might be pushed into a queue and
possibly sent at a later point in time.

To deal with this, we modeled a message queue that al-
lows a sender to enqueue messages that can later be dequeued
and sent to the network. Intuitively, whenever a message is
dequeued, we take the currently installed pairwise transient
key and encrypt the message with this key. With this queue,
our model can cover cases in which a message is enqueued
at some timepoint t1 but sent—and thus encrypted with the
then installed key—at a later timepoint t2. This allows us to
prove the absence of attacks caused by the sleep-flag mecha-
nism [30].

Our basic modeling construct underlying the message
queue is the so-called OutEnc fact. Usually, message trans-
mission in Tamarin is modeled with the Out fact. For example,
if we want the supplicant to send a simple message contain-
ing the string ’TEST’ over the network, we could define a
multiset-rewriting rule that produces an Out fact as follows:[

SuppState(~suppThreadID, . . .)
]

—
[ ]

→[
SuppState(~suppThreadID, . . .),

Out(’TEST’)
]

Here, the fact Out(’TEST’) models that the message ’TEST’
is sent to the network. With the OutEnc fact, we add an addi-
tional layer: If a sender wants to send a message, it produces
an OutEnc fact that gets as parameter the ID of the sender as
well as a fresh message ID. Moreover, it generates an action
fact Enqueue as follows:[

SuppState(~suppThreadID, . . .), Fr(~messageID)
]

—
[
Enqueue(~suppThreadID,~messageID)

]
→[

SuppState(~suppThreadID, . . .),

OutEnc(’TEST’,~suppThreadID,~messageID)
]

The generation of the OutEnc fact does not yet denote
that a message is actually sent to the network; instead, the
message is only put into the message queue. A second rule
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then takes care of actually sending the message to the network.
In addition to the OutEnc fact, this rule also takes as input the
currently installed pairwise transient key to then encrypt the
message with this key and a nonce and send it to the network.
Note that in our model, every thread has its own independent
message queue. This is a liberal interpretation of the standard,
and implementations might choose a more restrictive single
queue per device. Our proofs hold for both cases, because any
attack on a more restrictive queue implementation would also
manifest itself in our more general model.

To model the encryption with nonces, we introduced the
ternary function symbol snenc and the binary function symbol
sndec (in contrast to the usual binary senc and sdec). We de-
fined the semantics of these function symbols by the equation

sndec(snenc(message,key,nonce),key) = message.

The resulting rule for sending encrypted messages then
looks as follows (note that the let/in part is used in Tamarin
to define macros)

let nonce = 〈N(n),~sID〉
newNonce = 〈N(n+ ’1’),~sID〉

in[
OutEnc(message,~sThreadID,~messageID)

SenderPTK(~ptkID,~sThreadID,~sID,PTK,nonce)
]

—
[
SendMessage(~sThreadID,~messageID)

]
→[

Out(snenc(message,PTK,newNonce)),

SenderPTK(~ptkID,~sThreadID,~sID,PTK,newNonce)
]

Notice the following:

(1) The rule gets the current pairwise transient key
(SenderPTK) together with the current nonce. It then
increments the nonce and uses it for symmetric encryp-
tion with the PTK and an increased nonce (newNonce).
The result is sent to the network using a normal Out fact.

(2) The rule produces a SendMessage action fact. This fact is
used together with the earlier Enqueue fact (at the place
where an OutEnc fact is generated) to ensure that the
queue actually follows the first-in-first-out principle. We
achieve this by adding the following restriction to our
Tamarin model:

∀ senderThreadID msgID1 msgID2 t1 t2 t3 t4. (t1 < t2 ∧
EnqueueMessage(senderThreadID,msgID1)@t1 ∧
EnqueueMessage(senderThreadID,msgID2)@t2 ∧
SendMessage(senderThreadID,msgID1)@t3 ∧
SendMessage(senderThreadID,msgID2)@t4)

⇒ t3 < t4

Intuitively, this restriction says that if a sender puts message 1
into the message queue before message 2, then message 1 has
to be sent before message 2. Now the only thing that’s missing

is the case where a sender hasn’t yet installed a pairwise
transient key. This is handled by the following simple rule:[

OutEnc(message,~senderThreadID,~msgID)
]

—
[
SendMessage(~senderThreadID,~msgID)

]
→[

Out(message)
]

Note that this rule allows the supplicant and the authenticator
to send plain messages, even after the installation of a key,
which could potentially lead to security violations that do not
apply to the actual WPA2 protocol. However, as our analysis
shows, this is not the case.

The message queue and the corresponding encryption are
closely intertwined with the replay-counter mechanism, which
we explain in the following.

3.5 Replay Counters
The replay counter specification in the standard can be confus-
ing at first because there are different types of replay counters:

• The replay counters/nonces used by the authenticated
encryption scheme.

• The replay counters used as core message components
within handshake messages.

The replay counters used by the authenticated encryption
scheme are analogous to initialization vectors in counter-
mode encryption: They are initialized with a certain value
in the beginning and then incremented for every encrypted
message. Note that authenticated encryption is used both for
messages encrypted with the pairwise transient key and for
messages encrypted with the group temporal key.

In our model, we used the multiset feature of Tamarin to
encode how these replay counters are incremented. A counter
is seen as a multiset consisting of 1s and every increment of
the counter adds another 1, like in the following rule:[

OutEnc(message,~senderThreadID,~msgID),

SenderPTK(~ptkID,PTK,nonce)
]

—
[ ]

→[
Out(snenc(message,PTK,nonce+ ’1’)),

SenderPTK(~ptkID,PTK,nonce+ ’1’)
]

On the receiver side, we model the replay-counter check
with a restriction saying that whenever a message encrypted
with a particular key is received, it must have a greater replay
counter than any previously received message encrypted with
the same key:

∀ keyID receiverID key nonce1 nonce2 t1 t2. (t1 < t2 ∧
SeesNonce(keyID,receiverID,key,nonce1)@t1 ∧
SeesNonce(keyID,receiverID,key,nonce2)@t2)

⇒∃ x. nonce1 + x = nonce2”
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Finally, we want to highlight that in our model, the nonces
of messages sent during the four-way handshake or the group-
way handshake are different from the nonces of WNM mes-
sages, which is in line with the IEEE 802.11 standard.

For the other type of replay counters, used in handshake
messages (independently of encryption), the replay-counter
mechanism works as follows: The authenticator appends a
replay counter to a message. The supplicant is supposed to
answer a particular message with the same replay counter
it received. On the side of the authenticator, the standard
specifies two different kinds of checks, depending on the
message received:

• For message 2, the authenticator only accepts the replay
counter if it equals the replay counter it used when send-
ing message 1.

• For all other handshake messages, the authenticator ac-
cepts the replay counter if it is one of the replay counters
it used in the same handshake (four-way handshake or
group-key handshake).

Due to space reasons, we do not discuss here how exactly we
modeled these replay counters. For details, we refer to the
website corresponding to this paper [14].

3.6 Modeling Nonce Reuse

To model nonce reuse as explained in Section 2.2, we in-
troduced a dedicated multiset-rewriting rule that allows the
attacker to reveal an encryption key if it can obtain two dif-
ferent ciphertexts that were both encrypted with that key and
with the same nonce:

let encrypted_m1 = snenc(m1,key,nonce)

encrypted_m2 = snenc(m2,key,nonce)

in[
In(〈encrypted_m1,encrypted_m2〉)

]
—
[
Neq(m1,m2), NonceReuse(key,nonce)

]
→[

Out(key)
]

This rule models the worst case in which any reuse of a
nonce immediately allows the attacker to obtain the key and
thus decrypt all messages sent with the same key. Note that
the introduction of this rule is more general than just proving
that there is no nonce reuse for a particular key: Suppose that,
instead of adding this rule, we only proved that there is no
nonce reuse for a particular key, then we wouldn’t allow the
attacker to exploit the possible nonce reuse of other keys to
mount attacks on the protocol. By including this rule into our
model, we thus make sure that our security properties are not
violated by a strong attacker who can exploit nonce reuse in
all possible ways.

3.7 Summary of Underlying Assumptions
The following is a summary of the assumptions made in our
formal model:

(1) A single thread (of an authenticator or supplicant) cannot
perform a four-way handshake and a group-key hand-
shake in parallel.

(2) A single thread (of an authenticator or supplicant)
can only start sending WNM-related messages after it
has installed an initial pairwise-transient key (because
WNM-related messages are encrypted with the pairwise-
transient key).

(3) A single thread (of an authenticator or supplicant) can
perform WNM-related communication in parallel to four-
way handshakes and group-key handshakes.

(4) Every thread (of both authenticators and supplicants) has
its own message queue (i.e., message queues are not per-
device but per-thread).

(5) Messages that are put into a message queue are sent in
the same order they were enqueued.

(6) A supplicant thread only keeps track of the latest received
group key and not of multiple group keys (keeping track
of multiple group keys might be required to avoid group-
key reinstallations on the receiver side, which we didn’t
consider in our analysis; see Section 5.2 for details).

4 Analysis

After discussing the core components of our formal model,
we now present details of our formal analysis. We prove the
following properties for the case that countermeasures against
key-reinstallation attacks are in place:

• Secrecy of the pairwise master key

• Secrecy of the pairwise transient key

• Secrecy of group temporal keys

• Authentication for the four-way handshake

We prove the latter three properties from the perspectives
of both the supplicant and the authenticator. The reason for
considering different perspectives is that it helps us talk about
the knowledge of particular protocol participants. For instance,
key secrecy from the perspective of the supplicant means
something of the form, if the supplicant has installed a key
and if some other conditions hold, then the key is secret. This
means that if a supplicant knows that it installed the key and if
it knows that the other conditions hold, then it can be sure that
its key is secret. As the pairwise master key is not installed
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over the course of the protocol (but shared before), we prove
its secrecy independent of any party’s perspective.

Note that due to the ability of the attacker to exploit the
reuse of nonces, we need to prove the absence of nonce reuse
for the relevant encryption keys in our protocol. Moreover,
due to the complexity of WPA2 and our corresponding model,
it is impossible to prove any of the main properties directly.
In fact, our whole analysis consists of around 70 lemmas
(including the main properties). We provide more details
about their types and intuition in Appendix A.

4.1 Secrecy of the Pairwise Master Key

Secrecy of the pairwise master key is one of the most funda-
mental properties within WPA2. The reason is that knowledge
of a pairwise master key would allow the attacker to learn
also the pairwise transient key and the group temporal keys
corresponding to this pairwise master key, which would allow
it to control all encrypted communication between supplicant
and authenticator as well as group traffic to all supplicants
associated with the authenticator.

To see how the attacker can learn the other two keys once
it has a pairwise master key, consider the following: if the at-
tacker observes the initial (unencrypted) four-way handshake,
it can learn the corresponding SNonce and the ANonce. Thus,
if it also learns the pairwise master key, PMK, it can derive the
pairwise transient key PTK = KDF(PMK,ANonce,SNonce).
Once it knows the PTK, it can then use the PTK to decrypt
subsequent messages, including those that contain group tem-
poral keys.

In general, we allow the attacker to reveal pairwise master
keys in order to cover cases in which certain protocol partic-
ipants are compromised (e.g., because the attacker watched
them type their WiFi password). Our statement for secrecy of
the pairwise master key must therefore state that a pairwise
master key is secret if it has not been revealed by the attacker
(and even if other pairwise master keys have been revealed).
In guarded first-order logic, we formulated this by saying that
if a supplicant and an authenticator share a pairwise master
key (i.e., they are associated with each other), then the attacker
can only know the key if it has been revealed:

∀ auth authThread supp suppThread PMK t1 t2.

(Associate(auth,authThread,supp,suppThread,PMK)@t1 ∧
K(PMK)@t2)

⇒∃ t3. t3 < t2 ∧RevealPMK(PMK)@t3

Compared to the other lemmas (secrecy of the other keys
and authentication), proving secrecy of the pairwise master
key is simpler. The intuitive reasons for this are:

• The pairwise master key is never sent over the network.
Instead, it is only used as part of the input to a key deriva-
tion function for deriving pairwise transient keys.

• The pairwise master key itself is never used as an encryp-
tion key. We therefore don’t need to prove the absence
of nonce reuse for this key.

For the lemmas we discuss in the following, things are unfor-
tunately more complicated.

4.2 Secrecy of the Pairwise Transient Key
We have two different statements for the secrecy of the pair-
wise transient key: one from the perspective of the supplicant
and the other from the perspective of the authenticator. As
discussed before, we prove secrecy under the assumption that
the pairwise master key between the authenticator and the
supplicant has not been revealed. We do, however, allow the
attacker to reveal other pairwise master keys, in particular
those between the same authenticator and other supplicants.
Such a key revelation could, for instance, happen in practice if
an attacker first gains access to the PMK of some supplicant
S1 (for instance, by watching a user enter their WiFi pass-
word) and then tries to use the PMK of S1 to attack another
supplicant S2.

From the viewpoint of the supplicant, the corresponding
lemma thus says that if the supplicant has installed a pairwise
transient key PTK that has been derived from a pairwise
master key PMK, and if PMK has not been revealed, then
PTK is secret. In guarded first-order logic, the statement looks
as follows:

∀ suppThread supp PMK PTK . . . t1.

(SuppInstalled(suppThread,supp,PMK,PTK, . . .)@t1 ∧
¬∃ t2. RevealPMK(PMK)@t2)

⇒¬∃ t3. K(PTK)@t3

The corresponding statement from the authenticator’s view is
then analogous, replacing SuppInstalled by AuthInstalled.

To prove secrecy of the pairwise transient key, we had to
prove several lemmas that guarantee the absence of nonce
reuse. In particular, we proved that no key reinstallations of
the pairwise transient key are possible since such key rein-
stallations could lead to nonce reuse, as discussed earlier in
Section 2.2. Proving the absence of nonce reuse also turned
out to be clearly the most complicated part about proving
the secrecy of the pairwise transient key. This is interesting
insofar as earlier verification attempts of WPA2 neglected
nonce reuse completely.

4.3 Secrecy of Group Temporal Keys
As with the pairwise transient key, we proved the secrecy of
the group temporal keys from the perspectives of both the sup-
plicant and the authenticator. Group temporal keys are shared
between a single authenticator and a group of supplicants.
This means that if only one of the supplicants is compromised
(i.e., the pairwise master key it shares with the authenticator
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is known to the attacker), the attacker will be able to control
the whole group traffic between the authenticator and all its
supplicants. Thus, when formulating the secrecy statements
for the group temporal keys, we have to assume that none of
the pairwise master keys are compromised.

From the perspective of the authenticator, our respective
lemma says that if an authenticator has installed a group
temporal key, and if none of the pairwise master keys have
been revealed, then the group temporal key is secret, or in
guarded first-order logic:

∀ auth GTK nonce index t1.

(AuthInstalledGTK(auth,〈GTK,nonce, index〉)@t1 ∧
¬∃ PMK t2. RevealPMK(PMK)@t2)

⇒¬∃ t3. K(GTK)@t3

The corresponding lemma from the supplicant’s point of view
is similar, replacing the condition that the authenticator has
installed the group temporal key (AuthInstalledGTK) with
the condition that the supplicant has installed it.

Note that the secrecy of the group temporal keys depends
not only on the secrecy of the pairwise master key, but also on
the secrecy of pairwise transient keys because group temporal
keys are encrypted with the pairwise transient key when trans-
mitted from an authenticator to its supplicants. The secrecy
proofs for the group temporal keys thus rely not only on the
absence of nonce reuse but also on our lemmas that show the
secrecy of the pairwise transient key.

4.4 Authentication / Injective Agreement
When it comes to authentication, we prove injective agree-
ment—as defined by Lowe in his hierarchy of authentication
specifications [21]—for the four-way handshake. Intuitively,
this means that an authenticator’s executions of the four-way
handshake correspond to unique executions by a supplicant
(and vice versa, since we prove injective agreement in both
directions). Lowe’s original definition is as follows:

“We say that a protocol guarantees to an initiator A agree-
ment with a responder B on a set of data items ds if, whenever
A (acting as initiator) completes a run of the protocol, appar-
ently with responder B, then B has previously been running
the protocol, apparently with A, and B was acting as respon-
der in his run, and the two agents agreed on the data values
corresponding to all the variables in ds, and each such run
of A corresponds to a unique run of B.”

To map this definition to our setting, we define the two
agents to be the supplicant and the authenticator. As men-
tioned, we prove injective agreement from two perspectives:
One where the authenticator is the initiator, A, and the sup-
plicant is the responder, B, and one where the two roles are
reversed. As the set of data items, ds, we define the set con-
taining the pairwise master key, the pairwise transient key, the
ANonce, and the SNonce.

When the authenticator is viewed as the initiator, our formu-
lation of injective agreement states the following: Whenever
an authenticator A finishes a four-way handshake, apparently
with supplicant S, then the supplicant has previously finished
a four-way handshake, apparently with A, and the supplicant
and the authenticator agree on the values of the pairwise
master key, the pairwise transient key, the ANonce, and the
SNonce. Moreover, each run of the four-way handshake by the
authenticator corresponds to a unique run of the supplicant.

We proved the second part (runs of the authenticator cor-
respond to unique runs of the supplicant) in a separate state-
ment. For our formulation of the first part, given in the follow-
ing, we used facts that denote when a party completes a run
(AuthCommit and SuppCommit) and when it was running a
four-way handshake (AuthRunning and SuppRunning).

This is captured by the following formula:

∀ auth supp PMK ANonce SNonce PTK t1.

(AuthCommit(auth,supp,PMK,ANonce,SNonce,PTK)@t1 ∧
¬∃ t2. RevealPMK(PMK)@t2)

⇒ (∃ t3. t3 < t1 ∧
SuppRunning(supp,auth,PMK,ANonce,SNonce,PTK)@t3)

When the roles are reversed, the statement is analogous, with
Auth and Supp swapped.

Note that on the authenticator side, a commit happens when
the authenticator receives the fourth (i.e., the final) handshake
message. In this case, things are straightforward because the
fourth message acts as a confirmation to the authenticator that
the supplicant has finished the run of the four-way handshake.
Thus, in this case we define that the supplicant was running
the four-way handshake if it has sent the fourth message.

When the roles are reversed, we define that a commit of
the supplicant happens when the supplicant sends the fourth
message. At this point, the supplicant cannot be sure that the
authenticator has finished the whole four-way handshake; all it
could possibly know is that the authenticator has sent the third
message. In this case, we thus define that the authenticator
was running the protocol if it has sent the third message.

As mentioned, these statements do not yet guarantee that
for every run of an initiator there is exactly one run of the re-
sponder. One way to prove this is to show that for a particular
SNonce, there can be at most one execution of the four-way
handshake on the supplicant side, and similarly, that for a
particular ANonce, there can be at most one execution of the
four-way handshake on the authenticator side. This is implied
by our uniqueness lemmas discussed in Appendix A. We thus
get injective agreement for the four-way handshake from the
perspectives of both the supplicant and the authenticator.

4.5 Analysis Summary
Except for the two authentication lemmas and one helper
lemma, all lemmas (including the helper lemmas) can be
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proved automatically by Tamarin, which takes around two
hours overall on an 8-core machine with 30 GB of memory.
The proofs of most lemmas take only a few seconds, with
two helper lemmas (stating that the authenticator and the
supplicant do not reuse nonces when encrypting messages)
taking nearly all of the time. A reason for this is that in the
proofs Tamarin considers all possible combinations of cases
in which encrypted messages are sent. For the authentication
lemmas and one helper lemma, Tamarin needs some manual
guidance during proof search. We do, however, believe that
fine-tuning the model (or providing custom heuristics) would
help Tamarin to prove these lemmas fully automatically.

5 Results

After having presented the details of how we built our formal
model of WPA2 and how we approached different aspects of
the formal analysis, we now present the results of the analysis.

5.1 Behavior Covered by our Formal Model
Our formal model covers all the standard traces for

• the four-way handshake,

• the group-key handshake,

• communication for WNM sleep mode.

Moreover, our model also covers non-standard traces. For
instance, by removing the patches aimed at preventing key-
reinstallation attacks, we can cover traces in which these key-
reinstallation attacks are executed, thus violating secrecy prop-
erties for the corresponding keys. We explain details below.

Four-Way Handshake Our model covers not only the exe-
cution of an ideal four-way handshake as depicted in Figure 1
but also all other standard behavior. For example, messages
can be sent and received multiple times in cases where the
IEEE standard specifies it, and rekeys of the pairwise tran-
sient key can be performed arbitrarily often. As rekeys hap-
pen after the first installation of a pairwise transient key, the
standard defines that all traffic that follows is protected by a
data-confidentiality protocol. Our model captures this behav-
ior by protecting messages in rekeys accordingly, assuming
a weakest possible encryption scheme in which the reuse
of nonces allows the attacker to learn a key. Note that this
means that our model would also cover traces in which the
encryption of protocol messages leads to the reuse of nonces.

Group-Key Handshake Our model covers group-key
handshakes in a very liberal way, basically allowing all traces
where an authenticator generates new group keys at any pos-
sible point in time. The authenticator can transmit new group

keys (and their corresponding data) to all supplicants asso-
ciated with it by performing separate group-key handshakes
with all of them. As the IEEE standard allows an authenticator
to transmit a group key multiple times, our model also covers
traces in which such retransmissions occur.

WNM Sleep Mode We cover all traces in which a suppli-
cant enters and leaves WNM sleep mode, involving all the
messages exchanged between the supplicant and the authenti-
cator. In particular, we model the “dangerous” case in which
the authenticator transmits the current group temporal key to
the supplicant when the supplicant leaves WNM sleep mode.

Property Object Perspective:
Supp. Auth.

Secrecy pairwise master key (3)
pairwise transient key 3 3
group temporal keys 3 3

Authentication four-way handshake 3 3

Table 1: Properties formally proven for the patched WPA2
protocol design

5.2 Patches And Their Effectiveness
Our analysis confirms that two patches/countermeasures—
suggested by Vanhoef and Piessens with the aim of preventing
key-reinstallation attacks—suffice to prove all the security
properties (injective agreement and secrecy of keys) that are
within the scope of our analysis:

(1) A supplicant should not reset or modify the nonces of a
key (pairwise transient key or group temporal key) if that
key is currently installed [29].

(2) A supplicant should delete the current group temporal
key before entering WNM sleep mode. [30]

Especially without the first countermeasure (which we mod-
eled with a simple action fact that checks if the new key
differs from the old key when performing a key installation),
secrecy of the pairwise transient key and thus also of the
group temporal key cannot be guaranteed. This is because of
key-reinstallation attacks that are covered by our model.

The second measure aims at preventing group-key reinstal-
lations on the receiver (supplicant) side. As demonstrated by
Vanhoef and Piessens [30], such group-key reinstallations can
allow an attacker to replay group messages to the supplicant.
While such group-key reinstallations don’t violate any of the
security properties proved in our analysis, we want to high-
light that we did neither prove that they are impossible nor did
we find such reinstallation attacks. We believe that proving
or disproving the absence of group-key reinstallations on the
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supplicant side requires significant effort and is thus part of
our future work.

Crucially, our analysis also does not reveal any other attacks.
In other words, the KRACK attacks and their variants seem to
be the only remaining attack vector on the protocol’s design.
Since the patches indeed prevent those attacks, we obtain
stronger confidence in WPA2’s design.

As with any model, there are still potential attack vectors
that are outside of our analysis. Notable examples are side
channels, the wider 802.11 stack design, and the decisions
made for individual implementations. Given the complexity
of the standard there is substantial room for misinterpretation
or errors in implementation. Table 1 summarizes our results.

5.3 Kr00k Vulnerability

The so-called Kr00k vulnerability [16] does not indicate a
vulnerability in the IEEE standard that we analyze; rather, it
is related to a flaw in the implementations of some WiFi chips.
In particular, a Kr00k attack exploits that—counter to the ex-
pected behavior—some (unpatched) WiFi chips still encrypt
and transmit messages after a client has been disassociated.
The discovery of the Kr00k vulnerability therefore doesn’t
invalidate any of the results of our analysis.

6 Related Work on WPA2 Verification

As stated in the introduction, the WPA2 handshake has re-
ceived surprisingly little academic verification effort com-
pared to other widely-deployed security protocols. The
notable example is [18], in which the authors study the
IEEE 802.11i and TLS handshakes in a version of the so-
called protocol composition logic (PCL) framework.

They consider IEEE 802.11i in the scenario where TLS is
used to set up a shared secret, and model simplified versions
of the TLS 1.2 protocol (with four messages), the four-way
handshake, and the group key handshake. They model each
protocol as a straight-line protocol, therefore omitting many
transitions present in the real state machines. They then show
invariants for the three protocols and a composition result that
these invariants are maintained by the composition. Based on
this, they report a number of results, including authentication
and confidentiality of the established session keys.

The KRACK attacks cannot be discovered in their approach
for multiple reasons: (i) they do not explicitly consider prop-
erties of the symmetric encryption layer; (ii) they only model
the group-key sequence number but none of the other counters,
and state an invariant that the group-key number monotoni-
cally increases (which does not hold for standard-compliant
implementations); and (iii) their straight-line models omit the
complex transitions in the standard that enable counter resets.
Any one of these three simplifications independently excludes
the original KRACK attacks. Furthermore, since they do not

model sleep frames, the later attack variants based on sleep
frames are also not considered.

In contrast, our analysis models all of these aspects. As
a result we can detect all these attacks as well as prove that
countermeasures guarantee their absence and that of a much
larger class of attacks.

7 Conclusion

In this work, we have provided the first formal security ar-
gument, in any formalism, that the patched versions of IEEE
802.11’s WPA2 indeed meet their core security requirements
in the face of complex attacks.

Our model includes all the interactions between a series of
complex components, and it also incorporates fine-grained
properties of the symmetric encryption channel, which allows
us to capture attacks such as the KRACK attacks.

While our model was initially motivated by the KRACK
attacks and their variants, it is not tailored specifically to those
attack traces. Instead, our model systematically captures com-
plex aspects of the WPA2 protocol, both in terms of scope
(including various modes and WNM/sleep frames) and depth
(modeling the nonce-reuse weakness of the underlying ci-
phers) in the face of a powerful attacker. Our proofs therefore
show the absence of a large class of systematically defined
attacks that include, but go well beyond, the KRACK attacks.

Of course, WPA2 still allows for off-line guessing attacks,
but this is a fundamental property of its protocol design. Such
attacks ought to be prevented by the WPA3 protocol, which
follows a very different design. Initial analysis work on WPA3
has started [31] and indeed, its design seems more amenable
to cryptographic analysis. We are therefore hopeful that our
analysis approach can be extended to WPA3 in the near future.
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A General Overview and Helper Lemmas.

PTK Wellfoundedness

GTK Wellfoundedness

Supplicant Wellfoundedness

Authenticator Wellfoundedness

Supplicant Uniqueness and Ordering

Authenticator Uniqueness and Ordering

PMK Secrecy

PTK Nonce Uniqueness GTK Nonce Uniqueness

PTK Secrecy

Injective Agreement GTK Secrecy

Figure 7: Lemma Map.

In Figure 7 we provide an overview of the types of lemmas
that we use in our model. The core part our theory consists
of lemmas which we divide into so-called wellfoundedness
lemmas, uniqueness lemmas, and ordering lemmas. These
lemmas have two main purposes:

• Characterize invariants and entry points to loops in the
protocol execution.

• Help the prover with dismissing inconsistent execution
traces of a protocol as early as possible to make the proof
search tractable.

Wellfoundedness Lemmas The wellfoundedness lemmas
are required because of the looping behavior in WPA2: the
protocol specifies that nearly all messages can be sent and
received multiple times in a loop. Since the Tamarin prover
reasons backwards from a given assumption, we have to guide
it with additional lemmas so that the backwards reasoning
doesn’t get stuck in a loop without ever exiting this loop again.

As a simple example, consider the following statement:
If a supplicant sent message 2, then it must have received
message 1 before. On an intuitive level, this statement is

clear. However, to prove this statement, Tamarin starts with
the assumption that the supplicant sent message 2, and then
reasons backwards, basically asking itself “What must have
happened before the supplicant sent message 2?” Because
WPA2 allows the supplicant to send message 2 multiple times,
the answer to the question involves the possibility that the
supplicant just sent message 2 before. Now if Tamarin asks
the same question again, the answer is again the same, and
the backwards reasoning goes into a loop, because it attempts
to consider all possible finite unrollings of the loop in which
the supplicant repeatedly sent message 2.

The solution to this problem is to specify a lemma that
basically says that there cannot be an infinite loop in which the
supplicant repeatedly sends message 2, but that there must be
one initial point in time at which the supplicant sent message
2 for the first time. Such a lemma can then be proved using
the induction technique of Tamarin.

The situation is similar for multiple four-way handshakes:
By specifying a corresponding wellfoundedness lemma, we
tell Tamarin that no matter how many four-way handshakes
were performed in a row, there must always be an initial four-
way handshake where things have started out. Finally, we also
need to specify invariants that hold at every iteration of a loop.
The sum of all these statements for all the possible loops in
the WPA2 model are our wellfoundedness lemmas.

Uniqueness and Ordering Lemmas When reasoning over
executions of a protocol, the set of possible execution traces
can quickly become gigantic, rendering the Tamarin prover
practically incapable of proving statements. One reason for
this is that in the most general case, the prover explores nu-
merous traces that eventually—after spending considerable
time building and analyzing these traces—turn out to be in-
consistent with the semantics of the protocol.

To guide the proof search by allowing the prover to dismiss
large sets of traces early on, we thus specify several unique-
ness lemmas that guarantee that certain actions in a protocol
can only happen once. Moreover, we specify ordering lem-
mas to impose order on actions. Together, these lemmas help
Tamarin to focus on traces that can actually happen and to ig-
nore the impossible ones as early on in the reasoning process
as possible.
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