DPIFuzz: A Differential Fuzzing Framework

to Detect DPI Elusion Strategies for QUIC

Gaganjeet Singh Reen
CISPA Helmholtz Center for Information Security
Saarbriicken, Saarland, Germany
reen.gagan@gmail.com

ABSTRACT

QUIC is an emerging transport protocol that has the potential to
replace TCP in the near future. As such, QUIC will become an
important target for Deep Packet Inspection (DPI). Reliable DPI
is essential, e.g., for corporate environments, to monitor traffic
entering and leaving their networks. However, elusion strategies
threaten the validity of DPI systems, as they allow attackers to
carefully design traffic to fool and thus evade on-path DPI systems.
While such elusion strategies for TCP are well documented, it is
unclear if attackers will be able to elude QUIC-based DPI systems.
In this paper, we systematically explore elusion methodologies for
QUIC. To this end, we present DPIFuzz: a differential fuzzing frame-
work which can automatically detect strategies to elude stateful DPI
systems for QUIC. We use DPIFuzz to generate and mutate QUIC
streams in order to compare (and find differences in) the server-side
interpretations of five popular open-source QUIC implementations.
We show that DPIFuzz successfully reveals DPI elusion strategies,
such as using packets with duplicate packet numbers or exploit-
ing the diverging handling of overlapping stream offsets by QUIC
implementations. DPIFuzz additionally finds four security-critical
vulnerabilities in these QUIC implementations.

CCS CONCEPTS

« Security and Privacy — Intrusion detection systems; Net-
work security; Software and application security.

KEYWORDS
DPI Elusion, QUIC, Protocol Fuzzing, Differential Fuzzing

ACM Reference Format:

Gaganjeet Singh Reen and Christian Rossow. 2020. DPIFuzz: A Differential
Fuzzing Framework to Detect DPI Elusion Strategies for QUIC. In Annual
Computer Security Applications Conference (ACSAC 2020), December 7-11,
2020, Austin, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3427228.3427662

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC 2020, December 7-11, 2020, Austin, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8858-0/20/12...$15.00
https://doi.org/10.1145/3427228.3427662

Christian Rossow
CISPA Helmholtz Center for Information Security
Saarbriicken, Saarland, Germany
rossow@cispa.saarland

1 INTRODUCTION

Organisations across the globe inspect the encrypted traffic at the
periphery of their network. Deep Packet Inspection (DPI) tech-
niques are at the core of such traffic analyses. DPI allows to re-
assemble and inspect application-layer communication content,
and consequently, detect various security-critical incidents such as
malware [13], data leakage [38], phishing attacks [37], or remote
exploits [36]. With the rising popularity of protocols that are en-
crypted by default, DPI systems are typically used in combination
with man-in-the-middle proxies [27, 39] that assist in intercepting
encrypted channels (such as TLS).

However, prior research has demonstrated elusion attacks against
DPI systems that fool their TCP and/or HTTP [17, 23, 33, 41, 42]
inspections. The core reason for such evasion are differences in how
the DPI system and the actual data recipient have implemented a
protocol (such as TCP). Any slight difference may lead to the fact
that the actual recipient of the data and the DPI system reassembled
different payload data, although operating on the same sequence
of raw packets. There are plenty of reasons why such differences
may occur: (i) Protocol specifications (deliberately or not) leave
some details out, either not to blow up the standard, to allow ven-
dors to handle certain situation as they see fit, or simply as these
details were forgotten. (ii) In order to reassemble the application-
layer content, the DPI systems needs to model the state machine
of stateful transport protocols (such as TCP). Having said this, DPI
systems may choose to simplify this state machine to minimize the
overhead [41] and thus, to foster scalability. (iii) Similarly, DPI sys-
tems might perform a lower number of checks or less sophisticated
checks to validate packets as compared to an endpoint in order to
reduce the computational load.

Fortunately, there are just a few relevant protocols that have
to be studied to assess and mitigate these evasion attacks. As of
now, the vast majority of inspected Internet traffic is HTTPS/TLS-
based [22, 25, 27, 39]. As such, it is not surprising that most works
in the context of evasion attacks so far have focused on the specifics
of TCP [17, 23, 33, 41, 42]. Yet, with the IETF working to standardise
the QUIC protocol, coupled with the performance and the secu-
rity benefits QUIC offers compared to TCP, it is only a matter of
time before it is adopted widely as the go-to transport protocol.
Consequently, intercepting and analysing QUIC packets using DPI
systems coupled with inline proxies will be imperative to organi-
sations to maintain the security of their networks. Unfortunately,
the known findings of TCP do not directly translate to QUIC, as
the two protocols have vastly different specifications. QUIC pro-
vides security features, like authentication and encryption, that are
typically handled by a higher layer protocol (like TLS), from the
transport layer itself. QUIC also uses a large variety of packets and

https://www.acsac.org/2020/submissions/papers/artifacts/
https://doi.org/10.1145/3427228.3427662
https://doi.org/10.1145/3427228.3427662
https://doi.org/10.1145/3427228.3427662

ACSAC 2020, December 7-11, 2020, Austin, USA

Reen and Rossow

UDP Header QUIC Header Long/Short Header ;
2 p depgen aing on Peckot Frame Type } Indicates Frame Type
Q W type) (All frames contain this field)
Field 1
QUIC Packet 1 1 > Frame 1 > =
Field 2 P
Frame Specific Fields
Frame 2 (For example, the Stream Frame
UI%P Packet B EE) Quic Pac_:ket Payload contains Stream ID, Offset, Length
ayload (Version Negotiation, Stateless Reset, and Stream Data fields)
and
a Retry packets do not contain frames) QUIC Frame
QUIC Packet

UDP Packet

Figure 1: QUIC Packet Structure Overview: QUIC Packets have confidentiality and integrity protection by default. Even parts
of QUIC headers are protected (using keys separate from the payload protection keys) [11].

frames , as well as multiple streams within a connection, for data
exchange between end points as compared to TCP which simply
uses packets. Additionally, the wire image of QUIC is integrity pro-
tected and reveals much lesser information to network monitors
as compared to the wire image of TCP which makes inspecting
the traffic more complex. In this paper, we address the problem
of DPI elusion attacks for QUIC-based communication. Instead of
manually searching for QUIC protocol details that can potentially
be used for DPI elusion, we set out for a more methodological (and,
hopefully, more complete) way to discover such protocol details.
We therefore develop a differential fuzzing framework (DPIFuzz)
which can automatically uncover potential differences between
implementations which could be used for eluding a DPI system. We
design a modular and stateful fuzzer that can generate and mutate
sequences of QUIC packets. The fuzzer also tracks the responses
of the implementations to the generated sequences. We use the
fuzzer to test five popular open-souce QUIC implementations and
consequently perform a differential analysis of the behaviour of
these implementations to the fuzzed sequences of packets. In order
to access the application level data reassembled by the implemen-
tations, we create echo servers using these implementations. We
also use Status Codes to track the status/state of implementations
after processing a given sequence of packets. Using DPIFuzz, we
uncover two distinct strategies which highlight ambiguities be-
tween QUIC implementations. Additionally, we also uncover four
security-critical vulnerabilities in the implementations and demon-
strate how these could facilitate DPI elusion.

Our findings are of direct importance for DPI users. Eliminating
any ambiguities or vulnerabilities that we identified is immensely
helpful to organisations that want to reliably monitor QUIC traffic
on their network perimeter. At the very least, being aware of such
shortcomings for QUIC will help DPI users identify the potential
flaws of their monitoring systems in an automated way.

To summarize our contributions:

o We develop DPIFuzz, a structure-aware and modular fuzzing
framework which allows (i) automated testing of QUIC im-
plementations by generating and mutating communication
streams and (ii) a differential analysis of the behaviour of
the implementations to these communication streams.

e We apply DPIFuzz to five popular open-source QUIC imple-
mentations. As a result, we are (to the best of our knowledge)
the first to report on potential DPI elusion methods for QUIC.

e We additionally uncover and report on four security critical
vulnerabilities in the QUIC implementations, demonstrating
that DPIFuzz’s application is not just restricted to the setting
of finding evasion attacks.

2 BACKGROUND

2.1 QUIC Protocol

QUIC [12] is an encrypted-by-default Internet transport protocol
which was originally proposed by Google. QUIC is conceptually
similar to a combination of TCP, TLS, and HTTP/2 implemented
on UDP and was developed with the intended goal of eventually
replacing TCP on the web. Since QUIC runs on top of UDP, it can
be distributed as a userspace library that can be easily upgraded.
This is in stark contrast to other transport protocols like TCP/UDP
which are implemented in operating system kernels and middlebox
firmware because of which making significant changes to them is
next to impossible [7].

The QUIC IETF working group has been working since late 2016
to standardise the protocol. For the purpose of this paper, we refer
solely to draft 27 of the IETF specification [8] of the QUIC protocol.
The versions of the implementations considered in the paper are
also based on draft 27 of IETF QUIC.

QUIC defines several types of packets and frames. Figure 1 provides
an overview about the structure of QUIC packets. QUIC packets
are carried in UDP datagrams. Multiple QUIC packets can be co-
alesced into one UDP datagram. QUIC packets broadly contain a
header (long header or short header) and a payload. The payload of
QUIC packets is expressed as a sequence of frames. Draft 27 of the
IETF QUIC Protocol defines 20 different types of frames [9] like the
Stream Frame, which is used to carry the actual application level
payload over a stream or the Connection Close Frame, which is
used to indicate to an end point that a connection is being closed.
Detailed information about the different types of frames and pack-
ets can be found in the IETF draft for QUIC [9].

A QUIC connection is a stateful interaction between a client and
server. Each QUIC connection starts with a handshake phase during
which client and server establish a shared secret using the cryp-
tographic handshake protocol (QUIC-TLS [11]) and decide on an
application protocol to use to facilitate the exchange of data. The
successful completion of the handshake confirms that both end-
points are willing to communicate and establishes the important

DPIFuzz: A Differential Fuzzing Framework to Detect DPI Elusion Strategies for QUIC

parameters for the connection.

The exchange of information primarily takes place by means of
streams. In a stream, the protected packets contain stream frames
which are responsible for carrying the data as payload. Multiple
streams can be used to send data in a connection. Streams in an
QUIC connection can be bidirectional or uni-directional, depending
on the value of the second least significant bit of the stream ID.
QUIC also uses flow control for each stream individually as well
as for the connection as a whole. Several transport parameters are
defined in the QUIC specification which allow flow control between
the client and the server.

2.2 Types of Fuzzing

Fuzzing is the process of providing randomised inputs to programs
and observing their behaviour. It has gained immense popularity in
the software testing and the security industry owing to the fact that
it can detect bugs and security vulnerabilities in an automated way.
Several tools [19, 20, 26, 29, 34] already exist to perform fuzzing on
a variety of programs and systems and they have been extremely
successful in discovering vulnerabilities [1, 5, 10, 29].
Fuzzing strategies can be broadly categorised into [2]:

e Dumb vs. Smart Fuzzing: Dumb fuzzers are unaware about
the format of the input that the target expects while smart
fuzzers are input format aware.

e Black-box vs. Coverage-guided fuzzing: Black-box fuzzers
do not test which branches of the target were covered by
fuzzing whereas coverage-guided fuzzers try to maximise
the code coverage of the target.

e Generation- vs. Mutation-based fuzzing: Generation-based
fuzzers create the input for a target from scratch for every
execution of the fuzzer. In contrast, mutation-based fuzzers
alter existing data that is input to the fuzzer to modify and
thereby create new inputs.

Differential Fuzzing is a testing technique where the same fuzzed
input is provided to different yet similar implementations that
should behave identical given the same input. Differential fuzzing
discovers potential implementation differences by comparing the
behaviors and/or responses of the systems under test.

3 GOAL AND SCOPE
3.1 Goal

Our goal is to automatically detect strategies to elude a stateful DPI
system. We aim to find sequences of QUIC packets/frames that con-
tain payload that is denylisted (i.e., blocked using specific payload
keywords) by the DPI system, which however remains unnoticed
by the DPI system. To this end, we aim to reveal sequences of QUIC
packets which are reassembled by the server and the DPI system—
both of which use different QUIC implementations to reassemble
the payload differently. Such sequences reveal a potential point of
ambiguity in the two QUIC implementations that can be exploited
in elusion attacks. Once we discover such sequences, we analyse
them to find the underlying reason for the disparate handling of
packets. Finally, we want to generalize the identified differences to
demonstrate that attackers can leverage them to elude a DPI system
with any denylisted payload.

ACSAC 2020, December 7-11, 2020, Austin, USA

3.2 Threat Model

Enterprise Network 2R
System
4[;{: ::
& | . Packet Verdict
= or
Decrypted QUIC iDrop Connection

Figure 2: DPIFuzz Threat Model: An in-line proxy inter-
cepts QUIC communication and forwards decrypted QUIC
sequences to a separate DPI system for further inspection.

The threat model that we assume for the scope of this paper is
depicted in Figure 2. We envision a QUIC-aware monitoring system
with two components that tackle the disjoint tasks of (i) decrypting
the TLS-encrypted QUIC communication, and (ii) inspecting the
decrypted content. This setup is in line with industry-grade DPI
systems that intercept TLS-encrypted communication [22, 27, 39],
and also corresponds to the recommended setup [21] of monitoring
TLS-encrypted communication with open-source DPI systems like
Snort/Suricata. In detail, these two components compromise of:

e An inline proxy which establishes a QUIC connection with
both the client and the server and forwards the traffic be-
tween the two as well as to the DPI system for analysis.

o A stateful, reassembly-based DPI system which reconstructs
the streams and analyses the packets being sent for denylisted
content. If the organisation prefers intrusion prevention over
pure detection, the DPI system can optionally send a verdict
to the proxy for each packet it receives, or alternatively, send
the proxy an asynchronous signal to drop a connection after
detecting denylisted content.

Having the proxy and DPI system as separate components provides
(i) fault tolerance as it ensures that a fault in the analysis system
does not affect the proxy and vice versa, (ii) flexibility to use the
system for intrusion prevention or detection depending on the
use case and (iii) modularity which allows the DPI systems to be
changed or upgraded while using the same proxy and vice versa.

The proxy itself does not attempt to reassemble or analyse the
application-level data. However, it will need to keep track of the
control data necessary to ensure smooth communication between
the client and the server. The proxy might need to keep track of
certain frames in the QUIC Payload like the New_Connection_Id
frame which is used by endpoints when they want to change the
connection ID associated with a connection. It would need to parse
the QUIC payload for this; however, in the event that the parsing
fails, it will follow a soft fail strategy and forward the packets to
the DPI system and the endpoint as expected.

ACSAC 2020, December 7-11, 2020, Austin, USA

Packet

Generator YZ

li:
2%
Al
\.

XY E En:rn ° tor, : E
daor [xyz - =hevplong vz 12 s
.

Reen and Rossow

. DPIFuzz

Encoder pafiasssssssss =

Response
Analyzer

Q?_

Trace Files

Connection
Handler
QuICLY
L QUANT
> QUICHE
NEQO

Quic
Implementations

F& Differential
Analysis
A\

Figure 3: DPIFuzz overview. DPIFuzz is a differential fuzzing framework that executes multiple instances of the fuzzer against
different QUIC implementations, and then performs a differential analysis of the resulting trace files to find inconsistencies.

3.3 Elusion Strategies

If we can cause the DPI system to reassemble different payload
than the destination server for the same sequence of packets, we
can possibly elude the DPI system. We broadly group such elusion
strategies into the following three categories:

Insertion Packet/Frame: Some packets/frames might be ac-
cepted by the DPI system and rejected by the server (because the
edge cases could be handled differently or the checks at the DPI
might not be as sophisticated as those in the server implementa-
tions). These packets/frames are known as insertion packets/frames
[33, 41]. The consequence of an insertion packet/frame could be:

o The insertion packet/frame results in extra application layer
payload being registered at the DPI system.

o The insertion packet/frame causes an error/crash on the DPI
system, which results in the buffers being flushed, but not
on the destination server. As a result, if a blocked keyword
is split into parts such that some parts are sent before the
insertion packet/frame and some parts are sent after, the
server would be able to reassemble the data correctly while
the DPI system would never reassemble the entire blocked
keyword.

o The insertion packet/frame could affect the state of the DPI
system such that while the packet/frame itself does not lead
to an observable difference, it causes the DPI system to con-
sequently reassemble different data or run into an error or a
crash while the destination server does not.

Evasion Packet/Frame: Some packets/frames might be accepted
by the server and rejected by the DPI system (This can happen in
cases where the check performed by the DPI are different from

those performed by a server). These packets/frames are known
as evasion packets/frames [33, 41], and potentially result in the
following consequences:

e The evasion packet/frame allows sending data to the server
without it being registered at the DPI system.

o The evasion packet/frame could lead to a difference in the
state of the DPI and the server implementation such that it
eventually manifests as an observable difference between the
behaviour of the DPI system and the server implementation.

Ambiguity: A DPI system implementation might also have dif-
ferent rules defined compared to a destination server implemen-
tation in order to deal with ambiguous aspects of the protocol
specification. As stated by Wang et al. [41], most network protocol
specifications are inherently ambiguous because they are written
in a natural language like English. Often, some parts of the spec-
ifications are deliberately left unspecified, which in turn leads to
vendor-specific implementations. This results in accepted pack-
ets/frames being reassembled differently or affecting the state of
the protocol implementations in different ways.

4 DPIFUZZ ARCHITECTURE
4.1 Challenges Faced

Designing efficient and effective fuzzers for secure and encrypted
protocols is challenging. Using a “naive” fuzzer does not lead to
valuable results because protocol implementations expect struc-
tured packets with specific values for fields as input, in the absence
of which the input is simply discarded. Valid inputs are extremely
important to guide an implementation into states that are deep
in the state space of a protocol [32]. A fuzzer will only be able to

DPIFuzz: A Differential Fuzzing Framework to Detect DPI Elusion Strategies for QUIC

detect meaningful vulnerabilities if it considers the state space of
a protocol implementation and then injects unexpected inputs to
test how such cases are handled. This is extremely important as the
obvious errors/unexpected inputs are usually already handled by
the developers using a variety of testing frameworks.

Thus, for protocol level fuzzing, a structure-aware fuzzer is es-
sential to obtain meaningful results. Then again, simply using a
structured fuzzer might not be enough for stateful protocols like
QUIC where the exchange of data only starts after a successful
handshake process.

Taking the above mentioned points into account, we design
a modular, stateful, structure-aware, generation+mutation based
fuzzer that can actively interact with the server-side implementa-
tion under test (IUT).

4.2 Fuzzer Design Overview

Figure 3 shows the general structure of our fuzzing framework
DPIFuzz. We design a fuzzer that is split into the following modules:

o Connection Handler: This module establishes a connection
with the IUT by completing the TLS handshake. It uses the
high level QUIC API provided by QUIC-Tracker [28].

o Packet Generator: This module generates a sequence of QUIC
packets without encoding or encrypting them. It supports
generating all types of QUIC frames and packets listed in the
specification. The design of the Packet Generator module is
explored in detail in Section 4.4.

e Mutator: This module mutates the QUIC packets generated
by the packet generator. The mutations are defined in Sec-
tion 4.3. We do not mutate the QUIC packet header.

e Encoder and Encryptor: This module performs the neces-
sary encoding and encrytion of the QUIC packets. It then
encapsulates the QUIC packet in a UDP datagram and sends
the UDP datagram to the server.

e Response Analyzer: This module analyses the responses that
the IUT sends on processing the fuzzed sequence of packets.
It creates a trace file that contains:

— The application level data sent by the IUT as a response to
the packets it receives. This response will later be used to
gauge if two QUIC implementations differ in their payload
reassembly.

— Status Codes: These indicate the state of an IUT after
processing a sequence of packets. Our fuzzer infers the
state of the IUT either from the responses that the IUT
sends or from the absence of a response. Status codes
are (i) ServerTimeOut, which indicates that the IUT was
in an unresponsive state after processing a sequence of
packets!, (ii) TLSHandshakeFail, which indicates that the
handshake could not be completed successfully with the
IUT, (iii) ServerDidNotRespond, which indicates that the
IUT was unresponsive right from the initial packet and
(iv) ServerIsAlive, which indicates that the server was re-
sponsive after processing the entire sequence of packets.

IWe test the responsiveness of the IUT , after processing the fuzzed sequence of
packets, by sending a response eliciting packer/frame like a Stream Frame to it and
also attempting to establish a new connection with the IUT by sending an initial
packet.

ACSAC 2020, December 7-11, 2020, Austin, USA

Packet flow through the fuzzer: The fuzzing process starts
with the Connection Handler module establishing a connection
with the IUT. To ensure that the handshake between the client and
server completes successfully, we do not fuzz the initial and the
handshake packets. Following a successful connection, the Packet
Generator creates a sequence of QUIC packets that we wish to send
to the server. Since the Packet Generator creates QUIC packets
which are not yet encoded or encrypted, we can perform mutations
before the packet contents are encoded or encrypted.

Once we have a sequence of packets generated from the Packet
Generator, the sequence is passed through the mutator module. We
ensure that we do not fuzz the packet header. This fact coupled with
fuzzing the packet payload before encoding or encryption ensures
that the packets and most of the frames (some of the frames might
undergo structure altering mutations) remain structurally valid and
allows us to observe the effects that fuzzing different frame field
values can have on server implementations. Following this, each
packet will either just be encoded (like the initial client packet)
or both encoded and encrypted (like the handshake and the data
packets). Finally, the fuzzer encapsulates the QUIC packet in a UDP
datagram and sends the datagram to the IUT. The IUT response is
received at the Response Analyzer based on which a trace file is
created.

4.3 Mutations

We broadly define two types of mutations for our fuzzer:

Sequence-level mutations affect the sequence of packets, gen-
erated by the Packet Generator (see next subsection), as a whole.
We envision three such mutations:

o Shuffle: The order of packets in a sequence is randomly
shuffled.

e Duplicate: Packets are randomly selected and then duplicated
with varying degrees of duplication

e Drop: Randomly selected packets are dropped from the se-
quence of packets.

A sequence can undergo each of these three sub-mutations with
a probability a1, a2 and as, respectively. The values for these prob-
abilities are defined in Table 7 in the appendix.

Packet-level mutations affect an individual packet payload in-
stead of an entire sequence. Every packet in a sequence of packets
can undergo packet-level mutations with a probability y. We dis-
tinguish between payload mutations that are defined considering
QUIC Packet payload simply as a collection of bytes, and frame
mutations that are defined for the individual frames contained in
the QUIC packet payload, as outlined below. Once a packet has
been selected to undergo packet-level mutations, it could undergo
either a payload-level mutation or a frame-level mutation with a
probability w and 1 — w, respectively. It is important to note that
after performing the mutations on the packet payload, we update
the payload length field in the long headers of packets (if present)
to reflect the length of the mutated payload. This ensures that a
simple check of comparing the payload length field with actual
payload length does not lead to the packet being discarded.

e Payload mutations: These mutations do not take into con-
sideration the structure of the payload or the frames that

ACSAC 2020, December 7-11, 2020, Austin, USA

make up the payload. They could lead to alterations in the

structures of the frames within the packets. The four types

of payload mutations are:

— Repeat payload: A random substring of the entire packet
payload is selected and injected at a random position in
the packet payload. The existing payload content is not
overwritten.

— Alter payload: In this, we iterate over the payload at a
byte level. For each byte, a random decision is made about
whether to fuzz the byte or not.

— Add random payload: A payload with randomised content
and a random length lesser than the actual payload length
is selected and inserted at a random position in the original
payload without overwriting the existing payload content.

— Drop random payload: A random offset is selected and
then a random number of bytes, of length < payload length
— offset, starting at that offset is dropped.

A selected packet will undergo one of the four mutations at

random.

o Frame mutations: The individual frames that a packet pay-
load contains are first extracted and then each frame is fuzzed
with a probability S.

As an example, consider the STREAM DATA FRAME which

carries the stream-level payload in QUIC. The different fields

in this frame are OFF bit, LEN bit, FIN bit, Stream ID, Offset,

Length and Stream Data. First, the maximum number of fields

that should be fuzzed in the frame is randomly determined.

Then, we randomly pick which fields to fuzz. All the other

types of frames defined in the QUIC specification are fuzzed

based on the same principle.

4.4 Packet Generators

The previous subsection discussed how we can mutate existing
sequences of QUIC packets. We will now discuss how to create
such streams and packets in the first place. Packet generators can
be of two types, which are different in whether or not the testers
have control over the sequence of packets being generated:

Randomised: These generators randomly decide which types
of frames/packets to create and randomly group frames into packet
payload. They fill the frame and packet fields with random but type-
accurate values. They attach frames as packet payload without
considering whether the specification allows a particular packet
to have specific frame types or if a client is even allowed to send
frames of a specific type.

Controlled: These generators create specific types of packet
sequences that we want to test the IUT with. This allows us to
focus more on specific aspects of an implementation that we want
to test. The total number of packets and frames, their field values
and their ordering can all still be randomised, but we can use the
generator to control the type of packets and frames being created
as well as the grouping of frames into packet payload. The packets
still undergo mutations after this.

In particular, we use three types of controlled generators. These
generators create sequences which allow us to specifically target
the stream reassembly mechanism of the IUTs.

Reen and Rossow

e Basic Stream Reassembly Generator: This generator cre-
ates a sequence that contains a random number of pack-
ets with stream frames. Each stream established with the
server contains a random number of random-length and
random-content QUIC packets that will be sent to the server,
and finally, is gracefully terminated. QUIC stream frames
correctly encode the stream offets as if data was sent consec-
utively.

Flow-Control-Aware Stream Reassembly Generator: In con-

trast to the previous generator, the sequence generated by

this generator also contains packets and frames which affect
the flow control parameters established for the streams as
well as the connection.

o Overlapping Offset Generator: This generator creates a se-
quence of packets and frames to specifically test how an
implementation deals with overlapping offsets in a stream.
The sequence that this generator creates is simply shuffled
but not passed through the mutators. This ensures that the
values of other fields in a frame are not fuzzed and offset field
is the only field affecting the results. Frames which contain
overlapping offsets as well as different data for the same
offsets are created by randomly deciding on the total length
for a stream and then fragmenting it in multiple different
ways using randomised data and offsets.

4.5 Differential Analysis

We now use the described fuzzing methodology to automatically
search for differences in protocol implementations. To this end, we
leverage differential fuzzing, which feeds the same input to similar
yet different programs and compares their behavior. In our context,
these “similar” programs are semantically equivalent QUIC servers
based on different QUIC implementations. Technically, we thus im-
plement simple “echo” servers for the QUIC libraries under test (see
Section 5.1 for more details), which reply with the application-level
payload they received from the client (i.e., from our fuzzer).

To compare the program behaviors, for every execution (which
is bootstrapped with a particular generator and seed, more later)
against an IUT, the fuzzer records a trace file containing (i) the
application-level data returned by the IUT and (ii) the correspond-
ing status code. The trace files do not necessarily distinguish be-
tween all possible states of IUTs; however, they contain enough
information to highlight the relevant differences from the perspec-
tive of DPI elusion. More details can be readily included in the trace
files for a more detailed comparison of IUT states depending on the
use case. To speed up comparisons, DPIFuzz computes the hash for
all generated trace files (i.e., the reassembled stream payloads and
status codes, but not headers). DPIFuzz then compares the hashes
of the trace files for all the executions of the fuzzer, with the same
seed and generator, for all the listed IUTs. If not all hashes of a
given seed are equal, DPIFuzz adds the seed value for the execution,
the name of the generator used and a hash map with the names of
all the listed IUTs as keys and names of the IUTs their hash differs
from, as values to a result file. The differing hashes indicate that
the servers under test do not all respond in the same way to the
same sequence of packets that were provided as input to them. That
is, either the data reassembled by the servers was different and/or

DPIFuzz: A Differential Fuzzing Framework to Detect DPI Elusion Strategies for QUIC

the values assigned by the fuzzer for status codes differed. Thus,
the sequence of packets are of interest to us as they can be used to
detect elusion strategies.

A slight complication arises from the fact that we cannot simply
replay one actual packet capture to all IUTs, as the underlying
cryptographic material differs. On the one hand, we want that the
sequences sent to all IUTs essentially carry the same payload and
follow the same order of packets and frames. On the other hand,
packets cannot be fully identical, as QUIC streams are end-to-end
encrypted with diverging (and potentially ephemeral) key material.
To tackle this, the fuzzer first completes the handshake individually
with all the IUTs. All subsequent packets carry the appropriate
connection IDs and are correctly encrypted so that all the servers
see the same payload after decryption and decoding. This ensures
that we can replay “the same” sequence to multiple QUIC instances,
i.e., we can now recreate a sequence of randomly generated packets
in order to send identical sequencies to multiple implementations.
Technically, we use a deterministic random number generator to
randomize packet generations and to select mutations. This allows
us to easily regenerate the same sequence of packets as long as we
know the seed value used to initialise the random number generator.
DPIFuzz thus selects and records a new cryptographically secure
seed value after each fuzzer execution. This seed initializes the
deterministic random number generator used in the fuzzer.

Finally, we outline the inputs that DPIFuzz expects. DPIFuzz
requires an IUTList, which specifies the IUTs whose behaviour
will be compared, a GeneratorList, which specifies the packet
generators that will be used in the fuzzer, the value Ng, which
determines the number of times we execute the fuzzer with the
each specified generator against each IUT with different seed values,
and the value ParallelExecutions, which determines the number
of fuzzer instances that can be executed in parallel.

5 RESULTS
5.1 Experiment Methodology

We implement our entire framework using Golang. For our experi-
ments, we consider five actively developed, open source implemen-
tations? of QUIC; namely, QUICHE [15] by Cloudflare, MVFST [16]
by Facebook, QUANT [31] by NetApp, NEQO [30] by Mozilla and
QUICLY [18] by Fastly.

In order to access the data reassembled by the DPI system and the
server, we create echo servers using the QUIC implementations?.
The echo servers allow us to easily validate whether or not there are
ambiguities in how QUIC libraries handle certain packet streams.
Having said this, they do not necessarily capture the full logic of
more complex QUIC applications—hence our findings represent
a lower bound of all potential QUIC implementation ambiguities.
From these five QUIC libraries, we create all potential pairs, i.e.,
exhaust all possible combinations of systems being used for DPI
inspection and data reception, respectively. We run DPIFuzz si-
multaneously against servers of all five implementations, i.e., we
compare the responses of all the servers against each other. We

ZVersions of implementations as available on 29/05/2020

3We do not create an echo server for the QUANT and the NEQO implementation due
to the absence of a well defined API and documentation. Although we perform testing
on their fully fledged servers supporting QUIC protocol, we do not consider these
servers directly for our reassembly based results.

ACSAC 2020, December 7-11, 2020, Austin, USA

then analyse the results with the assumption that a DPI system is
based on one of the implementations under consideration in the
result.

To model an inline proxy that forwards the packets to a DPI
system for further inspection, our differential fuzzing module makes
sure that the same sequence of packets are sent to all the IUTs. To
ensure that in the event different data is returned by the two echo
servers, the difference is actually caused by an implementation
level difference and not a design difference in the echo servers, we
design and configure the echo servers in the same way. We use
identical values for the QUIC transport parameters in the servers
as these parameters can affect stream data reassembly. The echo
servers send the data received on a stream back only if they are
able to reassemble the stream data completely, i.e., the reassembled
data is contiguous and the stream has been closed. The servers
attempt to respond on the same streams for which they reassemble
the data. If a stream is unidirectional in nature, the write operation
for that stream will simply fail and the data is discarded (this does
not affect our results because we ensure that our generators create
bi-directional communication streams).

5.2 Experiment Setup

To model a proper client server architecture while removing the
effects of network latency and unintentional packet reordering,
we run our echo servers on a locally hosted virtual machine using
VirtualBox and run the client on our actual local machine. This
ensures that (i) the implementations being compared are fed the
exact same logical sequence of packets and (ii) the reassembly
differences that DPIFuzz uncovers are a consequence of design
differences in the implementations and not of any other reason.
The experiments were run on a machine with a Quad-Core Intel
i5 processor with a 16GB RAM. The virtual machine used was
allocated 4 cores with 8GB of RAM. The operating system used
for both the virtual machine and the local system is Ubuntu 18.04.
Running the tests locally also ensures that no servers in production
are harmed. Table 6 in the appendix contains the values used for
the transport parameters in the servers. Values of input parameters
for the Differential Fuzzing Module are:

e TUTList is initialised with the IP address as well as the port
number for the 5 IUTs.

o GeneratorList is defined as "Basic Stream Reassembly, Flow-
Control-Aware Stream Reassembly, Overlapping Offset”

o N is set to 200

o ParallelExecutions is set to 5.

o The probability values used for various mutations are listed
in Table 7 in the appendix.

5.3 DPI Elusion Results

In total, we use our framework to create 600 (|GeneratorList|*Ny)
unique sequences, i.e., we run our fuzzer against each IUT, with
each of the 3 (|GeneratorList|) specified generators, with 200(Ns)
different seed values. It takes approximately 2.5 hours for all the
sequences to finish executing and for the comparison results to be
generated. If run without parallelization, the same process would
take around 12.5 hours (considering the parallelization factor of
5). We summarise the differences uncovered by these sequences in

ACSAC 2020, December 7-11, 2020, Austin, USA

Reen and Rossow

Seed Value Generator QUICHE Reassembled Data | MVFST Reassembled Data | QUICLY Reassembled Data
4373445819122772715 I;‘f:;;ifbi? fg;’;?gggﬁzfnﬁigﬁg yGJ+$0P7cdW YaBMetcem=+@- | yGJ+$0P7cdWYaBMetcem=+@-
SjalxZwhYKFFA26AN&YT W1SjalxZwhYKFFA26 AN&YIL | WiSjalxZwhYKFFA26 AN&YI
7253654666463259418 Overlapping Offset (kINx[CV@g@mc’jZP (kINx[CV@g@mc1jZP (:k]>.gXhn%@mc1jZP
Table 1: Reassembly Differences
No. of
Packet Stream Pay- over- QUICHE Reassembled QUICLY Reassembled MVFST Reassembled
No. Frame | Stream | load lap- | Stream Data Data Data
Pay- | Offset | Length | ping Finbit
load offsets
1 "jZP 14 4 0 True JZP ZP 'jZP
2 x[5 2 0 False 'jZP x['jZP x['jZP
3 @mcl 11 3 1 False _ %[@mc’jZP x[___ @mcljZP _x[@mcljZP
4 (0 1 0 False (__x[____@mc’jZP (__x[____@mc1jZP (___x[____@mc1jZP
5 CV@g 7 4 0 False (____x[CV@g@mc’jZP (____x[CV@g@mc1jZP (____x[CV@g@mc1jZP
6 kIN 2 3 0 False (_k]Nx[CV@g@mc’jZP (_k]Nx[CV@g@mc1jZP (_k]Nx[CV@g@mc1jZP
7 >.g 4 3 3 False (kINx[CV@g@mc’jZP (_k]>.gCV@g@mc1jZP (kINx[CV@g@mc1jZP
8 Xhn% 7 4 4 False (kINx[CV@g@mc’jZP (_k]>.gXhn%@mc1jZP (kINx[CV@g@mc1jZP
9 ; 1 1 0 False (kINx[CV@g@mc’jZP (k]>.gXhn%@mc1jZP (kINx[CV@g@mc1jZP

Table 2: Overlapping Offset Data Reassembly. Packets 3, 7 and 8 contain overlapping offsets and highlight the diverging be-
haviour of the implementations.

Table 8 in the appendix. We use the seed values in the result file
generated by DPIFuzz to regenerate sequences of packets for which
the behaviour of the implementations differs. We then manually
inspect them to find the underlying reasons for the differences in
implementation behaviour. Analysing these sequences, we uncover
6 logically different DPI elusion results which we summarise next.

5.3.1

Reassembly Differences:

In this category, we discuss the results which lead to different data
being reassembled (for the same sequence of input packets) by the
IUTs. Using the two exemplary results in Table 1, we highlight how
attackers can exploit differences in reassembly strategies to elude a
DPI system:

¢ Exploiting Packets with Duplicate Packet Numbers:

The first way to elude DPI systems uncovered by our fuzzer is
based on the idea of inserting packets with duplicate packet
numbers that are ignored by some IUTs, in accordance with
the IETF specification of QUIC, but not by others.

Consider the first entry in Table 1. The MVFST server or
the QUICLY server acts as the DPI system and the QUICHE
server acts as the destination server. While the destination
server reassembles data from two streams (stream ID 12 and
16 in our concrete sequence), the DPI server only reassem-
bles the data from one stream (stream ID 16). After receiving
packets containing stream frames of one stream (ID 16), the
servers receive a packet with a duplicate packet number.
This packet has undergone the "Repeat Payload" mutation at
the fuzzer side because of which the frames in the payload

become structurally invalid. While the destination server is
configured to drop packets with a duplicate packet number,
the DPI server attempts to process the packet. This results
in a "Frame Format Error" on the DPI server and the connec-
tion is closed. Any data sent after this(stream 12 data) is not
reassembled by the DPI server. When used with an inline
proxy, it will still be able to inspect the data in the individual
packets and maybe reassemble stream 12 data independently,
but will not be able to combine it with contents reassembled
from stream 16.

This concrete evasion instance can be trivially generalized
to fool the DPI in missing any blocked keyword(s). Let us
assume that the text "BLOCKED" is denylisted by the DPI
system. We use two streams (IDs 0 and 4) to send this data
from the client to the server. We create the frames such that
stream 0 frames reassemble to "BLO" and stream 4 frames
reassemble to "CKED". After the packets containing stream
0 frames, we insert a packet with a duplicate packet number,
with a randomised payload (structurally invalid frames) , into
the sequence of packets. We then insert packets containing
the stream 4 frames and send this sequence of packets to the
server. The DPI server reassembles the packets as "BLO" and
therefore fails to detect the denylisted word. The destination
server reassembles the packets as "BLOCKED" and is thus
able to elude the DPL

Exploiting Stream Offset Overlaps: Another way to elude
DPI systems discovered by our fuzzer is based on the idea

DPIFuzz: A Differential Fuzzing Framework to Detect DPI Elusion Strategies for QUIC

ACSAC 2020, December 7-11, 2020, Austin, USA

Packet Stream Frame Stream Offset | Stream Finbit QUICHE Reassembled Data | QUICLY Reassembled Data
No. Payload (Destination Server) (DPI system)
OCKED 2 True __OCKED __OCKED
2 BLIN 0 False BLOCKED BLINKED
Table 3: DPI elusion using Overlapping Offsets (Case 1)
Packet Stream Frame _ MVFST Reassembled Data | QUICLY Reassembled Data
No. Payload Stream Offset | Stream Finbit (Destination Server) (DPI system)
OCKED 2 True —_OCKED —_OCKED
2 INKED 2 False __OCKED __INKED
BL 0 False BLOCKED BLINKED
Table 4: DPI elusion using Overlapping Offsets (Case 2)

Seed Value Generator Implementation Error Description
5224880393376231849 Basic Stream Reassembly MVFST Null Pointer Dereference
6867396659762739268 | Flow-Control-Aware Stream Reassembly QUANT Heap use after free
3544824671711368728 | Flow-Control-Aware Stream Reassembly QUICLY Null Pointer Dereference
8969571667189322506 Basic Stream Reassembly NEQO Assertion Failed

Table 5: Summary of IUT Crashes

that implementations might handle receiving data at overlap-
ping offsets in different ways. We consider the second entry
of Table 1 for this section. An analysis of the packets sent to
three servers (QUICHE, QUICLY and MVFST), as shown in
Table 2, reveals the reason for diverging data reassembly.
Looking at Packets 3, 7 and 8, we can see that when the
QUICHE server receives a payload at an offset that it has
already received data for, it simply ignores the new data. The
QUICLY server on the other hand replaces the payload with
the new payload. The analysis of the MVFST implementa-
tion is more involved than these cases. Packet 3 contains the
first stream frame with data overlapping with the already
reassembled data. Here, the MVFST server replaces the ex-
isting data with the new data that it receives. Packet 7 is the
next packet that carries overlapping data. In this case, how-
ever, the MVFST implementation does not replace the data.
Further analysis reveals that MVFST does not replace the
existing data if the starting offset of the payload in a stream
frame already has existing data. Any unoccupied positions
that lie within the range of this new frame payload will be
filled with characters from the new payload for those loca-
tions. However, if the starting offset of the frame payload is
not already occupied, the contents of this frame will replace
all the existing characters that it overlaps with.

According to Draft 27 of IETF QUIC protocol, data at a given
offset must not change if it is sent multiple times and an end-
point MAY treat receipt of different data at the same offset
within a stream as a connection error [6]. The behaviour of
QUICHE seems to be consistent with the specification as it
does not change the data at an offset once received. QUICLY
seems to completely ignore the case of repeating offsets and
the MVFST implementation seems to be partially consistent

with the specification but does not consider all possible cases

of overlapping offsets.

We can generalize this fuzzing sequence to elude the DPI

system in missing any blocked keyword(s). Let’s assume that

the text "BLOCKED" is supposed to be denylisted by the DPI
system. We demonstrate two DPI elusion cases:

— If QUICLY is used for DPI and QUICHE used for receiving
data, Table 3 depicts the packets we send and the data
reassembled by them which consequently allows eluding
the DPI system.

— Similarly, if QUICLY is used for DPI and MVFST used for
receiving data, Table 4 depicts the packets we send and
the data reassembled by them which consequently allows
eluding the DPI system.

5.3.2 QUIC Implementation Bugs and Vulnerabilites:

In addition to strategies that lead to different data being reassem-
bled by semantically equivalent QUIC implementation servers, our
fuzzer revealed several security-critical vulnerabilities in the tested
QUIC implementations. In this section, we discuss the results in
which a sequence of packets lead to a crash on one implementation
but not on another.

We detect the errors by observing the status code values in the
trace generated for each execution of the fuzzer. These errors can
be trivially leveraged in order to evade a DPI system using the
buggy QUIC implementation. If a server crashes, the execution at
the client will timeout at the client and the fuzzer will assign the
value “ServerTimeOut” to the status code.

These sequences of packets could effectively be used to flush
the buffers storing the reassembled data in the DPI system mid
way through data transfer, thereby allowing blocked content to
go undetected. On top of this, and possibly more important, these

ACSAC 2020, December 7-11, 2020, Austin, USA

application crashes illustrate that our fuzzing framework can also
be readily applied to finding security vulnerabilities in QUIC im-
plementations. In the following, supported by Table 5, we describe
the bugs that our fuzzer revealed in detail.

o QUANT: The QUANT server runs into a heap use after free
error?. Using address sanitizer [24] reveals that the imple-
mentation tries to access the state of a stream, i.e., check
whether a stream is closed or not by calling "q_is_stream_closed
()" after the memory allocated to the stream has already been
freed.

o NEQO: The NEQO server runs into an Assertion failed error”.
A Connection is already in the "Closed" state and the NEQO
server calls close () function on this connection to try close
it again.

e QUICLY: The QUICLY server runs into a Segmentation Fault®.
The reason for the Segmentation Fault is a null pointer deref-
erence [3]. When the server receives a stream frame from
a client with a stream id not permitted by the QUIC specifi-
cation, the "QUICLY_get_ingress_max_streams ()" function
tries to access the value stored in a NULL pointer causing
the server to run into a segmentation fault.

e MVEFST: The MVFST server tries to dereference a null pointer.
This causes the server to run into a Segmentation Fault’ and
crash. When we send a stream frame to the server such that
the Offset field has a non-zero value but value of the OFF bit
is set to 0 (which indicates that the Offset field is absent), the
FIN bit is set to true and the Payload field empty, the MVFST
implementation is unable to handle such a packet and runs
into a Segmentation fault.

Coordinated Disclosure: We disclosed these security-critical
vulnerabilities to the developers of the implementations and pro-
vided them with as much information as possible to assist them in
fixing the root causes for these problems.

6 DISCUSSION

Man-in-the-middle interception techniques are widely used in en-
terprise controlled [27, 39] networks. With the development of an
encrypted by default protocol like QUIC which has less informa-
tion visible to the network than TCP [4], interception techniques
will become even more important for monitoring purposes. These
are the situations where a framework like DPIFuzz can be used to
identify the potential limitations of the DPI system. Leveraging our
results, we can conclude that:

e Programmers implementing a protocol specification often
fail to account for all the possible types of inputs that an
implementation might encounter [32].

e Programmers often fail to handle properly all the possible
state transitions that the state machine of an implementation
might encounter.

e All protocol specifications have some degree of ambiguity
and have parts that are deliberately left unspecified and the
programmers are free to handle these cases as they see fit.

“https://github.com/NTAP/quant/issues/61
Shttps://github.com/mozilla/neqo/issues/571
Shttps://github.com/h20/quicly/issues/347
"https://github.com/facebookincubator/mvfst/issues/135

Reen and Rossow

These are potential points of divergence in the behaviours
of the implementations.

Implications of DPIFuzz for DPI systems: Our main finding
is that DPI systems that parse and reassemble QUIC packets in
a different manner than the actual recipient are prone to elusion
and differential fuzzing is an effective technique to uncover elusion
strategies for such systems. As of writing this paper, we are not
aware of any actual DPI systems for QUIC. Designing performant
DPI systems for QUIC will be a challenge owing to the fact that
QUIC uses TLS 1.3 for providing security. TLS 1.3 makes selective
MITM proxy interventions for DPI harder because of the encrypted
Server Hello messages (which contain the server certificates used
to verfiy server identity). Additionally, the ability of end points
to change connection IDs as well as migrate connections would
make monitoring of connections more challenging for DPI systems.
Having said this, given the expected rapid deployment of QUIC,
DPI systems will have to be developed for QUIC based traffic in the
near future. To test the validity and effectiveness of our approach,
we used open source QUIC implementations as a DPI system. Given
that actual DPI systems are usually limited in functionality and
resources, our findings likely just represent the lower bound of elu-
sion sequences that DPIFuzz will be able to find for any upcoming
full-fledged QUIC DPI system.

Limitations and Future Work: DPIFuzz uses a smart logic-
based fuzzer. However, as it is not coverage guided, it does not
attempt to maximize the code coverage of the implementations
being tested and different sequences of fuzzed packets likely repeat-
edly end up testing the same code parts. Also, we currently do not
track how much of the implementation code we cover owing to
the variance in the languages used to code the implementations.
Extending the functionality of the fuzzer to make it coverage con-
scious would definitely improve the efficiency and effectiveness of
DPIFuzz.

Additionally, while analysing the results we encountered se-
quences which registered crashes according to their trace files.
However, when replaying these sequences individually to the IUTs
for analysis, we noticed that not all crashes were reproducible. The
reason for this is that since DPIFuzz executes multiple fuzzer in-
stances in parallel, if an TUT has multiple active connections and
one of them causes it to crash, the remaining open connections
also register a crash. Also, once an IUT crashes, there is a certain
amount of delay before it is automatically restarted. If our fuzzer
sends a sequence to the IUT within this delay window, it registers
a “TLSHandshakeFail” value for the status code even though the
handshake does not fail when the sequence is replayed to the IUT.
This can be avoided by replaying the according candidates in a non-
parallel version of DPIFuzz, at the cost of a temporal performance
slowdown.

7 RELATED WORK

Fuzzing: Most related fuzzing works so far have focused on dis-
covering software vulnerabilities, which is not our prime focus.
Instead, we aim to discover ambiguities in network protocol im-
plementations. We are aware of just a few related works that have
designed fuzzers for secure network protocols, as described next.

https://github.com/NTAP/quant/issues/61
https://github.com/mozilla/neqo/issues/571
https://github.com/h2o/quicly/issues/347
https://github.com/facebookincubator/mvfst/issues/135

DPIFuzz: A Differential Fuzzing Framework to Detect DPI Elusion Strategies for QUIC

In 2012, Tsankov et al. [32] designed a fuzzer for the IKE (Inter-
net Key Exchange) protocol. They used fuzz operators to fuzz the
payloads, messages and fields in the IKE protocol. The design of
their fuzzer differs significantly from ours, though, as their fuzzer
is not a client in itself but instead sits between the client and the
server. Additionally, they do not use the Sequence level mutators
and do not allow embedding logic into their fuzzer.

A fuzzing-based differential black-box testing approach was used
by Walz and Sikora [14] in 2015 to test the handshake phase of TLS
implementations. The fact that they only fuzz the initial ClientHello
message which is not encrypted makes their approach significantly
different and less detailed than our fuzzing methodology.

A concurrent work by Pham et al. [40] uses a mutational approach
coupled with server state feedback to create a coverage-guided,
greybox fuzzer for protocol implementations. Instead of generating
packets, they replay variations of previously captured packets and
use the server response codes to identify the states exercised by a
message sequence. They explore FTP and RTSP implementations
using their work. However, they do not demonstrate the applicabil-
ity of their work to protocols like QUIC where previously captured
traffic cannot be directly used to establish a connection with, or
test, a server. Additionally, the server state machine-learning algo-
rithm used relies on server response codes and does not work for
implementations that do not generate response codes.

Deep Packet Inspection Elusion: All the way back in 1998,
Ptacek et al. [33] proposed the idea of insertion and evasion attacks
on Network Intrusion Detection Systems (NIDS) and highlighted
several implementation level differences in TCP and IP Protocols.

In 2013, Khattak et al. [35] used the same approach to uncover
several vulnerabilities in GFW.

We do levearage similar principles of insertion and evasion packets
but, we (i) are the first to explore them for the QUIC protocol, and
(ii) find such packets in an automated way.

A genetic algorithm based automated approach to detect packet
manipulation based evasion strategies was used by Bock et al. [23]

in 2019. They used genetic algorithms to generate packet manip-
ulation strategies based on basic packet manipulation primitives
(drop, tamper headers, duplicate and fragment), and then apply
these strategies to user input. This is in contrast to our work where
our fuzzer actually generates input sequences (instead of strategies)
and mutates those in a randomised manner. The primary aim of
their work was to automate "censorship evasion" which differs sig-
nificantly from the purpose of our work of allowing DPI users to
test the robustness of ther DPI systems by uncovering DPI elusion
strategies that attackers might leverage to get restricted or mali-
cious content in and out of protected networks.

Another approach to detect automated DPI evasion strategies was
developed by Wang et al. [41] in 2020. They used Selective Symbolic
Execution to explore TCP implementations and discover insertion
and evasion packets which could effectively "de-synchronise" the
state machines of the DPI middlebox and the implementation be-
ing tested. Their approach, however, is limited by path explosion
(even though they use just three symbolic packets) and they make
pruning decisions based on their domain knowledge to tackle path
explosion. For a protocol like QUIC which has a large variety of
frames and packets, the number of symbolic packets needed to
explore an implementation would be much more as compared to

ACSAC 2020, December 7-11, 2020, Austin, USA

TCP and consequently, the path explosion much worse.

These approaches by Wang et al. [41] and Bock et al. [23] detect elu-
sion strategies in an automated way, but they do not demonstrate
applicability to the QUIC protocol. To the best of our knowledge,
we are the first (i) to use the concept of Differential Fuzzing to auto-
mate detection of DPI elusion strategies, (ii) to explore DPI elusion
strategies for the QUIC protocol, and (iii) to design a modular and
structure-aware fuzzer for QUIC.

8 CONCLUSION

In this paper, we have presented a differential fuzzing framework
which allows detecting DPI elusion strategies for the QUIC protocol,
when being inspected by an stateful DPI system, in an automated
way. We test the framework against multiple open source implemen-
tations of the QUIC protocol and demonstrate techniques which
can allow DPI elusion, thereby proving the effectiveness of our
approach. DPIFuzz would enable organisations to test their QUIC
traffic monitoring systems and uncover possible elusion strategies
that attackers might use. As a consequence, it will help improve
the security of enterprise networks.

9 AVAILABILITY

The code for our differential fuzzer is open source® and can be freely
used and extended by (i) organisations to test the robustness of
their DPI implementations, and (ii) DPI users to identify potential
shortcomings in their methodology.

REFERENCES

[1] 2015. A collection of vulnerabilities discovered by the AFL fuzzer (afl-fuzz). https:

//github.com/mrash/afl-cve

2017. Fuzzing Basics. Retrieved May 11, 2020 from https://docs.microsoft.com/en-

us/security-risk-detection/concepts/fuzzing-basics

[3] 2019. CWE VIEW: Weaknesses in the 2019 CWE Top 25 Most Dangerous Software
Errors. Retrieved May 19, 2020 from https://cwe.mitre.org/data/definitions/1200.
html

[4] 2019. Manageability of the QUIC Transport Protocol. Retrieved May 22, 2020 from
https://quicwg.org/ops-drafts/draft-ietf-quic-manageability.html

[5] 2020. Hongfuzz Found Bugs. Retrieved May 7, 2020 from https://github.com/
google/honggfuzz#trophies

[6] 2020. Overlapping Offsets. Retrieved June 06, 2020 from https://quicwg.org/base-
drafts/draft-ietf-quic-transport#section-2.2-4

[7] 2020. QUIC, a multiplexed stream transport over UDP. Retrieved May 11, 2020
from https://www.chromium.org/quic

[8] 2020. QUIC: A UDP-Based Multiplexed and Secure Transport. Retrieved May 11,
2020 from https://quicwg.org/base-drafts/draft-ietf-quic-transport

[9] 2020. QUIC: Packets and Frames. Retrieved June 06, 2020 from https://quicwg.
org/base-drafts/draft-ietf-quic-transport#name-packets-and-frames

[10] 2020. Syzkaller Found Bugs. Retrieved May 7, 2020 from https://github.com/
google/syzkaller/blob/master/docs/linux/found_bugs.md

[11] 2020. Using TLS to Secure QUIC. Retrieved May 11, 2020 from https://datatracker.
ietf.org/doc/draft-ietf-quic-tls/

[12] Alyssa Wilk et al. Adam Langley, Alistair Riddoch. 2017. The QUIC Transport
Protocol: Design and Internet-Scale Deployment. In SIGCOMM ’17: Proceedings
of the Conference of the ACM Special Interest Group on Data Communication.
https://dl.acm.org/doi/10.1145/3098822.3098842

[13] Nour-Eddine Lakhdari Mourad Debbabi Amine Boukhtouta, Serguei A. Mokhov
and Joey Paquet. May 2016. Network malware classification comparison using
DPI and flow packet headers. In Journal of Computer Virology and Hacking
Techniques, vol. 12, no. 2. Springer, 69-100. https://link.springer.com/article/10.
1007%2Fs11416-015-0247-x

[2

8https://github.com/piano-man/DPIFuzz

https://github.com/mrash/afl-cve
https://github.com/mrash/afl-cve
https://docs.microsoft.com/en-us/security-risk-detection/concepts/fuzzing-basics
https://docs.microsoft.com/en-us/security-risk-detection/concepts/fuzzing-basics
https://cwe.mitre.org/data/definitions/1200.html
https://cwe.mitre.org/data/definitions/1200.html
https://quicwg.org/ops-drafts/draft-ietf-quic-manageability.html
https://github.com/google/honggfuzz#trophies
https://github.com/google/honggfuzz#trophies
https://quicwg.org/base-drafts/draft-ietf-quic-transport#section-2.2-4
https://quicwg.org/base-drafts/draft-ietf-quic-transport#section-2.2-4
https://www.chromium.org/quic
https://quicwg.org/base-drafts/draft-ietf-quic-transport
https://quicwg.org/base-drafts/draft-ietf-quic-transport#name-packets-and-frames
https://quicwg.org/base-drafts/draft-ietf-quic-transport#name-packets-and-frames
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs.md
https://github.com/google/syzkaller/blob/master/docs/linux/found_bugs.md
https://datatracker.ietf.org/doc/draft-ietf-quic-tls/
https://datatracker.ietf.org/doc/draft-ietf-quic-tls/
https://dl.acm.org/doi/10.1145/3098822.3098842
https://link.springer.com/article/10.1007%2Fs11416-015-0247-x
https://link.springer.com/article/10.1007%2Fs11416-015-0247-x
https://github.com/piano-man/DPIFuzz

ACSAC 2020, December 7-11, 2020, Austin, USA

[14]

[15]

[16

[17

=
&

[19

[20]

[21]

[22]
[23]
[24]

[25

[26]
[27]

[28

[29

[30]

w
hay

[32]

[33

[34]

[35

[36]

[37

[38]

[39]

[40

[41]

Axel Sikora Andreas Walz. March-April 1, 2020. Exploiting Dissent: Towards
Fuzzing-based Differential Black-Box Testing of TLS Implementations. In IEEE
Transactions on Dependable and Secure Computing. IEEE.

Cloudflare. 2018. Quiche: Savoury implementation of the QUIC transport protocol
and HTTP/3. https://github.com/cloudflare/quiche

Facebook. 2018. MVFST: A client and server implementation of IETF QUIC protocol
in C++ by Facebook. https://github.com/facebookincubator/mvfst

Arash Molavi Kakhki Arian Akhavan Niaki David Choffnes Phillipa Gill Alan Mis-
love Fangfan Li, Abbas Razaghpanah. November 2017. libserate, (n): a library
for exposing (traffic-classification) rules and avoiding them efficiently. In IMC
’17: Proceedings of the 2017 Internet Measurement Conference. ACM, 128-141.
https://dl.acm.org/doi/10.1145/3131365.3131376

Fastly. 2017. Quicly: A QUIC implementation, written from the ground up to be
used within the H20 HTTP server. https://github.com/h20/quicly

Google. 2015. honggfuzz: Security oriented software fuzzer. https://github.com/
google/honggfuzz

Google. 2015. syzkaller: An unsupervised coverage-guided kernel fuzzer. https:
//github.com/google/syzkaller

Erik Hjelmvik. 2020. Sniffing Decrypted TLS Traffic with Security
Onion. https://www.netresec.com/?page=Blog&month=2020-01&post=Sniffing-
Decrypted- TLS- Traffic- with-Security- Onion

Jeff Jarmoc. 2012. SSL/TLS Interception Proxies and Transitive Trust. In Black
Hat Europe. blackhat.

et al. Kevin Bock, George Hughey. 2019. Geneva: Evolving Censorship Evasion
Strategies. In CCS. ACM.

Konstantin Serebryany. 2011. Address Sanitizer. Google. https://github.com/
google/sanitizers/wiki/AddressSanitizer

Erling Ellingsen Collin Jackson Lin-Shung Huang, Alex Rice. [n.d.]. Analyzing
Forged SSL Certificates in the Wild. In IEEE Symposium on Security and Privacy.
LLVM. 2015. libFuzzer: a library for coverage-guided fuzz testing. http://llvm.org/
docs/LibFuzzer.html

Mohammad Mannan Louis Waked and Amr Youssef. 2018. The Sorry State of
TLS Security in Enterprise Interception Appliances. (2018).

Quentin De Coninck Maxime Piraux and Olivier Bonaventure. 2018. Observing
the Evolution of QUIC Implementations. In EPIQ’18: Proceedings of the Workshop
on the Evolution, Performance, and Interoperability of QUIC. https://doi.org/10.
1145/3284850.3284852

Michal Zalewski. 2019. american fuzzy lop. Google. https://Icamtuf.coredump.
cx/afl/

Mozilla. 2019. Nego: An Implementation of QUIC written in Rust. https://github.
com/mozilla/neqo

NetApp. 2016. Quant: QUIC implementation for POSIX and IoT platforms. https:
//github.com/NTAP/quant

Mohammad Torabi Dashti Petar Tsankov and David Basin. 2012. SECFUZZ:
Fuzz-testing Security Protocols. In Proceedings of the 7th International Workshop
on Automation of Software Test (AST 2012). Zurich, Switzerland.

Thomas Ptacek and Timothy Newsham. [n.d.]. Insertion, Evasion and Denial of
Service: Eluding Network Intrusion Detection. ([n.d.]).

Ashish Kumar Lucian Cojocar Cristiano Giuffrida Herbert Bos Sanjay Rawat,
Vivek Jain. 2017. VUzzer: Application-aware Evolutionary Fuzzing. In NDSS
Symposium 2017.

Philip D. Anderson Vern Paxson Sheharbano Khattak, Mobin Javed. 2013. Towards
Illuminating a Censorship Monitor’s Model to Facilitate Evasion. In 3rd USENIX
Workshop on Free and Open Communications on the Internet (FOCI ’13).

D. Smallwood and A. Vance. 2011. Intrusion analysis with deep packet inspection:
increasing efficiency of packet based investigations. In International Conference
on Cloud and Service Computing. IEEE, 342-347.

K. Xiong T. Chin and C. Hu. 2018. Phishlimiter: A phishing detection and
mitigation approach using software-defined networking. In IEEE Access, vol. 6.
Springer, 42516-42531.

R. Tahboub and Y. Saleh. 2014. Data leakage/loss prevention systems (dlp). In
World Congress on Computer Applications and Information Systems (WCCAIS).
IEEE, 1-6.

Roelof Du Toit. 2017. Responsibly Intercepting TLS and the Impact of TLS 1.3.
(2017).

Abhik Roychoudhury Van-Thuan Pham, Marcel Bohme. 2020. AFLNET: A Grey-
box Fuzzer for Network Protocols. In IEEE International Conference on Software
Testing, Verification and Validation (ICST). IEEE.

et al. Zhongjie Wang, Shitong Zhu. 2020. SYMTCP: Eluding Stateful Deep Packet
Inspection with Automated Discrepancy Discovery. In NDSS Symposium 2020.
Zhiyun Qian Chengyu Song Srikanth V. Krishnamurthy Zhongjie Wang, Yue Cao.
November 2017. Your state is not mine: a closer look at evading stateful internet
censorship. In IMC ’17: Proceedings of the 2017 Internet Measurement Conference.
ACM, 114-127. https://dl.acm.org/doi/10.1145/3131365.3131374

Reen and Rossow

APPENDIX

Table 6 contains the transport parameter values used in the servers.
Table 7 contains the values for mutation probabilities defined in
Section 4.3. Table 8 contains a summary of the differences uncovered
by our fuzzer between different pairs of implementations.

Transport Parameter Value
initial_max_data 1048576
initial_max_stream_data_bidi_local 66560
initial max_stream_data_bidi_remote 66560
initial max_stream_data_uni 66560
initial_max_streams_bidi 2048
initial max_streams_uni 2048
max_idle_timeout 60000
max_packet_size 1500
ack_delay_exponent 3

Table 6: Transport Parameter Values

Probability Parameter Value
ai, a2 Z
By 3
© I
2
as 0

Table 7: Probability Values

https://github.com/cloudflare/quiche
https://github.com/facebookincubator/mvfst
https://dl.acm.org/doi/10.1145/3131365.3131376
https://github.com/h2o/quicly
https://github.com/google/honggfuzz
https://github.com/google/honggfuzz
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://www.netresec.com/?page=Blog&month=2020-01&post=Sniffing-Decrypted-TLS-Traffic-with-Security-Onion
https://www.netresec.com/?page=Blog&month=2020-01&post=Sniffing-Decrypted-TLS-Traffic-with-Security-Onion
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizer
http://llvm.org/docs/LibFuzzer.html
http://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1145/3284850.3284852
https://doi.org/10.1145/3284850.3284852
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://github.com/mozilla/neqo
https://github.com/mozilla/neqo
https://github.com/NTAP/quant
https://github.com/NTAP/quant
https://dl.acm.org/doi/10.1145/3131365.3131374

DPIFuzz: A Differential Fuzzing Framework to Detect DPI Elusion Strategies for QUIC

ACSAC 2020, December 7-11, 2020, Austin, USA

Seed Value Generator IUT 1 IUT2 Difference Category
4373445819122772715 BSR QUICHE MVEST Duplicate Packet Number
4373445819122772715 BSR QUICHE Quicly Duplicate Packet Number
7253654666463259418 00 QUICHE MVEFST Overlapping Offset Handling
7253654666463259418 00 MVEFST QUICLY Overlapping Offset Handling
7253654666463259418 00 QUICHE QUICLY Overlapping Offset Handling
5224880393376231849 BSR MVEFST QUICHE Null Poninter Dereference
5224880393376231849 BSR MVFST QUICLY Null Poninter Dereference
5224880393376231849 BSR MVEFST NEQO Null Poninter Dereference
6867396659762739268 FCSR QUANT QUICHE Heap use after free
6867396659762739268 FCSR MVFST QUICHE Heap use after free
6867396659762739268 FCSR NEQO QUICHE Heap use after free
3544824671711368728 FCSR QUICLY QUICHE Null Poninter Dereference
3544824671711368728 FCSR QUANT QUICLY Null Poninter Dereference
3544824671711368728 FCSR MVEFST QUICLY Null Poninter Dereference
3544824671711368728 FCSR NEQO QUICLY Null Poninter Dereference
4471396090777236879 FCSR QUANT QUICHE Heap use after free
4471396090777236879 BSR QUANT QUICLY Heap use after free
4471396090777236879 FCSR QUANT MVEFST Heap use after free
4471396090777236879 BSR NEQO QUANT Heap use after free
8969571667189322506 BSR NEQO QUICHE Assertion Failed
8969571667189322506 BSR MVEFST NEQO Assertion Failed
8969571667189322506 BSR QUANT NEQO Assertion Failed
8969571667189322506 BSR QUICLY NEQO Assertion Failed
6399819732713312401 BSR QUICHE QUICLY Duplicate Packet Number
6399819732713312401 BSR QUICHE MVFST Duplicate Packet Number

98269818471122413 FCSR QUICHE QUICLY Null Pointer Dereference
3738301969304892419 FCSR QUICHE NEQO Assertion Failed
3738301969304892419 FCSR QUANT NEQO Assertion Failed
3738301969304892419 FCSR MVEST NEQO Assertion Failed
8566626253336265389 00 MVEST QUICLY Overlapping Offset Handling
8566626253336265389 00 MVEST QUICHE Overlapping Offset Handling
8566626253336265389 00 QUICHE QUICLY Overlapping Offset Handling
423731078537465151 BSR QUICHE QUANT Heap use after free
423731078537465151 BSR MVEST QUANT Heap use after free
423731078537465151 BSR QUICLY QUANT Heap use after free
2730155016155308010 BSR QUICHE NEQO Assertion Failed
2730155016155308010 BSR QUANT NEQO Assertion Failed
2730155016155308010 BSR MVFST NEQO Assertion Failed

Table 8: Summary of differences uncovered by the fuzzer. BSR ->Basic Stream Reassembly, FCSR -> Flow-Control-Aware Stream
Reassembly, OO -> Overlapping Offset

	Abstract
	1 Introduction
	2 Background
	2.1 QUIC Protocol
	2.2 Types of Fuzzing

	3 Goal and Scope
	3.1 Goal
	3.2 Threat Model
	3.3 Elusion Strategies

	4 DPIFuzz Architecture
	4.1 Challenges Faced
	4.2 Fuzzer Design Overview
	4.3 Mutations
	4.4 Packet Generators
	4.5 Differential Analysis

	5 Results
	5.1 Experiment Methodology
	5.2 Experiment Setup
	5.3 DPI Elusion Results

	6 Discussion
	7 Related Work
	8 Conclusion
	9 Availability
	References

