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ABSTRACT

Modern fuzzing tools like AFL operate at a lexical level: They ex-

plore the input space of tested programs one byte after another. For

inputs with complex syntactical properties, this is very inefficient,

as keywords and other tokens have to be composed one character

at a time. Fuzzers thus allow to specify dictionaries listing possible

tokens the input can be composed from; such dictionaries speed up

fuzzers dramatically. Also, fuzzers make use of dynamic tainting to

track input tokens and infer values that are expected in the input

validation phase. Unfortunately, such tokens are usually implicitly

converted to program specific values which causes a loss of the

taints attached to the input data in the lexical phase.

In this paper, we present a technique to extend dynamic tainting

to not only track explicit data flows but also taint implicitly con-

verted data without suffering from taint explosion. This extension

makes it possible to augment existing techniques and automatically

infer a set of tokens and seed inputs for the input language of a pro-

gram given nothing but the source code. Specifically targeting the

lexical analysis of an input processor, our lFuzzer test generator

systematically explores branches of the lexical analysis, producing a

set of tokens that fully cover all decisions seen. The resulting set of

tokens can be directly used as a dictionary for fuzzing. Along with

the token extraction seed inputs are generated which give further

fuzzing processes a head start. In our experiments, the lFuzzer-AFL

combination achieves up to 17% more coverage on complex input

formats like json, lisp, tinyC, and JavaScript compared to AFL.
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1 INTRODUCTION

Fuzzing has emerged as one of the key test-generation technologies

in recent years. By automatically generating millions of tests in

a short time a fuzzer is able to reveal bugs in software that may

have stayed undetected by manually written tests. Fully automatic

state-of-the-art fuzzers like AFL [19] explore the input space byte-

wise and mostly randomly (with some coverage guidance). Thus,

when fuzzing a program with a complex input structure, most of

the generated inputs are invalid, and many features of the program

cannot be covered as a random fuzzer is in general not able to

produce keywords and complex structures: Generating a keyword

like while randomly from letters has a chance of 1 in 265. A pure

random fuzzer will need a long time to generate this keyword, let

alone the structures that follow it.

Several solutions have been introduced to circumvent this prob-

lem, the most important being coverage guidance. Maximizing code

coverage, a random fuzzer like AFL over time is able to generate

inputs consisting of different tokens, generating valid prefixes that

cover more and more code until a valid input is finally composed.

For constrained input languages, however, this is still not sufficient:

As fuzzers compose their inputs character by character, they have

to determine each and every keyword in the input again and again.

The problem of finding keywords and other lexical structures

can be dramatically alleviated by providing a dictionary of common

input fragments. This allows fuzzers to compose inputs from dic-

tionary entriesÐin other words, they can build inputs from tokens

rather than individual characters, which can be highly beneficial

for fuzzing, e.g. with AFL. Even though AFL puts tokens from its

dictionary randomly together, its coverage guidance can approxi-

mate the value of a generated input. This finally leads the random

generation to inputs that survive the input validation stage and

reach actual functionalityÐif a dictionary was supplied by the user.

In this paper, we propose a new approach that takes a program

and automatically and without seeds extracts the tokens of its input

language using dynamic tainting of implicit data transformations, to

produce a dictionary and seed inputs to speed up fuzzing. The key

idea of our approach, sketched in Fig. 1, is to systematically create

inputs that cover all branches of a tokenizerÐthat is, a program

part that composes characters into tokens. Our approach extends

our earlier work [12], especially our tool pFuzzer. To this end, we

dynamically track the comparisons made on input characters and

tokens. The comparisons on input characters are easy to satisfy, as a

tokenizer usually compares one or more input characters against a

predefined set of keywords or special characters. It returns or stores

a constant value (the token) based on those comparisons, which

is again used in comparisons against other tokens in the parser.

Hence, the dynamic tainting needs to be able to follow taints from
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Figure 1: How lFuzzerworks. In Phase 1, the learning phase, a dictionary and seed inputs are extracted. This is done as follows:

lFuzzer generates an input and runs the program on this input. The tokenizer creates a token stream from the input (or the

parser requests token after token from the tokenizer) and lFuzzer learns the mapping of each input character to the token it

is converted to. The parser uses the tokens to parse the input, lFuzzer extracts the token comparisons made to generate the

next input. If neither tokenizer nor parser reject the input, the program logic either outputs a result or crashes. In Phase 2,

the extracted dictionary and learned seed inputs are used by a fuzzer to fuzz the program under test.

the input characters to the returned tokens to make use of the

token comparisons in the parsing phase. Also, comparisons in the

tokenizer that make up tokens can be used in fuzzing dictionaries.

In addition, we can use the token comparisons from the parser

to create a valid input.We rely on the fact that a parser processes

tokens one after another, comparing each input token against all

valid tokens at this position before rejecting an input. We start with

a random token which is likely rejected, extract the comparisons

made on the token and replace it with one of the compared tokens,

passing the first token comparison. We append new tokens until all

token comparisons are passed. This input can be given as a seed to

a fuzzer. Now we can create another seed input or start a fuzzer like

AFL with the extracted dictionary and the generated seed inputs.

To the best of our knowledge, this is the first approach to system-

atically taint, track and extract input tokens from a program under

test for the purpose of making test generation more efficient and

more effective. Our token extraction approach solely relies on the

comparisons made on input characters and tokens, making it easy

to understand, implement, and extend for future research.

Our approach is effective. Our evaluation on six subjects rang-

ing from csv to JavaScript shows that the dictionaries and seed

inputs generated by our approach are more effective and more

efficient for fuzzing. Compared to AFL and pFuzzer without any

information, AFL with a dictionary of the string constants from the

program code and AFL with seed inputs generated by pFuzzer, AFL

given our seeds and dictionaries achieves at least comparable, but

in general higher coverage. As the benefits increase with growing

complexity of the input language, our work opens the door towards

highly efficient fuzzing of programs with complex input languages.

The remainder of the paper is organized as follows. Section 2

describes how we enable dynamic tainting of implicit data trans-

formations and systematically explore the lexical input space of

tokenizers, producing dictionaries and seeds for further fuzzing.

Section 3 details the evaluation, comparing our approach against

AFL and pFuzzer as described above. After discussing the related

work (Section 4) on token extraction and dictionary usage, we dis-

cuss limitations and future work in Section 5, before concluding

the paper in Section 6.

2 EXTRACTING INPUT TOKENS

Our goal is twofold: improving dynamic tainting by allowing im-

plicit data conversions and using this extension for improved magic

byte fuzz-blocking elimination.

First, we want to improve the precision of dynamic tainting by

tracking taints on implicit data transformations. Such transforma-

tions are extensively used in input validators, more specifically in

the tokenization phase of such a validator in which one or more

input characters are converted to a constant value, a so called token.
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Second, with this dynamic tainting extension we want to auto-

matically generate both a dictionary and a set of seed inputs which

can be used as a guidance for fuzzing using no more than the pro-

gram as initial information. The key idea is to generate inputs that

cover all branches of the tokenizer. Hence, we use a test generator for

tokenizers to extract knowledge for another, general test generator.

Generating tests that cover tokenizers is a difficult task. On the

one hand, random fuzzers like AFL fail in the presence of tokens,

even if guided by coverage. On the other hand, testing approaches

that solve path conditions to cover all branches are challenged

by the complex path conditions in input processors [5]. Using a

grammar or some other input model would dramatically increase

the efficiency of fuzzing. Still, for many input formats no suchmodel

is available.1 The technique of parser-directed fuzzing [12] aims to

strike a compromise between the two, specifically generating inputs

for parsers that process one element at a time. Thus, the key idea

of our work is to

(1) Extend dynamic tainting to implicit data transformations, us-

ing them to

(2) Apply parser-directed fuzzing specifically to tokenizers, cov-

ering all branches and, consequently, all lexical elements

(tokens) of the input language; and subsequently

(3) Extract these tokens as dictionaries for effective fuzzing.

We implemented this approach in a tool called lFuzzer, being able

to extract dictionaries and seed inputs from C programs.

2.1 Parser-Directed Fuzzing

As already mentioned, parsing makes an intensive use of implicit

data conversions while also being hard to test with state-of-the-art

fuzzers. Thus, we demonstrate the effectiveness of our approach

by improving parser-directed fuzzing [12]. We extend our open-

source implementation by Mathis et. al to also handle implicit data

conversions. Hence, we shortly sketch the general idea of pFuzzer.

Parser-directed fuzzing [12] assumes that a parser processes

inputs character by character, comparing each character against

all expected characters at this position. Our earlier tool pFuzzer

executes valid prefixes with random extensions and uses dynamic

tainting to collect the comparisons done on the input characters.

The collected comparisons are then used to find a valid substitution

for the random extension.

We detail the approach on the example of an arithmetic expres-

sion parser: pFuzzer starts with a random character, e.g. ’&’, given

to the program. This input is rejected but not before being checked

if it is a digit or an opening parenthesisÐthe values a valid input for

the expression parser can start with. In the next step pFuzzer re-

places the random character with one of the values it was compared

to, e.g. the character ’1’. The input ł1ž is accepted, but pFuzzer can

now decide to append another random character, looking for larger

inputs. It could append ’#’ to the prefix ł1ž, leading to ł1#ž. ’#’ is

compared against the characters that can follow a digit: ’+’ and ’−’

and replaced by one of them, leading to ł1+ž which is rejected. So

pFuzzer appends another character, runs the program, analyzes

1Of course, if one writes a generic parser for a well known format (like json), a
grammar would be available. Nonetheless, most of the time such formats are used
to transport more specific data, e.g. for json a specific set of key-value pairs might
be defined to exchange data between programs. With our approach it is possible to
automatically extract such specific data without the need to define it manually.

Algorithm 1 Token Taint Propagation Algorithm

1: lastTaint← None

2: procedure propagate(Ins)

3: if type(Ins) = Comp ∧ isTainted(Ins) then

4: lastTaint← getTaint(Inst)

5: else

6: if type(Ins) ∈ {Assign, Return, Expr} ∧ hasConstant(Ins) then

7: assignTokTaint(Ins.getConstant, lastTaint)

8: end if

9: end if

10: if type(Ins) = Return then

11: lastTaint← None

12: end if

13: end procedure

the comparisons made on this character (being again comparisons

against digits and an opening parenthesis), replaces the appended

character with one of them, resulting in the valid input ł1+3ž.

In [12], we already mentioned tokenization as a strong limita-

tion to fuzzing parsers and hence our approach. In the presence

of a tokenization the character comparisons are shifted from the

parser into the tokenizer. The tokenizer though compares every

input character against all characters and keywords known to the

program while a parser only compares against valid characters for

the respective input position. In our example every input character

would be compared against digits, ’( ’, ’+’, ’−’, and ’)’. Thus, pFuzzer

may replace a randomly guessed character with an invalid value, e.g.

the ’&’ pFuzzer started with in our example might be replaced with

a ’)’. Hence, the chances for pFuzzer replacing a guessed character

with an incorrect value are higher, leading to more guesses until

a valid input is composed. We believe that an explicit knowledge

about a program’s input tokens makes fuzzing much more efficient.

Thus, we detail in the following how such tokens can be tainted,

extracted and used for fuzzing (e.g. in parser-directed fuzzing).

We need to solve the following problems before we can use

tokens in dictionaries and for seed input generation:

(1) Linking of input characters to tokens (i.e. tainting the tokens

with the taints of the originating characters).

(2) Linking tokens to their actualmeanings (e.g. a token T_WHILE

to the keyword while)2.

We will do this in three steps, sketching simple algorithms to

explain our core ideas:

(1) Detecting tokenization patterns and enable taint propagation

to generated tokens;

(2) Separating tokenizing and parsing code; and

(3) Correcting misclassified taints on tokens.

Finally, we will also detail how tokens can be used to efficiently

generate seed inputs for further fuzzing.

2.2 Propagating Token Taints

Adapting the dynamic tainting engine of pFuzzer means detect-

ing and tainting tokens with the taints of the characters they are

2A necessary feature to use the token comparisons in the parsing phase for seed input
generation equal to pFuzzer which relies on comparisons in the parsing phase.
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derived from. Because one can imagine an infinite amount of possi-

bilities to create a token from input characters, this detection can

only be an approximation. Still, there are some general patterns

that are used when tokenizing the input, which can be detected and

handled by the method presented in Algorithm 1. Every tokenizer

must compare one or more characters from the input explicitly

against predefined values to be able to decide if a character be-

longs to a predefined token. After this comparison, the tokenizer

should return or store a constant number ś the token created from

the characters. To avoid large overapproximations we restrict the

"distance" between the comparison made and the generation of

the token, i.e. the generation should happen in the function the

character comparison is done or immediately after the function

returns. Algorithm 1 implements this token detection approach.

The function propagate in Line 2 is called on every instruction

that was executed during a run of the program under test. If a

comparison with a tainted value is done (Line 3), we store the taint

attached to the value (Line 4). The next time a constant is stored,

returned, or used in an arithmetic expression (Line 6), the stored

taint, flagged as a token taint, is attached to this constant (Line 7),

as we assume this to be a token assignment. Such token taints are

handled by the dynamic tainting engine as any other taint and are

thus propagated like normal taints. If they appear in comparisons

with other constants, a token comparison is reported and can then

be used for generating seed inputs (cf. Section 2.5). Line 10 and

Line 11 ensure that the taint stored in lastTaint is deleted on a

function return, as tokenization rarely happens over returns.

In the following we present two different tokenization patterns

and explain how they are handled by Algorithm 1:

Basic. The most basic conversion is a direct conversion, the

input is compared against some expected character or a keyword

and the respective token is assigned to some variable or returned:

void tokenize(char c) {

if (c == '{')

return L_BRACE;

}

In this case Algorithm 1 detects the comparison of c against ’{ ’

in Line 3, and will taint the constant L_BRACE in Line 7 as it is a

returned constant value which is detected by Line 6.

Comparison Function. Similarly to the basic conversion the

comparison may be implemented in a custom function. Here we

first taint the return value of the function and then taint the newly

created token:

bool isLBrace(char c) {

return c == '{';

}

int tokenize(char c) {

if (isLBrace(c))

return L_BRACE;

}

The comparison of c against ’{ ’ is done in the method isLBrace,

the return value of the method is tainted by the standard dynamic

tainting engine (c is tainted, thus the result of the comparison is

tainted). In the function tokenize, this returned value is implicitly

compared against the value false in the if-condition, triggering Line 3

and Line 4, storing the taint of the returned value for later usage

Algorithm 2 Tokenization Phase Detection Algorithm

1: procedure detectTokenization(CallGraph)

2: for node ∈ CallGraph do

3: if hasCharacterComparison(node) then

4: markTokenize(node)

5: end if

6: end for

7: while newNodeMarked(CallGraph) do

8: for node ∈ CallGraph do

9: if isParentTokenize(node) then

10: markTokenize(node)

11: end if

12: end for

13: end while

14: end procedure

in lastTaint. On the return of L_BRACE the condition in Line 6

evaluates to true, hence the stored taint in lastTaint is used to taint

the constant as in the basic case (Line 7).

2.3 Detecting the Tokenization Phase

The tainting engine may over-approximate and report wrong token

comparisons (e.g. due to tainting a constant that is no token which

is later used in comparisons). Algorithm 2 divides the program code

in tokenizing and non-tokenizing based on the comparisons on in-

put characters that are detected by the dynamic tainting engine. We

designed this algorithm under the assumptions that parsing func-

tions are never called by tokenizing functions and tokenization and

parsing is strictly divided (so no function can be both at the same

time). Thus, we can filter out token comparisons that are reported

in the tokenizer, reducing the set of invalid token comparisons.

Algorithm 2 starts with the dynamic CallGraph of the application

(Line 1) which is constructed during the program execution. The

nodes (= functions) are iterated (Line 2) and functions containing

input character comparisons (Line 3) are marked as tokenizing

(Line 4). After that, the nodes are iterated (Line 8), and for each

node it is checked if any of the parents (a caller of the function) is

marked as tokenizing (Line 9). If so the respective node is marked as

tokenizing as well (Line 10), finally approximating tokenizing and

parsing code. The result is an underapproximation of the tokenizing

code to avoid marking parser functions as tokenizing. This would

hinder the input generation that uses the comparisons in the parser.

2.4 Correcting Misclassified Taints

It may happen that even after filtering token comparisons from to-

kenizing code, some reported token comparisons are still wrong to-

ken comparisons. This happens because of the over-approximation

in the tainting engine marking any constant after a comparison as

a token. Most of those constant values are only used within the

tokenizing code and are therefore filtered by Algorithm 2, but some

of them may also appear in the parsing code, leading to noise.

With Algorithm 3 we filter this noise by calculating which token

values are used in majority on a specific input index3. The algorithm

is based on the assumption that the noise, the wrongly reported

3Each character from the input has a fixed index that identifies the character. A taint
also has the index information to map the taint back to the characters it stems from.
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Algorithm 3Misclassified Taints Correction Algorithm

1: procedure correctTokens(tokComps)

2: majorityDict← majorityVote(tokComps)

3: filterByMajority(tokComps, majorityDict)

4: end procedure

5:

6: procedure majorityVote(tokComps)

7: tokCounter ← dictionary()

8: for cmp ∈ tokComps do

9: indexValue← tokCounter.get(cmp.idx)

10: indexValue.increase(cmp.val, 1)

11: end for

12: for el ∈ tokCounter do

13: el.Value()← max(el.Value())

14: end for

15: return tokCounter

16: end procedure

token comparisons, only appear in a small amount while the actual

token comparisons form the majority. Thus, in the procedure ma-

jorityVote (Line 6) we create a dictionary delivering for each index

the most used token value. Concretely, we first iterate over all token

comparisons (Line 8) and extract for each comparison the index

information as well as the actual token value used (Line 9). Then,

in Line 10 we count the number of token comparisons in which the

token was tainted with the given index-value combination.

After all comparisons are analyzed, the algorithm evaluates the

found numbers by iterating over all elements of the tokCounter

dictionary (Line 12). Each element now contains a mapping from

an index to the token values and their number of appearance during

the execution. For example, we have the following comparisons:

(index: 5, tokenvalue: 10)

(index: 5, tokenvalue: 10)

(index: 5, tokenvalue: 1234)

(index: 5, tokenvalue: 10)

There are four comparisons on index 5, threewith the token value 10

and one with the token value 1234Ðwe assume the token value 10

to be correct. Hence, in Line 13 the index 5 is mapped to the token

value 10 and then all token value mappings are returned in Line 15.

Finally, in Line 3 the majority dictionary from the majorityVote

function is used to filter all token comparisons on every index that

have another token value than the one in the dictionary. In our

example, the comparison with the value 1234 would be filtered.

2.5 Using Tokens for Seed Input Generation

Knowing the token definitions as early as possible is a crucial fea-

ture for successfully generating syntactically valid inputs. Hence,

as soon as lFuzzer recognizes a new character or string in a com-

parison on an input character, it runs the program with the new

value. For example, the first time lFuzzer finds a string comparison

against while, it would run the program under test with the input

while to extract the information to which token it is converted to. As

the tokenizer is usually stateless, the keyword will be converted to

a token and compared against all possible tokens a valid input can

start with, giving us the wanted character-token mapping. With the

knowledge about token comparisons and definitions we can track

Table 1: The subjects used for the evaluation.

Name Accessed Lines of Code

csvparser 2018-10-25 297

inih 2018-10-25 293

cJson 2018-10-25 2,483

lisp 2019-03-19 2741

tinyC 2018-10-25 191

mjs 2018-06-21 10,920

the comparisons in the parsing phase and generate valid inputs as

efficient as pFuzzer, even if a tokenization phase is present.

3 EVALUATION

3.1 Setup

We stick to the test subjects used in [12]4; details are listed in Table 1.

The input languages range from simple formats as csv [9], ini [2],

and json [4] up to complex formats like lisp [10], C (tinyC) [11],

and JavaScript (mjs) [3]. As only two of the original subjects (mjs

and tinyC) use tokenization5 we decided to incorporate another

complex subject with tokenization: a lisp interpreter.

For the evaluation we run lFuzzer in combination with AFL, i.e.

we create a dictionary and a set of seed inputs with lFuzzer and

then let AFL fuzz the subjects with this information. As baseline

we compare against AFL6, run in two different modes. First, we run

AFL with no dictionary and one test containing one whitespace

as a seed input (since AFL requires a correct test to start fuzzing).

Second, we run AFL given the set of strings extracted from the

program under test, using the same seed as before. For getting

those strings we first compiled the subject into a human readable

bitcode format and then extracted the string literals by iterating

over the global values of the bitcode file and writing the global

strings to the AFL dictionary.7 This delivers all string literals from

the source code. Furthermore, to show that our changes made to

pFuzzer in lFuzzer actually improves its fuzzing capabilities, we

compare against pFuzzer in two different modes: first, pFuzzer is

run until timeout, second, pFuzzer is used to extract seed inputs,

then AFL is run until timeout with the extracted inputs. As pFuzzer

does not extract any tokens, AFL is run without a dictionary.

The evaluation was run for 24 hours per subject (excluding

the static instrumentation and compilation time); the token learn-

ing and seed generation of lFuzzer is included in the 24 hours.

The experiments were repeated four times to adhere to the non-

determinism of all tools and were run on an Ubuntu 14.04.5 docker

container with 3.3 GHz Intel processors, no tool was set up to use

parallelization. Due to technical restrictions on our machine, AFL

was run with AFL_SKIP_CPUFREQ enabled. We do not provide

4As in [12], the subjects are set up to read from the standard input (such that AFL can
fuzz them), and to abort parsing on the first error with a non-zero exit code. mjs and
lisp are changed such that semantic failures do not lead to a non-zero exit code.
5We still use the other subjects in the evaluation to show that lFuzzer does not harm
the fuzzing process if no tokenization phase is available.
6As we assume nothing but the program as input to the fuzzer (no manual information
like seed inputs or a dictionary), we only use fuzzers that meet this requirement.
7lFuzzer only requires LLVM bitcode to perform its analysis, so we decided to give
AFL_Dict the same level of abstraction.
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Figure 2: The number of valid tokens extracted per method

and subject with error lines showing the minimal and max-

imal number of valid tokens extracted over all runs.

any seed inputs to any fuzzer as we want to evaluate the input

generation capabilities without additional knowledge.

To show the effectiveness of lFuzzer we evaluate the tools on

three aspects:

Token Extraction. First, we show that on programs with complex

input formats lFuzzer extracts tokens with higher precision

and recall compared to naive string extraction.

Code Coverage. Second, we prove that our dictionary and seed

generation improves coverage when fuzzing with AFL.

Tokens Used. Third, we look at how many tokens are actually

used in the test inputs produced by any of the tools.

During our experiments we found out that the instrumented

version of lisp produced byAFL has a bug resulting in segmentation

faults. Thus, we had to exclude seed tests produced by lFuzzer and

pFuzzer that start with ł ( # ž as otherwise AFL would not start.

3.2 Tokens Extracted

Fig. 2 shows how many valid tokens were found with the static

string extraction and the active token learning of lFuzzer. As

pFuzzer does not extract any tokens it will be omitted in this

section. At first, one might think all tokens of a subject can be

found with string extraction, but the results for cJson and tinyC

show another picture: lFuzzer finds more tokens than the string

extraction. The missing keywords are single character tokens, e.g. a

semicolon in tinyC as those are not present anymore in the bitcode.

They are character constants in the original source code and as

such compiled to integer constants in the bitcode.

For mjs and lisp, the picture changes: most of the existing tokens

are present as strings in the code. lFuzzer misses some of them

due to its dynamic token extractionÐa token can only be found if

it is seen during the learning phase.

When looking at the wrongly extracted tokens in Fig. 3, we first

and foremost see that those subjects that do not have a tokenization

phase tend to cause lFuzzer to report wrong tokens. We assume
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Figure 3: The number of non-tokens (strings that are no

tokens) extracted per method and subject with error lines

showing the minimal and maximal number of non-tokens

extracted over all runs.

that some part of the code looks like a tokenization but accepts

any character combination from the input, causing false positives.

For tinyC, a lookahead causes a correctly detected token to be

appended by other characters that followed the tokenwhile lFuzzer

was running, resulting in some non-tokens being reported. Our

token recognizer is designed to combine all characters to a token

that were accessed between two token usages. In the case of tinyC

more characters where accessed between two token usages than

actually belonged to the token, hence this lookahead caused random

characters to be appended to the extracted token values. This mostly

happens for values with undefined length like variable identifiers

or numbers as they need to be parsed character by character until

an invalid character is detected (hence it is used in a comparison

but not part of the token).

For mjs and lisp, the number of wrong tokens is very low com-

pared to the string extraction method. The reason for this is twofold.

First, programs with a more complex input format usually also con-

tain a better error handling, trying to give the user a profound hint

on why an erroneous input is actually invalid. Thus, different error

messages have to be embedded in the code resulting in many differ-

ent strings that are no valid tokens of the input language. Second,

those subjects have a tokenization phase, hence lFuzzer is actually

able to find and extract tokens and differentiate between actual

tokenization code and the code that looks like such but is not.8

Table 2 shows the precision and recall of lFuzzer compared

to naive string extraction on subjects with a tokenization phase

(tinyC, lisp, mjs). The precision of lFuzzer is 27.7% higher com-

pared to the precision of plain string extraction as our approach

does not suffer from extracting strings that are not used as tokens

but for example for error handling and user communication. Sur-

prisingly though, the recall is 0.3% higher as well, coming from

8lFuzzer tries to find the tokenization part of the code which works well if there is a
tokenization phase but may lead to false positives if no tokenizing code is present.
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Figure 4: Average, min- and maximum coverage for csv.

The red/blue vertical area indicates when lFuzzer/pFuzzer

handed over to AFL including a solid line for the average.

single character tokens that are compiled to integer constants in

the LLVM bitcode and are thus not extracted.

lFuzzer has a 27.7% higher precision and 0.3% higher recall

regarding token extraction on subjects with a tokenization phase.

3.3 Coverage

In the following we use branch coverage achieved by the syntacti-

cally valid inputs each tool generated.

csv and ini. In Fig. 4 and Fig. 5 we can see that programs with

a simple input format can easily be covered by any tool. As all tools

are based on random mutations and csv as well as ini do not have

complex interdependent syntactic features, the whole feature space

can easily be covered. For csv, a comma and a line break is sufficient

to cover most of the code, ini’s most complex input feature is a

comment: arbitrary text surrounded by an opening and a closing

bracket. pFuzzer misses some features and feature combinations

leading to a lower coverage than AFL and lFuzzer can achieve. In

combination with AFL the same coverage can be reached mainly

because AFL on its own is able to achieve the coverage.

json. More interesting is the json subject which parses a much

more complex input format, hence we see a slower and diverse

increase in coverage over time for the different tools. The results

in Fig. 6 show that almost all tools perform similarly good, with

AFL_Dict having the most coverage (20.2%, compared to pFuzzer

Table 2: Precision and Recall on extracted strings regarding

their token validity on subjects with a tokenization phase

(tinyC, mjs, lisp).

Tool Precision Recall

String Extraction 40.7% 88.5%

lFuzzer 68.4% 88.8%
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Figure 5: Average, min- and maximum coverage for ini.

The red/blue vertical area indicates when lFuzzer/pFuzzer

handed over to AFL including a solid line for the average.
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Figure 6: Average, min- and maximum coverage for cJson.

The red/blue vertical area indicates when lFuzzer/pFuzzer

handed over to AFL including a solid line for the average.

+ AFL having 20.1%, lFuzzer having 19.9%, AFL having 18.4%, and

pFuzzer having 14.6%). The similar results can be explained as

follows: AFL_Dict has knowledge about the few existing keywords

in cJson, thus it is able to cover the code handling those, while

also covering all the code AFL covers anyway. As cJson does not

have a tokenization phase, lFuzzer’s token learning cannot come

into play, resulting in falling back to using character comparisons.

pFuzzer on the other hand is designed to work well on subjects

with a parsing but no tokenization phase and thus covers some code

very fast, in the long run though AFL is needed to cover code that

pFuzzer cannot cover on its own. The low coverage all tools achieve

is explained by the fact that cJson contains generator code (code

that creates a json string from a json object). In our experiments
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Figure 7: Average, min- and maximum coverage for lisp.

The red/blue vertical area indicates when lFuzzer/pFuzzer

handed over to AFL including a solid line for the average.

we focus on the parsing part of the program, hence the generator

code is not triggered by the tools. As all tools cannot cover this part

of the code, the comparison is still fair.

The missing tokenization phase also causes lFuzzer to incor-

rectly detect arbitrary character combinations as tokens which

seemingly confuses AFL, resulting in a slower increase in coverage

but ultimately leading to similar coverage as AFL_Dict achieves.

lisp. lisp, still having a simple syntax but a tokenization phase,

shows how the generated dictionary and seed inputs of lFuzzer

increase the performance of AFL. In Fig. 7 we can see that the

lFuzzer-AFL combination achieves similar coverage as AFL_Dict,

having around 20% more coverage than AFL alone. For lisp, the

seed inputs generated by lFuzzer are small and only cover a small

part of the input space, still they are an efficient guidance for AFL

to generate more complex inputs. lisp has a semantic phase which

handles most of the keywords, łhidingž the actual token compar-

isons, making it impossible for lFuzzer to generate complex inputs.

Many keywords are mapped to the same token and the token is then

semantically analyzed, making it possible to extract the keywords

but impossible to generate seed inputs (as the token comparisons

used to generate those inputs are missing). This shows the great

opportunities of our symbiotic approachÐeven if one of the tools

alone fails to achieve coverage, the other tool is still able to address

this flaw. Hence, pFuzzer alone is not able to produce a diverse set

of inputs and thus achieves the worst coverage. AFL on the other

hand profits from the seed inputs pFuzzer generates and covers

more code compared to running alone.

tinyC. On tinyC on the other hand we can see the power of

lFuzzer on its own. As shown in Fig. 8, the coverage our approach

achieves is almost the maximum coverage reached throughout the

fuzzing run, finally resulting in 17% more coverage than AFL_Dict.

lFuzzer successfully generates inputs that cover almost all the

language features of tinyC, leaving out only a few keywords or

feature combinations that are then filled by AFL shortly after it
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Figure 8: Average, min- and maximum coverage for tinyC.

The red/blue vertical area indicates when lFuzzer/pFuzzer

handed over to AFL including a solid line for the average.
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Figure 9: Average, min- and maximum coverage for mjs.

The red/blue vertical area indicates when lFuzzer/pFuzzer

handed over to AFL including a solid line for the average.

started fuzzing. pFuzzer on the other hand struggles with the tok-

enization phase of tinyC (as mentioned in Section 2.1) resulting

in a lower coverage than the one lFuzzer achieves. In combina-

tion with AFL the coverage is better than for AFL alone, but still

worse compared to lFuzzer as the tokens are missing to support

the AFL mutations. Those results can be explained by the structure

of tinyC: every keyword has only a small feature space, i.e. each

keyword is handled by a few lines of code. In contrast to that, mjs

for instance has many internal functions, meaning that even if a

successful call to the function is generated, the code coverage is

highly dependent on the function arguments.

34



Learning Input Tokens for Effective Fuzzing ISSTA ’20, July 18ś22, 2020, Virtual Event, USA

cs
v in
i

cjs
on lis
p

tin
yc m
js

Subject

0

5

10

15

20

25

30

35

40

To
ke

ns
 U

se
d

AFL
AFL_Dict
pFuzzer
pFuzzer + AFL
lFuzzer + AFL

Figure 10: The number of valid tokens with size greater

than 3 used per tool and subject with minimum and max-

imum number of tokens used over several runs.

mjs. On our most complex subject implementing an interpreter

for a subset of JavaScript we can see the interplay of all compo-

nents of lFuzzer in its full form. First, a precise set of tokens is

learned and later given to AFL. Second, a diverse set of seed inputs

is generated giving AFL a good starting point for further fuzzing.

Hence, the lFuzzer-AFL combination outperforms AFL_Dict, be-

ing faster in generating coverage and achieving 3% more coverage.

pFuzzer again is blocked by the tokenization phase of mjs resulting

in a low overall coverage. Together with AFL the coverage gets sig-

nificantly better, still the tokens provided by lFuzzer improve the

AFL fuzzing process even more. In contrast to cJson, the low cov-

erage of mjs results from the complex input format of this subject,

making it hard for any approach to fully cover the subject.

On subjects with complex input structures,

lFuzzer achieves on weighted average 2.3% and

up to 17% more coverage than AFL_Dict.

3.4 Tokens Used

Finally, in Fig. 10 we look at the tokens with more than three

characters used in the syntactically valid inputs generated by each

tool. Except for tinyC, AFL_Dict uses a similar number of tokens.

tinyC has only a small set of valid tokens, but those are used in

complex structures, thus making it hard for a random approach like

AFL to use them properly. On mjs and lisp AFL_Dict and lFuzzer

use almost the same number of tokens correctly in valid inputs, a

result that is also reflected in the coverage graphs: on both subjects

they achieve similar results. pFuzzer, also in combination with

AFL, is not able to use a large set of diverse tokens in its generated

inputs, being worse on almost all subjects, only for cJson it is able

to perform better than lFuzzer and equally well as AFL_Dict. On

mjs the pFuzzer-AFL combination uses fewer tokens than pFuzzer

alone because AFL does not generate a large diverse set of tokens

on its own and pFuzzer runs shorter compared to the solo run.

As we have already seen in Section 3.2, the input dictionary for

both approaches has similarly many valid tokens. Even though

the number of invalid tokens in the dictionary might deviate, AFL

generates such a huge number of inputs in 24 hours that eventually

the right tokens are used at the correct positions, achieving new

coverage and thus guiding AFL towards a valid input.

lFuzzer and AFL_Dict are both able to use a large

number of tokens (weighted average of 78%

and 81% of all tokens) in valid inputs.

In summary, the evaluation shows that (1) dictionaries are of

great benefit for fuzzing, nomatter if they are consisting of statically

extracted strings or dynamically extracted tokens and (2) the com-

bination of a precise dictionary and a set of diverse and valid seed

inputs improves fuzzing on languages with complex input formats

significantly, something only lFuzzer can achieve.

In general, the more complex the input language, the greater the

benefits of automatic dictionary extraction and seed input

generation as done by lFuzzer.

4 RELATED WORK

To the best of our knowledge, we are the first to dynamically taint,

track and extract tokens from a program under test for more ef-

ficient fuzzing. Therefore, we will look into the research done on

dictionaries and their optimization and usage for fuzzing.

4.1 pFuzzer

First and foremost, we have to mention our own work pFuzzer [12],

as this work builds on the approach and research results. In pFuzzer,

we were targeting parsers and generate inputs that survive the pars-

ing stage and are able to test the program logic. This is done by

tracking the comparisons done on the input characters and using

them to systematically build a valid input. Each time a character is

rejected it gets replaced by one of the values it was compared to, iter-

atively creating an input that survives more and more comparisons

in the parser until it is finally accepted by the parser. We extended

the pFuzzer work by improving the dynamic tainting technique

to not only track character comparisons but also taint tokens that

are implicitly composed from input characters; enabling the usage

of token comparisons9. Using the extended dynamic tainting tech-

nique, lFuzzer automatically identifies and extracts tokens from

the source code, using them (1) for generating a dictionary that can

be used for further fuzzing and (2) for generating seed inputs by

adapting their iterative input creation technique but lifting it to the

token comparison level.

4.2 Learning Input Structure

Maybe the closest approach to ours is the one by Shastry et al. [16],

statically inferring a dictionary from the source code. They apply

backward slicing and control-flow graph analysis to find tokens

and token conjunctions that can be used in a dictionary to improve

fuzzing. In contrast to their approachwe are using dynamic program

analysis which is more robust to unusual code patterns. While

9In [12], we explicitly mentioned token conversions as a limitation, saying that this
prevents pFuzzer from testing complex input processors efficiently.
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Shastry et al. need heuristics to find the comparisons and values

for their analysis, we can simply observe all comparisons in the

program with dynamic tainting and report the comparison values.

Static code analysis may miss dynamic code features (like an array

which is filled with keywords in a loop), which may lead to omitted

tokens. A keyword detection algorithm might be implemented as

follows:

// tokenorder: T_WHILE, T_IF, T_UNDEF

char* kwds[] = {"while", "if", null};

bool isKeyword(char* c) {

int sym = 0;

while (kwds[sym] != 0

&& strcmp(c, kw[sym]) != 0) {

sym++;

}

return sym;

}

The keywords array could also be filled dynamically. For a static

approach it is very hard to extract the keywords from the array.

For a dynamic approach, no matter how the array is initialized, the

strcmp() function will be called with all values in the array (assum-

ing no comparison matches), thus making it easy to extract the

keywords for a dictionary construction. Furthermore, our approach

also provides a set of seed inputs that is used to give the fuzzer a head

start for fuzzing by providing a set of valid syntactic structures of

the input format that can be used for recombination and mutation.

Different approaches have been used to learn inputs or their

structure and improve fuzzingwith the gained knowledge. Höschele

et al. [8] presented an approach to learn the input format in form

of a context-free grammar from the program under test. They use a

set of valid seed inputs to explore the program execution and infer

a grammar based on the program structure and the consumption of

input characters during parsing. Similar to our approach they are

using the structural information of a program to gain input format

knowledge; but first, we are not relying on seed inputs, we generate

them and second, we do not extract the full input format but only

the tokens used by the program. A combination of both approaches

might be beneficial though, as detailed in Section 5.3.

Godefroid et al. [6] apply recurrent neural networks to learn

the statistical distribution of input elements from a large corpus of

valid inputs and then generate new inputs with the neural network.

In contrast to our approach, they do not extract the input elements

explicitly but encode the knowledge in a neural network, making

it not accessible out of the box for existing fuzzing techniques.

Furthermore, the corpus of inputs to learn from needs to be large

to train the neural network while our approach extracts tokens and

seed inputs with having nothing more than the program under test.

4.3 Selecting and Using Seeds

With Redqeen, Aschermann et al. [1] presented an approach

which made it possible to circumvent different fuzzing roadblocks,

among others magic bytes. In general they rely on a similar ap-

proach as the authors of Vuzzer [14], observing the control and

data flow of an application and finding parts of the input that belong

to branching conditions. Hence, these tools which rely on dynamic

tainting can make use of our improved tainting framework to also

observe token comparisons. We lift the token comparisons back to

the character comparisons they represent enabling the magic byte

solving to also work beyond the tokenizer. With a feedback loop

portions of the input are gradually replaced with different charac-

ters until the branching condition switches and a new branch is

taken. This is similar to our seed generation technique, but we are

explicitly tracking the data flow, even beyond tokenization, and

are replacing rejected input values with the values they were com-

pared to, even if the comparison was done on the token level. Our

approach systematically constructs diverse inputs that survive the

parsing stage and test the program logic.

Several works focus on the problem of seed input selection.Wang

et al. [18] generate seeds via analyzing the corpus to learn a proba-

bilistic context-sensitive grammar and using this grammar together

with mutations to create a set of seeds that cover the least used

features from the original seed set. Rebert et al. [15] looked at dif-

ferent seed selection strategies and evaluated them on different

subjects to find out how seed selection influences the result of the

fuzzing session. They found out that seed selection can actually

help improving the fuzzing performance. In any case, seed selection

assumes seeds to be present to select from. In contrast, our approach

creates a set of seed files, not needing any starting input. Still, the

seeds we currently generate are not optimized in any way, hence

seed selection might further increase the fuzzing performance.

5 LIMITATIONS AND FUTUREWORK

As shown in the evaluation, our approach is able to taint and track

tokens during program execution which improves fuzzing signifi-

cantly on subjects with complex input structures. Still, some lim-

itations remain to be solved in future work; we list them in the

following and provide ideas for solutions:

5.1 Parsing Style

Similar to [12], our technique is limited to recursive-descent parsers,

relying on some assumptions: First, the program under test needs to

have a tokenization phase, meaning that there is a part in the code

which consecutively compares slices of the input against predefined

characters and keywords and forwards the resulting tokens one

after another to the parser. As this is the textbook approach to

writing input processors for complex input formats, we believe

that most of the handwritten parsers are designed like this. Second,

we rely on dynamic tainting to track the input characters and the

comparisons made on them throughout the program execution.

Other parsing styles like table-driven parsing, the common alter-

native to recursive-descent parsing, have a fundamentally different

structure which we are not able to analyze at the moment. It might

be possible to adapt the techniques presented in this paper to other

parsing styles. Still, it is questionable if this is beneficial for the

following reasons: First, 80% of the top 17 programming languages

on Github are recursive-descent parsers [12] (with Clang [17] and

GCC [13] being the most famous ones), hence only 20% are im-

plemented differently. Second, table driven parsers are usually not

manually written but generated from a machine readable gram-

mar. Hence, one can apply grammar-based fuzzing which will be

superior to character-based fuzzing.
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5.2 Detecting Patterns

C is a language that is known for its freedom. A programmer can

solve a problem in many different ways, some of them might be

considered as straight-forward while others might be more special-

ized. The creation of a tokenizer is not excluded from this. While

we are confident that we covered the typical tokenization patterns

it might happen that we miss the generation of specific tokens or

even the generation of all tokens. Our evaluation has shown that

most input parsers are implemented close to the textbook approach,

making it possible for us to extract the tokens we want.

5.3 Extracting Input Models

Tokens are not only valuable to our previous work pFuzzer [12],

they can also be beneficial when combined with grammar learning

techniques. AutoGram [8] andMimid [7] implement approaches

to infer context-free grammars from a program under test, tracking

how individual input characters are processed within the program;

AutoGram focuses on data flows, whereasMimid uses control flow

instead. The extracted tokens might serve as a great base for both

approaches to construct terminals in the grammar. We would lift

the minimal building blocks for the grammar from single characters

to full tokens, making it easier to construct a grammar.

6 CONCLUSION

Fuzzing is one of the key technologies for software testing, currently

experiencing a renaissance in research and industry. Improved

methods made it possible to automatically test a wide variety of

programs. Testing the actual functionality of programs with com-

plex input formats though is a challenge that remains to be solved

until today; state-of-the-art fuzzers mostly test the input rejection

capabilities of the software under test rather than the actual func-

tionality.With our implicit-data-transformation tainting, dictionary

extraction, and seed input generation methods we make it possible

to help fuzzers go beyond the input validation stage and test the

actual program functionality.

Our approach is based on the observation that tokenizers are in

general implemented by the book: one or more input characters

are compared against predefined values and if one value matches

the respective token is forwarded to the parser. We can find those

patterns in the program execution using them for an enhanced taint

tracking, extract the values to generate a dictionary, and also build

valid and diverse seed inputs token by token. Thus, we are able

to produce a foundation for fuzzing, outperforming AFL without

any information and AFL given the strings from the program as

dictionary while still being fully automatic, using nothing more

than the source code of the program.

Even though our results are very promising, this approach just

serves as a foundation to show the potential of token extraction for

fuzzing. Future combinations with more sophisticated techniques

like grammar learning and following grammar-based fuzzing may

result in even more efficient and effective testing. With this work

we want to set one more milestone on the road towards efficient,

effective, and fully automatic fuzzing of programs with complex

input structures.

We are determined to making our research public and repro-

ducible. lFuzzer and all evaluation data is available as open source

at the project page:

https://github.com/uds-se/lFuzzer
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