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 The development of analysis methods for categorical data begun in 90's 

decade, and it has been booming in the last years. On the other hand,  

the performance of many of these methods depends on the used metric. 

Therefore, determining a dissimilarity measure for categorical data is one of 

the most attractive and recent challenges in data mining problems.  

However, several similarity/dissimilarity measures proposed in the literature 

have drawbacks due to high computational cost, or poor performance.  

For this reason, we propose a new distance metric for categorical data.  

We call it: weighted pairing (W-P) based on feature space-structure,  

where the weights are understood like a degree of contribution of an attribute 

to the compact cluster structure. The performance of W-P metric was 

evaluated in the unsupervised learning framework in terms of cluster quality 

index. We test the W-P in six real categorical datasets downloaded from  

the public UCI repository, and we make a comparison with the distance 

metric (DM3) method and hamming metric (H-SBI). Results show that  

our proposal outperforms DM3 and H-SBI in different experimental 

configurations. Also, the W-P achieves highest rand index values and a better 

clustering discriminant than the other methods. 
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1. INTRODUCTION  

The augment of available datasets provides to the research community new resources to achieve 

scientific discoveries, optimizing industrial processes and it grants to find relations or characteristic patterns 

in data [1]. However, there are open issues, for example, determining a dissimilarity measure is one of  

the most attractive and recent challenges in data mining problems. This is because  the performance of many 

algorithms for clustering, classification, dimensionality reduction, and outliers detection, depends on  

the metric used to measure similarity/dissimilarity among the data [2]. For this reason, it is convenient to 

establish an appropriate distance measure for a given data set, instead of using an arbitrary metric. 

Choosing a metric for quantitative data (continuous) is relatively simple, since there are several 

developed metrics such as Euclidean, Cosine, Manhattan, among others. Also, with this type of data it can be 

used the standard methods of machine learning directly and performing numeric calculations without 

drawbacks or limitations [3, 4]. While, choosing a metric for categorical data (or nominal) is more complex, 

due to there is not an intrinsic similarity/dissimilarity measure established for categorical objects [5].  

In addition, standard machine learning algorithms can not be applied directly in categorical data, because it is 
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not appropriate to calculate statistic descriptors (mean, standard deviation, etc) over a dataset with nominal or 

qualitative variables as if they were quantitative variables [6]. Besides, categorical data is highly overlapped. 

This observation has motivated several researchers to work with categorical data, as in the case  

of [7] who carried out a study on distances for heterogeneous data (databases with mixed quantitative and 

qualitative variables), based on a supervised learning approach where each sample has additional information 

about the class to which it belongs. However, this approach can be extended to the unsupervised learning 

paradigm. Other works such as [8-12] was proposed to binarize the categorical information, resulting in 

samples that are assigned a 1 or a 0 as indicated by their original qualitative value, to later using  

a similarity/dissimilarity measures for binary data in cluster algorithms. Nevertheless, far from being  

a reliable solution these methods have a problem: they are only applicable to categorical databases whose 

variables have only two possible states, which in general is not the case. Further, these algorithms need to 

handle a large number of binary attributes when the datasets have features with many more categories, 

classes or groups. The above in increases the computational cost and  memory storage of the algorithm [13]. 

Alternatively, in the work developed by [14], the authors evaluate the performance of a variety of 

similarity measures in the literature like overlap, inverse occurrence frequency, occurrence frequency,  

among others. This is done in the context of outliers detection, but their experiments showed a very poor 

performance and unstable results with increased standard deviation, and suggest that there is no one best 

performing similarity measure, and it is necessary to understand how a similarity measure handles  

the different attributes of categorical datasets [15]. In a recent research [16] was proposed a new metric to 

measure the distance between categorical type objects, based on the frequency probability of each attribute 

value in the whole dataset and the degree of dependence among different attributes. However, the probability 

distribution of the attributes must be taken into account, and the inherent structure of the data in the feature 

space is not considered [14, 17]. 

Given the previously pointed out, in this paper, we propose a new approach to determine  

the similarity/dissimilarity measure between qualitative data based on the number of possible states of  

a categorical variable, to assign the degree of relevance or degree of contribution to the compact cluster 

structure of each attribute. We call our method: weighted pairing (W-P) based on feature space-structure.  

The effectiveness of the proposed W-P metric is demonstrated by performing experiments in real categorical 

databases obtained from the public UCI machine learning repository [18]. We compare our proposal with  

the distance metric method (DM3) and hamming (H-SBI). We analyze the performance of the W-P distance 

metric by embedding it into the framework of the K-modes algorithm, which is the most popular  

distance-based clustering method for purely categorical data [16, 19], using a centroid initialization method 

proposed in [20]. 

 

 

2. WEIGHTED PAIRING DISTANCE (W-P) 

In this section, we introduce the dissimilarity measure for categorical data in the paradigm of 

unsupervised learning as a weighted pairing distance learned according to the attribute compactness within 

the data structure. Let a set of 𝑁 objects 𝒳 =  {𝒙𝑛: 𝑛 ∈ [1, 𝑁]}, each of them expressed as the vector  

𝒙𝑛 =  [𝑥𝑛1, … 𝑥𝑛𝑝, … 𝑥𝑛𝑃], where 𝑃 stands for the number of attributes. For categorical data, the object 𝑛 at 

attribute 𝑝, 𝑥𝑛𝑝 ∈ 𝒜𝑝, takes one value from the unordered, discrete set 𝒞𝑝 =  {𝑐𝑝𝑑: 𝑑 ∈ [1, 𝐷𝑝]} of 𝐷𝑝 

possible values [21]. In order to establish a similarity measure between categorical objects, the simple 

matching function aggregates the number matching values [3]: 

 

𝜈(𝒙𝑛, 𝒙𝑚) =  
1

𝑃
∑ 𝛿(𝑥𝑛𝑝, 𝑥𝑚𝑝)𝑃

𝑝=1  (1) 

 

being 𝛿(𝑥𝑛𝑝, 𝑥𝑚𝑝) the delta function that equals to 1 if 𝑥𝑛𝑝 =  𝑥𝑚𝑝 or  0 in otherwise. Equation (1) 

determines how many attribute values a couple of samples have in common, and 1
𝑃⁄  is a normalization 

factor. However, the simple matching lacks of an attribute ranking required for understanding the categorical 

data [15, 22]. 

Aiming to overcome above issue, we propose a dissimilarity measure that considers the relevance of 

each attribute, termed weighted pairing (W-P) distance, as follows: 

 

𝑑𝒘(𝒙𝑛, 𝒙𝑚) =  1 − ∑ 𝑤𝑝𝛿(𝑥𝑛𝑝, 𝑥𝑚𝑝)𝑃
𝑝=1  (2) 

 

𝑠. 𝑡.  ∑ 𝑤𝑝
𝑃
𝑝=1 = 1 (3) 

 

with the normalized relevance weights 𝑤𝑝 ∈ [0, 1] satisfying ∑ 𝑤𝑝
𝑃
𝑝=1 = 1, and 𝑑𝒘(𝒙𝑛, 𝒙𝑚)  ∈ [0, 1]. 
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To determine the attribute relevance, we assume that the more possible values an attribute can take, 

the more dispersed the objects in the feature space, as Figure 1 illustrates. Then, we account for the data 

compactness in the relevance weights in terms of the attribute cardinality as: 

 

𝑤𝑝 =  
|𝒞𝑝|

−1

∑ |𝒞𝑞|
−1𝑃

𝑞=1

 (4) 

 

where operator |∙| determines the number of objects within a set. Therefore, the most relevant attributes are 

those contributing to the most to data compactness, since the attribute relevance becomes inversely 

proportional to its number of possible values. 

 

 

 
 

Figure 1. Attribute space example for categorical data, with 𝐿1 = 2 and 𝐿2 = 6 

 

 

2.1.  Weighted pairing distance properties 

If the attribute weights satisfy (3), the dissimilarity function in (2) becomes a distance. 

Lemma 1. 𝑑𝒘(𝒙𝑛, 𝒙𝑚) 𝑖𝑠 𝑛𝑜𝑛 − 𝑛𝑒𝑔𝑎𝑟𝑡𝑖𝑣𝑒. 
 

Proof. Let 𝑑𝒘(𝒙𝑛, 𝒙𝑚)  ≥ 0: 
 

1 − ∑ 𝑤𝑝𝛿(𝑥𝑛𝑝, 𝑥𝑚𝑝)𝑃
𝑝=1 ≥ 0  

 

∑ 𝑤𝑝𝛿(𝑥𝑛𝑝, 𝑥𝑚𝑝)𝑃
𝑝=1 ≥ 1  

 

max ∑ 𝑤𝑝𝛿(𝑥𝑛𝑝, 𝑥𝑚𝑝)𝑃
𝑝=1 = 1  

 

which holds if 𝛿(∙,∙) ≤ 1, and 𝑤𝑝 satisfies (3). 

 

Lemma 2. 𝑑𝒘(𝒙𝑛, 𝒙𝑚) 𝑖𝑠 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐. 
 

Proof. Let  𝑑𝒘(𝒙𝑛, 𝒙𝑚) =  𝑑𝒘(𝒙𝑛, 𝒙𝑚): 
 

1 − ∑ 𝑤𝑝𝛿(𝑥𝑛𝑝, 𝑥𝑚𝑝)𝑃
𝑝=1 =  1 − ∑ 𝑤𝑝𝛿(𝑥𝑛𝑝, 𝑥𝑚𝑝)𝑃

𝑝=1   

 

∑ 𝑤𝑝𝛿(𝑥𝑛𝑝, 𝑥𝑚𝑝)𝑃
𝑝=1 =  ∑ 𝑤𝑝𝛿(𝑥𝑛𝑝, 𝑥𝑚𝑝)𝑃

𝑝=1   

 

due to 𝛿(𝑥𝑛𝑝, 𝑥𝑚𝑝) =  𝛿(𝑥𝑛𝑝, 𝑥𝑚𝑝) the property is satisfied. 

 

Lemma 3. 𝑑𝒘(𝒙𝑛, 𝒙𝑚) = 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝒙𝑛 =  𝒙𝑚. 
 

Proof. Let 𝑑𝒘(𝒙𝑛, 𝒙𝑚) = 0: 
 

1 − ∑ 𝑤𝑝𝛿(𝑥𝑛𝑝, 𝑥𝑚𝑝)𝑃
𝑝=1 = 0  

 

∑ 𝑤𝑝𝛿(𝑥𝑛𝑝, 𝑥𝑚𝑝)𝑃
𝑝=1 = 1  
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which is the maximum value that the linear combination takes according to Lemma 1. Such a maximum is 

achieved if and only if 𝑤𝑝 ≥ 0 satistifes Equation (3) and 𝛿(𝑥𝑛𝑝, 𝑥𝑚𝑝) = 1 for all 𝑝, that is, 𝒙𝑛 =  𝒙𝑚. 

 

Lemma 4. 𝑑𝒘(𝒙𝑛, 𝒙𝑚) 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑡ℎ𝑒 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑖𝑛𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦. 
 

Proof. The triangle inequality states that for any three objects 𝒙𝑛, 𝒙𝑚, 𝒙𝑜, it must be satisfied that 

𝑑𝒘(𝒙𝑛, 𝒙𝑚) ≤ 𝑑𝒘(𝒙𝑛, 𝒙𝑜) + 𝑑𝒘(𝒙𝑜, 𝒙𝑚). Then: 

 

1 − ∑ 𝑤𝑝𝛿(𝑥𝑛𝑝, 𝑥𝑚𝑝)𝑃
𝑝=1 ≤ 1 − ∑ 𝑤𝑝𝛿(𝑥𝑛𝑝, 𝑥𝑜𝑝)𝑃

𝑝=1 + 1 − ∑ 𝑤𝑝𝛿(𝑥𝑜𝑝, 𝑥𝑚𝑝)𝑃
𝑝=1   

 

∑ 𝑤𝑝 (𝛿(𝑥𝑛𝑝, 𝑥𝑜𝑝) + 𝛿(𝑥𝑜𝑝, 𝑥𝑚𝑝) − 𝛿(𝑥𝑛𝑝, 𝑥𝑚𝑝)) ≤ 1𝑃
𝑝=1  (5) 

 

To prove by contradiction, (5) is not satisfied when 𝛿(𝑥𝑛𝑝, 𝑥𝑜𝑝) + 𝛿(𝑥𝑜𝑝, 𝑥𝑚𝑝) − 𝛿(𝑥𝑛𝑝, 𝑥𝑚𝑝)  > 1 

for any 𝑝, that is 

 

𝛿(𝑥𝑛𝑝, 𝑥𝑜𝑝) =  𝛿(𝑥𝑜𝑝, 𝑥𝑚𝑝) = 1 (6) 

 

𝛿(𝑥𝑛𝑝, 𝑥𝑚𝑝) = 0 (7) 

 

Equation (6) implies 𝑥𝑛𝑝 =  𝑥𝑜𝑝 and 𝑥𝑜𝑝 =  𝑥𝑚𝑝. Therefore, 𝑥𝑛𝑝 =  𝑥𝑜𝑝 = 𝑥𝑚𝑝 yields 

𝛿(𝑥𝑛𝑝, 𝑥𝑚𝑝) = 1, which by contradicting (7), proves (5). 

 

2.2.  Distance implementation 

The computation of the proposed W-P distance is a two-step process. Firstly, we need to learn  

the weights 𝑤𝑝 given a dataset as shown in Algorithm 1. Secondly, given the weights and an object pair,  

we compute the W-P distance following Algorithm 2. 

 

Algorithm 1 Distance weights computation 
function WP WEIGHT(Dataset 𝒳)  

     for 𝑝 = 1 to 𝑃 do 

          𝐿𝑖 =  |𝒞𝑝|        
     end for 

     𝐿 =  
1

∑ 𝐿𝑝
−1𝑃

𝑝=1
 

     for 𝑝 = 1 to 𝑃 do 

          𝑤𝑝 =  
𝐿

𝐿𝑖
 

     end for 

end function 

 

Algorithm 2 WP dissimilarity measure 
function WP METRIC(𝒘, Dataset 𝒳, 𝝁 )  

     for 𝑛 = 1 to 𝑁 do 

          for 𝑘 = 1 to 𝐾 do 
               for 𝑝 = 1 to 𝑃 do 

                    if 𝑥𝑛𝑝 =  𝜇𝑘𝑝 then 

                         𝛿 = 1      
                    else  𝛿 = 0  
                    end if 

               end for 

               𝑑𝒘 = 1 − 𝒘. 𝜹 
          end for  

     end for 

end function 

 

where 𝒙𝑛 is a 1-by-𝑃 vector containing a single observation. 𝝁 is an 𝐾-by-𝑃 matrix containing all centroids, 

𝑑𝒘 is an 𝑁-by-𝐾 matrix of distances between all observations 𝒙 and all centroids 𝝁. 

According to Algorithm 1, W-P demands the computation of 𝑃 cardinality values and a scaling 

factor 𝐿, that yields a time cost of ~𝒪(4𝑃). Besides, Algorithm 2 verifies an attribute matching 𝑃 times for 

𝑁𝐾 object pair with a complexity of  ~𝒪(3𝑁𝐾𝑃). Therefore, the computational complexity of W-P is linear 

on the number of attributes, 𝒪(2𝑃). 
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3. EXPERIMENTAL SETUP 

We analyze the performance of the W-P distance in clustering tasks by embedding it into  

the K-modes algorithm [23] and initialized cluster centroids with [20] method. Table 1 summarizes  

the details of the six UCI machine learning datasets considered for evaluating the proposed distance [18].  

The first dataset, Congressional Voting Records, includes 16 key votes identified by the Congressional 

Quarterly Almanac of the US House of Representatives, grouped into Democrat or Republican. The Breast 

Cancer Wisconsin (Original) collection holds 699 samples periodically collected from 1989 to 1991 as  

the clinical cases of Dr. Wolberg and labeled as benign or malignant. The Mushroom dataset corresponds to 

23 species of gilled mushrooms in the Agaricus and Lepiota families. The dataset describes each specimen in 

terms of its physical characteristics and classifies it as poisonous or edible. Soybean (Small) contains 35 

categorical attributes, among nominal and ordered, and four disease classes. The Car Evaluation, a dataset 

derived from a hierarchical decision model, labels 1728 cars according to six different aspects into 

unacceptable, acceptable good, and very good quality. Lastly, the Zoo dataset contains sixteen  

boolean-valued attributes to group specimens into seven different animal classes. 

 

 

Table 1. Description of UCI public datasets 
Data sets # of simples # of features Classes 

Voting 435 16 2 

WBCD 699 9 2 

Mushroom 8124 22 2 

Soybean 47 35 4 

Car 1728 6 4 

Zoo 101 16 7 

 

 

For each considered dataset, we assess the clustering performance of W-P in a 50 fold bootstrap 

scheme, and report average and standard deviation for the following cluster quality indexes, the average 

intracluster/intercluester distance, cluster discrimination index, rand index and normalized mutual 

information index. We compare our proposal with the state-of-the-art methods, distance metric (DM3) and 

Hamming metric with support based initialization (H-SBI), methods proposed in [16] and [20] respectively. 

Cluster discrimination index (CDI): Given 𝐾 clusters 𝒳𝑘 ⊂  𝒳 with ⋃ 𝒳𝑘𝑘  and 𝒳𝑘 ∩ 𝒳𝑘′ =  ∅,  

the CDI computes the performance according to the average intracluster distances (AID) as [16]: 

 

𝐶𝐷𝐼 =  
1

𝐾
∑

𝐴𝐼𝐷(𝒳𝑘,𝒳𝑘)
1

𝐾−1
∑ 𝐴𝐼𝐷(𝒳𝑘,𝒳𝑘′)𝑘′≠𝑘

𝐾
𝑘=1   

 

𝐴𝐼𝐷(𝒳𝑘, 𝒳𝑘′) =  
∑ ∑ 𝑑𝒘(𝒙𝑛,𝒙𝑚)𝑥𝑚∈𝒳𝑘′𝒙𝑛∈𝒳𝑘

𝑁𝑘𝑁𝑘′
  

 

where 𝑁𝑘 stands for the cardinality of the 𝑘-th cluster. Therefore, 𝐶𝐷𝐼 ≥ 0, and the smaller its value,  

the more distant the clusters and the closer the objects within each cluster. Where 𝝁𝑘 denotes the centroid of 

the 𝑘-th cluster resulting from the K-modes algorithm, and ∆𝑘 stands for the average distance between 𝝁𝑘 

and all the 𝑘-th cluster objects. 

Rand index (RI): is a similarity measure based on the overlap in class agreement, compared to  

the class disagreement, is defined as [24]: 

 

𝑅𝐼 =  
𝑇𝑟{𝐶𝑀}

𝑁
  

 

being 𝑇𝑟{∙} the trace operator and 𝐶𝑀 ∈ [0, 𝑁]𝐾×𝐶 corresponds to the permuted confusion matrix between 

the cluster algorithm output 𝑙𝑘 and gold standard label 𝑦𝑐. 

Normalized mutual information (NMI): The NMI score relies on the shared object membership,  

is a symmetric measure for the degree of dependency between 𝑙𝑘 and 𝑦𝑐. Unlike correlation, mutual 

information also takes higher order dependencies into account [25]: 

 

𝑁𝑀𝐼 =  
∑ ∑ 𝑁𝑘𝑐 log(𝑁

𝑁𝑘𝑐
𝑁𝑘𝑁𝑐

)𝐶
𝑐=1

𝐾
𝑘=1

√(∑ 𝑁𝑘 log(
𝑁𝑘
𝑁

)𝐾
𝑘=1 )(∑ 𝑁𝑐 log(

𝑁𝑐
𝑁

)𝐶
𝑐=1 )
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where 𝑁𝑐, 𝑁𝑘, 𝑁𝑘𝑐 denote the number of objects labeled as 𝑦𝑛 = 𝑐, the number of objects in the 𝑘-th cluster, 

and the number of objects grouped in the 𝑘-th cluster that belong to 𝑐-th ground truth label, respectively. 

NMI is a positive value with a maximum of 1 achieved when the ground-truth and the resulting clustering 

perfectly match. 

 

 

4. RESULTS AND DISCUSSION 

In order to determine the best metric performance between DM3, H-SBI and W-P, we validate our 

proposal metric distance in terms of intracluster/intercluster distance, CDI, RI and NMI index in  

the unsupervised learning framework. The first evaluated index was CDI, a smaller CDI value indicate better 

discrimination on the cluster structure of the dataset. In the Table 2 we compare our W-P metric with DM3 

and H-SBI. We see that for three of the six datasets we obtain better CDI values, this may be a consequence 

of the allocation of the weights, giving greater relevance to the attributes that make the structure of the data 

more compact. 
 

 

Table 2. CDI obtained by the different metrics on six real data sets 
Data sets W-P DM3 H-SBI 

Voting 0.4286 0.4342 0.4459 

WBCD 0.7330 0.3374 0.7787 

Mushroom 0.6991 0.7150 0.6111 

Soybean 0.2826 0.2086 0.3220 

Car 0.7895 0.7919 0.8152 

Zoo 0.2024 0.2656 0.2112 

 

 

As we can see that for distance-based clustering on categorical data, the K-modes algorithm with  

the proposed distance metric has a competitive advantage in terms of clustering rand index, in Table 3  

the distance W-P metric obtain a betters results in four of six datasets in comparison with DM3 and H-SBI, 

specifically in the Voting and Mushroom datasets the RI index increase drastically. In addition to making an 

exhaustive evaluation of the W-P metric introduced in the K-modes clustering algorithm with support based 

initialization, the NMI index was evaluated. And as can see in Table 4 we obtained bets results to DM3 and 

H-SBI, we exceeded them in four of the six datasets, the results indicate that our proposed distance metric is 

more appropriate for the unsupervised categorical data analysis. 
 

 

Table 3. Clustering performance in terms of RI of K-modes algortihm with the different distance metrics 
Data sets W-P DM3 H-SBI 

Voting 0.8992±0.0056 0.7823±0.0016 0.8639±0.0181 

WBCD 0.9192±0.0130 0.8827±0.0752 0.4996±0.0737 

Mushroom 0.7662±0.0156 0.6732±0.0880 0.6573±0.0940 

Soybean 0.9861±0.0284 0.9314±0.0758 0.7800±0.1769 

Car 0.4366±0.0148 0.5059±0.0123 0.1670±0.1350 

Zoo 0.7424±0.0425 0.9064±0.0450 0.5224±0.1395 

 

 

Table 4. Clustering performance in terms of NMI of K-modes algorithm with the different distance metrics 
Data sets W-P DM3 H-SBI 

Voting 0.5546±0.0242 0.4987±0.0078 0.4542±0.0450 

WBCD 0.6049±0.0445 0.6917±0.1304 0.0745±0.0724 

Mushroom 0.2189±0.0292 0.3182±0.1372 0.1099±0.1060 

Soybean 0.9741±0.0517 0.8991±0.1089 0.8030±0.1459 

Car 0.1145±0.0320 0.0725±0.0253 0.0483±0.0228 

Zoo 0.8344±0.0245 0.7927±0.0630 0.7094±0.0756 

 

 

The average intracluster distance of each cluster and the average intercluster distance between each 

pair of clusters has been presented in Table 5 to Table 10, where we can see that for Voting, WBDC, and Car 

datasets the W-P intercluster distance increase in comparison with DM3 results, while Mushroom, Soybean, 

and Zoo datasets the average W-P intracluster distance decrease in comparison with DM3, this is reasonable 

because by (4) we can deduce that for datasets with larger number of attributes the weights become small,  

so the distance between samples is short. Moreover, in Voting and Car datasets the difference between  

the average intercluster and intracluster distance with W-P metric is greater than DM3 metric results,  

in the rest of datasets, the difference between the average intercluster and intracluster distance is very similar. 
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Table 5. Average intracluster/intercluster distance obtained by the different metrics on the voting data set 
DM3 W-P metric 

Clusters 𝐶1 𝐶2 Clusters 𝐶1 𝐶2 

𝐶1 0.3542 0.6380 𝐶1 0.2909 0.7295 

𝐶2 0.6380 0.2237 𝐶2 0.7295 0.3345 

 

 

Table 6. Average intracluster/intercluster distance obtained by the different metrics on the WBCD data set 
DM3 W-P metric 

Clusters 𝐶1 𝐶2 Clusters 𝐶1 𝐶2 

𝐶1 0.1699 0.6380 𝐶1 0.7946 0.8789 

𝐶2 0.6380 0.2655 𝐶2 0.8789 0.4938 

 

 

Table 7. Average intracluster/intercluster distance obtained by the different metrics on the mushroom data set 
DM3 W-P metric 

Clusters 𝐶1 𝐶2 Clusters 𝐶1 𝐶2 

𝐶1 0.3882 0.5774 𝐶1 0.3578 0.4450 

𝐶2 0.5774 0.3876 𝐶2 0.4450 0.2643 

 

 

Table 8. Average intracluster/intercluster distance obtained by the different metrics on the soybean data set 
DM3 W-P metric 

Clusters 𝐶1 𝐶2 𝐶3 𝐶4 Clusters 𝐶1 𝐶2 𝐶3 𝐶4 

𝐶1 0.1095 0.6149 0.5233 0.5651 𝐶1 0.0597 0.2081 0.2339 0.2669 

𝐶2 0.6149 0.0744 0.8877 0.8287 𝐶2 0.2081 0.0587 0.2081 0.1891 

𝐶3 0.5233 0.8877 0.1392 0.3752 𝐶3 0.2339 0.2081 0.0618 0.1404 

𝐶4 0.5651 0.8287 0.3752 0.1839 𝐶4 0.2669 0.1891 0.1404 0.0534 

 

 

Table 9. Average intracluster/intercluster distance obtained by the different metrics on the car data set 
DM3 W-P metric 

Clusters 𝐶1 𝐶2 𝐶3 𝐶4 Clusters 𝐶1 𝐶2 𝐶3 𝐶4 

𝐶1 0.5165 0.5688 0.5753 0.5881 𝐶1 0.6316 0.7446 0.7474 0.7218 

𝐶2 0.5688 0.4526 0.4526 0.4306 𝐶2 0.7446 0.5881 0.7445 0.7323 

𝐶3 0.5753 0.4526 0.3721 0.3961 𝐶3 0.7474 0.7445 0.5571 0.7409 

𝐶4 0.5881 0.4306 0.3961 0.2612 𝐶4 0.7218 0.7323 0.7409 0.5555 

 

 

Table 10. Average intracluster/intercluster distance obtained by the different metrics on the zoo data set 
DM3 W-P metric 

Clusters 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 Clusters 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 

𝐶1 0.17 0.73 0.52 0.67 0.57 0.72 0.77 𝐶1 0.10 0.37 0.53 0.62 0.51 0.29 0.35 

𝐶2 0.73 0.11 0.44 0.55 0.51 0.42 0.48 𝐶2 0.37 0.08 0.27 0.34 0.41 0.33 0.33 

𝐶3 0.52 0.44 0.23 0.33 0.30 0.51 0.44 𝐶3 0.53 0.27 0.08 0.44 0.53 0.35 0.47 

𝐶4 0.67 0.55 0.33 0.06 0.34 0.07 0.52 𝐶4 0.62 0.34 0.44 0.11 0.19 0.56 0.54 

𝐶5 0.57 0.51 0.30 0.34 0.07 0.52 0.41 𝐶5 0.51 0.41 0.52 0.19 0.08 0.67 0.49 

𝐶6 0.72 0.42 0.51 0.68 0.52 0.12 0.32 𝐶6 0.29 0.33 0.35 0.56 0.67 0.04 0.47 

𝐶7 0.77 0.48 0.44 0.46 0.41 .32 0.17 𝐶7 0.35 0.33 0.47 0.54 0.49 0.47 0.11 

 

 

5. CONCLUSION  

In this work, we introduced a new similarity/dissimilarity measure for categorical data based on  

the feature space structure. This distance metric is a variation of pairing matching but weighted. We call our 

method: weighted pairing (W-P) based on feature space-structure. The weights are determined for  

the number of states that each feature has, indicating which attribute contributes more to the cluster's compact 

structure. The performance of W-P metric was evaluated in terms of intracluster/intercluster distance, CDI, 

RI, and NMI index into a K-modes algorithm with support-based initialization in the unsupervised learning 

framework, and we compare with the distance metric (DM3) and H-SBI methods. The obtained results 

showed a better performance for W-P than DM3 and H-SBI, we demonstrated that this way of computing  

a distance is effective in recovering the inherent clustering structures from categorical data when such 

structures exist, and this can be attributed to the fact that our approach is space-structure based. 
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