
International Journal of Electrical and Computer Engineering (IJECE)
Vol. 5, No. 6, December 2015, pp. 1424~1432
ISSN: 2088-8708 1424

Journal homepage: http://iaesjournal.com/online/index.php/IJECE

Test Case Reduction Using Ant Colony Optimization for Object
Oriented Program

Sudhir Kumar Mohapatra*, Srinivas Prasad**
* Research Scholar, SOA University, Bhubaneswar, Odisha, India

** Dept. of Computer Science &Engineering, GMRIT, Andhra Pradesh, India

Article Info ABSTRACT

Article history:

Received May 6, 2015
Revised Jul 18, 2015
Accepted Aug 2, 2015

 Software testing is one in all the vital stages of system development. In
software development, developers continually depend upon testing to reveal
bugs. Within the maintenance stage test suite size grow due to integration of
new functionalities. Addition of latest technique force to make new test case
which increase the cost of test suite. In regression testing new test case could
also be added to the test suite throughout the entire testing process. These
additions of test cases produce risk of presence of redundant test cases.
Because of limitation of time and resource, reduction techniques should be
accustomed determine and take away. Analysis shows that a set of the test
case in a suit should satisfy all the test objectives that is named as
representative set. Redundant test case increase the execution price of the test
suite, in spite of NP-completeness of the problem there are few sensible
reduction techniques are available. During this paper the previous GA
primarily based technique proposed is improved to search out cost optimum
representative set using ant colony optimization.

Keyword:

Ant colony optimization
Representative set
Software testing
Test suite reduction

Copyright © 2015 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:

Sudhir Kumar Mohapatra,
Departement of Computer Science & Engineering,
SOA University, Odisha, India.
Email: sudhirmohapatra@hotmail.com

1. INTRODUCTION

Software testing and retesting is done frequently during the software development lifecycle and in
particular in regression testing. In regression testing software grows and evolves, that create new test cases
and added them to a test suite to exercise the latest changes to the software. Over many versions of the
development of the software, test cases in the test suite can be redundant .The redundant test case may in
respect to the testing requirements for which they were generated, because these requirements are now also
satisfied by new test cases in the test suite that were newly added to cover changes in the later versions of
software. Due to limitation of time and resource for retesting the software every time before a new version is
release, it is really important to search for techniques that ensure manageable test suits size by periodically
removing redundant test cases. This process is called test suite minimization. The test suite minimization
problem [1] can be formally stated as follows:

Given. A test suite T of test cases {t1,t2,t3,…..,tm}, a set of testing requirements {r1,r2,r3….,rn} that
must be satisfied to provide the desired test coverage of the program, and subsets {T1,T2,..,Tn} of T, one
associated with each of the ri’s such that any one of the tests tj belonging to Ti satisfies ri.

Problem. Find a minimal cardinality subset of T that exercises all ri’s exercised by the unminimized
test suite T.

The ri’s can represent either all of the program’s test case requirements or those requirements
related to program modifications. A representative set of test cases that satisfies the ri’s must contain at least
one test case from each Ti. Such a set is called a hitting set of the group of sets Tl, T2, . . . , T. A maximum

IJECE ISSN: 2088-8708

Test Case Reduction Using Ant Colony Optimization for Object Oriented… (Sudhir Kumar Mohapatra)

1425

reduction is achieved by finding the smallest representative set of test cases. However, this subset of the test
suite is the minimum cardinality hitting set of the T,’s and the problem of finding the minimum cardinality
hitting set is NP-complete [2]. Therefore, since we are unaware of any approximate solution to the problem,
we develop a heuristic [3], [4] to find a representative set that approximates the minimum cardinality hitting
set.

The development team if able to find out redundant test case and eliminate them from the test case
then the test suite size can be reduced. while finding the representative set the team must ensure that all
test requirements are satisfied by the reduced test suite, to make testing more efficient. That is, given the
original test suite T={t1, t2, t3, ..., tn} and a set of test requirements R={r1, r2, r3, ..., rm}, the goal is to
find a subset of the test suite T, denoted by a representative set RS, to satisfy all the test requirements
satisfied by T. The process of finding the representative set is called test suite reduction [5]-[8].

 The organization of this paper is as follows. In section 2 related works is discuss followed by
section 3 which contain test case reduction problem using ant colony optimization. The proposed model is
discussed in section 4 and experimental result in section 5. In last section the findings of the paper are
summarized.

2. REVIEW RELATED WORK
The Greedy algorithm [9], [10] removes the test case continuously. The algorithm stop when a

representative set i.e RS which covers the entire requirement is derived. In Chen and Lau [11] algorithm
choose all important test case first then apply greedy algorithm over the remaining test case for rest of test
case selection [12] from that. In [5] Jeffrey and Gupta produce representative set for test suite reduction using
selective redundancy. Harrold, Gupta and Soffa [1] find representative test cases for each subset and include
them in the representative set. In [14] the authors use irreplaceability to evaluate the importance of tests and
present an algorithm that ultimately produces reduced test suites with a substantially decrease in the
execution cost. Using genetic algorithm in paper [13], [15]-[16] the authors are able to minimize test case
which cover the entire requirement that can be covered by all the test cases. In [17], [18] Prasad and
Mohapatra has proposed a genetic algoithm technique to find representative set. ACO use in wireless
network gives a clear picture of using it in optimization problem by Dac-Nhuong Le [19] and Mina Jafari,
Hassan Khotanlou [20].

3. TEST CASE REDUCTION PROBLEM USING ANT COLONY OPTIMIZATION
A test requirement matrix called as TR table is first created from the requirement and test case of

asoftware. Test requirement table (TR) is a two dimensional 0-1 value table of size (m * n). The test suite
T={ t1, t2, t3 …..,tm} is represented in row and the requirement R={r1, r2,…..,rn} is represented in the
column. That is each row of the table represent requirements fulfill by a particular test case. Entry into the
TR table is determined by:

TR(i,j) 	
0			 	 		 	 		 	
1																 	 	 	 		 (1)

In Table 1 a test suite of four test case and their five requirements are given. Each test case is

representing in row where as the requirement fulfilled by the test case are marked as 1 in the requirement
column otherwise 0.

Table 1. An example of test case and requirements fulfill by it with execution time
Test case Requirements to be satisfied Time
No r1 r2 r3 r4 r5
t1 1 1 1 0 0 2
t2 0 1 1 1 0 5
t3 1 0 0 0 1 2
t4 0 0 1 0 1 2
t5 1 0 1 0 1 1

As per the TR table with m rows and n columns, it is essential to select a subset of rows to cover all
of the columns in the matrix with minimal execution time. Suppose the vector element represents the row i in
the vector x is selected and xi=0 means not, therefore, the set coverage problem can be represented as
standard optimization problem:

 ISSN: 2088-8708

IJECE Vol. 5, No. 6, December 2015 : 1424 – 1432

1426

Min z(x)=∑ C X
S.t ∑ a x 								i	 1	,i=1,2,3,4,…… (2)
(Ensure that every column is covered by at least one row)
xj	∈ 	 0,1 	, j=1, 2, 3,……..

The test suite reduction problem is converted to set coverage problem, and then converted to

standard optimization problem. The idea of proposed algorithm start from this. It is an optimization algorithm
that can use Ant colony optimization to solve this reduction problem.

The test case reduction problem can be model as a complete graph network G(V, E) with E
represents all the test case. The edges eij represents a path from one test case to other. From table no 1 the
generated complete graph is:

Figure 1. The test case reduction problem model by a complete graph

Ant algorithms use a group of artificial ant for optimum answer, out of all ant individual ant derived

an entire answer in some steps. Temp answer is that the answer derived by ant k in some n steps. At every
step every ant k computes a group of possible expansions to its current state and moves to at least one of
those in chance.Each ant k moves from one vertex i to another vertex j with a transition probability rule
pkij(t), which is described by the formula:

∑ ∈
, 	 ∈

0,					 	 	 	 	 ∈
 (3)

The temp solution of the problem is a part of solution and the partial solution is a subset of vertices,

which constitute a solution of the problem. Parameters α and β which is used in the transition probability rule
pkij(t) expressed by (3), indicate about this, how important the pheromone trail τij and the attractiveness μij
are during transition from one to another state. Values of these parameters α and β should be set by
experiment and tuned to the test case reduction problem with minimum covering cost.

After a solution has been found each ant deposits a pheromone with a quantity Δτ on all vertices,
which constitute the solution Vs, in accordance with the pattern:

τ t τ t ∆τ (4)

Thus these vertices which were included into a solution have received an additional quantity of a

pheromone and can be chosen to a solution that would be constructed next with a higher probability than
others vertices from the set VT.

An evaporation mechanism is incorporated into an ant algorithm in order to avoid a too fast
convergence to a sub-optimal solution. An intensity of evaporation is controlled by a parameter ρ and a
quantity of a pheromone on each vertex from the set VT is update at the end of each cycle in accordance with
the pattern:

τ 1 ρ τ t , ρ	 ∈ 0,1 (5)

Thus a diversity of a solution is granted. Values of a parameter ρ should be set by experiment.

IJECE ISSN: 2088-8708

Test Case Reduction Using Ant Colony Optimization for Object Oriented… (Sudhir Kumar Mohapatra)

1427

A quantity of deposited pheromone Δτ depends on a quality of solution Q and if the better is a
solution than the more pheromone is deposited and in general can be stated as formula:

∆τ f Q (6)

and in particular can be expressed by some specific formula, which take into account the covering

cost.

3.1. Algorithm

begin
 while (All the requirement Covered) do
 for (k:=1 to n Ants) do

while (A solution is not Complete) do
Update Available Vertices;
Choose next vertex i with probability p(i) and consistency checking;
Add to a Temp Solution;
Update Temp Solution;

If (requirement Covered)
Return Best Solution Founded
Terminate;
end

end
Update Current Best Solution;
end

Update Best;
Use an evaporation mechanism;
Update Pheromone;
end
Return Best Solution Founded;

end

3.2. Theoretical Example
From Figure 1 let 5 ant start from five vertex represented in the figure, here no of vertex(n)= no of

ant(k). In first execution let all the ant derived the following solution in two steps.

Table 2. An example of test case, requirements and it cost

Ants Test Case
Fault

detected
Execution

time
A1 {T1-T2} 4 7
A2 {T2-T3} 5 7
A3 {T3-T5} 3 3
A4 {T4-T1} 4 4
A5 {T5-T4 } 3 3

In the resut it is clearly visible that ant A2 covers all the requirement with execution time of the two
test case 7 Sec. If it is a time constrained reduction then the algorithm can execute further for getting a result
with less execution time otherwise we can stop our execution as all the requirement is fulfilled by ant A2.

4. OUR PROPOSED MODEL
Figure 2 describe the procedure of execution of ACO-Reduce algorithm. Before applying the

five test suite reduction techniques, we collected the test case-requirement matrices from the previous
execution of the test case T over program P. In case of regression testing the test cases T is reduce using
ACO-Reduce and give reduce test cases T’. These test cases are run on the modified program P’ in the
maintenance stage.

 ISSN: 2088-8708

IJECE Vol. 5, No. 6, December 2015 : 1424 – 1432

1428

Figure 2. Model for execution of ACO-Reduce procedure

5. EXPERIMENT RESULTS
This technique is implemented using MATLAB which take the test suit pool T X R as input and

using the above ant colony optimization technique find out a representative set, which is named as ACO-
Reduce. The following four existing technique are also applied using MATLAB for comparison of result
between our approach and the existing approach.

1) Harrold et al.’s heuristic
To make consistency with other researches [22], [23], we use ‘GA’ to denote Harrold et al.’s

Heuristic [21]. The aim of this heuristic algorithm is to find the minimum size of representative set of the test
suite. The basis of this algorithm is to find essential test cases, which are defined as those test cases that when
removed, some test requirements can never be satisfied.

2) Chen and Lau’s GRE heuristic
This heuristic algorithm is proposed by Chen and Lau in [22]. ‘GRE’ is used to denote their heuristic

[22], [23]. The algorithm is based on the mix of three strategies: the greedy strategy, the essential strategy,
and the 1-to-1 redundancy strategy.

3) Mansour and El-Fakin’s approach
Genetic algorithms are based on the mechanism of natural evolution, where reproduction and

selection operations are applied to populations over successive generations for evolving optimal solutions
[24]. Mansour and El-Fakin [25] adapt the hybrid genetic algorithm to solve the test suite reduction problem.
In this paper, we use ‘MEF’ to denote Mansour and El-Fakin’s approach.

4) Black et al.’s approach
One recent strategy for test suite reduction is proposed by Black et al. [26], in which, two integer

linear programming (ILP) models are provided. In this paper, we use ‘BAA’ to denote Black et al.’s
approach.

All the implemented techniques were executed on a PC with an Intel Pentium 2.26 GHz CPU and
512 M memory running the Windows 2000 Professional operating system. Table 3 shows the details of
subject programs and the collected test case-requirement matrices. Column 1 lists all the subject programs.
Column 2 lists the number of lines of code (LOC) of each subject program. Column 3 lists the size of the
corresponding subject program’s test suite pool where T denotes the number of all the test cases and R
denotes the number of test requirements. Five programs were studied, ranging from 1425 to 3095 lines of
code(LOC). These five Java programs in our experiment are binary search tree (BST) with all operation
and application , power equalizer (PEQ), transmission control (TC), stack implementation for job (STACK),
stock index prediction (STOCK). The feature of these programs has been given in Table 3.

Table 3. Summary of programs used in experimentation
Program Source file

(LOC)
Test suite pool

(T X R)
BST 1864 1694 X 983
PEQ 1456 674 X 124
TC 2987 2287 X 157
STACK 1425 719 X 70
STOCK 3095 3970 X 128

IJECE ISSN: 2088-8708

Test Case Reduction Using Ant Colony Optimization for Object Oriented… (Sudhir Kumar Mohapatra)

1429

The result analysis is done basing upon the scalability and size of the representative set [27]. All the
test case reduction technique is scale with the complexity of the test suit. To measure scalability these
algorithm are implemented with test suit of different complexity and record their time. A complexity of test
suit is

Complexity(t)=log10 (m X n) (7)

In Equation (7), m is the number of test cases in the test suite (t), and n is the maximum number of

test requirements that can be satisfied by t. Again we compare the size of representative set produce by all the
algorithm using our selected program.

5.1. Scalability

Figure 3. Scalability of ACO-Red, GA, GRE, MEF, BAA for 5 program

From Figure 3, we can observe ACO-Reduce needs the minimum time to calculate representative sets,

while MEF and BAA takes approximately same time. GA algorithm takes more time than other in all of the
comparison with different size of the test cases. Thus, the time efficiency of these four algorithms can be
summarized as tACO-Red ≤ t GRE ≤ tMEF ≤tBAA ≤tGA . The complexity of the programs are calculated by
Equation (7).

5.2. Representative Set Size

Figure 4 depicts the sizes of the representative sets generated by the five test suite reduction
techniques for the different subject programs. In every single diagram in Figure 4, the horizontal axis denotes
the test suite’s size whereas the vertical axis denotes the size of representative set generated by the 5 test suite
reduction techniques. Details of our experiment with the five programs using five different reduction
algorithm are summarize in the Table 4.

 ISSN: 2088-8708

IJECE Vol. 5, No. 6, December 2015 : 1424 – 1432

1430

Figure 4. Sizes of representative sets of ACO-Red, GA, GRE, MEF, BAA for 5 program

Table 4. Summary of experiment done using five programs for different reduction algorithm
Progra

m

Reducti
on

Techniq
ue

BST PEQ TC STACK STOCK
Tes

t
Cas

e

R
S

%
Reducti

on

Tes
t

Cas
e

R
S

%
Reducti

on

Tes
t

Cas
e

RS %
Reducti

on

Tes
t

Cas
e

R
S

%
Reducti

on

Tes
t

Cas
e

RS %
Reducti

on

ACO-
Reduce

169
4

72
0

58 674 45
6

33 228
7

156
7

32 719 53
7

26 397
0

267
2

33

GA 169
4

75
6

56 674 45
6

33 228
7

160
8

30 719 58
9

19 397
0

268
4

33

GRE 169
4

81
0

53 674 46
7

39 228
7

158
2

31 719 53
7

26 397
0

270
1

32

MEF 169
4

72
1

58 674 48
7

28 228
7

160
1

30 719 56
5

22 397
0

267
2

33

BAA 169
4

73
4

57 674 47
8

30 228
7

160
9

30 719 58
1

20 397
0

267
9

33

6. CONCLUSION
In this paper an algorithm for test cases reduction is presented and implemented. It is compared with

our other technique [17], [28]. It finds out representative set of the test case from the given set of test case. It

225 507 698 1024 1228
0

100

200

300

400

500

600

Select Test Suit Size

R
ep

re
se

nt
at

iv
e

S
iz

e

BST

 ACO-Red

GA

GRE
MEF

BAA

70 145 240 450 524
0

50

100

150

200

250

Select Test Suit Size

R
ep

re
se

nt
at

iv
e

S
iz

e

PEQ

ACO-Red

GA

GRE
MEF

BAA

302 678 790 1229 1809
0

100

200

300

400

500

600

700

800

900

1000

Select Test Suit Size

R
ep

re
se

nt
at

iv
e

S
iz

e

TC

ACO-Red

GA

GRE
MEF

BAA

50 277 324 513 687
0

50

100

150

200

250

300

350

Select Test Suit Size

R
ep

re
se

nt
at

iv
e

S
iz

e

STACK

ACO-Red

GA

GRE
MEF

BAA

567 716 1029 1289 1607
0

100

200

300

400

500

600

700

800

900

Select Test Suit Size

R
ep

re
se

nt
at

iv
e

S
iz
e

STOCK

ACO-Red

GA

GRE
MEF

BAA

IJECE ISSN: 2088-8708

Test Case Reduction Using Ant Colony Optimization for Object Oriented… (Sudhir Kumar Mohapatra)

1431

uses a simple ACO method to reduce the test case in regression testing. Moreover, the generated test suite is
minimized greatly. Therefore it can reduce test cost of regression testing and improve the efficiency of the
software with the optimized test suite. We have evaluated the effectiveness of our proposed regression test
case reduction technique using several moderate sized objected oriented Java programs. It is observer from
the experiment that the ACO-Reduce algorithm show promising results in terms of execution time as
compared with other reduction algorithm. ACO-Reduce algorithm reduce the test case 10% effectively then
other algorithm and its execution time is faster when compare with other algorithms.

REFERENCES
[1] M. J. Harrold, R. Gupta, and M. L. Soffa, “A Methodology for Controlling the Size of a Test Suite”, ACM Trans.

Software Eng. And Methodology, Vol. 2, No. 3, pp. 270-285, 1993.
[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Introduction to Algorithms”, second ed. MIT Press,

2001.
[3] GUPTA R., “A reconfigurable LIW architecture and its compiler”, Tech. Rep. 87-3, Dept. Computer Science, Univ.

Pittsburgh, Pittsburgh, Pa., 1987.
[4] Gum A. R., and Soffa M. L., “Compile-time techniques for improving scalar access performance in parallel

memories”, IEEE Trans. Parallel and Distributed Systems 2, pp. 138-148, 1991.
[5] D. Jeffrey, and N. Gupta, “Improving Fault Detection Capability by Selectively Retaining Test Cases During Test

Suite Reduction”, IEEE Trans. on Software Engineering, Vol. 33, No. 2, pp. 108-123, 2007.
[6] J. W. Lin, and C. Y. Huang, “Analysis of Test Suite Reduction with Enhanced Tie-Breaking Techniques”,

Information and Software Technology, Vol. 51, No. 4, pp. 679-690, 2009.
[7] M. R. Garey, and D. S. Johnson, “Computers and Intractability: A Guide to the Theory of NP-Completeness”,

Freeman and Company, 1979.
[8] R. M. Karp, “Reducibility among Combinatorial Problems”, Complexity of Computer Computations, Plenum Press,

pp. 85-103, 1972.
[9] V. Chvatal, “A Greedy Heuristic for the Set-Covering Problem”, Mathematics Operations Research, Vol. 4, No. 3,

pp. 233-235, August 1979.
[10] S. Yoo, and M. Harman, “Regression Testing Minimization, Selection and Prioritization: a Survey”, Software

Testing, Verification and Reliability, Vol. 22, No. 2, 2012.
[11] T. Y. Chen, and M. F. Lau, “A New Heuristic for Test Suite Reduction”, Information and Software Technology,

Vol. 40, No. 5-6, pp. 347-354, 1998.
[12] J. A. Jones, and M. J. Harrold, “Test-Suite Reduction and Prioritization for Modified Condition/Decision

Coverage”, IEEE Trans. on Software Engineering, Vol. 29 No. 3, pp. 195-209, 2003.
[13] Ma X. Y., He Z. F., Sheng B. K., Ye C. Q., “A genetic algorithm for test-suite reduction”, In: Proc. the

International Conference on Systems, Man and Cybernetics, pp. 133–139, 2005.
[14] Chu-Ti Lin, Kai-Wei Tang, Cheng-Ding Chen, and Gregory M. Kapfhammer, “Reducing the Cost of Regression

Testing by Identifying Irreplaceable Test Cases”, In Proc. Of the 6th ICGEC ’12.
[15] Y. Zhang, J. Liu, Y. Cui, X. Hei, ”An improved quantum genetic algorithm for test suite reduction“, IEEE

International Conference on Computer Science and Automation Engineering (CSAE), 2011.
[16] Dan Hao, Tao Xie, Lu Zhang, XiaoyinWang, Jiasu Sun, Hong Mei, “Test input reduction for result inspection to

facilitate fault localization”, Automated Software Engineering, Vol. 17, No. 1, pp 5-31, 2010.
[17] S. K. Mohapatra, S. Prasad, “Minimizing Test Cases to Reduce the Cost of Regression Testing”, Proceedings of the

8th INDIACom, 2014.
[18] S. K. Mohapatra, S. Prasad, “Evolutionary search algorithm for Test Case Prioritization“, 2013 International

Conference on Machine Intelligence Research and Advancement.
[19] Dac-Nhuong Le, “GA and ACO Algorithms Applied to Optimizing Location of Controllers in Wireless Networks”,

International Journal of Electrical and Computer Engineering (IJECE), Vol. 3, No. 2, pp. 221-229, 2013.
[20] Mina Jafari, Hassan Khotanlou, “A Routing Algorithm Based on Ant Colony, Local Search and Fuzzy Inference to

Improve Energy Consumption in Wireless Sensor Networks”, International Journal of Electrical and Computer
Engineering (IJECE), Vol. 3, No. 5, pp. 640-650, 2013.

[21] M. J. Harrold, R. Gupta, M. L. Soffa, “A methodology for controlling the size of a test suite”, ACM Transactions on
Software Engineering and Methodology, Vol. 2 No. 3, pp. 270–285, 1993.

[22] T. Y. Chen, M. Lau, “A new heuristic for test suite reduction”, Information and Software Technology, Vol. 40, No.
5-6, 347–354, 1998.

[23] T. Y. Chen, M. Lau, “A simulation study on some heuristics for test suite reduction”, Information and Software
Technology, Vol. 40, No. 13, pp. 777–787, 1998.

[24] D. Goldberg, “Genetic Algorithms in Search, Optimization and Machine Learning”, Addison-Wesley, 1989.
[25] N. Mansour, K. El-Fakih, “Simulated annealing and genetic algorithms for optimal regression testing”, Journal of

Software Maintenance, Vol. 11, No. 1, pp. 19–34, 1999.
[26] J. Black, E. Melachrinoudis, D. Kaeli, “Bi-criteria models for all-uses test suite reduction”, In: Proceedings of 26th

International Conference on Software Engineering, IEEE Computer Society, Washington, DC, USA, pp. 106–115,
2004.

[27] H. Zhong, L. Zhang, and H. Mei, “An Experimental Study of Four Typical Test Suite Reduction Techniques”,
Information and Software Technology, Vol. 50, No. 6, pp. 534-546, 2008.

 ISSN: 2088-8708

IJECE Vol. 5, No. 6, December 2015 : 1424 – 1432

1432

[28] S. K. Mohapatra, S. Prasad, B. P. Kar, ”Test Suit Reduction By Finding Cost Optimal Representative Set”,
International Journal of Advanced Technology & Engineering Research (IJATER), Vol. 4, No. 3, 2014.

BIOGRAPHIES OF AUTHORS

Sudhir Kumar Mohapatra an M.Tech(Computer Science) holder from Utkal University is
currently persuing P.hD from SOA University,Odisha, India in the department of Computer
Science & Engg.

Srinivas Prasad has done his PhD in Computer Science ,UU, Orissa. He has 20 years of
experience in industry as well as institution. Currently he is working as professor and Heads of
Department in Dept. of Computer Science &Engineering, GMRIT, Andhra Pradesh, India.

