
This is a so-called personal version (author's manuscript as accepted for publishing after the
review process but prior to final layout and copyediting) of the article: Lindman, J, Juutilainen,
JP & Rossi, M 2009, Beyond the business model: Incentives for organizations to publish
software source code, Paper presented at IFIP WG 2.13 International Conference on Open
Source Systems, OSS 2009, Skövde, Sweden. 03. 06. June, 2009.
http://www.scopus.com/inward/record.url?scp=84944264488&partnerID=8YFLogxK

This version is stored in the Institutional Repository of the Hanken School of Economics,
DHANKEN. Readers are asked to use the official publication in references.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/33737548?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.scopus.com/inward/record.url?scp=84944264488&partnerID=8YFLogxK

C. Boldyreff et al. (Eds.): OSS 2009, IFIP AICT 299, pp. 47–56, 2009.
© IFIP International Federation for Information Processing 2009

Beyond the Business Model: Incentives for
Organizations to Publish Software Source Code

Juho Lindman1, Juha-Pekka Juutilainen2, and Matti Rossi1

1 Helsinki School of Economics, Information Systems Science,
P.O. Box 1210, 00101 Helsinki, Finland

{matti.rossi,juho.Lindman}@hse.fi
http://www.hse.fi

2 Accenture, P.O. Box 1109, 00101 Helsinki, Finland
j.juutilainen@accenture.com
http://www.accenture.com

Abstract. The software stack opened under Open Source Software (OSS) li-
censes is growing rapidly. Commercial actors have released considerable
amounts of previously proprietary source code. These actions beg the question
why companies choose a strategy based on giving away software assets? Re-
search on outbound OSS approach has tried to answer this question with the
concept of the “OSS business model”. When studying the reasons for code re-
lease, we have observed that the business model concept is too generic to
capture the many incentives organizations have. Conversely, in this paper we
investigate empirically what the companies’ incentives are by means of an ex-
ploratory case study of three organizations in different stages of their code re-
lease. Our results indicate that the companies aim to promote standardization,
obtain development resources, gain cost savings, improve the quality of soft-
ware, increase the trustworthiness of software, or steer OSS communities. We
conclude that future research on outbound OSS could benefit from focusing on
the heterogeneous incentives for code release rather than on revenue models.

1 Introduction

Traditionally OSS is seen as being developed in a distributed setting by a loosely-knit
community of heterogeneous developers who contribute to a software project without
always being employed or paid by an institution [10]. The development model has re-
sulted in reliable, high quality software products that have a short development cycle
and decreased development costs. Many voluntarily started OSS products have outper-
formed commercial software with similar functionalities. Successful examples include
Apache web server, MySQL database, and Linux operating system. Interest towards the
OSS phenomenon has grown among companies wanting to replicate these OSS success
stories [6]. To this end, organizations have leveraged OSS in their operations, boosted
their offering [20], and built their business on new business and revenue models [9]. On
the supply side, fundamental changes have occurred in the development process, reward
mechanisms, distribution of development work, and revenue models that govern how
profit is gained [6]. On the demand side, the buy or build alternatives that are tradition-
ally available to organizations have been supplemented with OSS [6].

48 J. Lindman, J.-P. Juutilainen, and M. Rossi

In addition to using OSS, some companies have released products under OSS li-
censes or even initiated completely new OSS projects [5]. We have chosen to focus
our research effort on understanding this process, coined outbound OSS. Earlier lit-
erature on outbound OSS has focused on the revenue stream of the OSS business
[19, 9, 12, 17]. While we agree on the importance of a viable company sustaining a
guaranteed revenue stream, the heavy emphasis of the earlier literature on the revenue
model might have caused some of the other incentives of the organizations’ OSS re-
lease to be overlooked.

In this paper, we take the viewpoint of the manager making sense of the changing
software landscape rather than the viewpoint of the OSS enthusiast. The aim is to gain
empirical insight from the company perspective on releasing software to the open
domain and thus our research question is: What are the benefits pursued?

2 Background

There has been a paradigm shift concerning software: companies no longer necessarily
consider software products as a source of competitive advantage or as the main source
of revenue. Conversely, their actions seem to imply that by releasing the source code
they gain more than by keeping it secret. Matt Asay, Novell’s director of OSS strategy
claims that 99.99 % of the products in the world’s economy are commoditized [7].
This means that most of the products do not contain anything unequaled. According to
Perens, 90% of the software in any business is not differentiating [1, 18]. In most soft-
ware products, only a small part (5-10%) is differentiating and the remainder is com-
mon to the domain. Ultimately every offering that a company delivers to its customers
gets commoditized over time [5]. This means that customers are not willing to pay as
much for the commodity components and therefore companies should concentrate on
creating new and higher value for them [5]. Developing commodity components in-
house is not feasible, because they do not provide any additional value. More value is

Fig. 1. Commoditization of software (Source: http://www.itea-cosi.org)

 Beyond the Business Model 49

created, if companies concentrate on developing differentiating components and ac-
quire commodity components through subcontracting, by using commercial-off-the-
shelf products (COTS), or by utilizing OSS.

Outbound OSS approach refers to taking software that is currently sold under a
proprietary license and moving it under an OSS license [5]. The opposite process is
called inbound OSS, where a company utilizes previously available OSS code and
practices inside their own organization [5]. Outbound OSS approach can be character-
ized as the license-centered approach where a company initiates an OSS project by
either releasing the source code of an existing solution to a community as OSS, or
initiating an OSS community to develop a new software product [2]. The released
source code will then be the basis for the future development of software. West and
O’Mahony would call this outbound OSS approach a spinout project because software
is first developed internally and later on released to the public under an OSS license
[21]. IBM’s Eclipse project is one successful example of the outbound OSS approach.
After spending more than 40 million dollars on the development of Eclipse, IBM
released its source code. By utilizing the outbound OSS approach, there were expecta-
tions that IBM could gain development help from other companies, lower the devel-
opment costs, gain credibility, and gain a better position to compete on the market
[23]. Another, not so successful example of source code release would be the Mozilla
Netscape browser, where developers needed years of work to make the previously
proprietary code feasible after it was published [18].

The outbound OSS approach offers several means through which a company can im-
prove its position on the market. Companies often offer complementary services on top of
free software and thus revenue is generated from the sales of the services. A company can
pursue cost-reductions and better time-to-market by working collaboratively with the
community [5]. The outbound OSS approach can help to reduce development costs if the
company succeeds in attracting OSS developers to participate in the development [2, 3]. If
the collaboration succeeds, the company can get development resources and be able to
improve the product. OSS communities are well-known for having low tolerance for poor
contributions, which helps to guarantee good quality [5]. In addition, through frequent
releases and with the help of a large community, bugs can be found and fixed quickly [19].
Earlier literature implies that security and reliability can be increased through an OSS-
based development because OSS products get tested with the help of a global user com-
munity [11]. Finally, by getting involved in OSS projects companies can incorporate OSS
ideas into commercial software, spot talented programmers for hiring purposes, and also
attract programmers who want to work in an intellectually challenging environment [13].

Outbound OSS approach can also aim for a larger user base and increased feedback.
By releasing software as OSS, it is possible to attract new users because the software is
free of charge. If there is a commercial counterpart with similar functionality, many
users will likely choose the OSS product because it is free. Company can thus gain
market share from its competitors and even be able to boost the sales of some related
products or services [22]. Thus, the outbound OSS approach can be a powerful method
especially if the company has strong competitors [14]. It is also a useful approach in an
industry that is dominated by a monopoly [16]. The same reasoning applies to a situa-
tion where a company has lagged behind its competitors [5]. Source code release can
speed up the diffusion of the product since there are no costs involved in obtaining OSS
[2]. Thus, the outbound OSS approach lets companies that could never challenge their
competitors on their own, challenge them with the help of an OSS community [15]. The

50 J. Lindman, J.-P. Juutilainen, and M. Rossi

outbound OSS approach can in particular help small companies with limited resources if
they succeed in attracting voluntary developers to help in the software development [3].
The releasing company may gain better competitive position with the help of an active
development community. Releasing a low cost alternative also puts pressure on the
competitors to lower their prices [2]. Taking part in OSS projects might also arouse in-
terest in the general public and improve corporate image [3].

The outbound OSS approach can help in diffusing new technologies. Approach can
be useful if a company has a core infrastructure technology that is an enabler to other
products and solutions in the company’s portfolio [5]. OSS could then be used as a
method to make the company’s technology pervasive, or adopted as a standard. OSS
development is a useful way to promote standardization [22]. Compatibility is a chal-
lenge on the software and hardware markets where there are a vast number of differ-
ent manufacturers and products. Therefore large companies like IBM want to become
active participants in the OSS development and to shape it in their interest [22]. On
the other hand, by embracing and supporting OSS projects companies can pre-empt
the development of a standard around a technology owned by a powerful rival [13].
Finally, OSS has an effect of encouraging collaboration and it can be used as a way to
work with partners and competitors on very large projects, sometimes even involving
customer at earlier stages of development [5].

Much of the potential success of outbound OSS will depend on the efforts of peo-
ple who are willing to work for free [9]. That is why companies need to attract soft-
ware specialists who are willing to participate in OSS development. However, many
voluntary software developers will not participate if they are not treated fairly and
provided with freedoms and other intangible “payments” [9]. Thus, in order to suc-
ceed in the outbound OSS approach, companies may have to invest considerable
amounts of time and money [4].

3 Methodology

Our aim is to show the different benefits companies pursue with the use of an out-
bound OSS approach. Our selected approach is qualitative and interpretative as we
aim to clarify the relevant variables and to understand how companies make decisions
about pursuing benefits with outbound OSS [8]. We used three exploratory descrip-
tive case studies and interviews of the company respondents. To be able to formulate
a comprehensive view of the outbound OSS approach, in-depth data collection and
analysis was needed. In terms of systematic data collection, a series of formal face-to-
face semi-structured interviews was conducted. Since the aim was to lay emphasis on
the depth, nuance, complexity, and comprehensiveness of the data, interviewing was
considered to be the most appropriate method for data collection. Interviews were
designed in a way that if a later researcher follows similar procedures when conduct-
ing the case study, they should arrive at the same findings [24].

The interviews were conducted as a part of the ITEA-COSI-project. Our selected
partners were Philips Medical Systems, Nokia Networks, and European Software Insti-
tute (ESI). The selected cases can be seen as typical instances of the phenomenon un-
der study. Five interviews were conducted: three at Philips and one at Nokia and one at
ESI. The interviewees were selected so that it would be possible to form a holistic view
of the utilization of outbound OSS approach in the case companies. It was desirable
that each interviewee would have a comprehensive view of business, close relations to

 Beyond the Business Model 51

the OSS community, and a broad understanding of how the OSS approach has im-
pacted on the company. Open questions were chosen to make sure that the answers
would be constrained as little as possible. The questions were sent to the interviewees
in advance so that they were able to get acquainted with them before the interview.
Before and during the actual interview, the interviewees had the possibility to ask for
clarifications concerning the questions. During the interview, some of the questions
were explained more precisely to guarantee that all the interviewees would understand
them in the same way. Some follow-up questions were also posed and clarifications
given when necessary. The interviews were conducted in an iterative manner, so it was
accepted that responses to certain questions could stimulate new awareness and interest
in particular issues, which could then require additional questions to be posed to the
interviewee. The estimated time of the interviews was one hour.

The data analysis occurred in three phases. First, the data gathered through the inter-
views was transcribed. The transcription was conducted by word-for-word basis to
guarantee the accuracy of the answers and to avoid misinterpretations. After transcrip-
tion, all the transcribed interviews were sent to the interviewees so that they were able to
read them through and clarify their answers if needed. Only one interviewee clarified
some answers. Following this, in a second phase the data was elaborated. The objective
was to find relevant information from each case and to develop a rich understanding on
the incentives of companies’ outbound OSS approach. Finally, in the third phase the
results were analyzed and the incentives of the outbound OSS outlined.

4 Cases

4.1 Philips Medical Systems – DVTk

Philips Medical Systems (PMS) manufactures products for the health care industry. Its
product portfolio covers for example medical imaging, ultrasound, health care IT, defi-
brillation, and monitoring modalities. Philips Medical Systems and its partner company
created in 2000 a validation application for the medical communication protocol DI-
COM (Digital Image Communication in Medicine). The application was called DVTk
(Dicom Validation Toolkit) and it was distributed within Philips and was also freely
downloadable from the Philips Internet pages. After several years of co-development,
Philips Medical Systems and its partner company decided to release the DVTk as OSS
in June 2005. DVTk is licensed under the LGPL, the source code is available at the
SourceForge website and the software is freely available for download.

The DVTk tool itself is free so it does not generate any direct revenues. The long
term goal of PMS is that with the help of a user community the quality of DVTk is
improved and this will eventually reduce the service and support costs of the tool. The
main reason for releasing the source code of the DVTk was to create an independent
leading tool for the DICOM validation and service tools. Since the application was
earlier closed, the results of validation with DICOM were not always trusted by other
organizations. By releasing the application as OSS and by providing the opportunity to
review and contribute to the code, trustworthiness of the application was expected to
increase. Users could trust the software more because they were able to see that there
are no hidden features and see how the product is implemented. In addition, there was
an aim to rationalize the software development by releasing the source code of DVTk.
Prior to releasing as OSS the distributed development between different sites and be-
tween different organizations impacted the efficiency of the work. The development of

52 J. Lindman, J.-P. Juutilainen, and M. Rossi

the application was running on different isolated source control environments to pre-
vent different developer companies from accessing each other’s contributions.

Another reason for opening the code was the intention to create a larger and more ac-
tive community that could use DVTk, report on bugs, and also help in the development.
DVTk application was frequently downloaded even before the code was released, but
often the feedback was not very useful. By releasing software as OSS, there was expec-
tation in PMS to have more feedback from the users. In addition, it was expected that
PMS could involve more companies in the development of DVTk and this way to re-
duce development costs.

4.2 Nokia Networks – Benchmark

Nokia Networks is one of the leading telecom equipment providers in the world. It
merged in 2007 to form Nokia Siemens Networks. The data was gathered before the
merger, so we use the name Nokia Networks when referring to this company. Nokia
Networks provides network infrastructure, communications and networks service plat-
forms, as well as professional services to operators and service providers. These solutions
include both software and hardware. Nokia Networks uses and integrates OSS products
(e.g. Linux) into their products, but software that is ultimately offered to the market is not
OSS. Nokia Networks does not currently directly contribute much to OSS projects, but
would benefit from some influence on the direction of the development. There have been
efforts at Nokia Networks to influence OSS communities by participating in the creation
of specifications like OSDL Carrier Grade Linux (CGL) requirements specifications, but
the results have not had the desired effect. Our case was aimed to create a benchmarking
tool for the selected OSS projects. Earlier Nokia created Network Database Benchmark
which is used for measuring the Home Location Register (HLR) type of performance of
databases. In our case Nokia Networks was preparing Control Plane Benchmark.

Nokia Networks’ goal is that Control Plane Benchmark would highlight possible
deficiencies in OSS projects and cause developers to steer projects in the direction
Nokia Networks would like them to go. Nokia Networks perceives OSS communities
and components as a future-proof solution because commercial companies are getting
smaller all the time and their long-term existence is uncertain. The respondent consid-
ers OSS communities as a more sustainable option sometimes for software develop-
ment than commercial companies.

Nokia Networks does not have much official interaction with OSS communities.
The communities are often suspicious of big companies and are not especially inter-
ested in the products that Nokia Networks provides. Thus communication with OSS
communities is mainly through individuals who work in Nokia Networks and are also
part of an OSS community. However, these people are not representing Nokia Net-
works when they are involved in the communities. Nokia Networks has some projects
and initiatives to form a closer relationship with OSS communities, for example, a por-
tal to manage its OSS projects and to promote Nokia Networks’ involvement in OSS
projects. Nokia hosts, contributes to, and sponsors multiple OSS projects. Nokia is, for
instance, a strategic developer in the Eclipse Foundation. Nokia Networks is also one
of the 20 companies that support Open Source Development Lab (OSDL). With the
other members in OSDL, Nokia has developed a kind of future roadmap for Linux
distributors. Nokia Networks’ aim is to create vision and guidance to enhance Linux
and to meet the needs of both the data center and carrier grade market segments.

 Beyond the Business Model 53

4.3 European Software Institute – V-Manage

European Software Institute (ESI) was launched as an initiative of the European Com-
mission, with the support of the Basque Government and European companies working
in the field of information technology. ESI's main activity is based on helping the soft-
ware industry to produce software of a higher quality, on time, and at a lower cost. ESI
offers consultancy and training services as well as technological support. One of the
services that ESI offers to organizations is consultancy for implementing a software
product line. The purpose of this consultancy service is to achieve a high level of reuse
in all products. ESI provides organizations a disciplined methodology and a suite of
tools, called V-Manage, for developing software for embedded systems. Now ESI is
planning to utilize the outbound OSS approach and to release the source code of V-
Manage. V-Manage helps organizations to develop software especially for software
product lines and it is mainly offered to small and medium sized companies.

ESI’s service consists of a software called V-Manage and a consultancy service. At
the moment, the main source of revenue for ESI is the consultancy service consisting
of training, support, and maintenance. Currently, V-Manage is proprietary software
licensed to the customers of the consultancy service, but ESI is investigating whether
they should license it with an OSS license. In the future the revenues will be gener-
ated through the sales of consultancy services. There is an expectation in ESI that
opening the code would increase other companies’ interest towards the application
and eventually increase revenues through the sales of consultancy services. However,
it is not expected that obtaining development resources from external parties would
result in lower costs. Instead, extra development resources are seen as a way to boost
the popularity of V-Manage.

ESI has the aim of providing extension points to V-Manage so that external devel-
opers can extend the tool by means of plug-ins. This enables customers and possibly a
development community to customize the application according to their own needs
and add new features. ESI is planning to release the source code of the extension
points and plug-ins and keep the platform proprietary. This way ESI could retain core
parts of the V-Manage as closed. The source code of plug-ins would be released under
a license that assures that all the modifications and derivative works are distributed
and made available under the same license. Initially ESI is planning to use LGPL. By
means of this new approach, ESI aims to get software development resources from
external partners who are willing to develop the application through extension points.
The releasing of the source code could result in an active development community.
However, the amount of potential development help is still rather uncertain because
the application is very specific so it is not likely to attract a large number of develop-
ers. Because of the special nature of the tool, it is expected that developers will more
likely be companies than individuals.

5 Incentives for Openness

Probably the best known classification of different OSS revenue models is the one
presented by Hecker [9]. Hecker’s revenue models concentrate mainly on the cash
flow between the company and its customers. However, our empirical findings dem-
onstrate that companies also have incentives other than revenue for utilizing the out-
bound OSS approach. Actually, the only case in our data which can be categorized

54 J. Lindman, J.-P. Juutilainen, and M. Rossi

according to Hecker’s classification is ESI’s V-Manage. ESI’s approach is consistent
with Hecker’s support seller model where revenues are generated from selling associ-
ated services. By means of the outbound OSS approach, ESI aims to increase the
popularity of V-Manage and to boost its revenues through the sales of consultancy
services. However, the source code of V-Manage is currently not opened and likely
will not be opened at all.

It was evident that the case companies perceive the commercial potential of the
outbound OSS approach. Companies have various incentives for releasing the source
code of their software. These different objectives also have influence on how out-
bound OSS is applied in practice. Outbound OSS approach is considered to be suit-
able for companies whose main business is not the software itself. This implies that a
company does not necessarily risk its business by releasing the source code. Instead,
revenues are generated for example through the sales of different services. Below are
the different incentives categorized in a table format (Table1).

Table 1. Incentives per case company

PMS Nokia Networks ESI
 Steer OSS community Steer OSS community
Obtain development resources Obtain development resources
Gain cost-savings
Improve the quality of SW Improve the quality of SW
Increase trustworthiness of SW
Promote standardization

ESI’s strategy seems to be that by opening parts of V-Manage companies may be-

come more interested in the tool because they are able to customize it to their own
needs and ultimately ESI would generate revenue by consultancy services. Instead, the
objectives of neither Nokia Networks nor Philips Medical Systems are directly related
to generating revenues through OSS. PMS’ goal is to rationalize the software devel-
opment, create a de-facto standard, and to try to form an active development commu-
nity. Through the outbound OSS approach, PMS aimed to gain external development
resources and improve DVTk. The PMS respondent also maintained that OSS can in-
crease the trustworthiness of DVTk because everyone is able to see how it is imple-
mented. Nokia Networks’ objectives notably differ from the goals of PMS and ESI.
Nokia Networks tries neither to generate revenues nor gain development resources
through the outbound OSS approach. Nokia Networks is developing benchmarking
tool to be used by OSS communities. This tool is then released as OSS. The aim of
Nokia Networks is it could then leverage the OSS communities through these tools.

It seems that the case companies have very different objectives when they chose
the outbound OSS approach. It seems that ESI is the only company having a revenue
incentive to release the source code. However, it is evident that financial reasons play
a role also with Philips Medical Systems and Nokia Networks. In PMS it is consid-
ered that the DVTk project may have an indirect impact on total revenues of PMS.
PMS’s goal is that by improving the DVTk the service and support costs will de-
crease. Nokia Networks aims to gain cost savings if they succeed in steering OSS
communities because the company will get software products that are implemented
according to Nokia Networks’ needs.

 Beyond the Business Model 55

6 Conclusions and Implications

The objective of this paper was to investigate incentives for commercial companies to
release software source code. Revenue models were not the primary concern for any
of the case companies. The role of revenue models was considered, but the decisions
were not incentivized by direct revenue streams.

Although commercial actors are coming into terms with releasing source code they
need to tackle practical concerns. One of the main problems was that companies’ OSS
products are specialized to niche markets that fail to attract a large population of de-
velopers. Another challenge is that companies were willing to utilize OSS resources,
but they do not always have plans to compensate for the acquired benefits. The out-
bound OSS approach also highlights some challenges that a company can confront
after the source code is released. Based on our analysis, it seems that these challenges
are mainly related to collaboration with OSS communities and maintenance of the
code base. Voluntary OSS developers will only participate in software development if
they find the project interesting. Thus, gaining contributions from the OSS commu-
nity is not certain. If the software is very specialized and does not interest the general
public, the company might confront difficulties in attracting developers. The company
also has to be aware that the community’s objectives and timetable in software devel-
opment will most likely differ from the company’s own goals. In order to succeed, the
company should create a strategy on how it is going to attract developers, motivate
them to participate, and steer them so that the company’s objectives will be reached.

It should also be noted that the cases in the paper are at very different stages of
their OSS activities, and as such are unlikely to give direct applicable solutions to
other companies. They do serve as empirical account of what the incentives for com-
mercial companies are, and hopefully help to refocus research beyond revenue models
to the multitude of different company incentives.

Acknowledgements

The authors thank the ITEA-COSI project.

References

1. ITEA-COSI-project, http://www.itea-cosi.org/ (accessed 14.11.2008)
2. AlMarzoug, M., Zheng, L., Rong, G., Grover, V.: Open Source: Concepts, Benefits, and

Challenges. Communications of the Association for Information Systems 16(37), 756–784
(2005)

3. Bonaccorsi, A., Rossi, C.: Comparing Motivations of Individual Programmers and Firms
to Take Part in the Open Source Movement: From Community to Business. Knowledge,
technology and policy 18(4), 40–64 (2006)

4. Dahlander, L., Magnusson, M.: Relationships between open source software companies
and communities: Observations from Nordic firms. Research Policy 34(4), 481–493
(2005)

5. Fink, M.: Business and Economics of Linux and Open Source. Prentice Hall, New Jersey
(2002)

6. Fitzgerald, N.: The Transformation of Open Source Software. MIS Quarterly 30(3), 587–
598 (2006)

56 J. Lindman, J.-P. Juutilainen, and M. Rossi

7. Goth, G.: Open Source Business Models: Ready for Prime Time. IEEE Software, 98–100
(November/December 2005)

8. Gray, D.E.: Doing Research in The Real World. Sage Publications, California (2004)
9. Hecker, F.: Setting Up Shop: The Business of Open-Source Software. IEEE Soft-

ware 16(1), 45–51 (1999)
10. Hertel, G., Niedner, S., Herrmann, S.: Motivation of software developers in Open Source

projects: an Internet-based survey of contributors to the Linux kernel. Research Pol-
icy 32(7), 1159–1177 (2003)

11. Krishnamurthy, S.: A managerial overview of open source software. Business Hori-
zons 46(5), 47–56 (2003)

12. de Laat, P.B.: Copyright or copyleft? An analysis of property regimes for software devel-
opment. Research Policy 34, 1511–1532 (2005)

13. Lerner, J., Tirole, J.: The Open Source movement: key research questions. European Eco-
nomic Review 45(4-6), 819–826 (2001)

14. Lerner, J., Tirole, J.: Some Simple Economics of Open Source. Journal of Industial Eco-
nomics 50(2), 197–234 (2002)

15. Markus, M.L., Manville, B., Agres, C.E.: What Makes a Virtual Organisation Work –
Lessons From the Open Source World? Sloan Management Review 42(1), 13–26 (2000)

16. O’Mahony, S.C.: Dissertation: The emergence of a new commercial actor: community
managed software project (2002),

 http://opensource.mit.edu/papers/omahony.pdf (accessed 14.11.2008)
17. Osterwalder, A., Pigneur, Y., Tucci, C.: Clarifying business models: Origins, present, and

future of the concept. Communications of the Association for Information Systems 16, 1–
25 (2005)

18. Perens, B.: The emerging economic paradigm of Open Source. First Monday 10 (special
issue 2: Open source) (2005)

19. Raymond, E.S.: The Cathedral and the Bazaar (2000), http://www.catb.org/~
esr/writings/cathedral-bazaar/cathedral-bazaar/(accessed
14.11.2008)

20. Rajala, R., Nissilä, J., Westerlund, M.: Revenue Models in the Open Source Software
Business. In: St. Amant, K., Still, B. (eds.) Handbook of research on open source software
– Technological, Economic, and Social Perspectives, New York, Hershey, pp. 541–554
(2007)

21. West, J., O’Mahony, S.: Contrasting Community Building in Sponsored and Community
Founded Open Source Projects. In: Proceedings of the 38th Annual Hawaii International
Conference on System Sciences, Waikoloa, Hawaii, p. 196c (2005)

22. Wichmann, T.: Firms’ Open Source Activities: Motivations and Policy Implications.
Free/Libre Open Source Software: Survey and Study, FLOSS Final Report, Berlecon Re-
search GmbH (2002), http://www.berlecon.de/studien/downloads/
200207FLOSS_Activities.pdf (accessed 14.11.2008)

23. Woods, D., Guliani, G.: Open Source for the Enterprise: Managing risks, reaping rewards.
O’Reilly Media, Sebastopol (2005)

24. Yin, R.K.: Case Study Research: Design and Methods, 2nd edn. Sage Publications, Cali-
fornia (1994)

Mentioned OSS Projects

DVTk http://www.dvtk.org/

Network Database Benchmark http://hoslab.cs.helsinki.fi/homepages/ndbbenchmark/

	Beyond the Business Model: Incentives for Organizations to Publish Software Source Code
	Introduction
	Background
	Methodology
	Cases
	Philips Medical Systems – DVTk
	Nokia Networks – Benchmark
	European Software Institute – V-Manage

	Incentives for Openness
	Conclusions and Implications
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

