
PERSONAL VERSION

This is a so-called personal version (author's manuscript as accepted for publishing after the
review process but prior to final layout and copyediting) of the article:
Nyman , L M , Mikkonen , T, Lindman , J & Fougère , M, 2011 , 'Forking: the Invisible Hand of
Sustainability in Open Source Software ' in Proceedings of SOS 2011: Towards Sustainable
Open Source, pp. 1-5
http://tutopen.cs.tut.fi/sos11/papers/SOS11_proceedings.pdf
http://tutopen.cs.tut.fi/sos11/papers/cr4.pd

This version is stored in the Institutional Repository of the Hanken School of Economics,
DHANKEN. Readers are asked to use the official publication in references.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/33737547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://tutopen.cs.tut.fi/sos11/papers/SOS11_proceedings.pdf
http://tutopen.cs.tut.fi/sos11/papers/cr4.pd

Imed Hammouda & Björn Lundell (Eds.)
Proceedings of SOS 2011: Towards Sustainable
Open Source

Tampereen teknillinen yliopisto. Ohjelmistotekniikan laitos. Raportti 19
Tampere University of Technology. Department of Software Systems. Report 19

Tampereen teknillinen yliopisto. Ohjelmistotekniikan laitos. Raportti 19
Tampere University of Technology. Department of Software Systems. Report 19

Imed Hammouda & Björn Lundell (Eds.)

Proceedings of SOS 2011: Towards Sustainable Open Source

Tampere University of Technology. Department of Software Systems
Tampere 2011

ISBN 978-952-15-2718-0
ISSN 1797-836X

Preface

This is a collection of the papers presented at the Towards Sustainable Open Source Workshop (SOS
2011). The workshop was co-located with OSS 2011 and was held in Salvador, BA, Brazil on October
08, 2011. The goal of the workshop is to build a community of researchers and practitioners to share
experiences and discuss challenges involved in building and maintaining sustainable open source
communities.

The program contained 5 technical presentations discussing topics related to forking, organizational
issues, legality matters, digital archiving, and open innovation.

We would like to thank the members of the organizing committee and the program committee for their
effort. We also appreciate the contribution of the authors of papers submitted.

We hope that you enjoy the workshop!

Tampere, December 2011

Imed Hammouda & Björn Lundell

Organizing Committee

Imed Hammouda, Tampere University of Technology, Finland
Björn Lundell, University of Skövde, Sweden

Program Committee

Andrea Capiluppi, University of East London, UK
Barbara Russo, Free University of Bozen - Bolzano, Italy
Björn Lundell, University of Skövde, Sweden
Daniela Cruzes, Norwegian University of Science and Technology, Norway
Imed Hammouda, Tampere University of Technology, Finland
Jonas Gamalielsson, University of Skövde, Sweden
Mohamed Amine Chatti, RWTH Aachen University, Germany
Scott Hissam, Software Engineering Institute, Carnegie Mellon, USA
Sulayman K Sowe, UNU-IAS, Japan
Tommi Mikkonen, Tampere University of Technology, Finland
Walt Scacchi, University of California, Irvine, USA

Contents

1

2

3

4

5

Forking: the Invisible Hand of Sustainability in Open Source Software .. 1
Linus Nyman, Tommi Mikkonen, Juho Lindman, and Martin Fougère

The Inextricable Role of Organizational Sponsorship for Open Source Sustainability........................... 7
Carlos D. Santos Jr., George Kuk, Fabio Kon, and Rafael Suguiura

Managing Open Source Legality Concerns - A Sustainability Catalyst ... 13
Alexander Lokhman, Salum Abdul-Rahman, Antti Luoto, Imed Hammouda

Open Source Communities for Long-term Maintenance of Digital Assets: What is Offered for ODF &
OOXML? ... 19
Jonas Gamalielsson and Björn Lundell

Adding Control to Open Innovation Projects Through Agile Practices ... 25
Terhi Kilamo, Ville Kairamo, Petri Räsänen, and Jukka P. Saarinen

Forking: the Invisible Hand of
Sustainability in Open Source Software

Linus Nyman1, Tommi Mikkonen2, Juho Lindman1, and Martin Fougère1

1 Hanken School of Economics, Helsinki, Finland
firstname.lastname@hanken.fi

2 Tampere University of Technology, Tampere, Finland

tommi.mikkonen@tut.fi

Abstract. The ability to create and maintain high-quality software artifacts
that preserve their usability over time is one of the most essential
characteristics of the software business. In such a setting, open source software
offers excellent examples of sustainability. In particular, safeguarding
mechanisms against planned obsolescence by any single actor are built into the
very definition of open source development. The most powerful of these
safeguarding mechanisms is the ability to fork the project as a whole. In this
position paper, we argue that the possibility to fork any open source program
serves as the invisible hand of sustainability, ensuring that the code can always
remain open and that the code that best fulfills the needs of the community
will live on.

1 Introduction

Sustainability is a concept which is often automatically associated with open source
software. Indeed, access to the source code enables developers to build solutions that
are better protected from the actions of any single developer, organization, or
company associated with the software. The openness of the source code also
guarantees that decisions concerning the software artifact enjoy a measure of
transparency.

In this position paper we address the role of code forking – a situation in which
several versions of a piece of software originating from a single, shared code base
are developed separately – in ensuring the long-term sustainability of a software
system. Furthermore, we advocate the freedom that developers have to create novel
features that may well go beyond what the developers who began the project
originally expected or planned. This freedom will also nurture open source projects
through difficult times and extreme events that could otherwise prove lethal, such as
hostile commercial acquisitions which may cause changes in the practices of the
project.

The rest of the paper is structured as follows. In Section 2, we briefly address the
sustainability of digital objects, focusing on open source and planned obsolescence,

1

which is generally associated with almost all of the systems in common use. In
Section 3, we discuss code forking, which can serve as an element that supports
long-term sustainability. In Section 4, we offer our view of the effect code forking
has on sustainability. Finally, in Section 5, we draw some of the main conclusions.

2 Sustainability and planned obsolescence

The sustainability of a product can be interpreted in many ways. From the viewpoint
of the consumer, there are at least two central elements: quality and staying power.
In other words, we often seek a high-quality product which remains usable for as
long as possible.

This view of sustainability contrasts with what is known as “planned
obsolescence”, a term popularized in the 1950s by American industrial designer
Brooks Stevens [1]. Stevens defined planned obsolescence as the act of instilling in
the buyer “the desire to own something a little newer, a little better, a little sooner
than is necessary” [2]. From the fashion industry, where last year’s models are
designed to look out-of-date by the time this year’s models come around, to the
software industry, where the norm is for software to be compatible with older
models, but not with newer ones, planned obsolescence has become an inescapable
part of the consumer’s everyday life.

Of course, digital artifacts differ substantially from the end products of 1950s
industrial design, or even those of today. The main differences are related to their
characteristics as editable, interactive, reprogrammable, distributed, and open [4].
These characteristics dictate that for example, software as an artifact is prone to
being changed, repaired and updated rather than remaining fixed from the early
stages of the design process. The software marketplace has transferred planned
obsolescence to the digital realm by creating ways to benefit from these artifact
characteristics. The revenue models of companies that operate in the software
marketplace thus welcome versioning, lock-ins, systems competition, and network
effects [6].

Open source software offers an alternative to some of the pitfalls of planned
obsolescence. Rather than needing to buy something “a little newer, a little better”,
the open source community can simply make the existing product a little – or a lot –
newer and better. In open source, anything, once invented, once written, need never
be rewritten. On the other hand, the software product is never ready, but can become
stable and mature enough for the developer community. If the community interest is
there, the software can always be improved.

The right to improve a program, the right to make it portable to newer as well as
older programs and versions, and the right to combine many programs into an even
better whole are all rights built into the very definition of open source. The net result
is that, in open source systems, any program which has the support of the open
source community will enjoy assured relevance rather than planned obsolescence.

2

Forking: the Invisible Hand of Sustainability in Open Source Software

In fact, planned obsolescence in open source is impossible to implement due to a
practice which is at once both the sustainer and potential destroyer of open source
programs: the code fork.

3 Code forking

A popular metaphor in economics is Adam Smith’s “invisible hand” which guides
the marketplace. We claim that open source software has its own invisible hand: the
fork. In fact, even the possibility of a fork – something which is guaranteed by all
open source licenses – usually suffices. Actual forks are rare, but it is enough that
they could happen, should the conditions in which the project is being developed
change radically. In recent years, examples of using a fork for the sustainability of a
community include high-profile cases such as the forking of OpenOffice
(http://www.openoffice.org/) into LibreOffice (http://www.libreoffice.org/) and the
creation of various projects from the code base of MySQL (http://www.mysql.com/).

A broad definition of a code fork is when the code from an existing program
serves as the basis for a new version. This can be the result of a split in the developer
community regarding the software artifact, its development practice, or the direction
of the development, and is then usually followed by a split in the user community.
Code forking in open source software is paradoxical in nature; it is simultaneously
both one of the greatest threats an individual project faces, as well as the ultimate
sustainer: insurance that, as long as users find a program useful, the program will
continue to exist.

The threat to the program comes mainly in the form of the (potential) dilution of
both users and developers. As Fogel [3] has noted, it is not the existence of a fork
that hurts a project, but rather the loss of developers and users. The benefits of a fork
come in ensuring that the program can continue to exist regardless of external
circumstances. If, for instance, the developers of a program under a permissive
license decide to relicense it under either a proprietary or otherwise less favorable
license, the community can fork a new version and continue development. In the
early days of open source, forking enabled the community to choose which version
of UNIX to adopt. Forks can also serve as an escape hatch for projects and
developers who find themselves cornered or unable to continue on a planned course.

In the case of a program remaining under an open source license, but where the
people or company shepherding the code make decisions which run counter to the
interests of the larger community and developers, code forking ensures the continued
development of the code, as the community and developers can fork a new version
on which to continue working. Even situations in which different versions of a
program fork live on can benefit one another, as one community can incorporate into
their program anything developed by the other community.

3

4 Code forking and sustainability

With open source, one can always fork a project; the code is available for download
and the open source licensing terms impose no conditions which would in any way
require developers to adhere to the original development line. In successful projects,
however, a balance of power seems to exist where developers are happy enough to
follow the project leader as long as the project leader listens to developers’ views
enough to keep them onboard. This balance creates continuity for long-term
cooperation.

The mere possibility of forking has a huge impact on how open source programs
are governed and developed [3], and provides the community with the tools it needs
to handle situations in which a program could become obsolete. This can happen for
numerous reasons, including the creation of a new version of the system, a change in
licensing, porting to a new hardware environment, a change in program focus, and so
forth.

For an open source project to remain sustainable, it must evolve with its users.
Code forking and, indeed, the mere possibility of forking, is one of the key factors
that ensures that open source will continue to evolve and thus remain sustainable.
Open source programs can also cease to develop; some programs and pieces of code
live on while others die out. Forking, as well as the effect of the possibility of
forking, ensures that the selection lies in the hands of the community itself, which is
perhaps the greatest guarantee of sustainability one could possibly ask for. At its
best, open source software, guided by the invisible hand of forking, may well render
obsolescence itself obsolete.

5 Conclusions

In this position paper, we argue that forking has the capability of serving as an
invisible hand of sustainability that helps open source projects to survive extreme
events such as commercial acquisitions, which may dramatically affect licensing and
community support practices. While forking can occur for numerous reasons, some
of which are less dramatic than others (see [5] for a survey of SourceForge projects),
the mere possibility of forking is a powerful incentive for ensuring continuity.

To summarize, we claim this invisible hand is an essential element for the long-
term viability of a project’s development and thus the sustainability of the resulting
open source software artifacts, and that without the opportunity to fork, many events
now often considered mere annoyances could lead to the termination of a project.

4

Forking: the Invisible Hand of Sustainability in Open Source Software

References

[1] Planned obsolescence, The Economist, 23 March 2009. Available at:
http://www.economist.com/node/13354332, accessed 14 September 2011.

[2] Brooks Stevens biography, available at:
http://www.brooksstevenshistory.com/brooks_bio.pdf, accessed 14 September 2011

[3] Fogel (2006) Producing Open Source Software. O’Reilly, Sebastopol, CA.
[4] Kallinikos, J., Aaltonen, A., and Attila. M. (2010). A theory of digital objects. First

Monday, Volume 15, Number 6-7 June 2010.
[5] Nyman, L. and Mikkonen, T. (2011) To Fork or Not to Fork: Fork: Motivations in

SourceForge Projects. Proceedings of the 7th International Conference on Open Source
Systems (OSS 2011), 259-268, Springer.

[6] Shapiro, C., and Varian, H. (1998). Information Rules: A Strategic Guide to the
Network Economy. Boston, MA: Harvard Business School Press.

5

6

The Inextricable Role of Organizational
Sponsorship for Open Source Sustainability

Carlos D. Santos Jr.1, George Kuk1, Fabio Kon2 and Rafael Suguiura2

1 Horizon Institute, University of Nottingham, United Kingdom

{carlos.denner, george.kuk}@nottingham.ac.uk

WWW home page: www.horizon.ac.uk

2 FLOSS Competence Center (CCSL), University of Sao Paulo, Brazil

fabio.kon@ime.usp.br, suguiura@usp.br
WWW home page: ccsl.ime.usp.br

Abstract. Is the Bazaar a step to the Cathedral? This essay points out that

organizational sponsorship appears to be inseparable of commercial grade,

long-lasting open source software; and discusses the implications of that for

organizational theory (rise of firms) and open source practice (IT governance).

 Keywords: Open source, free software, sponsorship, sustainability, governance.

1 Introduction

We grew used to the metaphorical image that a group of grassroots volunteers were in

charge of developing free and open source software (OSS). However, this metaphor

had to be adapted to accommodate the increasing contributions from organizations to

the production of OSS. The presence of organizational sponsorship had profound

effects on how we perceived and should study the structure of these projects, the

coordination mechanisms in place, and the motivations of contributors. The readily

available findings of research on volunteerism and the Bazaar illustration did not

quite fit the OSS phenomena as we initially thought. A more specific and thorough

analysis of these communities was pressing to address the literature bias towards the

study of volunteers’ motivations as opposed to organizations’ (Santos Jr., 2008). The

first scholars to notice this gap between what the literature stated and what was being

observed in OSS communities called for new research and proposed a label change,

from OSS 1.0 to OSS 2.0, in an attempt to explicitly state that organizations were

heavily involved in OSS, being thus partly responsible for their readiness for

professional adoption (Fitzgerald, 2006; Watson et al., 2008).

A few years passed and now we have incorporated in the literature an updated

image that there is a mix of volunteers and organizations in charge of OSS

production, particularly in those that manage to build a productive ecosystem.

Frequently, we see industry indicators of trustworthiness in OSS to take into account

the presence and identity of organizational sponsors (e.g., see the Qualipso1 process),

and papers have been written to support organizations involved in OSS to effectively

manage their relationships with the community of volunteers and industry partners

towards sustainability (Agerfalk & Fitzgerald, 2008; West & O’Mahony, 2008). The

1 http://www.qualipso.org/node/558

7

mailto:george.kuk%7d@nottingham.ac.uk
mailto:fabio.kon@ime.usp.br
http://www.qualipso.org/node/558

2 Carlos D. Santos Jr.1, George Kuk1, Fabio Kon2 and Rafael Suguiura2

current state of the literature reflects the facts that: OSS has been acquired by

organizations; OSS projects (OSP) have themselves become legal bodies capable of

having employees, attracting partners and funding, and of managing a portfolio of

projects; and that OSPs are commonly born out of software developed by

organizations engaged in the currently popular strategy of opensourcing. Altogether,

these observations suggest that successful OSPs are (and should strive to be)

collaborative efforts between organizations and a community of volunteers, having

the shape of a boundary spanning unit and being thus secondary to the higher

organizational missions of the entities involved in the development.

The idea of becoming a formal organization to seek and accommodate sponsors in

the production of OSS is nowadays so obvious that there is reason to question the

sustainability of this software development model without it. Empirical evidence

suggests that all OSS that are candidates for adoption at a professional level enjoy

organizational support of some kind. Key OSS such as Linux, Apache and Android

represent alliances of major industry players involving Google, Facebook, IBM,

Yahoo! and Microsoft, to name a few. Moreover, organizations created to support

potential adopters of OSS in the processes of selection and implementation tend to

stamp only those that have secured sponsorship and met the legal and managerial

conditions to sustain it. As a consequence, organizational involvement in OSS has

superseded the role of volunteers, who now have to strive for sponsorship and

collaborate with corporations if their projects are to build a market-wide reputation.

Therefore, it seems timely to ask: Is organizational sponsorship a required feature for

open source sustainability? Does sponsorship-seeking lead to the design of a formal

organization (e.g., foundation)? Also, wasn’t the first image we had of OSS as a

volunteer-based effort trustworthy? What are the limits of a community-exclusive,

Bazaar-like effort to develop OSS? Is there an inherent need to institutionalize OSS,

moving away from a market-type of governance structure to sustain its development?

The goal of this paper is to think-provoke and instigate scholars to pursue a greater

understanding of what a dispersed community of volunteers can produce by means of

self-organization without creating or relying on formal organizations to sustain work.

Yet, the limits of the Bazaar are unknown and our acceptance of the role of

organizations in OSS production has gone unquestionable and assumed unavoidable

to produce professional software of high quality.

Next, we discuss our current understanding of what constitutes a contribution and

what the motivations to contribute are in the context of OSS. That discussion

provides the grounds we needed to foresee a few implications for organizational

theory and open source practice, exposing when and why a market-type of

governance collapses, giving rise to a firm with characteristics of ephemeral

alliances.

8

The Inextricable Role of Organizational Sponsorship for Open Source Sustainability 3

2 Contributions, Motivations and Sponsorship: Sustaining Work

First, there are the motivations to found an OSP, which we assume to be, regardless

of being an organization or individual, sharing development costs and achieving

widespread adoption. Hence, OSP founders must face the managerial task of

attracting visitors, users and developers to create and maintain an active community

that improves the application and its source code continuously. In summary, the

ultimate challenge is to sustain work towards software improvement and diffusion.

 Various types of contribution can help OSS accomplish this challenge. Users can

request new features and spread the word to find more users, developers can

implement requested features and fix bugs, and visitors can report broken links and,

as readers of source code, make design suggestions, for example. Besides that,

visitors, users and developers can trigger network externalities that increase project

visibility and thus the general likelihoods of receiving contributions and finding new

users. Accordingly, the understanding of why and how these intertwined

contributions come about is crucial. In fact, a great deal of research aimed at that.

In general, we have learnt from the literature that: the type of license chosen and

the presence of sponsors influence user and developer attraction as well as their

intention to contribute; that organizations prefer less restrictive licenses and get

involved when their business model depends on the application; and that being paid

to develop OSS leads to above-average contribution levels, whereas intrinsic

motivations have no detectable effect on levels of contribution (Stewart et al., 2006;

Roberts et al., 2006; Watson et al., 2008; Sen et al., 2008; Santos Jr. et al., 2010).

In unfolding what motivates individuals and organizations to contribute, this

research stream highlighted the importance of OSS to provide stakeholders with

leverage in their mundane tasks and professional activities (utilitarian value),

diminishing the role of ideology and other abstract reasons. Likely, ideology plays an

important but limited role, perhaps being a non-sufficient reason to sustain motivation

to contribute. High-quality, market-impacting OSS was not, and maybe could not

have been, produced and maintained by ideological and passionate volunteers alone

during their free time. Sponsorship has always emerged as vital to sustain work in

open source projects. Yet, the source of the incentive to contribute has been mostly

assumed to come from individuals rather than organizations.

The role of organizations in sponsoring and developing OSS is of primary

importance. For instance, it has been publicly stated that 90% of Eclipse committers

are paid employees of member companies, and our analysis shows that about 95% of

Android’s commits are signed by organizations (Google: ~80%). Similarly, over 60%

of the more than 800k commits made to 367 projects hosted by Gnome are of authors

explicitly associated with organizations. This preliminary analysis2 indicates that

2 The results are based on the analysis of 836,298 commits, from January 1997 to August 2011,

available on Gnome’s git repository, and of 110,640 commits, from October 2008 to August

2011, available on Android’s kernel git repository.

9

4 Carlos D. Santos Jr.1, George Kuk1, Fabio Kon2 and Rafael Suguiura2

none of Gnome’s projects is free of organizational support, and that all of these 369

projects are managed by legal foundations or formal alliances. Nevertheless, to say

that organizations are heavily involved in OSS is nothing new. However, the

discussion of whether sponsorship is a required condition for OSS sustainability and

what the consequences of this are to communities and founders, who perhaps design

formal organizations in response this perception, is absent in the literature.

3 Implications for Theory and Practice

Although OSS scholars have recognized that OSP receive large amounts of

contribution from organizations, they are not yet able to explain when and why OSP

step away from an informal structure (Bazaar-Market) and become a jurisdiction of

interorganizational relationships to accommodate these contributions, account for the

rights and obligations of participants, and sustain work. Probably, this transformation

is a result of seeking and securing sponsorship, which turns OSP into a coalition of

agents with various (conflicting) interests that requires a formal and complex

governance structure to be managed, resembling the Cathedral-Hierarchy or Network

form of economic organization (Powell, 1990). Thus, as scholars, we see as timely to

ask: Does this metamorphose expose the limits of the Bazaar organization, indicating

when and why Markets fail and give rise to Hierarchical or Network governance

structures?

 Additionally, responsible for the transformation, founders of OSP strive to find

external resources (sponsorship) as it signals credibility to the market, boosting

adoption rates, and sustains contributors’ motivations to develop source code and

locate bugs. Such behavior is not inconsequential, as it later restricts the governance

structure and coordination mechanisms that can be effectively applied. But do

practitioners have another option? O’Mahony (2007) stated that OSP vary according

to governance structure and degree of community-management, defining how we can

observe that. However, how OSP came to have those structures and the conditions

under which each structure is effective or required were left out of the paper. Thus, as

practitioners, it is important to ask: Is the Bazaar organization capable of sustaining

OSS improvement and diffusion in the long term? Under which conditions and

towards which goals the Bazaar must incorporate Cathedral elements? To what extent

can sponsorship be accommodated in a Bazaar-type of organization?

Acknowledgments

This research is supported by the Horizon Digital Economy Research Institute at the

University of Nottingham, and the USP FLOSS Competence Center (CCSL-

NAPSoL) with a grant from the USP Research Provost Office.

10

The Inextricable Role of Organizational Sponsorship for Open Source Sustainability 5

References

Agerfalk, P., Fitzgerald, B.: Outsourcing to an Unknown Workforce: Exploring

 Opensourcing as a Global Sourcing Strategy. MIS Quarterly. 32, 385-409 (2008)

Fitzgerald, B.: The Transformation of Open Source Software. MIS Quarterly. 30, 587-598

 (2006)

O’Mahony, S.: The governance of open source initiatives: what does it mean to be community

 managed?. Journal of Management & Governance. 11, 139-150 (2007)

Powell, W.: Neither Market nor Hierarchy: Network Forms of Organization. Research in

 Organizational Behavior. 12, 295-336 (1990)

Roberts, J., Hann, I., Slaughter, S.: Understanding the Motivations, Participation, and

 Performance of Open Source Software Developers: A Longitudinal Study of the Apache

 Projects. Management Science. 52, 984-999 (2006)

Santos Jr., C.: Understanding Partnerships between Corporations and the Open Source

 Community: A Research Gap. IEEE Software. 25 (2008)

Santos Jr., C., Pearson, J., Kon, F.: Attractiveness of Free and Open Source Software Projects.

 18th European Conference on Information Systems (ECIS), Pretoria (2010)

Sen, R., Subramaniam, C., Nelson, M.: Determinants of the Choice of Open Source Software

 License. Journal of Management Information Systems. 25, 3, 207-239 (2008)

Stewart, K., Ammeter, A., Maruping, L.: Impacts of license choice and organizational

 sponsorship on user interest and developer activity in open sources software projects.

 Information Systems Research. 17, 2, 126-144 (2006)

Watson, R., Boudreau, M., York, P., Greine, M., Wynn Jr., D.: The Business of Open

 Source. Communications of the ACM. 51, 41-46 (2008)

West, J., O’Mahony, S.: The Role of Participation Architecture in Growing Sponsored Open

 Source Communities. Industry & Innovation. 15, 2, 145-168 (2008)

11

12

Managing Open Source Legality Concerns –
A Sustainability Catalyst

Alexander Lokhman, Salum Abdul-Rahman, Antti Luoto, Imed Hammouda
 Department of Software Systems

Tampere University of Technology
Tampere, Finland

firstname.lastname@tut.fi

Abstract. As more and more software companies are integrating different
Free/Libre and open source software (FLOSS) components in their
products, it became more probable that a single software solution uses
numerous licenses. Mixing together different open source and proprietary
licenses may lead to legality complications as different licenses introduce
different privileges and requirements on the use of the composed code. In
this paper, we address the multi-facets of the legality concerns of open
source. We further propose an open tool architecture to address such
concerns.

1 Introduction

Over the last decades, Free/Libre and Open Source Software (FLOSS) has
emerged as one of the most important phenomena in software engineering. In
this trend, more and more companies are putting FLOSS at the center of their
business strategies. Although there are many benefits to going open source,
companies need to be aware of the risks associated with FLOSS. One of such
risks is the legal obligations that both consumers and producers of FLOSS need
to fulfill. Unfortunately, for many companies, software developers are still
unaware of these issues. This may cause trouble to the corresponding companies,
especially in the absence of legal departments and external legal consultants.

In this position paper, we address the various facets of open source legality
compliance, arguing that the legal risks of open source have a critical influence
on the sustainability of the open source movement as a whole. We further argue
that handling the legality risks through shared knowledge bases and automated
tools may boost the adoption of open source. Towards the end of the paper we
briefly present an open tool architecture for open source legality compliance.

2 Legality Tension of FLOSS intensive systems

When addressing the legality compliance issue of FLOSS intensive systems,
there are a number of factors that must be taken into account. These factors not
only stem from the nature and terms of the licenses themselves, but also are
related to the way the subject software is implemented, packaged, and deployed.

13

 Alexander Lokhman, Salum Abdul-Rahman, Antti Luoto, Imed Hammouda

There are plenty of licenses and license models. A straight forward observation
when working with open source licenses is that there are many of them. The
Open Source Initiative [OSI] lists about 70 licenses. Popular licenses include the
GNU General Public License (GPL), the Lesser GNU General Public License
(LGPL), the Apache license, the Massachusetts Institute of Technology license
(MIT), and the Berkeley Software Distribution license (BSD). The terms of
different licenses vary considerably. To give an example, some licenses such as
MIT are classified as permissive, granting very broad rights to licensees and
allowing almost unlimited use of the licensed code. Other licenses such as GPL
are classified as strong copyleft, requiring that works based on the licensed code
be published and relicensed to others on the same terms of the initial license. In
the middle are weak copyleft licenses such as LGPL, which is a compromise
between permissive and strong copyleft. The LGPL grants flexibility to users
when linking to licensed software libraries. However, any modifications to the
original library should be contributed back on the same terms of the license.
Moreover, some licenses have several versions, and there are subtle changes
between different versions. A good example is the case of GPL v2 and GPL v3.
In addition, the list is by no means complete, and new licenses can be introduced
if so desired. For example, a new license can add some minor differences to an
earlier one, thus generating a discrepancy between the licenses, or a completely
new license can be introduced.

Licenses can be conflicting [Ham10]. To give an example of possible legal
incompatibilities between software components, Table 1 presents a number of
open source licenses and their compatibility properties (across open source
components themselves) categorized into three cases: mixing and linking is
permissible, only dynamic linking is permissible, and completely incompatible.

Table 1. Example Open Source Licenses and their Compatibility
 PHP Apache IPL SSPL Artistic
GPL 3 3 3 1 3
LGPL 2 2 2 1 2
BSD 1 1 1 1 1

1- Mixing and linking permissible
2- Only dynamic linking is permissible
3- Completely incompatible

As an example, a software component under the terms of GPL cannot be

directly linked with another under the terms of the Apache license. In this case,
the main reason is that GPL’ed software cannot be mixed with software that is
licensed under the terms of a license that imposes stronger or additional terms, in
this case the Apache license. The Apache 2.0 license allows users to modify the
source code without sharing modifications, but they must sign a compatibility
pledge promising not to break interoperability.

Is it derived or combined work? When integrating third party open source
components, possibly together with own work, the restrictions and obligations
which the used licenses impose may depend on whether the work is considered

14

Managing Open Source Legality Concerns – A Sustainability Catalyst

as derived (derivative) or combined (collective) [Ger09]. A simple example of
derived work is a modified version of the original software. However, the
distinction between derived and combined works becomes trickier when
producing new work by combining or linking multiple software components,
possibly distributed under the terms of different licenses. Take the example of a
software system S which is the result of linking together an open source
component C1 and an own developed component C2. A common interpretation
is that system S is considered to be derived work if C1 and C2 link statically
(linked during compile or build time) and that S is considered to be combined
work if C1 and C2 link dynamically (the two libraries are loaded into a client
program at runtime). In a typical case, however, only a judge in a court of law
can make the final decision. As a matter of fact, the court decision might depend
on the specific legal framework of the jurisdiction in which the case arises.

There are thousands of open source components with different risk levels
depending on their usage scenario. The number of open source components has
grown at an exponential rate during the last decade. This has given software
developers a jump on creating software based on existing code. However, many
companies are reluctant to use open source software due to the legal risks
associated with the use of those components. There have been attempts to
classify open source components according to their risk level [Wil10]. Table 2
gives an example categorization. Four usage scenarios are identified: using the
component as a redistributable product, as part of service offering, as a
development tool, and for internal use. Three levels of risks have been proposed.

Table 2. Example Software Components and their Risk Level
Component License Redistribution Service

offering
Development
tool

Internal
use

Agent++ Agent++
license

3 3 2 1

SwingX LGPL 3 3 3 3
Libxml2 MIT 1 1 1 1
Cglib Apache 2 1 1 1

(1) Valid (2) Possible risk (3) Clear risk

According to the authors of [Wil10], valid means that the package can be
used as instructed and that no risk has been identified. Possible risk means an
interpretation question has been found. This type of issues can be solved by
either 1) removing/replacing the problematic files or 2) acquiring additional
permissions from the respective right holder or 3) not using the package at all or
4) based on the particular company’s risk preferences in such project, a company
could accept the risk. Legally, an interpretation question means that an eventual
realizing risk would be civil law risk, e.g. monetary (not criminal). Clear risk
means that a risk that cannot be interpreted in a way that would not include the
risk has been found. This type of issues can be solved only by 1)
removing/replacing the problematic files or 2) acquiring additional permissions
from the respective right holder or 3) not using the package at all. A company

15

 Alexander Lokhman, Salum Abdul-Rahman, Antti Luoto, Imed Hammouda

normally cannot accept this type or risk, since it means the possibility of not
only civil law risks, but criminal risks.

As an example, component Agent++ can be used internally with no risk, has a
possible risk when used as a development tool, but exhibits a clear risk when
used as part of service offering or a redistributable product.

Open Source legality interpretations are subject to the way software is
implemented, packaged, and deployed [Ham10, Mal10]. The legality
requirements imposed by FLOSS licenses, such as the requirement to publish
source code (i.e. the copyleft rule of GPL), may depend for instance on the
interaction type of the components (data-driven versus control-driven
communication). In the case of mere data exchange between components, there
is no copyleft obligation as the two components are considered as separate
programs. Also, the copyleft obligation of GPL does not hold if the FLOSS
component (or a modified version of it) is deployed as a hosted service.
However, if the hosted code is licensed under the terms of AGPL (Affero
General Public License), the copyleft requirement does hold, but only in the case
of user interaction with the hosted service (in contrast to service to service
interaction). In addition, the copyleft requirement of GPL may not hold in case
of interactions through standardized interfaces such as the use of operating
system public API, in contrast to system hacks which make the two
communication components strongly coupled. Finally, compatibility concerns
among different licenses may be circumvented if the packaging of components is
done by the user instead of building the entire system at the vendor site.

3 Towards an Open Architecture for FLOSS Compliance

The ultimate goal of this work is to design and implement a new kind of tool for
addressing the various legality compliance concerns identified in the previous
section.

Figure 1. An Open Architecture for Open Source Compliance

16

Managing Open Source Legality Concerns – A Sustainability Catalyst

Figure 1 proposes an example overall architecture for such a tool. Here we
assume that the tool is capable of managing the legality concerns at the
architectural level (i.e., application design is expressed as an UML component
diagram for example). Table 3, in turn, explains each of the architectural
components and lists example existing works that could be used as
implementation guides.

Table 3. Architectural Components
Component Description Resource

Core

Handles interactions between the application model,
licensing information and the user.

[Wil10]

License Profile

A UML extension to include license information. [SPDX], [Hoe07],
[OSI]

License Model

Describes in computable format the clauses,
restrictions, rights and their interdependencies of a
license.

[Als09], [Tuu09],
[Hoe07], [Gom08]

Package
Database

A repository of containing information on which
license and copyright information is associated with
which package.

[SF]

Risk View

Assess legal risks related to use of component for
variable purposes re-licensing, sale, internal use etc.

[Als09], [Hoe07],
[Gom08]

Conflict
Detection

Analysis whether license terms of different licenses
conflict when linked into the same software.

[Ham10], [Als09],
[Tuu09], [FOS10],
[OSLC], [Ninka]

Problem
Resolution

Suggests operations that can be performed to remove
license conflicts from model.

[Ger09], [Ham10],
[Mal10]

Learning Agent

Records user actions so that they can be later used to
improve program performance.

[Ham10]

Reporting

The analysis results from the different components
can be output in different formats.

[FOS10], [Tuu09],
[OSLC]

Documentation

Linking to internal and external documentation on
open source licensing concerns.

[IFOSS]

A part from Core, each component is associated with an extension point. The
architecture is made extensible so that the tool is able to work with different
licenses. The License Profile component allows for attaching different licensing
concepts to the architectural model. Different implementations of License Model
give different interpretations of clauses based on local law. Different open
source components can be registered to the tool via the Package Database
component. The Risk View extension point allows the plug-in of different risk
analysis methods. The tool also integrates different techniques for detecting
conflicts among licensed components (Conflict Detection) and proposes
remedial actions (Problem Resolution). These actions can be recorded for future
exploitation (Learning Agent). Finally, the tool is capable to report the analysis
results in different pluggable formats (Reporting) and links to relevant
documentation resources (Documentation). We argue that the described

17

 Alexander Lokhman, Salum Abdul-Rahman, Antti Luoto, Imed Hammouda

architecture allows the building of an open knowledge base related to open
source licensing.

4 Conclusions

There has been a growing interest in studying the compliance of software
systems with respect to the legality restrictions and obligations of open source
licenses. This came in response to the increasing concerns about the legal risks
of using FLOSS components. We argue that if such issues are not addressed by
both legal experts and software developers, the whole open source ecosystem
may face sustainability challenges. In this paper we have presented an overview
of the main dimensions involved in open source compliance. Based on the
analysis, we have outlined an open architecture for managing open source
legality concerns at the architectural level. As future work, we plan to exploit the
ideas presented in this paper to develop concrete tool infrastructure.

References

[Als09] Alspaugh, T. A., Asuncion, H. U. and Scacchi, W. Analyzing Software Licenses in Open
Architecture Software Systems. In proc. of FLOSS 2009, pp 54-57.

[FOS10] FOSSology. http://fossology.org/. Last accessed Sep. 2011.
[Gam05] Gamma, E.,Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison_Wesley, 1995.
[Ger09] German, D. M.; Hassan, A. E. License integration patterns: Addressing license

mismatches in component-based development. In proc. of ICSE 2009, pp 188-198. May
2009.

[Ham10] Hammouda, I., Mikkonen, T., Oksanen, V. and Jaaksi, A. Open Source Legality Patterns:
Architectural Design Decisions Motivated by Legal Concerns. In proc. of AMT 2010.
Tampere, Finland. October 2010. ACM Press.

[Hoe07] Hoekstra, R., Breuker, J., Di Bello, M. and Boer, A. The LKIF Core Ontology of Basic
Legal Concepts . In proc. of LOAIT 2007, pp 43-63.

[IFOSS] International Free and Open Source Software Law Review. http://www.ifosslr.org. Last
accessed Sep. 2011.

[OSI] Open Source Initiative. http://www.opensource.org. Last accessed Sept. 2011.
[OSLC] OSLC, Open Source License Checker. http://sourceforge.net/projects/oslc. Last accessed

Sept. 2011.
[Mal10] Malcolm, B. Software Interactions and the GNU General Public License. IFOSS L. Rev,

2(2), pp 165 - 180. 2010.
[Ninka] Ninka, a license identification tool for Source Code. http://ninka.turingmachine.org/. Last

accessed Sep. 2011.
[SF] Sourceforge.net. http://sourceforge.net/. Last accessed Sep. 2011.
[SPDX] Software Package Data Exchange (SPDX). http://spdx.org/. Last accessed Sep. 2011.
[Tuu09] Tuunanen, T., Koskinen, J. and Kärkkäinen, T. Automated software license analysis.

Automated Software Engineering 16 (3-4), 455-490, Dec. 2009.
[Wil10] von Willebrand, M. and Partanen, M. P. Package Review as a Part of Free and Open

Source Software Compliance. IFOSS L. Rev, 2(2), pp 39 – 60. 2010.
[Gom08] Gomez, F. P. and Quiñones, K. S. Legal Issues Concerning Composite Software. In proc.

of ICCBSS 2008, pp 204-214, 2008.

18

Open Source communities for long-term maintenance
of digital assets: what is offered for ODF & OOXML?

Jonas Gamalielsson and Björn Lundell
University of Skövde, Skövde, Sweden,

{jonas.gamalielsson, bjorn.lundell}@his.se

1 Introduction

Many organisations have requirements for long-term maintenance of their software
systems and digital assets. In this paper, we explore sustainability of Open Source
Software (OSS) licensed office applications (hereafter referred to as OSSOA)
implementing the ISO-standardised XML-based document formats ODF (ISO/IEC
26300:2006) and OfficeOpen XML (ISO/IEC 29500:2008). We draw from prior
research conducted in the Swedish public sector context where different applications
for the two formats are used (Lundell 2011, Lundell & Gamalielsson 2011).

In a number of countries there are governmental policies mandating use of ODF in
the public sector (Lundell 2011). Previous research in the Swedish public sector found
that “there is little or no evidence of consideration given to document formats when
municipalities procure software” (Lundell 2011). The same study found significant
confusion concerning the concept of standard and differences between file formats
and software applications.

Implementations of file formats that are distributed under an Open Source license
clearly contribute to the desired economic effect of standards (FLOSSPOLS 2005), in
that such implementations stimulate competition in the marketplace and minimise the
risk for different types of lock-in effects (Lundell 2011). For example, organisations
have had concerns for avoiding vendor lock-in for decades (Guijarro 2007).

Different Open Source licenses have different effects on longevity of tools, and
licence selection is a critical issue for companies and communities (Engelfriet 2010).
Previous results on Open Source implementations of document formats show that
community commitment and choice of licenses may significantly affect long-term
maintenance of digital artefacts (Lundell & Gamalielsson 2011). Further, company
commitment and choice of software licenses affect longevity of tool support for
different file formats (Lundell et al. 2011).

Before an organisation adopts an Open Source project it is important to evaluate its
communities in order to make sure that it is healthy and that the project is likely to be
sustainable and maintained for a long time (van der Linden et al. 2009). From this,
our goal is to investigate the availability of effective and sustainable OSSOAs for
creation and editing of documents.

2 Research approach

Firstly, we identify effective and sustainable OSSOAs implementing the two XML-
based formats ODF and Office Open XML (OOXML). Hence, we undertook: a

19

systematic investigation of existing OSSOAs through a literature analysis, interviews,
search in OSS forges, and an analysis of information on existing OSS available
through framework agreements provided by the Legal, Financial and Administrative
Services Agency (swe. Kammarkollegiet). Our analysis identified several OSSOAs
for creation and editing of documents in the ODF format, whereas we only identified
one OSSOA that provides support for creation and editing of documents in the
OOXML format (docx4all). For the OOXML format, our selection of docx4all for
investigation was informed by a previous analysis covering OSSOAs that provide
support for creation and editing of documents (Garshol, 2010). We note that our study
covers all tools using “.docx” as its internal format (although the ECMA, instead of
the ISO version). It was decided to explore the LGPL-licensed LibreOffice (LO)
project as a representative of an effective OSSOA implementing the ODF format. Our
review revealed that both LO and OpenOffice.org (OO) are in professional use with
the ODF format in the Swedish public sector, whereas there is no OSSOA in
professional use for the OOXML format. For the study we selected LO as an analysis
would encompass an investigation of consequences of a fork. Further, amongst
organisations already using OO we observed an interest in exploring LO as a potential
alternative. We establish the sustainability for the selected Open Source projects
through an assessment of contributions to the Software Configuration Management
system1 (SCM) over time.

Secondly, for each document format for which there exists an Open Source
implementation with a sustainable community, our goal was to extend the analysis
with a deeper characterisation of the Open Source community. For the ODF format, we
analysed the community of the LO project in order to reveal its potential for long-term
maintenance. This project constitutes a fork from the OO project. Our investigation
addresses both the base project (OO) until the fork and the branch project (LO) after
the fork. Specifically, we investigated the LO developer community over time with the
view to obtain insights concerning long-term sustainability by means of a quantitative
analysis. In so doing, we extend a previous analysis of the OO developer community
(Meeks 2008) by elaborating on the effects of the fork.

To investigate the sustainability of Open Source communities, we adopt the
approach from an earlier study (Gamalielsson et al. 2011) in order to analyse the
contributions in terms of committed SCM artefacts of the Open Source projects over
time. The data for the LO project was collected from the LO website
(www.libreoffice.org/get-involved/developers, accessed 8 Aug. 2011), and for
docx4all the data was collected from the docx4all website (dev.plutext.org/trac/
docx4all, accessed 8 Aug. 2011).

3 Results

The developer activity in the selected OSSOAs is presented in Figure 1, which shows
the number of commits for each month over the four year time period from August
2007 to July 2011 for LO (blue trace) and docx4all (red trace). Our SCM analysis of
the LO project includes the development in OO before the fork in September 2010.
We note that activity in the LO project varies, with a distinct peak in connection with
the OO 2.4 release in March 2008 (59804 commits in April, which is not visible in the
diagram for scaling reasons). Since October 2008 (with the release of OO 3.0) there

1 Examples include Git, SVN and CVS.

20

have been 2851 commits each month on average. We also note that the activity is
much lower in docx4all (red trace in Figure 1), and that there has been very limited
SCM activity in the project since September 2009. Further, there have been no
contributions to the SCM since September 2010 (when only two commits were
provided) except for a single commit in April 2011. The maximum number of
commits in docx4all during one month is 195 (during May 2008). Since the start of
the project (October 2007) there have been 29 commits each month on average. We
acknowledge that docx4all is a much smaller project than LO, and therefore it is not
unexpected that docx4all has had fewer commits. Totally, there have been 664
committers (unique IDs in the SCM log) in the LO project over the studied four year
period, whereas only two committers have contributed to docx4all since the creation
of the project (where one of these committers has contributed 79% of all commits).

Fig 1. Number of commits over time for LO (blue) and docx4all (red)

Due to the absence of a sustainable developer community for docx4all, we decided
to only consider LO in our further analysis. The proportion of commits for the 10
most active affiliations over time in the LO project is shown in Figure 2 (like in
Figure 1, the peak in April 2008 is not visible for scaling reasons). It can be observed
that “openoffice” is dominating until August 2010, and that other affiliations break
the dominance from September 2010 (the month of the fork) and onwards. It is also
noted that “sun” is most active in the period from October 2009 to July 2010, and that
“oracle” is most active from August 2010 to March 2011. Further observations are
that “novell” and “suse” have been active for the entire four year period with an
increased activity after the fork, and that “redhat” has become the major contributor
ever since the fork.

21

Fig 2. LO: Proportion of commits per affiliation over time

Figure 3 illustrates the total affiliation commit influence for LO 10 months before
and after the fork on 28 September 2010, and further emphasizes the shift from
“openoffice” domination to a more diversified developer community after the fork.

Fig 3. LO: total affiliation commit influence (left pie: during 10 months before the

fork, right pie: during 10 months after the fork)

22

4 Conclusion and discussion

We find that there is a sustainable and effective OSSOA for the ODF document
format but not for OOXML. Further, despite the relatively short time window after
the fork, our analysis indicates that the LO project has an active and diversified
developer community. This is in contrast with worrying observations made three
years earlier for the OO project in which Meeks (2008) claims that the OO project “is
a profoundly sick project, and worse one that doesn't appear to be improving with
age.” However, we acknowledge the inherent complexity in quantitatively analysing
the OO and LO projects for a number of reasons, such as governance models and
differences in practices regarding use of affiliation during project interactions.

Long term maintenance of digital assets and supporting OSSOAs is a significant
issue for both private and public sectors. It is closely related to longevity of file
formats. In a number of usage scenarios it is common that organisations need to
preserve their systems and associated digital assets for more than 30 years (Lundell et
al. 2011, Lundell 2011). It is important to recognise that any action in the private and
public sectors must be based on a long-term vision and the recognition that no provider
will remain on the market for the life-span during which digital assets must be
maintained. For achieving a long-term sustainable ICT ecosystem it is important to
recognize that for each file format used in the public sector there must exist a
supporting Open Source implementation. Further, before a file format is used and
referred in a public sector procurement, we argue that there should exist a sustainable
implementation that is licensed under a “share-alike” or “keep-open” Open Source
license. Such a requirement would be one effective strategy for minimising the risk for
vendor lock-in and lack of interoperability in the public sector. It is an open question to
what extent the Document Foundation may establish long-term sustainability for LO
with its use of a “keep-open” license.

In acknowledging that our research has not addressed the extent to which the
specification of each ISO standard is actually implemented in an OSSOA, we note that
for the OOXML standard it has been claimed that "it is unclear whether anyone is able
to implement the ISO standard" (documentfoundation.org 2011). Further, at time of
writing, we note that there is uncertainty concerning when support for this standard
will be provided by an office application2 under any software license.

For further work, we plan to broaden our investigation of long-term sustainable
communities to include both branches of the OO project, and also extend our analysis
of sustainability and commitment of individuals to the projects over time. In addition,
we plan to undertake a qualitative analysis of the projects, including investigation of:
external events, choice of license, foundations, governance and work practices. A
related issue for further investigation concerns the extent to which it is possible to
successfully migrate documents between implementations of the two document
formats. It is not uncommon that office applications provide warnings when a user
attempts to save a document in a non-native file format. For example, in addition to its
native ODF support, the most recent release (version 3.4.2) of the office application
LibreOffice also provides options for saving a document in several non-native file
formats. When attempting to save a document using the “Office Open XML Text”
option in the office application LibreOffice, the application issues the warning: “This
document may contain formatting or content that cannot be saved in Office Open XML
Text file format. Do you want to save the document in this format anyway? Use the

2 In fact, it has been estimated that full support for creation and editing of documents in

OOXML will be provided in a proprietary office application ‘no later than Office “15.”’
(Mahugh 2010).

23

latest ODF file format and be sure all formatting and content is saved correctly.”
(documentfoundation.org 2011). Such warnings may cause users to vary and the extent
to which successful migration between formats actually is (and can be) provided
during long life-cycles beyond any single office application needs further exploration.

Acknowledgement

This research has been financially supported by the ITEA2 project OPEES
(www.opees.org) through Vinnova (www.vinnova.se).

References

documentfoundation.org (2011). LibreOffice OOXML, The Document Foundation Wiki,
http://wiki.documentfoundation.org/LibreOffice_OOXML, accessed 15 September 2011.

Engelfriet, A. (2010). Choosing an Open Source License, IEEE Software, 27(1): 48-49
FLOSSPOLS (2005). An Economic Basis for Open Standards, Deliverable D4, December 12,

2005, http://flosspols.org.
Gamalielsson, J., Lundell, B. and Mattsson, A. (2011). Open Source Software for Model

Driven Development: A Case Study, In Hissam, S. (Eds.) Open Source Systems: Grounding
Research, IFIP Advances in Information and Communication Technology, Vol. 365, ISBN:
978-3-642-24417-9, Springer, Boston, pp. 348-367.

Guijarro, L. (2007). Interoperability frameworks and enterprise architectures in e-government
initiatives in Europe and the United States. Government Information Quarterly, 24 (1), 89-
101.

van der Linden, F., Lundell, B. and Marttiin, P. (2009). Commodification of Industrial
Software: A Case for Open Source. IEEE Software, 26 (4): 77-83.

Lundell, B. (2011). e-Governance in public sector ICT-procurement: what is shaping practice in
Sweden?, European Journal of ePractice, 12(6), http://www.epractice.eu/en/document/
5290101

Lundell, B. & Gamalielsson, J. (2011). Towards a Sustainable Swedish e-Government Practice:
Observations from unlocking digital assets. In Proceedings of the IFIP e-government
conference 2011(EGOV 2011), Delft, The Netherlands, 28 August - 2 September 2011.

Lundell, B., Gamalielsson, J. & Mattsson, A. (2011). Exploring Tool Support for Long-term
Maintenance of Digital Assets: a Case Study, In Fomin, V. and Jakobs, K. (Eds.)
Proceedings: 16th EURAS Annual Standardization Conference, European Academy of
Standardisation, The EURAS Board, pp. 207-217.

Mahugh, D. (2010). Office’s Support for ISO/IEC 29500 Strict,
http://blogs.msdn.com/b/dmahugh/archive/2010/04/06/office-s-support-for-iso-iec-29500-
strict.aspx, accessed 15 September 2011.

Meeks, M. (2008). Measuring the true success of OpenOffice.org, http://people.gnome.org/
~michael/blog/ooo-commit-stats-2008.html, accessed 15 September 2011.

24

Adding Control to Open Innovation Projects
Through Agile Practices

Terhi Kilamo1, Ville Kairamo2, Petri Räsänen2, and Jukka P. Saarinen3

1 Tampere University of Technology firstname.lastname@tut.fi
2 Uusi Tehdas/New Factory firstname.lastname@hermia.fi

3 Nokia Research Center jukka.p.saarinen@nokia.com

Abstract. Businesses today have to rely on rapid development and
release cycles. Thus open innovation has emerged as an increasingly
appealing option also for the software business to gain variant ideas
and concepts. A local open innovation platform for students, Demola,
allows university students to work on real life industrial cases of their
own interest. We monitored the daily work routine of a student team
and found that practises from agile software development were applied
to scope and manage the project activities.

1 Introduction

Many companies rely on innovation on a daily basis to create better products
and to improve their internal processes [2] Constant, lightning-fast innovation
is becoming an essential element of product development also in the software
business. Open innovation helps in identifying the best ideas by combining
internal and external ideas [7, 2].

Iterative or agile software development [6] has become more popular over
the more traditional processes in the software industry. Agile development prac-
tises, mainly the concept of sprinting, has been studied earlier in the context
of free software [1]. In this paper we focus on the agile approach in the open
innovation setting. Innovation work is similarly characterized by ideas, changes
and do as you go attitude. The absence of formal processes and excess documen-
tation is characteristic to it in accordance to the manifesto for agile software
development [5] with emphasis on interaction, collaboration and change when
necessary.

The paper focuses on open innovation in the context of academia-industry
cooperation in the form of a local open innovation platform Demola [8]. One
of the aims of the platform is to develop an open innovation environment that
is multidisciplinary and agile in the sense that innovations can flow freely and
are not restricted to any artificial process or framework that must be obeyed in
order to benefit from it. In this paper we discuss how practices of agile software
development can be incorporated to compensate such innovation challenges
as timely delivery, communication, and quality. We have conducted our study
by interviewing the key people behind the environment and by observing an

25

2 Terhi Kilamo, Ville Kairamo, Petri Räsänen, and Jukka P. Saarinen

example development team for identifying their working practices. The main
research question was: What kind of development practises are used to work on
the projects and how do they compare to agile practises?

The rest of the paper is structured as follows. Section 2 motivates the work
by introducing the open innovation platform, Demola. Section 3 discusses the
practices agile development in the open innovation context and further high-
lights them in practise through an example team. The results of the paper are
discussed in Section 4 and finally Section 5 concludes the paper with some final
remarks.

2 Platform for Open Innovation and Learning

There is a real need for increased opportunities for innovation projects that can
lead to new business ideas. Open innovation environments allow businesses to
reach beyond the company scope in the search for new concepts and ideas. A lo-
cal open innovation platform, Demola, provides a governance framework needed
with practices and working principles to bring innovation partners together and
to ensure ongoing innovation work.

2.1 Demola Organisation

Demola is a modern learning environment for students from different universi-
ties. It aims to multidiciplinary and agile development of innovative products
and demos. The project ideas come from the industry and public organisations
and thus concepts that have practical business importance are developed. The
student work is supported by both the industrial and the academia partners,
who provide guidance throughout the project. Figure 1 shows the partners in
Demola and the flow of communication and support for the project work.

COMMUNITY

PROJECT
PARTNERS

OPERATOR
DEMOLA

students
TEAM

ACADEMIA
teachers
researchers

Fig. 1. Demola Partners

Demola offers a governance framework that facilitates team building and
supports emerging business ideas. It also incorporates a model for managing
immaterial rights that supports startups and respects the authors. On a practi-
cal level, Demola provides workspaces that support team work and co-creation.

26

Agile in Open Innovation 3

3 Incorporating Agile Development Practices

Projects come to Demola through industrial project partners and therefore
they have an intended outcome, no matter how loosely defined, and a fixed
timeframe. The teams are also rather small in size and new members are nor-
mally not added after project kickoff. Iterative or agile software development
that has gained popularity in the software industry over the more traditional
processes lends a way to handle the innovation projects. There are several ag-
ile approaches available, such as Scrum [6, 3] or Extreme Programming [6, 4].
We focus here on practices general to the idea of agile and not to any specific
approach.

In [6] the authors find that software development can be said to be agile
when the releases are small but done often, the customer and the developers
work together and in close communication, the development method is straight-
forward and adapts to the situation making it easier to do rapid changes. These
are all identifiable in Demola as the independent teams appear to control their
development cycle through applying practices known from agile development.
This also in part aids Demola in being a sustainable open innovation community
through completed projects.

Rapid Release Cycle Innovative development starts from ideas and concepts.
An ideal project timeframe is short in Demola. A typical project is three to four
months in duration. Development is done in small increments, the final outcome
is loosely specified and the teams have a lot of fluidity in the specification. The
current state of the project is demoed regularly to the customer. An agile,
demo-driven development approach with frequent demos enables control of the
project focus and its intended outcome.

Close Communication The teams commonly meet with eachother and the
customer on a regular basis during the lifecycle of their Demola project. It is
typical that teams keep in touch regularly, mostly daily, to sync their work
progress via chats, online phone applications or meetings. Even though there
are no product releases during the life cycle of the project the customer gets
the current version of the product in these meetings. Changes can be made
to the requirements and project outcome based on the teams work. While the
requirements management is flexible with requirements changed and added as
the project evolves, the project runs for a predetermined time. Similar fixed
time projects are known from agile software development and give the project
customer control over the end product. They can add, remove and prioritize
the requirements as they go thus controlling the outcome of the project.

Self-Managing Teams The teams themselves can be seen through agile prac-
tises, where development is built around small development teams or pairs. One
Demola project team forms such a unit and has freedom in choosing and adapt-
ing the working methods and arrangements as they see fit. There is likely to
be a wide variation of practices here as the teams and projects vary. What is

27

4 Terhi Kilamo, Ville Kairamo, Petri Räsänen, and Jukka P. Saarinen

common to them is the Demola workplace that provides premises and tools to
enable independent, collaborative work of the teams as they best see fit.

3.1 Sample Case: Team Practices

We monitored the work of one team through the course of their development
project to see how our observations on Demola apply to the daily work routine.
The team was selected as it had a suitable kickoff date and project schedule
and both the team and their customer project partner had no objections on
us observing their collaboration. The development practices relied on iterative
development with one week intervals.

There were five members in the sample case team. The educational back-
ground of the participants varied with one of the team members having com-
pleted their master’s degree. One had a bachelor of science degree while three
were still working on completing their undergraduate studies. The cultural back-
ground was diverse with members of four different nationalities and from two
different continents. However, all participants in the project were software en-
gineering majors even though innovation projects would benefit from a wider
view with participants majoring in usability, human sciences or graphics design
to name a few.

3.2 Team Collaboration

The team collaboration was informal but had certain structuring elements in
it. The overall format of communication and syncing followed agile practices.
There were more quiet and more talkative people in the team but no sense on
dictatorship emerged. The eldest team member could be seen as a team leader
and was also voted into that position by the team. They found a named leader
necessary to keep the work in sync and for managing the work load.

At the beginning of the project the team decided to keep in touch daily to
sync what everyone has done. As the development started in earnest the team
abandonded such a strict, approach and adapted to a more flexible once a week
sync. A daily sync would have followed agile methods better, but the teams self
direction abandoned the approach.

3.3 Team and Customer Interaction

The team met the customer project partners weekly in a meeting at the project
partners offices. A demo was prepared to show the progress that week. The
length was roughly one hour, never over two. The meetings were informal but
followed a certain structure that resembled a process known from agile methods.
What progress the team had done during the week was discussed over a demo
and what needed to get done in the future was agreed upon based on that.
The possible problems, or impediments, that stood in the way of the team were
covered together with if the customer could help the team in solving them was

28

Agile in Open Innovation 5

also covered. A checklist of the project’s status was maintained not only to keep
track of the project but also to map the changing and emerging requirements.
Both the customer and the team were able to make changes to the requirements
but the customer had the final say. The customer acted as a product owner in
agile.

The team members and a person responsible for the project on the cus-
tomer’s side were always present at the meetings. In addition, people from the
customer company interested in the project attended when necessary. These
outside experts were also brought in to aid in a development issue or give in-
sight on technical topics.

4 Discussion

Demola is at heart a community. Additionally its day to day practises lean to-
wards agile methods for managing the project as community driven development
approach alone does not provide sufficient tools for timeboxing or requirements
management. This brings a natural addition to the innovation work without
endangering the community level principles.

The participants have the final responsibility of the work and project out-
come. The teams keep in close communication not only with eachother but
also with the project partner. Furthermore, frequent demos add flexibility to
the requirements. Based on the overall Demola approach and the work of the
sample case team, the agile approach appears as a viable way for the teams to
keep the project on track and to adjust it to the needs of the project partner
during the project. Ability to meet the project requirements and create inno-
vative products and demos within Demola is an important factor in Demola’s
sustainability as Demola is dependent on industrial partner’s project ideas.

The biggest limitation of our research on Demola so far is that our obser-
vation is limited to one example team. There is a risk that we get an overly
idealistic and onesided view of the teams based on just one project. We be-
lieve the results are applicable to other teams as well since the agile practices
were identified from the Demola community as well before monitoring a project
team. We intend to enforce the work through a wider study of the Demola
projects. Identifying further how variance in team member’s background and
multidiciplinary teams effects the project work is also of interest.

5 Conclusions

We set out to study an open innovation approach and how the daily workflow of
the project development in a single team shares similarities with agile software
development to control the innovative work flow. Our findings suggest challenges
of community work can be addressed by the adoption of such new practises as
time-boxing, face to face meetings, and demo-driven development.

29

6 Terhi Kilamo, Ville Kairamo, Petri Räsänen, and Jukka P. Saarinen

References

1. Capiluppi A. and Adams P.J. Bridging the gap between agile and free software.
International Journal of Open Source Software and Processes, 1(1):58–71, 2009.

2. Chesbrough H. Open Innovation: Researching a New Paradigm, chapter Open
Innovation: A New Paradigm for Understanding Industrial Innovation. Oxford
University Press, 2006.

3. Takeuchi H. and Nonaka I. The New New Product Development Game. Harvard
Business Review, pages 137–146, January-February 1986.

4. Beck K. Embracing Change With Extreme Programming. Computer, 32(10):70–77,
October 1999.

5. Beck K., Beedle M., van Bennekum A., Cockburn A., Cunningham W., Fowler
M., Grenning J., Highsmith J., Hunt A., Jeffries R., Kern J., Marick B., Martin
R.C., Mellor S., Schwaber K., Sutherland J., and Thomas D. Manifesto for Agile
Software Development. Available at: http://agilemanifesto.org/, March 2002.
Last visited March 2011.

6. Abrahamsson P., Salo O., Ronkainen J., and Warsta J. Agile Software Development
Methods Review and Analysis. VTT Publications 478, 2002.

7. Davis S. How to Make Open Innovation Work in Your Company. Visions Magazine,
December 2006.

8. Demola Innovation Platform. http://www.demola.fi. Last visited March 2011.

30

Tampereen teknillinen yliopisto
PL 527
33101 Tampere

Tampere University of Technology
P.O.B. 527
FI-33101 Tampere, Finland

